1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2019 Joyent, Inc. 27 * Copyright 2017 Nexenta Systems, Inc. 28 */ 29 30 /* Portions Copyright 2007 Jeremy Teo */ 31 /* Portions Copyright 2010 Robert Milkowski */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/time.h> 36 #include <sys/systm.h> 37 #include <sys/sysmacros.h> 38 #include <sys/resource.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/stat.h> 44 #include <sys/kmem.h> 45 #include <sys/taskq.h> 46 #include <sys/uio.h> 47 #include <sys/vmsystm.h> 48 #include <sys/atomic.h> 49 #include <sys/vm.h> 50 #include <vm/seg_vn.h> 51 #include <vm/pvn.h> 52 #include <vm/as.h> 53 #include <vm/kpm.h> 54 #include <vm/seg_kpm.h> 55 #include <sys/mman.h> 56 #include <sys/pathname.h> 57 #include <sys/cmn_err.h> 58 #include <sys/errno.h> 59 #include <sys/unistd.h> 60 #include <sys/zfs_dir.h> 61 #include <sys/zfs_acl.h> 62 #include <sys/zfs_ioctl.h> 63 #include <sys/fs/zfs.h> 64 #include <sys/dmu.h> 65 #include <sys/dmu_objset.h> 66 #include <sys/spa.h> 67 #include <sys/txg.h> 68 #include <sys/dbuf.h> 69 #include <sys/zap.h> 70 #include <sys/sa.h> 71 #include <sys/dirent.h> 72 #include <sys/policy.h> 73 #include <sys/sunddi.h> 74 #include <sys/filio.h> 75 #include <sys/sid.h> 76 #include "fs/fs_subr.h" 77 #include <sys/zfs_ctldir.h> 78 #include <sys/zfs_fuid.h> 79 #include <sys/zfs_sa.h> 80 #include <sys/dnlc.h> 81 #include <sys/zfs_rlock.h> 82 #include <sys/extdirent.h> 83 #include <sys/kidmap.h> 84 #include <sys/cred.h> 85 #include <sys/attr.h> 86 #include <sys/zil.h> 87 #include <sys/sa_impl.h> 88 #include <sys/zfs_project.h> 89 90 /* 91 * Programming rules. 92 * 93 * Each vnode op performs some logical unit of work. To do this, the ZPL must 94 * properly lock its in-core state, create a DMU transaction, do the work, 95 * record this work in the intent log (ZIL), commit the DMU transaction, 96 * and wait for the intent log to commit if it is a synchronous operation. 97 * Moreover, the vnode ops must work in both normal and log replay context. 98 * The ordering of events is important to avoid deadlocks and references 99 * to freed memory. The example below illustrates the following Big Rules: 100 * 101 * (1) A check must be made in each zfs thread for a mounted file system. 102 * This is done avoiding races using ZFS_ENTER(zfsvfs). 103 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 104 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 105 * can return EIO from the calling function. 106 * 107 * (2) VN_RELE() should always be the last thing except for zil_commit() 108 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 109 * First, if it's the last reference, the vnode/znode 110 * can be freed, so the zp may point to freed memory. Second, the last 111 * reference will call zfs_zinactive(), which may induce a lot of work -- 112 * pushing cached pages (which acquires range locks) and syncing out 113 * cached atime changes. Third, zfs_zinactive() may require a new tx, 114 * which could deadlock the system if you were already holding one. 115 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 116 * 117 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 118 * as they can span dmu_tx_assign() calls. 119 * 120 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 121 * dmu_tx_assign(). This is critical because we don't want to block 122 * while holding locks. 123 * 124 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 125 * reduces lock contention and CPU usage when we must wait (note that if 126 * throughput is constrained by the storage, nearly every transaction 127 * must wait). 128 * 129 * Note, in particular, that if a lock is sometimes acquired before 130 * the tx assigns, and sometimes after (e.g. z_lock), then failing 131 * to use a non-blocking assign can deadlock the system. The scenario: 132 * 133 * Thread A has grabbed a lock before calling dmu_tx_assign(). 134 * Thread B is in an already-assigned tx, and blocks for this lock. 135 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 136 * forever, because the previous txg can't quiesce until B's tx commits. 137 * 138 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 139 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 140 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT, 141 * to indicate that this operation has already called dmu_tx_wait(). 142 * This will ensure that we don't retry forever, waiting a short bit 143 * each time. 144 * 145 * (5) If the operation succeeded, generate the intent log entry for it 146 * before dropping locks. This ensures that the ordering of events 147 * in the intent log matches the order in which they actually occurred. 148 * During ZIL replay the zfs_log_* functions will update the sequence 149 * number to indicate the zil transaction has replayed. 150 * 151 * (6) At the end of each vnode op, the DMU tx must always commit, 152 * regardless of whether there were any errors. 153 * 154 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 155 * to ensure that synchronous semantics are provided when necessary. 156 * 157 * In general, this is how things should be ordered in each vnode op: 158 * 159 * ZFS_ENTER(zfsvfs); // exit if unmounted 160 * top: 161 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 162 * rw_enter(...); // grab any other locks you need 163 * tx = dmu_tx_create(...); // get DMU tx 164 * dmu_tx_hold_*(); // hold each object you might modify 165 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 166 * if (error) { 167 * rw_exit(...); // drop locks 168 * zfs_dirent_unlock(dl); // unlock directory entry 169 * VN_RELE(...); // release held vnodes 170 * if (error == ERESTART) { 171 * waited = B_TRUE; 172 * dmu_tx_wait(tx); 173 * dmu_tx_abort(tx); 174 * goto top; 175 * } 176 * dmu_tx_abort(tx); // abort DMU tx 177 * ZFS_EXIT(zfsvfs); // finished in zfs 178 * return (error); // really out of space 179 * } 180 * error = do_real_work(); // do whatever this VOP does 181 * if (error == 0) 182 * zfs_log_*(...); // on success, make ZIL entry 183 * dmu_tx_commit(tx); // commit DMU tx -- error or not 184 * rw_exit(...); // drop locks 185 * zfs_dirent_unlock(dl); // unlock directory entry 186 * VN_RELE(...); // release held vnodes 187 * zil_commit(zilog, foid); // synchronous when necessary 188 * ZFS_EXIT(zfsvfs); // finished in zfs 189 * return (error); // done, report error 190 */ 191 192 /* ARGSUSED */ 193 static int 194 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 195 { 196 znode_t *zp = VTOZ(*vpp); 197 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 198 199 ZFS_ENTER(zfsvfs); 200 ZFS_VERIFY_ZP(zp); 201 202 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 203 ((flag & FAPPEND) == 0)) { 204 ZFS_EXIT(zfsvfs); 205 return (SET_ERROR(EPERM)); 206 } 207 208 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 209 ZTOV(zp)->v_type == VREG && 210 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 211 if (fs_vscan(*vpp, cr, 0) != 0) { 212 ZFS_EXIT(zfsvfs); 213 return (SET_ERROR(EACCES)); 214 } 215 } 216 217 /* Keep a count of the synchronous opens in the znode */ 218 if (flag & (FSYNC | FDSYNC)) 219 atomic_inc_32(&zp->z_sync_cnt); 220 221 ZFS_EXIT(zfsvfs); 222 return (0); 223 } 224 225 /* ARGSUSED */ 226 static int 227 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 228 caller_context_t *ct) 229 { 230 znode_t *zp = VTOZ(vp); 231 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 232 233 /* 234 * Clean up any locks held by this process on the vp. 235 */ 236 cleanlocks(vp, ddi_get_pid(), 0); 237 cleanshares(vp, ddi_get_pid()); 238 239 ZFS_ENTER(zfsvfs); 240 ZFS_VERIFY_ZP(zp); 241 242 /* Decrement the synchronous opens in the znode */ 243 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 244 atomic_dec_32(&zp->z_sync_cnt); 245 246 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 247 ZTOV(zp)->v_type == VREG && 248 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 249 VERIFY(fs_vscan(vp, cr, 1) == 0); 250 251 ZFS_EXIT(zfsvfs); 252 return (0); 253 } 254 255 /* 256 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 257 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 258 */ 259 static int 260 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 261 { 262 znode_t *zp = VTOZ(vp); 263 uint64_t noff = (uint64_t)*off; /* new offset */ 264 uint64_t file_sz; 265 int error; 266 boolean_t hole; 267 268 file_sz = zp->z_size; 269 if (noff >= file_sz) { 270 return (SET_ERROR(ENXIO)); 271 } 272 273 if (cmd == _FIO_SEEK_HOLE) 274 hole = B_TRUE; 275 else 276 hole = B_FALSE; 277 278 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 279 280 if (error == ESRCH) 281 return (SET_ERROR(ENXIO)); 282 283 /* 284 * We could find a hole that begins after the logical end-of-file, 285 * because dmu_offset_next() only works on whole blocks. If the 286 * EOF falls mid-block, then indicate that the "virtual hole" 287 * at the end of the file begins at the logical EOF, rather than 288 * at the end of the last block. 289 */ 290 if (noff > file_sz) { 291 ASSERT(hole); 292 noff = file_sz; 293 } 294 295 if (noff < *off) 296 return (error); 297 *off = noff; 298 return (error); 299 } 300 301 static int 302 zfs_ioctl_getxattr(vnode_t *vp, intptr_t data, int flag, cred_t *cr, 303 caller_context_t *ct) 304 { 305 zfsxattr_t fsx = { 0 }; 306 znode_t *zp = VTOZ(vp); 307 308 if (zp->z_pflags & ZFS_PROJINHERIT) 309 fsx.fsx_xflags = ZFS_PROJINHERIT_FL; 310 if (zp->z_pflags & ZFS_PROJID) 311 fsx.fsx_projid = zp->z_projid; 312 if (ddi_copyout(&fsx, (void *)data, sizeof (fsx), flag)) 313 return (SET_ERROR(EFAULT)); 314 315 return (0); 316 } 317 318 static int zfs_setattr(vnode_t *, vattr_t *, int, cred_t *, caller_context_t *); 319 320 static int 321 zfs_ioctl_setxattr(vnode_t *vp, intptr_t data, int flags, cred_t *cr, 322 caller_context_t *ct) 323 { 324 znode_t *zp = VTOZ(vp); 325 zfsxattr_t fsx; 326 xvattr_t xva; 327 xoptattr_t *xoap; 328 int err; 329 330 if (ddi_copyin((void *)data, &fsx, sizeof (fsx), flags)) 331 return (SET_ERROR(EFAULT)); 332 333 if (!zpl_is_valid_projid(fsx.fsx_projid)) 334 return (SET_ERROR(EINVAL)); 335 336 if (fsx.fsx_xflags & ~ZFS_PROJINHERIT_FL) 337 return (SET_ERROR(EOPNOTSUPP)); 338 339 xva_init(&xva); 340 xoap = xva_getxoptattr(&xva); 341 342 XVA_SET_REQ(&xva, XAT_PROJINHERIT); 343 if (fsx.fsx_xflags & ZFS_PROJINHERIT_FL) 344 xoap->xoa_projinherit = B_TRUE; 345 346 XVA_SET_REQ(&xva, XAT_PROJID); 347 xoap->xoa_projid = fsx.fsx_projid; 348 349 return (zfs_setattr(vp, (vattr_t *)&xva, flags, cr, ct)); 350 } 351 352 /* ARGSUSED */ 353 static int 354 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 355 int *rvalp, caller_context_t *ct) 356 { 357 offset_t off; 358 offset_t ndata; 359 dmu_object_info_t doi; 360 int error; 361 zfsvfs_t *zfsvfs; 362 znode_t *zp; 363 364 switch (com) { 365 case _FIOFFS: 366 { 367 return (zfs_sync(vp->v_vfsp, 0, cred)); 368 369 /* 370 * The following two ioctls are used by bfu. Faking out, 371 * necessary to avoid bfu errors. 372 */ 373 } 374 case _FIOGDIO: 375 case _FIOSDIO: 376 { 377 return (0); 378 } 379 380 case _FIO_SEEK_DATA: 381 case _FIO_SEEK_HOLE: 382 { 383 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 384 return (SET_ERROR(EFAULT)); 385 386 zp = VTOZ(vp); 387 zfsvfs = zp->z_zfsvfs; 388 ZFS_ENTER(zfsvfs); 389 ZFS_VERIFY_ZP(zp); 390 391 /* offset parameter is in/out */ 392 error = zfs_holey(vp, com, &off); 393 ZFS_EXIT(zfsvfs); 394 if (error) 395 return (error); 396 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 397 return (SET_ERROR(EFAULT)); 398 return (0); 399 } 400 case _FIO_COUNT_FILLED: 401 { 402 /* 403 * _FIO_COUNT_FILLED adds a new ioctl command which 404 * exposes the number of filled blocks in a 405 * ZFS object. 406 */ 407 zp = VTOZ(vp); 408 zfsvfs = zp->z_zfsvfs; 409 ZFS_ENTER(zfsvfs); 410 ZFS_VERIFY_ZP(zp); 411 412 /* 413 * Wait for all dirty blocks for this object 414 * to get synced out to disk, and the DMU info 415 * updated. 416 */ 417 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 418 if (error) { 419 ZFS_EXIT(zfsvfs); 420 return (error); 421 } 422 423 /* 424 * Retrieve fill count from DMU object. 425 */ 426 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 427 if (error) { 428 ZFS_EXIT(zfsvfs); 429 return (error); 430 } 431 432 ndata = doi.doi_fill_count; 433 434 ZFS_EXIT(zfsvfs); 435 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 436 return (SET_ERROR(EFAULT)); 437 return (0); 438 } 439 case ZFS_IOC_FSGETXATTR: 440 return (zfs_ioctl_getxattr(vp, data, flag, cred, ct)); 441 case ZFS_IOC_FSSETXATTR: 442 return (zfs_ioctl_setxattr(vp, data, flag, cred, ct)); 443 } 444 return (SET_ERROR(ENOTTY)); 445 } 446 447 /* 448 * Utility functions to map and unmap a single physical page. These 449 * are used to manage the mappable copies of ZFS file data, and therefore 450 * do not update ref/mod bits. 451 */ 452 caddr_t 453 zfs_map_page(page_t *pp, enum seg_rw rw) 454 { 455 if (kpm_enable) 456 return (hat_kpm_mapin(pp, 0)); 457 ASSERT(rw == S_READ || rw == S_WRITE); 458 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 459 (caddr_t)-1)); 460 } 461 462 void 463 zfs_unmap_page(page_t *pp, caddr_t addr) 464 { 465 if (kpm_enable) { 466 hat_kpm_mapout(pp, 0, addr); 467 } else { 468 ppmapout(addr); 469 } 470 } 471 472 /* 473 * When a file is memory mapped, we must keep the IO data synchronized 474 * between the DMU cache and the memory mapped pages. What this means: 475 * 476 * On Write: If we find a memory mapped page, we write to *both* 477 * the page and the dmu buffer. 478 */ 479 static void 480 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 481 { 482 int64_t off; 483 484 off = start & PAGEOFFSET; 485 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 486 page_t *pp; 487 uint64_t nbytes = MIN(PAGESIZE - off, len); 488 489 if (pp = page_lookup(vp, start, SE_SHARED)) { 490 caddr_t va; 491 492 va = zfs_map_page(pp, S_WRITE); 493 (void) dmu_read(os, oid, start+off, nbytes, va+off, 494 DMU_READ_PREFETCH); 495 zfs_unmap_page(pp, va); 496 page_unlock(pp); 497 } 498 len -= nbytes; 499 off = 0; 500 } 501 } 502 503 /* 504 * When a file is memory mapped, we must keep the IO data synchronized 505 * between the DMU cache and the memory mapped pages. What this means: 506 * 507 * On Read: We "read" preferentially from memory mapped pages, 508 * else we default from the dmu buffer. 509 * 510 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 511 * the file is memory mapped. 512 */ 513 static int 514 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 515 { 516 znode_t *zp = VTOZ(vp); 517 int64_t start, off; 518 int len = nbytes; 519 int error = 0; 520 521 start = uio->uio_loffset; 522 off = start & PAGEOFFSET; 523 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 524 page_t *pp; 525 uint64_t bytes = MIN(PAGESIZE - off, len); 526 527 if (pp = page_lookup(vp, start, SE_SHARED)) { 528 caddr_t va; 529 530 va = zfs_map_page(pp, S_READ); 531 error = uiomove(va + off, bytes, UIO_READ, uio); 532 zfs_unmap_page(pp, va); 533 page_unlock(pp); 534 } else { 535 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 536 uio, bytes); 537 } 538 len -= bytes; 539 off = 0; 540 if (error) 541 break; 542 } 543 return (error); 544 } 545 546 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 547 548 /* 549 * Read bytes from specified file into supplied buffer. 550 * 551 * IN: vp - vnode of file to be read from. 552 * uio - structure supplying read location, range info, 553 * and return buffer. 554 * ioflag - SYNC flags; used to provide FRSYNC semantics. 555 * cr - credentials of caller. 556 * ct - caller context 557 * 558 * OUT: uio - updated offset and range, buffer filled. 559 * 560 * RETURN: 0 on success, error code on failure. 561 * 562 * Side Effects: 563 * vp - atime updated if byte count > 0 564 */ 565 /* ARGSUSED */ 566 static int 567 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 568 { 569 znode_t *zp = VTOZ(vp); 570 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 571 ssize_t n, nbytes; 572 int error = 0; 573 boolean_t frsync = B_FALSE; 574 xuio_t *xuio = NULL; 575 576 ZFS_ENTER(zfsvfs); 577 ZFS_VERIFY_ZP(zp); 578 579 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 580 ZFS_EXIT(zfsvfs); 581 return (SET_ERROR(EACCES)); 582 } 583 584 /* 585 * Validate file offset 586 */ 587 if (uio->uio_loffset < (offset_t)0) { 588 ZFS_EXIT(zfsvfs); 589 return (SET_ERROR(EINVAL)); 590 } 591 592 /* 593 * Fasttrack empty reads 594 */ 595 if (uio->uio_resid == 0) { 596 ZFS_EXIT(zfsvfs); 597 return (0); 598 } 599 600 /* 601 * Check for mandatory locks 602 */ 603 if (MANDMODE(zp->z_mode)) { 604 if (error = chklock(vp, FREAD, 605 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 606 ZFS_EXIT(zfsvfs); 607 return (error); 608 } 609 } 610 611 #ifdef FRSYNC 612 /* 613 * If we're in FRSYNC mode, sync out this znode before reading it. 614 * Only do this for non-snapshots. 615 * 616 * Some platforms do not support FRSYNC and instead map it 617 * to FSYNC, which results in unnecessary calls to zil_commit. We 618 * only honor FRSYNC requests on platforms which support it. 619 */ 620 frsync = !!(ioflag & FRSYNC); 621 #endif 622 623 if (zfsvfs->z_log && 624 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) 625 zil_commit(zfsvfs->z_log, zp->z_id); 626 627 /* 628 * Lock the range against changes. 629 */ 630 locked_range_t *lr = rangelock_enter(&zp->z_rangelock, 631 uio->uio_loffset, uio->uio_resid, RL_READER); 632 633 /* 634 * If we are reading past end-of-file we can skip 635 * to the end; but we might still need to set atime. 636 */ 637 if (uio->uio_loffset >= zp->z_size) { 638 error = 0; 639 goto out; 640 } 641 642 ASSERT(uio->uio_loffset < zp->z_size); 643 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 644 645 if ((uio->uio_extflg == UIO_XUIO) && 646 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 647 int nblk; 648 int blksz = zp->z_blksz; 649 uint64_t offset = uio->uio_loffset; 650 651 xuio = (xuio_t *)uio; 652 if ((ISP2(blksz))) { 653 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 654 blksz)) / blksz; 655 } else { 656 ASSERT(offset + n <= blksz); 657 nblk = 1; 658 } 659 (void) dmu_xuio_init(xuio, nblk); 660 661 if (vn_has_cached_data(vp)) { 662 /* 663 * For simplicity, we always allocate a full buffer 664 * even if we only expect to read a portion of a block. 665 */ 666 while (--nblk >= 0) { 667 (void) dmu_xuio_add(xuio, 668 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 669 blksz), 0, blksz); 670 } 671 } 672 } 673 674 while (n > 0) { 675 nbytes = MIN(n, zfs_read_chunk_size - 676 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 677 678 if (vn_has_cached_data(vp)) { 679 error = mappedread(vp, nbytes, uio); 680 } else { 681 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 682 uio, nbytes); 683 } 684 if (error) { 685 /* convert checksum errors into IO errors */ 686 if (error == ECKSUM) 687 error = SET_ERROR(EIO); 688 break; 689 } 690 691 n -= nbytes; 692 } 693 out: 694 rangelock_exit(lr); 695 696 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 697 ZFS_EXIT(zfsvfs); 698 return (error); 699 } 700 701 /* 702 * Write the bytes to a file. 703 * 704 * IN: vp - vnode of file to be written to. 705 * uio - structure supplying write location, range info, 706 * and data buffer. 707 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 708 * set if in append mode. 709 * cr - credentials of caller. 710 * ct - caller context (NFS/CIFS fem monitor only) 711 * 712 * OUT: uio - updated offset and range. 713 * 714 * RETURN: 0 on success, error code on failure. 715 * 716 * Timestamps: 717 * vp - ctime|mtime updated if byte count > 0 718 */ 719 720 /* ARGSUSED */ 721 static int 722 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 723 { 724 znode_t *zp = VTOZ(vp); 725 rlim64_t limit = uio->uio_llimit; 726 ssize_t start_resid = uio->uio_resid; 727 ssize_t tx_bytes; 728 uint64_t end_size; 729 dmu_tx_t *tx; 730 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 731 zilog_t *zilog; 732 offset_t woff; 733 ssize_t n, nbytes; 734 int max_blksz = zfsvfs->z_max_blksz; 735 int error = 0; 736 int prev_error; 737 arc_buf_t *abuf; 738 iovec_t *aiov = NULL; 739 xuio_t *xuio = NULL; 740 int i_iov = 0; 741 int iovcnt = uio->uio_iovcnt; 742 iovec_t *iovp = uio->uio_iov; 743 int write_eof; 744 int count = 0; 745 sa_bulk_attr_t bulk[4]; 746 uint64_t mtime[2], ctime[2]; 747 748 /* 749 * Fasttrack empty write 750 */ 751 n = start_resid; 752 if (n == 0) 753 return (0); 754 755 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 756 limit = MAXOFFSET_T; 757 758 ZFS_ENTER(zfsvfs); 759 ZFS_VERIFY_ZP(zp); 760 761 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 762 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 763 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 764 &zp->z_size, 8); 765 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 766 &zp->z_pflags, 8); 767 768 /* 769 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 770 * callers might not be able to detect properly that we are read-only, 771 * so check it explicitly here. 772 */ 773 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 774 ZFS_EXIT(zfsvfs); 775 return (SET_ERROR(EROFS)); 776 } 777 778 /* 779 * If immutable or not appending then return EPERM. 780 * Intentionally allow ZFS_READONLY through here. 781 * See zfs_zaccess_common() 782 */ 783 if ((zp->z_pflags & ZFS_IMMUTABLE) || 784 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 785 (uio->uio_loffset < zp->z_size))) { 786 ZFS_EXIT(zfsvfs); 787 return (SET_ERROR(EPERM)); 788 } 789 790 zilog = zfsvfs->z_log; 791 792 /* 793 * Validate file offset 794 */ 795 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 796 if (woff < 0) { 797 ZFS_EXIT(zfsvfs); 798 return (SET_ERROR(EINVAL)); 799 } 800 801 /* 802 * Check for mandatory locks before calling rangelock_enter() 803 * in order to prevent a deadlock with locks set via fcntl(). 804 */ 805 if (MANDMODE((mode_t)zp->z_mode) && 806 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 807 ZFS_EXIT(zfsvfs); 808 return (error); 809 } 810 811 /* 812 * Pre-fault the pages to ensure slow (eg NFS) pages 813 * don't hold up txg. 814 * Skip this if uio contains loaned arc_buf. 815 */ 816 if ((uio->uio_extflg == UIO_XUIO) && 817 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 818 xuio = (xuio_t *)uio; 819 else 820 uio_prefaultpages(MIN(n, max_blksz), uio); 821 822 /* 823 * If in append mode, set the io offset pointer to eof. 824 */ 825 locked_range_t *lr; 826 if (ioflag & FAPPEND) { 827 /* 828 * Obtain an appending range lock to guarantee file append 829 * semantics. We reset the write offset once we have the lock. 830 */ 831 lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); 832 woff = lr->lr_offset; 833 if (lr->lr_length == UINT64_MAX) { 834 /* 835 * We overlocked the file because this write will cause 836 * the file block size to increase. 837 * Note that zp_size cannot change with this lock held. 838 */ 839 woff = zp->z_size; 840 } 841 uio->uio_loffset = woff; 842 } else { 843 /* 844 * Note that if the file block size will change as a result of 845 * this write, then this range lock will lock the entire file 846 * so that we can re-write the block safely. 847 */ 848 lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); 849 } 850 851 if (woff >= limit) { 852 rangelock_exit(lr); 853 ZFS_EXIT(zfsvfs); 854 return (SET_ERROR(EFBIG)); 855 } 856 857 if ((woff + n) > limit || woff > (limit - n)) 858 n = limit - woff; 859 860 /* Will this write extend the file length? */ 861 write_eof = (woff + n > zp->z_size); 862 863 end_size = MAX(zp->z_size, woff + n); 864 865 /* 866 * Write the file in reasonable size chunks. Each chunk is written 867 * in a separate transaction; this keeps the intent log records small 868 * and allows us to do more fine-grained space accounting. 869 */ 870 while (n > 0) { 871 woff = uio->uio_loffset; 872 873 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, 874 zp->z_uid) || 875 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, 876 zp->z_gid) || 877 (zp->z_projid != ZFS_DEFAULT_PROJID && 878 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 879 zp->z_projid))) { 880 error = SET_ERROR(EDQUOT); 881 break; 882 } 883 884 arc_buf_t *abuf = NULL; 885 if (xuio) { 886 ASSERT(i_iov < iovcnt); 887 aiov = &iovp[i_iov]; 888 abuf = dmu_xuio_arcbuf(xuio, i_iov); 889 dmu_xuio_clear(xuio, i_iov); 890 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 891 iovec_t *, aiov, arc_buf_t *, abuf); 892 ASSERT((aiov->iov_base == abuf->b_data) || 893 ((char *)aiov->iov_base - (char *)abuf->b_data + 894 aiov->iov_len == arc_buf_size(abuf))); 895 i_iov++; 896 } else if (n >= max_blksz && woff >= zp->z_size && 897 P2PHASE(woff, max_blksz) == 0 && 898 zp->z_blksz == max_blksz) { 899 /* 900 * This write covers a full block. "Borrow" a buffer 901 * from the dmu so that we can fill it before we enter 902 * a transaction. This avoids the possibility of 903 * holding up the transaction if the data copy hangs 904 * up on a pagefault (e.g., from an NFS server mapping). 905 */ 906 size_t cbytes; 907 908 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 909 max_blksz); 910 ASSERT(abuf != NULL); 911 ASSERT(arc_buf_size(abuf) == max_blksz); 912 if (error = uiocopy(abuf->b_data, max_blksz, 913 UIO_WRITE, uio, &cbytes)) { 914 dmu_return_arcbuf(abuf); 915 break; 916 } 917 ASSERT(cbytes == max_blksz); 918 } 919 920 /* 921 * Start a transaction. 922 */ 923 tx = dmu_tx_create(zfsvfs->z_os); 924 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 925 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 926 zfs_sa_upgrade_txholds(tx, zp); 927 error = dmu_tx_assign(tx, TXG_WAIT); 928 if (error) { 929 dmu_tx_abort(tx); 930 if (abuf != NULL) 931 dmu_return_arcbuf(abuf); 932 break; 933 } 934 935 /* 936 * If rangelock_enter() over-locked we grow the blocksize 937 * and then reduce the lock range. This will only happen 938 * on the first iteration since rangelock_reduce() will 939 * shrink down lr_length to the appropriate size. 940 */ 941 if (lr->lr_length == UINT64_MAX) { 942 uint64_t new_blksz; 943 944 if (zp->z_blksz > max_blksz) { 945 /* 946 * File's blocksize is already larger than the 947 * "recordsize" property. Only let it grow to 948 * the next power of 2. 949 */ 950 ASSERT(!ISP2(zp->z_blksz)); 951 new_blksz = MIN(end_size, 952 1 << highbit64(zp->z_blksz)); 953 } else { 954 new_blksz = MIN(end_size, max_blksz); 955 } 956 zfs_grow_blocksize(zp, new_blksz, tx); 957 rangelock_reduce(lr, woff, n); 958 } 959 960 /* 961 * XXX - should we really limit each write to z_max_blksz? 962 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 963 */ 964 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 965 966 if (abuf == NULL) { 967 tx_bytes = uio->uio_resid; 968 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 969 uio, nbytes, tx); 970 tx_bytes -= uio->uio_resid; 971 } else { 972 tx_bytes = nbytes; 973 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 974 /* 975 * If this is not a full block write, but we are 976 * extending the file past EOF and this data starts 977 * block-aligned, use assign_arcbuf(). Otherwise, 978 * write via dmu_write(). 979 */ 980 if (tx_bytes < max_blksz && (!write_eof || 981 aiov->iov_base != abuf->b_data)) { 982 ASSERT(xuio); 983 dmu_write(zfsvfs->z_os, zp->z_id, woff, 984 aiov->iov_len, aiov->iov_base, tx); 985 dmu_return_arcbuf(abuf); 986 xuio_stat_wbuf_copied(); 987 } else { 988 ASSERT(xuio || tx_bytes == max_blksz); 989 dmu_assign_arcbuf_by_dbuf( 990 sa_get_db(zp->z_sa_hdl), woff, abuf, tx); 991 } 992 ASSERT(tx_bytes <= uio->uio_resid); 993 uioskip(uio, tx_bytes); 994 } 995 if (tx_bytes && vn_has_cached_data(vp)) { 996 update_pages(vp, woff, 997 tx_bytes, zfsvfs->z_os, zp->z_id); 998 } 999 1000 /* 1001 * If we made no progress, we're done. If we made even 1002 * partial progress, update the znode and ZIL accordingly. 1003 */ 1004 if (tx_bytes == 0) { 1005 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 1006 (void *)&zp->z_size, sizeof (uint64_t), tx); 1007 dmu_tx_commit(tx); 1008 ASSERT(error != 0); 1009 break; 1010 } 1011 1012 /* 1013 * Clear Set-UID/Set-GID bits on successful write if not 1014 * privileged and at least one of the excute bits is set. 1015 * 1016 * It would be nice to to this after all writes have 1017 * been done, but that would still expose the ISUID/ISGID 1018 * to another app after the partial write is committed. 1019 * 1020 * Note: we don't call zfs_fuid_map_id() here because 1021 * user 0 is not an ephemeral uid. 1022 */ 1023 mutex_enter(&zp->z_acl_lock); 1024 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 1025 (S_IXUSR >> 6))) != 0 && 1026 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 1027 secpolicy_vnode_setid_retain(cr, 1028 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 1029 uint64_t newmode; 1030 zp->z_mode &= ~(S_ISUID | S_ISGID); 1031 newmode = zp->z_mode; 1032 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 1033 (void *)&newmode, sizeof (uint64_t), tx); 1034 } 1035 mutex_exit(&zp->z_acl_lock); 1036 1037 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 1038 B_TRUE); 1039 1040 /* 1041 * Update the file size (zp_size) if it has changed; 1042 * account for possible concurrent updates. 1043 */ 1044 while ((end_size = zp->z_size) < uio->uio_loffset) { 1045 (void) atomic_cas_64(&zp->z_size, end_size, 1046 uio->uio_loffset); 1047 } 1048 /* 1049 * If we are replaying and eof is non zero then force 1050 * the file size to the specified eof. Note, there's no 1051 * concurrency during replay. 1052 */ 1053 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 1054 zp->z_size = zfsvfs->z_replay_eof; 1055 1056 /* 1057 * Keep track of a possible pre-existing error from a partial 1058 * write via dmu_write_uio_dbuf above. 1059 */ 1060 prev_error = error; 1061 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1062 1063 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 1064 dmu_tx_commit(tx); 1065 1066 if (prev_error != 0 || error != 0) 1067 break; 1068 ASSERT(tx_bytes == nbytes); 1069 n -= nbytes; 1070 1071 if (!xuio && n > 0) 1072 uio_prefaultpages(MIN(n, max_blksz), uio); 1073 } 1074 1075 rangelock_exit(lr); 1076 1077 /* 1078 * If we're in replay mode, or we made no progress, return error. 1079 * Otherwise, it's at least a partial write, so it's successful. 1080 */ 1081 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1082 ZFS_EXIT(zfsvfs); 1083 return (error); 1084 } 1085 1086 if (ioflag & (FSYNC | FDSYNC) || 1087 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1088 zil_commit(zilog, zp->z_id); 1089 1090 ZFS_EXIT(zfsvfs); 1091 return (0); 1092 } 1093 1094 /* ARGSUSED */ 1095 void 1096 zfs_get_done(zgd_t *zgd, int error) 1097 { 1098 znode_t *zp = zgd->zgd_private; 1099 objset_t *os = zp->z_zfsvfs->z_os; 1100 1101 if (zgd->zgd_db) 1102 dmu_buf_rele(zgd->zgd_db, zgd); 1103 1104 rangelock_exit(zgd->zgd_lr); 1105 1106 /* 1107 * Release the vnode asynchronously as we currently have the 1108 * txg stopped from syncing. 1109 */ 1110 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1111 1112 kmem_free(zgd, sizeof (zgd_t)); 1113 } 1114 1115 #ifdef DEBUG 1116 static int zil_fault_io = 0; 1117 #endif 1118 1119 /* 1120 * Get data to generate a TX_WRITE intent log record. 1121 */ 1122 int 1123 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) 1124 { 1125 zfsvfs_t *zfsvfs = arg; 1126 objset_t *os = zfsvfs->z_os; 1127 znode_t *zp; 1128 uint64_t object = lr->lr_foid; 1129 uint64_t offset = lr->lr_offset; 1130 uint64_t size = lr->lr_length; 1131 dmu_buf_t *db; 1132 zgd_t *zgd; 1133 int error = 0; 1134 1135 ASSERT3P(lwb, !=, NULL); 1136 ASSERT3P(zio, !=, NULL); 1137 ASSERT3U(size, !=, 0); 1138 1139 /* 1140 * Nothing to do if the file has been removed 1141 */ 1142 if (zfs_zget(zfsvfs, object, &zp) != 0) 1143 return (SET_ERROR(ENOENT)); 1144 if (zp->z_unlinked) { 1145 /* 1146 * Release the vnode asynchronously as we currently have the 1147 * txg stopped from syncing. 1148 */ 1149 VN_RELE_ASYNC(ZTOV(zp), 1150 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1151 return (SET_ERROR(ENOENT)); 1152 } 1153 1154 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1155 zgd->zgd_lwb = lwb; 1156 zgd->zgd_private = zp; 1157 1158 /* 1159 * Write records come in two flavors: immediate and indirect. 1160 * For small writes it's cheaper to store the data with the 1161 * log record (immediate); for large writes it's cheaper to 1162 * sync the data and get a pointer to it (indirect) so that 1163 * we don't have to write the data twice. 1164 */ 1165 if (buf != NULL) { /* immediate write */ 1166 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock, 1167 offset, size, RL_READER); 1168 /* test for truncation needs to be done while range locked */ 1169 if (offset >= zp->z_size) { 1170 error = SET_ERROR(ENOENT); 1171 } else { 1172 error = dmu_read(os, object, offset, size, buf, 1173 DMU_READ_NO_PREFETCH); 1174 } 1175 ASSERT(error == 0 || error == ENOENT); 1176 } else { /* indirect write */ 1177 /* 1178 * Have to lock the whole block to ensure when it's 1179 * written out and its checksum is being calculated 1180 * that no one can change the data. We need to re-check 1181 * blocksize after we get the lock in case it's changed! 1182 */ 1183 for (;;) { 1184 uint64_t blkoff; 1185 size = zp->z_blksz; 1186 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1187 offset -= blkoff; 1188 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock, 1189 offset, size, RL_READER); 1190 if (zp->z_blksz == size) 1191 break; 1192 offset += blkoff; 1193 rangelock_exit(zgd->zgd_lr); 1194 } 1195 /* test for truncation needs to be done while range locked */ 1196 if (lr->lr_offset >= zp->z_size) 1197 error = SET_ERROR(ENOENT); 1198 #ifdef DEBUG 1199 if (zil_fault_io) { 1200 error = SET_ERROR(EIO); 1201 zil_fault_io = 0; 1202 } 1203 #endif 1204 if (error == 0) 1205 error = dmu_buf_hold(os, object, offset, zgd, &db, 1206 DMU_READ_NO_PREFETCH); 1207 1208 if (error == 0) { 1209 blkptr_t *bp = &lr->lr_blkptr; 1210 1211 zgd->zgd_db = db; 1212 zgd->zgd_bp = bp; 1213 1214 ASSERT(db->db_offset == offset); 1215 ASSERT(db->db_size == size); 1216 1217 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1218 zfs_get_done, zgd); 1219 ASSERT(error || lr->lr_length <= size); 1220 1221 /* 1222 * On success, we need to wait for the write I/O 1223 * initiated by dmu_sync() to complete before we can 1224 * release this dbuf. We will finish everything up 1225 * in the zfs_get_done() callback. 1226 */ 1227 if (error == 0) 1228 return (0); 1229 1230 if (error == EALREADY) { 1231 lr->lr_common.lrc_txtype = TX_WRITE2; 1232 /* 1233 * TX_WRITE2 relies on the data previously 1234 * written by the TX_WRITE that caused 1235 * EALREADY. We zero out the BP because 1236 * it is the old, currently-on-disk BP. 1237 */ 1238 zgd->zgd_bp = NULL; 1239 BP_ZERO(bp); 1240 error = 0; 1241 } 1242 } 1243 } 1244 1245 zfs_get_done(zgd, error); 1246 1247 return (error); 1248 } 1249 1250 /*ARGSUSED*/ 1251 static int 1252 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1253 caller_context_t *ct) 1254 { 1255 znode_t *zp = VTOZ(vp); 1256 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1257 int error; 1258 1259 ZFS_ENTER(zfsvfs); 1260 ZFS_VERIFY_ZP(zp); 1261 1262 if (flag & V_ACE_MASK) 1263 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1264 else 1265 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1266 1267 ZFS_EXIT(zfsvfs); 1268 return (error); 1269 } 1270 1271 /* 1272 * If vnode is for a device return a specfs vnode instead. 1273 */ 1274 static int 1275 specvp_check(vnode_t **vpp, cred_t *cr) 1276 { 1277 int error = 0; 1278 1279 if (IS_DEVVP(*vpp)) { 1280 struct vnode *svp; 1281 1282 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1283 VN_RELE(*vpp); 1284 if (svp == NULL) 1285 error = SET_ERROR(ENOSYS); 1286 *vpp = svp; 1287 } 1288 return (error); 1289 } 1290 1291 1292 /* 1293 * Lookup an entry in a directory, or an extended attribute directory. 1294 * If it exists, return a held vnode reference for it. 1295 * 1296 * IN: dvp - vnode of directory to search. 1297 * nm - name of entry to lookup. 1298 * pnp - full pathname to lookup [UNUSED]. 1299 * flags - LOOKUP_XATTR set if looking for an attribute. 1300 * rdir - root directory vnode [UNUSED]. 1301 * cr - credentials of caller. 1302 * ct - caller context 1303 * direntflags - directory lookup flags 1304 * realpnp - returned pathname. 1305 * 1306 * OUT: vpp - vnode of located entry, NULL if not found. 1307 * 1308 * RETURN: 0 on success, error code on failure. 1309 * 1310 * Timestamps: 1311 * NA 1312 */ 1313 /* ARGSUSED */ 1314 static int 1315 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1316 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1317 int *direntflags, pathname_t *realpnp) 1318 { 1319 znode_t *zdp = VTOZ(dvp); 1320 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1321 int error = 0; 1322 1323 /* 1324 * Fast path lookup, however we must skip DNLC lookup 1325 * for case folding or normalizing lookups because the 1326 * DNLC code only stores the passed in name. This means 1327 * creating 'a' and removing 'A' on a case insensitive 1328 * file system would work, but DNLC still thinks 'a' 1329 * exists and won't let you create it again on the next 1330 * pass through fast path. 1331 */ 1332 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1333 1334 if (dvp->v_type != VDIR) { 1335 return (SET_ERROR(ENOTDIR)); 1336 } else if (zdp->z_sa_hdl == NULL) { 1337 return (SET_ERROR(EIO)); 1338 } 1339 1340 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1341 error = zfs_fastaccesschk_execute(zdp, cr); 1342 if (!error) { 1343 *vpp = dvp; 1344 VN_HOLD(*vpp); 1345 return (0); 1346 } 1347 return (error); 1348 } else if (!zdp->z_zfsvfs->z_norm && 1349 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) { 1350 1351 vnode_t *tvp = dnlc_lookup(dvp, nm); 1352 1353 if (tvp) { 1354 error = zfs_fastaccesschk_execute(zdp, cr); 1355 if (error) { 1356 VN_RELE(tvp); 1357 return (error); 1358 } 1359 if (tvp == DNLC_NO_VNODE) { 1360 VN_RELE(tvp); 1361 return (SET_ERROR(ENOENT)); 1362 } else { 1363 *vpp = tvp; 1364 return (specvp_check(vpp, cr)); 1365 } 1366 } 1367 } 1368 } 1369 1370 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1371 1372 ZFS_ENTER(zfsvfs); 1373 ZFS_VERIFY_ZP(zdp); 1374 1375 *vpp = NULL; 1376 1377 if (flags & LOOKUP_XATTR) { 1378 /* 1379 * If the xattr property is off, refuse the lookup request. 1380 */ 1381 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1382 ZFS_EXIT(zfsvfs); 1383 return (SET_ERROR(EINVAL)); 1384 } 1385 1386 /* 1387 * We don't allow recursive attributes.. 1388 * Maybe someday we will. 1389 */ 1390 if (zdp->z_pflags & ZFS_XATTR) { 1391 ZFS_EXIT(zfsvfs); 1392 return (SET_ERROR(EINVAL)); 1393 } 1394 1395 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1396 ZFS_EXIT(zfsvfs); 1397 return (error); 1398 } 1399 1400 /* 1401 * Do we have permission to get into attribute directory? 1402 */ 1403 1404 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1405 B_FALSE, cr)) { 1406 VN_RELE(*vpp); 1407 *vpp = NULL; 1408 } 1409 1410 ZFS_EXIT(zfsvfs); 1411 return (error); 1412 } 1413 1414 if (dvp->v_type != VDIR) { 1415 ZFS_EXIT(zfsvfs); 1416 return (SET_ERROR(ENOTDIR)); 1417 } 1418 1419 /* 1420 * Check accessibility of directory. 1421 */ 1422 1423 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1424 ZFS_EXIT(zfsvfs); 1425 return (error); 1426 } 1427 1428 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1429 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1430 ZFS_EXIT(zfsvfs); 1431 return (SET_ERROR(EILSEQ)); 1432 } 1433 1434 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1435 if (error == 0) 1436 error = specvp_check(vpp, cr); 1437 1438 ZFS_EXIT(zfsvfs); 1439 return (error); 1440 } 1441 1442 /* 1443 * Attempt to create a new entry in a directory. If the entry 1444 * already exists, truncate the file if permissible, else return 1445 * an error. Return the vp of the created or trunc'd file. 1446 * 1447 * IN: dvp - vnode of directory to put new file entry in. 1448 * name - name of new file entry. 1449 * vap - attributes of new file. 1450 * excl - flag indicating exclusive or non-exclusive mode. 1451 * mode - mode to open file with. 1452 * cr - credentials of caller. 1453 * flag - large file flag [UNUSED]. 1454 * ct - caller context 1455 * vsecp - ACL to be set 1456 * 1457 * OUT: vpp - vnode of created or trunc'd entry. 1458 * 1459 * RETURN: 0 on success, error code on failure. 1460 * 1461 * Timestamps: 1462 * dvp - ctime|mtime updated if new entry created 1463 * vp - ctime|mtime always, atime if new 1464 */ 1465 1466 /* ARGSUSED */ 1467 static int 1468 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1469 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1470 vsecattr_t *vsecp) 1471 { 1472 znode_t *zp, *dzp = VTOZ(dvp); 1473 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1474 zilog_t *zilog; 1475 objset_t *os; 1476 zfs_dirlock_t *dl; 1477 dmu_tx_t *tx; 1478 int error; 1479 ksid_t *ksid; 1480 uid_t uid; 1481 gid_t gid = crgetgid(cr); 1482 zfs_acl_ids_t acl_ids; 1483 boolean_t fuid_dirtied; 1484 boolean_t have_acl = B_FALSE; 1485 boolean_t waited = B_FALSE; 1486 1487 /* 1488 * If we have an ephemeral id, ACL, or XVATTR then 1489 * make sure file system is at proper version 1490 */ 1491 1492 ksid = crgetsid(cr, KSID_OWNER); 1493 if (ksid) 1494 uid = ksid_getid(ksid); 1495 else 1496 uid = crgetuid(cr); 1497 1498 if (zfsvfs->z_use_fuids == B_FALSE && 1499 (vsecp || (vap->va_mask & AT_XVATTR) || 1500 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1501 return (SET_ERROR(EINVAL)); 1502 1503 ZFS_ENTER(zfsvfs); 1504 ZFS_VERIFY_ZP(dzp); 1505 os = zfsvfs->z_os; 1506 zilog = zfsvfs->z_log; 1507 1508 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1509 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1510 ZFS_EXIT(zfsvfs); 1511 return (SET_ERROR(EILSEQ)); 1512 } 1513 1514 if (vap->va_mask & AT_XVATTR) { 1515 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1516 crgetuid(cr), cr, vap->va_type)) != 0) { 1517 ZFS_EXIT(zfsvfs); 1518 return (error); 1519 } 1520 } 1521 top: 1522 *vpp = NULL; 1523 1524 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1525 vap->va_mode &= ~VSVTX; 1526 1527 if (*name == '\0') { 1528 /* 1529 * Null component name refers to the directory itself. 1530 */ 1531 VN_HOLD(dvp); 1532 zp = dzp; 1533 dl = NULL; 1534 error = 0; 1535 } else { 1536 /* possible VN_HOLD(zp) */ 1537 int zflg = 0; 1538 1539 if (flag & FIGNORECASE) 1540 zflg |= ZCILOOK; 1541 1542 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1543 NULL, NULL); 1544 if (error) { 1545 if (have_acl) 1546 zfs_acl_ids_free(&acl_ids); 1547 if (strcmp(name, "..") == 0) 1548 error = SET_ERROR(EISDIR); 1549 ZFS_EXIT(zfsvfs); 1550 return (error); 1551 } 1552 } 1553 1554 if (zp == NULL) { 1555 uint64_t txtype; 1556 uint64_t projid = ZFS_DEFAULT_PROJID; 1557 1558 /* 1559 * Create a new file object and update the directory 1560 * to reference it. 1561 */ 1562 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1563 if (have_acl) 1564 zfs_acl_ids_free(&acl_ids); 1565 goto out; 1566 } 1567 1568 /* 1569 * We only support the creation of regular files in 1570 * extended attribute directories. 1571 */ 1572 1573 if ((dzp->z_pflags & ZFS_XATTR) && 1574 (vap->va_type != VREG)) { 1575 if (have_acl) 1576 zfs_acl_ids_free(&acl_ids); 1577 error = SET_ERROR(EINVAL); 1578 goto out; 1579 } 1580 1581 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1582 cr, vsecp, &acl_ids)) != 0) 1583 goto out; 1584 have_acl = B_TRUE; 1585 1586 if (vap->va_type == VREG || vap->va_type == VDIR) 1587 projid = zfs_inherit_projid(dzp); 1588 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) { 1589 zfs_acl_ids_free(&acl_ids); 1590 error = SET_ERROR(EDQUOT); 1591 goto out; 1592 } 1593 1594 tx = dmu_tx_create(os); 1595 1596 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1597 ZFS_SA_BASE_ATTR_SIZE); 1598 1599 fuid_dirtied = zfsvfs->z_fuid_dirty; 1600 if (fuid_dirtied) 1601 zfs_fuid_txhold(zfsvfs, tx); 1602 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1603 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1604 if (!zfsvfs->z_use_sa && 1605 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1606 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1607 0, acl_ids.z_aclp->z_acl_bytes); 1608 } 1609 error = dmu_tx_assign(tx, 1610 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1611 if (error) { 1612 zfs_dirent_unlock(dl); 1613 if (error == ERESTART) { 1614 waited = B_TRUE; 1615 dmu_tx_wait(tx); 1616 dmu_tx_abort(tx); 1617 goto top; 1618 } 1619 zfs_acl_ids_free(&acl_ids); 1620 dmu_tx_abort(tx); 1621 ZFS_EXIT(zfsvfs); 1622 return (error); 1623 } 1624 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1625 1626 if (fuid_dirtied) 1627 zfs_fuid_sync(zfsvfs, tx); 1628 1629 (void) zfs_link_create(dl, zp, tx, ZNEW); 1630 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1631 if (flag & FIGNORECASE) 1632 txtype |= TX_CI; 1633 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1634 vsecp, acl_ids.z_fuidp, vap); 1635 zfs_acl_ids_free(&acl_ids); 1636 dmu_tx_commit(tx); 1637 } else { 1638 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1639 1640 if (have_acl) 1641 zfs_acl_ids_free(&acl_ids); 1642 have_acl = B_FALSE; 1643 1644 /* 1645 * A directory entry already exists for this name. 1646 */ 1647 /* 1648 * Can't truncate an existing file if in exclusive mode. 1649 */ 1650 if (excl == EXCL) { 1651 error = SET_ERROR(EEXIST); 1652 goto out; 1653 } 1654 /* 1655 * Can't open a directory for writing. 1656 */ 1657 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1658 error = SET_ERROR(EISDIR); 1659 goto out; 1660 } 1661 /* 1662 * Verify requested access to file. 1663 */ 1664 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1665 goto out; 1666 } 1667 1668 mutex_enter(&dzp->z_lock); 1669 dzp->z_seq++; 1670 mutex_exit(&dzp->z_lock); 1671 1672 /* 1673 * Truncate regular files if requested. 1674 */ 1675 if ((ZTOV(zp)->v_type == VREG) && 1676 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1677 /* we can't hold any locks when calling zfs_freesp() */ 1678 zfs_dirent_unlock(dl); 1679 dl = NULL; 1680 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1681 if (error == 0) { 1682 vnevent_create(ZTOV(zp), ct); 1683 } 1684 } 1685 } 1686 out: 1687 1688 if (dl) 1689 zfs_dirent_unlock(dl); 1690 1691 if (error) { 1692 if (zp) 1693 VN_RELE(ZTOV(zp)); 1694 } else { 1695 *vpp = ZTOV(zp); 1696 error = specvp_check(vpp, cr); 1697 } 1698 1699 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1700 zil_commit(zilog, 0); 1701 1702 ZFS_EXIT(zfsvfs); 1703 return (error); 1704 } 1705 1706 /* 1707 * Remove an entry from a directory. 1708 * 1709 * IN: dvp - vnode of directory to remove entry from. 1710 * name - name of entry to remove. 1711 * cr - credentials of caller. 1712 * ct - caller context 1713 * flags - case flags 1714 * 1715 * RETURN: 0 on success, error code on failure. 1716 * 1717 * Timestamps: 1718 * dvp - ctime|mtime 1719 * vp - ctime (if nlink > 0) 1720 */ 1721 1722 uint64_t null_xattr = 0; 1723 1724 /*ARGSUSED*/ 1725 static int 1726 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1727 int flags) 1728 { 1729 znode_t *zp, *dzp = VTOZ(dvp); 1730 znode_t *xzp; 1731 vnode_t *vp; 1732 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1733 zilog_t *zilog; 1734 uint64_t acl_obj, xattr_obj; 1735 uint64_t xattr_obj_unlinked = 0; 1736 uint64_t obj = 0; 1737 zfs_dirlock_t *dl; 1738 dmu_tx_t *tx; 1739 boolean_t may_delete_now, delete_now = FALSE; 1740 boolean_t unlinked, toobig = FALSE; 1741 uint64_t txtype; 1742 pathname_t *realnmp = NULL; 1743 pathname_t realnm; 1744 int error; 1745 int zflg = ZEXISTS; 1746 boolean_t waited = B_FALSE; 1747 1748 ZFS_ENTER(zfsvfs); 1749 ZFS_VERIFY_ZP(dzp); 1750 zilog = zfsvfs->z_log; 1751 1752 if (flags & FIGNORECASE) { 1753 zflg |= ZCILOOK; 1754 pn_alloc(&realnm); 1755 realnmp = &realnm; 1756 } 1757 1758 top: 1759 xattr_obj = 0; 1760 xzp = NULL; 1761 /* 1762 * Attempt to lock directory; fail if entry doesn't exist. 1763 */ 1764 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1765 NULL, realnmp)) { 1766 if (realnmp) 1767 pn_free(realnmp); 1768 ZFS_EXIT(zfsvfs); 1769 return (error); 1770 } 1771 1772 vp = ZTOV(zp); 1773 1774 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1775 goto out; 1776 } 1777 1778 /* 1779 * Need to use rmdir for removing directories. 1780 */ 1781 if (vp->v_type == VDIR) { 1782 error = SET_ERROR(EPERM); 1783 goto out; 1784 } 1785 1786 vnevent_remove(vp, dvp, name, ct); 1787 1788 if (realnmp) 1789 dnlc_remove(dvp, realnmp->pn_buf); 1790 else 1791 dnlc_remove(dvp, name); 1792 1793 mutex_enter(&vp->v_lock); 1794 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1795 mutex_exit(&vp->v_lock); 1796 1797 /* 1798 * We may delete the znode now, or we may put it in the unlinked set; 1799 * it depends on whether we're the last link, and on whether there are 1800 * other holds on the vnode. So we dmu_tx_hold() the right things to 1801 * allow for either case. 1802 */ 1803 obj = zp->z_id; 1804 tx = dmu_tx_create(zfsvfs->z_os); 1805 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1806 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1807 zfs_sa_upgrade_txholds(tx, zp); 1808 zfs_sa_upgrade_txholds(tx, dzp); 1809 if (may_delete_now) { 1810 toobig = 1811 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1812 /* if the file is too big, only hold_free a token amount */ 1813 dmu_tx_hold_free(tx, zp->z_id, 0, 1814 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1815 } 1816 1817 /* are there any extended attributes? */ 1818 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1819 &xattr_obj, sizeof (xattr_obj)); 1820 if (error == 0 && xattr_obj) { 1821 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1822 ASSERT0(error); 1823 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1824 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1825 } 1826 1827 mutex_enter(&zp->z_lock); 1828 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1829 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1830 mutex_exit(&zp->z_lock); 1831 1832 /* charge as an update -- would be nice not to charge at all */ 1833 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1834 1835 /* 1836 * Mark this transaction as typically resulting in a net free of space 1837 */ 1838 dmu_tx_mark_netfree(tx); 1839 1840 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1841 if (error) { 1842 zfs_dirent_unlock(dl); 1843 VN_RELE(vp); 1844 if (xzp) 1845 VN_RELE(ZTOV(xzp)); 1846 if (error == ERESTART) { 1847 waited = B_TRUE; 1848 dmu_tx_wait(tx); 1849 dmu_tx_abort(tx); 1850 goto top; 1851 } 1852 if (realnmp) 1853 pn_free(realnmp); 1854 dmu_tx_abort(tx); 1855 ZFS_EXIT(zfsvfs); 1856 return (error); 1857 } 1858 1859 /* 1860 * Remove the directory entry. 1861 */ 1862 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1863 1864 if (error) { 1865 dmu_tx_commit(tx); 1866 goto out; 1867 } 1868 1869 if (unlinked) { 1870 /* 1871 * Hold z_lock so that we can make sure that the ACL obj 1872 * hasn't changed. Could have been deleted due to 1873 * zfs_sa_upgrade(). 1874 */ 1875 mutex_enter(&zp->z_lock); 1876 mutex_enter(&vp->v_lock); 1877 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1878 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1879 delete_now = may_delete_now && !toobig && 1880 vp->v_count == 1 && !vn_has_cached_data(vp) && 1881 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1882 acl_obj; 1883 mutex_exit(&vp->v_lock); 1884 } 1885 1886 if (delete_now) { 1887 if (xattr_obj_unlinked) { 1888 ASSERT3U(xzp->z_links, ==, 2); 1889 mutex_enter(&xzp->z_lock); 1890 xzp->z_unlinked = 1; 1891 xzp->z_links = 0; 1892 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1893 &xzp->z_links, sizeof (xzp->z_links), tx); 1894 ASSERT3U(error, ==, 0); 1895 mutex_exit(&xzp->z_lock); 1896 zfs_unlinked_add(xzp, tx); 1897 1898 if (zp->z_is_sa) 1899 error = sa_remove(zp->z_sa_hdl, 1900 SA_ZPL_XATTR(zfsvfs), tx); 1901 else 1902 error = sa_update(zp->z_sa_hdl, 1903 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1904 sizeof (uint64_t), tx); 1905 ASSERT0(error); 1906 } 1907 mutex_enter(&vp->v_lock); 1908 VN_RELE_LOCKED(vp); 1909 ASSERT0(vp->v_count); 1910 mutex_exit(&vp->v_lock); 1911 mutex_exit(&zp->z_lock); 1912 zfs_znode_delete(zp, tx); 1913 } else if (unlinked) { 1914 mutex_exit(&zp->z_lock); 1915 zfs_unlinked_add(zp, tx); 1916 } 1917 1918 txtype = TX_REMOVE; 1919 if (flags & FIGNORECASE) 1920 txtype |= TX_CI; 1921 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1922 1923 dmu_tx_commit(tx); 1924 out: 1925 if (realnmp) 1926 pn_free(realnmp); 1927 1928 zfs_dirent_unlock(dl); 1929 1930 if (!delete_now) 1931 VN_RELE(vp); 1932 if (xzp) 1933 VN_RELE(ZTOV(xzp)); 1934 1935 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1936 zil_commit(zilog, 0); 1937 1938 ZFS_EXIT(zfsvfs); 1939 return (error); 1940 } 1941 1942 /* 1943 * Create a new directory and insert it into dvp using the name 1944 * provided. Return a pointer to the inserted directory. 1945 * 1946 * IN: dvp - vnode of directory to add subdir to. 1947 * dirname - name of new directory. 1948 * vap - attributes of new directory. 1949 * cr - credentials of caller. 1950 * ct - caller context 1951 * flags - case flags 1952 * vsecp - ACL to be set 1953 * 1954 * OUT: vpp - vnode of created directory. 1955 * 1956 * RETURN: 0 on success, error code on failure. 1957 * 1958 * Timestamps: 1959 * dvp - ctime|mtime updated 1960 * vp - ctime|mtime|atime updated 1961 */ 1962 /*ARGSUSED*/ 1963 static int 1964 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1965 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1966 { 1967 znode_t *zp, *dzp = VTOZ(dvp); 1968 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1969 zilog_t *zilog; 1970 zfs_dirlock_t *dl; 1971 uint64_t txtype; 1972 dmu_tx_t *tx; 1973 int error; 1974 int zf = ZNEW; 1975 ksid_t *ksid; 1976 uid_t uid; 1977 gid_t gid = crgetgid(cr); 1978 zfs_acl_ids_t acl_ids; 1979 boolean_t fuid_dirtied; 1980 boolean_t waited = B_FALSE; 1981 1982 ASSERT(vap->va_type == VDIR); 1983 1984 /* 1985 * If we have an ephemeral id, ACL, or XVATTR then 1986 * make sure file system is at proper version 1987 */ 1988 1989 ksid = crgetsid(cr, KSID_OWNER); 1990 if (ksid) 1991 uid = ksid_getid(ksid); 1992 else 1993 uid = crgetuid(cr); 1994 if (zfsvfs->z_use_fuids == B_FALSE && 1995 (vsecp || (vap->va_mask & AT_XVATTR) || 1996 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1997 return (SET_ERROR(EINVAL)); 1998 1999 ZFS_ENTER(zfsvfs); 2000 ZFS_VERIFY_ZP(dzp); 2001 zilog = zfsvfs->z_log; 2002 2003 if (dzp->z_pflags & ZFS_XATTR) { 2004 ZFS_EXIT(zfsvfs); 2005 return (SET_ERROR(EINVAL)); 2006 } 2007 2008 if (zfsvfs->z_utf8 && u8_validate(dirname, 2009 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2010 ZFS_EXIT(zfsvfs); 2011 return (SET_ERROR(EILSEQ)); 2012 } 2013 if (flags & FIGNORECASE) 2014 zf |= ZCILOOK; 2015 2016 if (vap->va_mask & AT_XVATTR) { 2017 if ((error = secpolicy_xvattr((xvattr_t *)vap, 2018 crgetuid(cr), cr, vap->va_type)) != 0) { 2019 ZFS_EXIT(zfsvfs); 2020 return (error); 2021 } 2022 } 2023 2024 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 2025 vsecp, &acl_ids)) != 0) { 2026 ZFS_EXIT(zfsvfs); 2027 return (error); 2028 } 2029 /* 2030 * First make sure the new directory doesn't exist. 2031 * 2032 * Existence is checked first to make sure we don't return 2033 * EACCES instead of EEXIST which can cause some applications 2034 * to fail. 2035 */ 2036 top: 2037 *vpp = NULL; 2038 2039 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 2040 NULL, NULL)) { 2041 zfs_acl_ids_free(&acl_ids); 2042 ZFS_EXIT(zfsvfs); 2043 return (error); 2044 } 2045 2046 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 2047 zfs_acl_ids_free(&acl_ids); 2048 zfs_dirent_unlock(dl); 2049 ZFS_EXIT(zfsvfs); 2050 return (error); 2051 } 2052 2053 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) { 2054 zfs_acl_ids_free(&acl_ids); 2055 zfs_dirent_unlock(dl); 2056 ZFS_EXIT(zfsvfs); 2057 return (SET_ERROR(EDQUOT)); 2058 } 2059 2060 /* 2061 * Add a new entry to the directory. 2062 */ 2063 tx = dmu_tx_create(zfsvfs->z_os); 2064 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 2065 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2066 fuid_dirtied = zfsvfs->z_fuid_dirty; 2067 if (fuid_dirtied) 2068 zfs_fuid_txhold(zfsvfs, tx); 2069 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2070 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2071 acl_ids.z_aclp->z_acl_bytes); 2072 } 2073 2074 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 2075 ZFS_SA_BASE_ATTR_SIZE); 2076 2077 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2078 if (error) { 2079 zfs_dirent_unlock(dl); 2080 if (error == ERESTART) { 2081 waited = B_TRUE; 2082 dmu_tx_wait(tx); 2083 dmu_tx_abort(tx); 2084 goto top; 2085 } 2086 zfs_acl_ids_free(&acl_ids); 2087 dmu_tx_abort(tx); 2088 ZFS_EXIT(zfsvfs); 2089 return (error); 2090 } 2091 2092 /* 2093 * Create new node. 2094 */ 2095 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 2096 2097 if (fuid_dirtied) 2098 zfs_fuid_sync(zfsvfs, tx); 2099 2100 /* 2101 * Now put new name in parent dir. 2102 */ 2103 (void) zfs_link_create(dl, zp, tx, ZNEW); 2104 2105 *vpp = ZTOV(zp); 2106 2107 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2108 if (flags & FIGNORECASE) 2109 txtype |= TX_CI; 2110 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2111 acl_ids.z_fuidp, vap); 2112 2113 zfs_acl_ids_free(&acl_ids); 2114 2115 dmu_tx_commit(tx); 2116 2117 zfs_dirent_unlock(dl); 2118 2119 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2120 zil_commit(zilog, 0); 2121 2122 ZFS_EXIT(zfsvfs); 2123 return (0); 2124 } 2125 2126 /* 2127 * Remove a directory subdir entry. If the current working 2128 * directory is the same as the subdir to be removed, the 2129 * remove will fail. 2130 * 2131 * IN: dvp - vnode of directory to remove from. 2132 * name - name of directory to be removed. 2133 * cwd - vnode of current working directory. 2134 * cr - credentials of caller. 2135 * ct - caller context 2136 * flags - case flags 2137 * 2138 * RETURN: 0 on success, error code on failure. 2139 * 2140 * Timestamps: 2141 * dvp - ctime|mtime updated 2142 */ 2143 /*ARGSUSED*/ 2144 static int 2145 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2146 caller_context_t *ct, int flags) 2147 { 2148 znode_t *dzp = VTOZ(dvp); 2149 znode_t *zp; 2150 vnode_t *vp; 2151 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2152 zilog_t *zilog; 2153 zfs_dirlock_t *dl; 2154 dmu_tx_t *tx; 2155 int error; 2156 int zflg = ZEXISTS; 2157 boolean_t waited = B_FALSE; 2158 2159 ZFS_ENTER(zfsvfs); 2160 ZFS_VERIFY_ZP(dzp); 2161 zilog = zfsvfs->z_log; 2162 2163 if (flags & FIGNORECASE) 2164 zflg |= ZCILOOK; 2165 top: 2166 zp = NULL; 2167 2168 /* 2169 * Attempt to lock directory; fail if entry doesn't exist. 2170 */ 2171 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2172 NULL, NULL)) { 2173 ZFS_EXIT(zfsvfs); 2174 return (error); 2175 } 2176 2177 vp = ZTOV(zp); 2178 2179 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2180 goto out; 2181 } 2182 2183 if (vp->v_type != VDIR) { 2184 error = SET_ERROR(ENOTDIR); 2185 goto out; 2186 } 2187 2188 if (vp == cwd) { 2189 error = SET_ERROR(EINVAL); 2190 goto out; 2191 } 2192 2193 vnevent_rmdir(vp, dvp, name, ct); 2194 2195 /* 2196 * Grab a lock on the directory to make sure that noone is 2197 * trying to add (or lookup) entries while we are removing it. 2198 */ 2199 rw_enter(&zp->z_name_lock, RW_WRITER); 2200 2201 /* 2202 * Grab a lock on the parent pointer to make sure we play well 2203 * with the treewalk and directory rename code. 2204 */ 2205 rw_enter(&zp->z_parent_lock, RW_WRITER); 2206 2207 tx = dmu_tx_create(zfsvfs->z_os); 2208 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2209 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2210 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2211 zfs_sa_upgrade_txholds(tx, zp); 2212 zfs_sa_upgrade_txholds(tx, dzp); 2213 dmu_tx_mark_netfree(tx); 2214 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2215 if (error) { 2216 rw_exit(&zp->z_parent_lock); 2217 rw_exit(&zp->z_name_lock); 2218 zfs_dirent_unlock(dl); 2219 VN_RELE(vp); 2220 if (error == ERESTART) { 2221 waited = B_TRUE; 2222 dmu_tx_wait(tx); 2223 dmu_tx_abort(tx); 2224 goto top; 2225 } 2226 dmu_tx_abort(tx); 2227 ZFS_EXIT(zfsvfs); 2228 return (error); 2229 } 2230 2231 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2232 2233 if (error == 0) { 2234 uint64_t txtype = TX_RMDIR; 2235 if (flags & FIGNORECASE) 2236 txtype |= TX_CI; 2237 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2238 } 2239 2240 dmu_tx_commit(tx); 2241 2242 rw_exit(&zp->z_parent_lock); 2243 rw_exit(&zp->z_name_lock); 2244 out: 2245 zfs_dirent_unlock(dl); 2246 2247 VN_RELE(vp); 2248 2249 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2250 zil_commit(zilog, 0); 2251 2252 ZFS_EXIT(zfsvfs); 2253 return (error); 2254 } 2255 2256 /* 2257 * Read as many directory entries as will fit into the provided 2258 * buffer from the given directory cursor position (specified in 2259 * the uio structure). 2260 * 2261 * IN: vp - vnode of directory to read. 2262 * uio - structure supplying read location, range info, 2263 * and return buffer. 2264 * cr - credentials of caller. 2265 * ct - caller context 2266 * flags - case flags 2267 * 2268 * OUT: uio - updated offset and range, buffer filled. 2269 * eofp - set to true if end-of-file detected. 2270 * 2271 * RETURN: 0 on success, error code on failure. 2272 * 2273 * Timestamps: 2274 * vp - atime updated 2275 * 2276 * Note that the low 4 bits of the cookie returned by zap is always zero. 2277 * This allows us to use the low range for "special" directory entries: 2278 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2279 * we use the offset 2 for the '.zfs' directory. 2280 */ 2281 /* ARGSUSED */ 2282 static int 2283 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2284 caller_context_t *ct, int flags) 2285 { 2286 znode_t *zp = VTOZ(vp); 2287 iovec_t *iovp; 2288 edirent_t *eodp; 2289 dirent64_t *odp; 2290 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2291 objset_t *os; 2292 caddr_t outbuf; 2293 size_t bufsize; 2294 zap_cursor_t zc; 2295 zap_attribute_t zap; 2296 uint_t bytes_wanted; 2297 uint64_t offset; /* must be unsigned; checks for < 1 */ 2298 uint64_t parent; 2299 int local_eof; 2300 int outcount; 2301 int error; 2302 uint8_t prefetch; 2303 boolean_t check_sysattrs; 2304 2305 ZFS_ENTER(zfsvfs); 2306 ZFS_VERIFY_ZP(zp); 2307 2308 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2309 &parent, sizeof (parent))) != 0) { 2310 ZFS_EXIT(zfsvfs); 2311 return (error); 2312 } 2313 2314 /* 2315 * If we are not given an eof variable, 2316 * use a local one. 2317 */ 2318 if (eofp == NULL) 2319 eofp = &local_eof; 2320 2321 /* 2322 * Check for valid iov_len. 2323 */ 2324 if (uio->uio_iov->iov_len <= 0) { 2325 ZFS_EXIT(zfsvfs); 2326 return (SET_ERROR(EINVAL)); 2327 } 2328 2329 /* 2330 * Quit if directory has been removed (posix) 2331 */ 2332 if ((*eofp = zp->z_unlinked) != 0) { 2333 ZFS_EXIT(zfsvfs); 2334 return (0); 2335 } 2336 2337 error = 0; 2338 os = zfsvfs->z_os; 2339 offset = uio->uio_loffset; 2340 prefetch = zp->z_zn_prefetch; 2341 2342 /* 2343 * Initialize the iterator cursor. 2344 */ 2345 if (offset <= 3) { 2346 /* 2347 * Start iteration from the beginning of the directory. 2348 */ 2349 zap_cursor_init(&zc, os, zp->z_id); 2350 } else { 2351 /* 2352 * The offset is a serialized cursor. 2353 */ 2354 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2355 } 2356 2357 /* 2358 * Get space to change directory entries into fs independent format. 2359 */ 2360 iovp = uio->uio_iov; 2361 bytes_wanted = iovp->iov_len; 2362 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2363 bufsize = bytes_wanted; 2364 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2365 odp = (struct dirent64 *)outbuf; 2366 } else { 2367 bufsize = bytes_wanted; 2368 outbuf = NULL; 2369 odp = (struct dirent64 *)iovp->iov_base; 2370 } 2371 eodp = (struct edirent *)odp; 2372 2373 /* 2374 * If this VFS supports the system attribute view interface; and 2375 * we're looking at an extended attribute directory; and we care 2376 * about normalization conflicts on this vfs; then we must check 2377 * for normalization conflicts with the sysattr name space. 2378 */ 2379 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2380 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2381 (flags & V_RDDIR_ENTFLAGS); 2382 2383 /* 2384 * Transform to file-system independent format 2385 */ 2386 outcount = 0; 2387 while (outcount < bytes_wanted) { 2388 ino64_t objnum; 2389 ushort_t reclen; 2390 off64_t *next = NULL; 2391 2392 /* 2393 * Special case `.', `..', and `.zfs'. 2394 */ 2395 if (offset == 0) { 2396 (void) strcpy(zap.za_name, "."); 2397 zap.za_normalization_conflict = 0; 2398 objnum = zp->z_id; 2399 } else if (offset == 1) { 2400 (void) strcpy(zap.za_name, ".."); 2401 zap.za_normalization_conflict = 0; 2402 objnum = parent; 2403 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2404 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2405 zap.za_normalization_conflict = 0; 2406 objnum = ZFSCTL_INO_ROOT; 2407 } else { 2408 /* 2409 * Grab next entry. 2410 */ 2411 if (error = zap_cursor_retrieve(&zc, &zap)) { 2412 if ((*eofp = (error == ENOENT)) != 0) 2413 break; 2414 else 2415 goto update; 2416 } 2417 2418 if (zap.za_integer_length != 8 || 2419 zap.za_num_integers != 1) { 2420 cmn_err(CE_WARN, "zap_readdir: bad directory " 2421 "entry, obj = %lld, offset = %lld\n", 2422 (u_longlong_t)zp->z_id, 2423 (u_longlong_t)offset); 2424 error = SET_ERROR(ENXIO); 2425 goto update; 2426 } 2427 2428 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2429 /* 2430 * MacOS X can extract the object type here such as: 2431 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2432 */ 2433 2434 if (check_sysattrs && !zap.za_normalization_conflict) { 2435 zap.za_normalization_conflict = 2436 xattr_sysattr_casechk(zap.za_name); 2437 } 2438 } 2439 2440 if (flags & V_RDDIR_ACCFILTER) { 2441 /* 2442 * If we have no access at all, don't include 2443 * this entry in the returned information 2444 */ 2445 znode_t *ezp; 2446 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2447 goto skip_entry; 2448 if (!zfs_has_access(ezp, cr)) { 2449 VN_RELE(ZTOV(ezp)); 2450 goto skip_entry; 2451 } 2452 VN_RELE(ZTOV(ezp)); 2453 } 2454 2455 if (flags & V_RDDIR_ENTFLAGS) 2456 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2457 else 2458 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2459 2460 /* 2461 * Will this entry fit in the buffer? 2462 */ 2463 if (outcount + reclen > bufsize) { 2464 /* 2465 * Did we manage to fit anything in the buffer? 2466 */ 2467 if (!outcount) { 2468 error = SET_ERROR(EINVAL); 2469 goto update; 2470 } 2471 break; 2472 } 2473 if (flags & V_RDDIR_ENTFLAGS) { 2474 /* 2475 * Add extended flag entry: 2476 */ 2477 eodp->ed_ino = objnum; 2478 eodp->ed_reclen = reclen; 2479 /* NOTE: ed_off is the offset for the *next* entry */ 2480 next = &(eodp->ed_off); 2481 eodp->ed_eflags = zap.za_normalization_conflict ? 2482 ED_CASE_CONFLICT : 0; 2483 (void) strncpy(eodp->ed_name, zap.za_name, 2484 EDIRENT_NAMELEN(reclen)); 2485 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2486 } else { 2487 /* 2488 * Add normal entry: 2489 */ 2490 odp->d_ino = objnum; 2491 odp->d_reclen = reclen; 2492 /* NOTE: d_off is the offset for the *next* entry */ 2493 next = &(odp->d_off); 2494 (void) strncpy(odp->d_name, zap.za_name, 2495 DIRENT64_NAMELEN(reclen)); 2496 odp = (dirent64_t *)((intptr_t)odp + reclen); 2497 } 2498 outcount += reclen; 2499 2500 ASSERT(outcount <= bufsize); 2501 2502 /* Prefetch znode */ 2503 if (prefetch) 2504 dmu_prefetch(os, objnum, 0, 0, 0, 2505 ZIO_PRIORITY_SYNC_READ); 2506 2507 skip_entry: 2508 /* 2509 * Move to the next entry, fill in the previous offset. 2510 */ 2511 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2512 zap_cursor_advance(&zc); 2513 offset = zap_cursor_serialize(&zc); 2514 } else { 2515 offset += 1; 2516 } 2517 if (next) 2518 *next = offset; 2519 } 2520 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2521 2522 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2523 iovp->iov_base += outcount; 2524 iovp->iov_len -= outcount; 2525 uio->uio_resid -= outcount; 2526 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2527 /* 2528 * Reset the pointer. 2529 */ 2530 offset = uio->uio_loffset; 2531 } 2532 2533 update: 2534 zap_cursor_fini(&zc); 2535 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2536 kmem_free(outbuf, bufsize); 2537 2538 if (error == ENOENT) 2539 error = 0; 2540 2541 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2542 2543 uio->uio_loffset = offset; 2544 ZFS_EXIT(zfsvfs); 2545 return (error); 2546 } 2547 2548 ulong_t zfs_fsync_sync_cnt = 4; 2549 2550 static int 2551 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2552 { 2553 znode_t *zp = VTOZ(vp); 2554 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2555 2556 /* 2557 * Regardless of whether this is required for standards conformance, 2558 * this is the logical behavior when fsync() is called on a file with 2559 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2560 * going to be pushed out as part of the zil_commit(). 2561 */ 2562 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2563 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2564 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2565 2566 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2567 2568 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2569 ZFS_ENTER(zfsvfs); 2570 ZFS_VERIFY_ZP(zp); 2571 zil_commit(zfsvfs->z_log, zp->z_id); 2572 ZFS_EXIT(zfsvfs); 2573 } 2574 return (0); 2575 } 2576 2577 2578 /* 2579 * Get the requested file attributes and place them in the provided 2580 * vattr structure. 2581 * 2582 * IN: vp - vnode of file. 2583 * vap - va_mask identifies requested attributes. 2584 * If AT_XVATTR set, then optional attrs are requested 2585 * flags - ATTR_NOACLCHECK (CIFS server context) 2586 * cr - credentials of caller. 2587 * ct - caller context 2588 * 2589 * OUT: vap - attribute values. 2590 * 2591 * RETURN: 0 (always succeeds). 2592 */ 2593 /* ARGSUSED */ 2594 static int 2595 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2596 caller_context_t *ct) 2597 { 2598 znode_t *zp = VTOZ(vp); 2599 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2600 int error = 0; 2601 uint64_t links; 2602 uint64_t mtime[2], ctime[2]; 2603 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2604 xoptattr_t *xoap = NULL; 2605 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2606 sa_bulk_attr_t bulk[2]; 2607 int count = 0; 2608 2609 ZFS_ENTER(zfsvfs); 2610 ZFS_VERIFY_ZP(zp); 2611 2612 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2613 2614 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2615 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2616 2617 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2618 ZFS_EXIT(zfsvfs); 2619 return (error); 2620 } 2621 2622 /* 2623 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2624 * Also, if we are the owner don't bother, since owner should 2625 * always be allowed to read basic attributes of file. 2626 */ 2627 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2628 (vap->va_uid != crgetuid(cr))) { 2629 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2630 skipaclchk, cr)) { 2631 ZFS_EXIT(zfsvfs); 2632 return (error); 2633 } 2634 } 2635 2636 /* 2637 * Return all attributes. It's cheaper to provide the answer 2638 * than to determine whether we were asked the question. 2639 */ 2640 2641 mutex_enter(&zp->z_lock); 2642 vap->va_type = vp->v_type; 2643 vap->va_mode = zp->z_mode & MODEMASK; 2644 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2645 vap->va_nodeid = zp->z_id; 2646 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2647 links = zp->z_links + 1; 2648 else 2649 links = zp->z_links; 2650 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2651 vap->va_size = zp->z_size; 2652 vap->va_rdev = vp->v_rdev; 2653 vap->va_seq = zp->z_seq; 2654 2655 /* 2656 * Add in any requested optional attributes and the create time. 2657 * Also set the corresponding bits in the returned attribute bitmap. 2658 */ 2659 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2660 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2661 xoap->xoa_archive = 2662 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2663 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2664 } 2665 2666 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2667 xoap->xoa_readonly = 2668 ((zp->z_pflags & ZFS_READONLY) != 0); 2669 XVA_SET_RTN(xvap, XAT_READONLY); 2670 } 2671 2672 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2673 xoap->xoa_system = 2674 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2675 XVA_SET_RTN(xvap, XAT_SYSTEM); 2676 } 2677 2678 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2679 xoap->xoa_hidden = 2680 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2681 XVA_SET_RTN(xvap, XAT_HIDDEN); 2682 } 2683 2684 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2685 xoap->xoa_nounlink = 2686 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2687 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2688 } 2689 2690 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2691 xoap->xoa_immutable = 2692 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2693 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2694 } 2695 2696 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2697 xoap->xoa_appendonly = 2698 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2699 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2700 } 2701 2702 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2703 xoap->xoa_nodump = 2704 ((zp->z_pflags & ZFS_NODUMP) != 0); 2705 XVA_SET_RTN(xvap, XAT_NODUMP); 2706 } 2707 2708 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2709 xoap->xoa_opaque = 2710 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2711 XVA_SET_RTN(xvap, XAT_OPAQUE); 2712 } 2713 2714 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2715 xoap->xoa_av_quarantined = 2716 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2717 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2718 } 2719 2720 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2721 xoap->xoa_av_modified = 2722 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2723 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2724 } 2725 2726 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2727 vp->v_type == VREG) { 2728 zfs_sa_get_scanstamp(zp, xvap); 2729 } 2730 2731 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2732 uint64_t times[2]; 2733 2734 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2735 times, sizeof (times)); 2736 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2737 XVA_SET_RTN(xvap, XAT_CREATETIME); 2738 } 2739 2740 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2741 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2742 XVA_SET_RTN(xvap, XAT_REPARSE); 2743 } 2744 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2745 xoap->xoa_generation = zp->z_gen; 2746 XVA_SET_RTN(xvap, XAT_GEN); 2747 } 2748 2749 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2750 xoap->xoa_offline = 2751 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2752 XVA_SET_RTN(xvap, XAT_OFFLINE); 2753 } 2754 2755 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2756 xoap->xoa_sparse = 2757 ((zp->z_pflags & ZFS_SPARSE) != 0); 2758 XVA_SET_RTN(xvap, XAT_SPARSE); 2759 } 2760 2761 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { 2762 xoap->xoa_projinherit = 2763 ((zp->z_pflags & ZFS_PROJINHERIT) != 0); 2764 XVA_SET_RTN(xvap, XAT_PROJINHERIT); 2765 } 2766 2767 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { 2768 xoap->xoa_projid = zp->z_projid; 2769 XVA_SET_RTN(xvap, XAT_PROJID); 2770 } 2771 } 2772 2773 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2774 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2775 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2776 2777 mutex_exit(&zp->z_lock); 2778 2779 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2780 2781 if (zp->z_blksz == 0) { 2782 /* 2783 * Block size hasn't been set; suggest maximal I/O transfers. 2784 */ 2785 vap->va_blksize = zfsvfs->z_max_blksz; 2786 } 2787 2788 ZFS_EXIT(zfsvfs); 2789 return (0); 2790 } 2791 2792 /* 2793 * For the operation of changing file's user/group/project, we need to 2794 * handle not only the main object that is assigned to the file directly, 2795 * but also the ones that are used by the file via hidden xattr directory. 2796 * 2797 * Because the xattr directory may contain many EA entries, it may be 2798 * impossible to change all of them in the same transaction as changing the 2799 * main object's user/group/project attributes. If so, we have to change them 2800 * via other multiple independent transactions one by one. It may be not a good 2801 * solution, but we have no better idea yet. 2802 */ 2803 static int 2804 zfs_setattr_dir(znode_t *dzp) 2805 { 2806 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2807 objset_t *os = zfsvfs->z_os; 2808 zap_cursor_t zc; 2809 zap_attribute_t zap; 2810 zfs_dirlock_t *dl; 2811 znode_t *zp = NULL; 2812 dmu_tx_t *tx = NULL; 2813 sa_bulk_attr_t bulk[4]; 2814 int count = 0; 2815 int err; 2816 2817 zap_cursor_init(&zc, os, dzp->z_id); 2818 while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) { 2819 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) { 2820 err = ENXIO; 2821 break; 2822 } 2823 2824 err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp, 2825 ZEXISTS, NULL, NULL); 2826 if (err == ENOENT) 2827 goto next; 2828 if (err) 2829 break; 2830 2831 if (zp->z_uid == dzp->z_uid && 2832 zp->z_gid == dzp->z_gid && 2833 zp->z_projid == dzp->z_projid) 2834 goto next; 2835 2836 tx = dmu_tx_create(os); 2837 if (!(zp->z_pflags & ZFS_PROJID)) 2838 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2839 else 2840 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2841 2842 err = dmu_tx_assign(tx, TXG_WAIT); 2843 if (err) 2844 break; 2845 2846 mutex_enter(&dzp->z_lock); 2847 2848 if (zp->z_uid != dzp->z_uid) { 2849 zp->z_uid = dzp->z_uid; 2850 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 2851 &dzp->z_uid, sizeof (dzp->z_uid)); 2852 } 2853 2854 if (zp->z_gid != dzp->z_gid) { 2855 zp->z_gid = dzp->z_gid; 2856 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 2857 &dzp->z_gid, sizeof (dzp->z_gid)); 2858 } 2859 2860 if (zp->z_projid != dzp->z_projid) { 2861 if (!(zp->z_pflags & ZFS_PROJID)) { 2862 zp->z_pflags |= ZFS_PROJID; 2863 SA_ADD_BULK_ATTR(bulk, count, 2864 SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 2865 sizeof (zp->z_pflags)); 2866 } 2867 2868 zp->z_projid = dzp->z_projid; 2869 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs), 2870 NULL, &zp->z_projid, sizeof (zp->z_projid)); 2871 } 2872 2873 mutex_exit(&dzp->z_lock); 2874 2875 if (likely(count > 0)) { 2876 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 2877 dmu_tx_commit(tx); 2878 } else { 2879 dmu_tx_abort(tx); 2880 } 2881 tx = NULL; 2882 if (err != 0 && err != ENOENT) 2883 break; 2884 2885 next: 2886 if (zp) { 2887 VN_RELE(ZTOV(zp)); 2888 zp = NULL; 2889 zfs_dirent_unlock(dl); 2890 } 2891 zap_cursor_advance(&zc); 2892 } 2893 2894 if (tx) 2895 dmu_tx_abort(tx); 2896 if (zp) { 2897 VN_RELE(ZTOV(zp)); 2898 zfs_dirent_unlock(dl); 2899 } 2900 zap_cursor_fini(&zc); 2901 2902 return (err == ENOENT ? 0 : err); 2903 } 2904 2905 /* 2906 * Set the file attributes to the values contained in the 2907 * vattr structure. 2908 * 2909 * IN: vp - vnode of file to be modified. 2910 * vap - new attribute values. 2911 * If AT_XVATTR set, then optional attrs are being set 2912 * flags - ATTR_UTIME set if non-default time values provided. 2913 * - ATTR_NOACLCHECK (CIFS context only). 2914 * cr - credentials of caller. 2915 * ct - caller context 2916 * 2917 * RETURN: 0 on success, error code on failure. 2918 * 2919 * Timestamps: 2920 * vp - ctime updated, mtime updated if size changed. 2921 */ 2922 /* ARGSUSED */ 2923 static int 2924 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2925 caller_context_t *ct) 2926 { 2927 znode_t *zp = VTOZ(vp); 2928 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2929 objset_t *os = zfsvfs->z_os; 2930 zilog_t *zilog; 2931 dmu_tx_t *tx; 2932 vattr_t oldva; 2933 xvattr_t tmpxvattr; 2934 uint_t mask = vap->va_mask; 2935 uint_t saved_mask = 0; 2936 int trim_mask = 0; 2937 uint64_t new_mode; 2938 uint64_t new_uid, new_gid; 2939 uint64_t xattr_obj; 2940 uint64_t mtime[2], ctime[2]; 2941 uint64_t projid = ZFS_INVALID_PROJID; 2942 znode_t *attrzp; 2943 int need_policy = FALSE; 2944 int err, err2 = 0; 2945 zfs_fuid_info_t *fuidp = NULL; 2946 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2947 xoptattr_t *xoap; 2948 zfs_acl_t *aclp; 2949 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2950 boolean_t fuid_dirtied = B_FALSE; 2951 boolean_t handle_eadir = B_FALSE; 2952 sa_bulk_attr_t bulk[8], xattr_bulk[8]; 2953 int count = 0, xattr_count = 0; 2954 2955 if (mask == 0) 2956 return (0); 2957 2958 if (mask & AT_NOSET) 2959 return (SET_ERROR(EINVAL)); 2960 2961 ZFS_ENTER(zfsvfs); 2962 ZFS_VERIFY_ZP(zp); 2963 2964 /* 2965 * If this is a xvattr_t, then get a pointer to the structure of 2966 * optional attributes. If this is NULL, then we have a vattr_t. 2967 */ 2968 xoap = xva_getxoptattr(xvap); 2969 if (xoap != NULL && (mask & AT_XVATTR)) { 2970 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { 2971 if (!dmu_objset_projectquota_enabled(os) || 2972 (vp->v_type != VREG && vp->v_type != VDIR)) { 2973 ZFS_EXIT(zfsvfs); 2974 return (SET_ERROR(ENOTSUP)); 2975 } 2976 2977 projid = xoap->xoa_projid; 2978 if (unlikely(projid == ZFS_INVALID_PROJID)) { 2979 ZFS_EXIT(zfsvfs); 2980 return (SET_ERROR(EINVAL)); 2981 } 2982 2983 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID) 2984 projid = ZFS_INVALID_PROJID; 2985 else 2986 need_policy = TRUE; 2987 } 2988 2989 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) && 2990 (!dmu_objset_projectquota_enabled(os) || 2991 (vp->v_type != VREG && vp->v_type != VDIR))) { 2992 ZFS_EXIT(zfsvfs); 2993 return (SET_ERROR(ENOTSUP)); 2994 } 2995 } 2996 2997 zilog = zfsvfs->z_log; 2998 2999 /* 3000 * Make sure that if we have ephemeral uid/gid or xvattr specified 3001 * that file system is at proper version level 3002 */ 3003 3004 if (zfsvfs->z_use_fuids == B_FALSE && 3005 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 3006 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 3007 (mask & AT_XVATTR))) { 3008 ZFS_EXIT(zfsvfs); 3009 return (SET_ERROR(EINVAL)); 3010 } 3011 3012 if (mask & AT_SIZE && vp->v_type == VDIR) { 3013 ZFS_EXIT(zfsvfs); 3014 return (SET_ERROR(EISDIR)); 3015 } 3016 3017 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 3018 ZFS_EXIT(zfsvfs); 3019 return (SET_ERROR(EINVAL)); 3020 } 3021 3022 xva_init(&tmpxvattr); 3023 3024 /* 3025 * Immutable files can only alter immutable bit and atime 3026 */ 3027 if ((zp->z_pflags & ZFS_IMMUTABLE) && 3028 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 3029 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 3030 ZFS_EXIT(zfsvfs); 3031 return (SET_ERROR(EPERM)); 3032 } 3033 3034 /* 3035 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 3036 */ 3037 3038 /* 3039 * Verify timestamps doesn't overflow 32 bits. 3040 * ZFS can handle large timestamps, but 32bit syscalls can't 3041 * handle times greater than 2039. This check should be removed 3042 * once large timestamps are fully supported. 3043 */ 3044 if (mask & (AT_ATIME | AT_MTIME)) { 3045 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 3046 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 3047 ZFS_EXIT(zfsvfs); 3048 return (SET_ERROR(EOVERFLOW)); 3049 } 3050 } 3051 3052 top: 3053 attrzp = NULL; 3054 aclp = NULL; 3055 3056 /* Can this be moved to before the top label? */ 3057 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 3058 ZFS_EXIT(zfsvfs); 3059 return (SET_ERROR(EROFS)); 3060 } 3061 3062 /* 3063 * First validate permissions 3064 */ 3065 3066 if (mask & AT_SIZE) { 3067 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 3068 if (err) { 3069 ZFS_EXIT(zfsvfs); 3070 return (err); 3071 } 3072 /* 3073 * XXX - Note, we are not providing any open 3074 * mode flags here (like FNDELAY), so we may 3075 * block if there are locks present... this 3076 * should be addressed in openat(). 3077 */ 3078 /* XXX - would it be OK to generate a log record here? */ 3079 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 3080 if (err) { 3081 ZFS_EXIT(zfsvfs); 3082 return (err); 3083 } 3084 3085 if (vap->va_size == 0) 3086 vnevent_truncate(ZTOV(zp), ct); 3087 } 3088 3089 if (mask & (AT_ATIME|AT_MTIME) || 3090 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 3091 XVA_ISSET_REQ(xvap, XAT_READONLY) || 3092 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 3093 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 3094 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 3095 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 3096 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 3097 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 3098 skipaclchk, cr); 3099 } 3100 3101 if (mask & (AT_UID|AT_GID)) { 3102 int idmask = (mask & (AT_UID|AT_GID)); 3103 int take_owner; 3104 int take_group; 3105 3106 /* 3107 * NOTE: even if a new mode is being set, 3108 * we may clear S_ISUID/S_ISGID bits. 3109 */ 3110 3111 if (!(mask & AT_MODE)) 3112 vap->va_mode = zp->z_mode; 3113 3114 /* 3115 * Take ownership or chgrp to group we are a member of 3116 */ 3117 3118 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 3119 take_group = (mask & AT_GID) && 3120 zfs_groupmember(zfsvfs, vap->va_gid, cr); 3121 3122 /* 3123 * If both AT_UID and AT_GID are set then take_owner and 3124 * take_group must both be set in order to allow taking 3125 * ownership. 3126 * 3127 * Otherwise, send the check through secpolicy_vnode_setattr() 3128 * 3129 */ 3130 3131 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 3132 ((idmask == AT_UID) && take_owner) || 3133 ((idmask == AT_GID) && take_group)) { 3134 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 3135 skipaclchk, cr) == 0) { 3136 /* 3137 * Remove setuid/setgid for non-privileged users 3138 */ 3139 secpolicy_setid_clear(vap, cr); 3140 trim_mask = (mask & (AT_UID|AT_GID)); 3141 } else { 3142 need_policy = TRUE; 3143 } 3144 } else { 3145 need_policy = TRUE; 3146 } 3147 } 3148 3149 mutex_enter(&zp->z_lock); 3150 oldva.va_mode = zp->z_mode; 3151 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 3152 if (mask & AT_XVATTR) { 3153 /* 3154 * Update xvattr mask to include only those attributes 3155 * that are actually changing. 3156 * 3157 * the bits will be restored prior to actually setting 3158 * the attributes so the caller thinks they were set. 3159 */ 3160 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 3161 if (xoap->xoa_appendonly != 3162 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 3163 need_policy = TRUE; 3164 } else { 3165 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 3166 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 3167 } 3168 } 3169 3170 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { 3171 if (xoap->xoa_projinherit != 3172 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) { 3173 need_policy = TRUE; 3174 } else { 3175 XVA_CLR_REQ(xvap, XAT_PROJINHERIT); 3176 XVA_SET_REQ(&tmpxvattr, XAT_PROJINHERIT); 3177 } 3178 } 3179 3180 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 3181 if (xoap->xoa_nounlink != 3182 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 3183 need_policy = TRUE; 3184 } else { 3185 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 3186 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 3187 } 3188 } 3189 3190 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 3191 if (xoap->xoa_immutable != 3192 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 3193 need_policy = TRUE; 3194 } else { 3195 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 3196 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 3197 } 3198 } 3199 3200 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 3201 if (xoap->xoa_nodump != 3202 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 3203 need_policy = TRUE; 3204 } else { 3205 XVA_CLR_REQ(xvap, XAT_NODUMP); 3206 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 3207 } 3208 } 3209 3210 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 3211 if (xoap->xoa_av_modified != 3212 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 3213 need_policy = TRUE; 3214 } else { 3215 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 3216 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 3217 } 3218 } 3219 3220 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 3221 if ((vp->v_type != VREG && 3222 xoap->xoa_av_quarantined) || 3223 xoap->xoa_av_quarantined != 3224 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 3225 need_policy = TRUE; 3226 } else { 3227 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 3228 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 3229 } 3230 } 3231 3232 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 3233 mutex_exit(&zp->z_lock); 3234 ZFS_EXIT(zfsvfs); 3235 return (SET_ERROR(EPERM)); 3236 } 3237 3238 if (need_policy == FALSE && 3239 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 3240 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 3241 need_policy = TRUE; 3242 } 3243 } 3244 3245 mutex_exit(&zp->z_lock); 3246 3247 if (mask & AT_MODE) { 3248 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 3249 err = secpolicy_setid_setsticky_clear(vp, vap, 3250 &oldva, cr); 3251 if (err) { 3252 ZFS_EXIT(zfsvfs); 3253 return (err); 3254 } 3255 trim_mask |= AT_MODE; 3256 } else { 3257 need_policy = TRUE; 3258 } 3259 } 3260 3261 if (need_policy) { 3262 /* 3263 * If trim_mask is set then take ownership 3264 * has been granted or write_acl is present and user 3265 * has the ability to modify mode. In that case remove 3266 * UID|GID and or MODE from mask so that 3267 * secpolicy_vnode_setattr() doesn't revoke it. 3268 */ 3269 3270 if (trim_mask) { 3271 saved_mask = vap->va_mask; 3272 vap->va_mask &= ~trim_mask; 3273 } 3274 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3275 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3276 if (err) { 3277 ZFS_EXIT(zfsvfs); 3278 return (err); 3279 } 3280 3281 if (trim_mask) 3282 vap->va_mask |= saved_mask; 3283 } 3284 3285 /* 3286 * secpolicy_vnode_setattr, or take ownership may have 3287 * changed va_mask 3288 */ 3289 mask = vap->va_mask; 3290 3291 if ((mask & (AT_UID | AT_GID)) || projid != ZFS_INVALID_PROJID) { 3292 handle_eadir = B_TRUE; 3293 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3294 &xattr_obj, sizeof (xattr_obj)); 3295 3296 if (err == 0 && xattr_obj) { 3297 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3298 if (err) 3299 goto out2; 3300 } 3301 if (mask & AT_UID) { 3302 new_uid = zfs_fuid_create(zfsvfs, 3303 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3304 if (new_uid != zp->z_uid && 3305 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT, 3306 new_uid)) { 3307 if (attrzp) 3308 VN_RELE(ZTOV(attrzp)); 3309 err = SET_ERROR(EDQUOT); 3310 goto out2; 3311 } 3312 } 3313 3314 if (mask & AT_GID) { 3315 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3316 cr, ZFS_GROUP, &fuidp); 3317 if (new_gid != zp->z_gid && 3318 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT, 3319 new_gid)) { 3320 if (attrzp) 3321 VN_RELE(ZTOV(attrzp)); 3322 err = SET_ERROR(EDQUOT); 3323 goto out2; 3324 } 3325 } 3326 3327 if (projid != ZFS_INVALID_PROJID && 3328 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) { 3329 if (attrzp) 3330 VN_RELE(ZTOV(attrzp)); 3331 err = EDQUOT; 3332 goto out2; 3333 } 3334 } 3335 tx = dmu_tx_create(os); 3336 3337 if (mask & AT_MODE) { 3338 uint64_t pmode = zp->z_mode; 3339 uint64_t acl_obj; 3340 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3341 3342 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3343 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3344 err = SET_ERROR(EPERM); 3345 goto out; 3346 } 3347 3348 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3349 goto out; 3350 3351 mutex_enter(&zp->z_lock); 3352 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3353 /* 3354 * Are we upgrading ACL from old V0 format 3355 * to V1 format? 3356 */ 3357 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3358 zfs_znode_acl_version(zp) == 3359 ZFS_ACL_VERSION_INITIAL) { 3360 dmu_tx_hold_free(tx, acl_obj, 0, 3361 DMU_OBJECT_END); 3362 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3363 0, aclp->z_acl_bytes); 3364 } else { 3365 dmu_tx_hold_write(tx, acl_obj, 0, 3366 aclp->z_acl_bytes); 3367 } 3368 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3369 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3370 0, aclp->z_acl_bytes); 3371 } 3372 mutex_exit(&zp->z_lock); 3373 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3374 } else { 3375 if (((mask & AT_XVATTR) && 3376 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || 3377 (projid != ZFS_INVALID_PROJID && 3378 !(zp->z_pflags & ZFS_PROJID))) 3379 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3380 else 3381 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3382 } 3383 3384 if (attrzp) { 3385 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3386 } 3387 3388 fuid_dirtied = zfsvfs->z_fuid_dirty; 3389 if (fuid_dirtied) 3390 zfs_fuid_txhold(zfsvfs, tx); 3391 3392 zfs_sa_upgrade_txholds(tx, zp); 3393 3394 err = dmu_tx_assign(tx, TXG_WAIT); 3395 if (err) 3396 goto out; 3397 3398 count = 0; 3399 /* 3400 * Set each attribute requested. 3401 * We group settings according to the locks they need to acquire. 3402 * 3403 * Note: you cannot set ctime directly, although it will be 3404 * updated as a side-effect of calling this function. 3405 */ 3406 3407 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) { 3408 /* 3409 * For the existing object that is upgraded from old system, 3410 * its on-disk layout has no slot for the project ID attribute. 3411 * But quota accounting logic needs to access related slots by 3412 * offset directly. So we need to adjust old objects' layout 3413 * to make the project ID to some unified and fixed offset. 3414 */ 3415 if (attrzp) 3416 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid); 3417 if (err == 0) 3418 err = sa_add_projid(zp->z_sa_hdl, tx, projid); 3419 3420 if (unlikely(err == EEXIST)) 3421 err = 0; 3422 else if (err != 0) 3423 goto out; 3424 else 3425 projid = ZFS_INVALID_PROJID; 3426 } 3427 3428 if (mask & (AT_UID|AT_GID|AT_MODE)) 3429 mutex_enter(&zp->z_acl_lock); 3430 mutex_enter(&zp->z_lock); 3431 3432 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3433 &zp->z_pflags, sizeof (zp->z_pflags)); 3434 3435 if (attrzp) { 3436 if (mask & (AT_UID|AT_GID|AT_MODE)) 3437 mutex_enter(&attrzp->z_acl_lock); 3438 mutex_enter(&attrzp->z_lock); 3439 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3440 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3441 sizeof (attrzp->z_pflags)); 3442 if (projid != ZFS_INVALID_PROJID) { 3443 attrzp->z_projid = projid; 3444 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3445 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid, 3446 sizeof (attrzp->z_projid)); 3447 } 3448 } 3449 3450 if (mask & (AT_UID|AT_GID)) { 3451 3452 if (mask & AT_UID) { 3453 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3454 &new_uid, sizeof (new_uid)); 3455 zp->z_uid = new_uid; 3456 if (attrzp) { 3457 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3458 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3459 sizeof (new_uid)); 3460 attrzp->z_uid = new_uid; 3461 } 3462 } 3463 3464 if (mask & AT_GID) { 3465 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3466 NULL, &new_gid, sizeof (new_gid)); 3467 zp->z_gid = new_gid; 3468 if (attrzp) { 3469 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3470 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3471 sizeof (new_gid)); 3472 attrzp->z_gid = new_gid; 3473 } 3474 } 3475 if (!(mask & AT_MODE)) { 3476 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3477 NULL, &new_mode, sizeof (new_mode)); 3478 new_mode = zp->z_mode; 3479 } 3480 err = zfs_acl_chown_setattr(zp); 3481 ASSERT(err == 0); 3482 if (attrzp) { 3483 err = zfs_acl_chown_setattr(attrzp); 3484 ASSERT(err == 0); 3485 } 3486 } 3487 3488 if (mask & AT_MODE) { 3489 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3490 &new_mode, sizeof (new_mode)); 3491 zp->z_mode = new_mode; 3492 ASSERT3U((uintptr_t)aclp, !=, NULL); 3493 err = zfs_aclset_common(zp, aclp, cr, tx); 3494 ASSERT0(err); 3495 if (zp->z_acl_cached) 3496 zfs_acl_free(zp->z_acl_cached); 3497 zp->z_acl_cached = aclp; 3498 aclp = NULL; 3499 } 3500 3501 3502 if (mask & AT_ATIME) { 3503 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3504 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3505 &zp->z_atime, sizeof (zp->z_atime)); 3506 } 3507 3508 if (mask & AT_MTIME) { 3509 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3510 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3511 mtime, sizeof (mtime)); 3512 } 3513 3514 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3515 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3516 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3517 NULL, mtime, sizeof (mtime)); 3518 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3519 &ctime, sizeof (ctime)); 3520 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3521 B_TRUE); 3522 } else if (mask != 0) { 3523 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3524 &ctime, sizeof (ctime)); 3525 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3526 B_TRUE); 3527 if (attrzp) { 3528 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3529 SA_ZPL_CTIME(zfsvfs), NULL, 3530 &ctime, sizeof (ctime)); 3531 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3532 mtime, ctime, B_TRUE); 3533 } 3534 } 3535 3536 if (projid != ZFS_INVALID_PROJID) { 3537 zp->z_projid = projid; 3538 SA_ADD_BULK_ATTR(bulk, count, 3539 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid, 3540 sizeof (zp->z_projid)); 3541 } 3542 3543 /* 3544 * Do this after setting timestamps to prevent timestamp 3545 * update from toggling bit 3546 */ 3547 3548 if (xoap && (mask & AT_XVATTR)) { 3549 3550 /* 3551 * restore trimmed off masks 3552 * so that return masks can be set for caller. 3553 */ 3554 3555 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3556 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3557 } 3558 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3559 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3560 } 3561 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3562 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3563 } 3564 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3565 XVA_SET_REQ(xvap, XAT_NODUMP); 3566 } 3567 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3568 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3569 } 3570 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3571 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3572 } 3573 if (XVA_ISSET_REQ(&tmpxvattr, XAT_PROJINHERIT)) { 3574 XVA_SET_REQ(xvap, XAT_PROJINHERIT); 3575 } 3576 3577 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3578 ASSERT(vp->v_type == VREG); 3579 3580 zfs_xvattr_set(zp, xvap, tx); 3581 } 3582 3583 if (fuid_dirtied) 3584 zfs_fuid_sync(zfsvfs, tx); 3585 3586 if (mask != 0) 3587 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3588 3589 mutex_exit(&zp->z_lock); 3590 if (mask & (AT_UID|AT_GID|AT_MODE)) 3591 mutex_exit(&zp->z_acl_lock); 3592 3593 if (attrzp) { 3594 if (mask & (AT_UID|AT_GID|AT_MODE)) 3595 mutex_exit(&attrzp->z_acl_lock); 3596 mutex_exit(&attrzp->z_lock); 3597 } 3598 out: 3599 if (err == 0 && xattr_count > 0) { 3600 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3601 xattr_count, tx); 3602 ASSERT(err2 == 0); 3603 } 3604 3605 if (aclp) 3606 zfs_acl_free(aclp); 3607 3608 if (fuidp) { 3609 zfs_fuid_info_free(fuidp); 3610 fuidp = NULL; 3611 } 3612 3613 if (err) { 3614 dmu_tx_abort(tx); 3615 if (attrzp) 3616 VN_RELE(ZTOV(attrzp)); 3617 if (err == ERESTART) 3618 goto top; 3619 } else { 3620 if (count > 0) 3621 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3622 dmu_tx_commit(tx); 3623 if (attrzp) { 3624 if (err2 == 0 && handle_eadir) 3625 err2 = zfs_setattr_dir(attrzp); 3626 VN_RELE(ZTOV(attrzp)); 3627 } 3628 } 3629 3630 out2: 3631 if (os->os_sync == ZFS_SYNC_ALWAYS) 3632 zil_commit(zilog, 0); 3633 3634 ZFS_EXIT(zfsvfs); 3635 return (err); 3636 } 3637 3638 typedef struct zfs_zlock { 3639 krwlock_t *zl_rwlock; /* lock we acquired */ 3640 znode_t *zl_znode; /* znode we held */ 3641 struct zfs_zlock *zl_next; /* next in list */ 3642 } zfs_zlock_t; 3643 3644 /* 3645 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3646 */ 3647 static void 3648 zfs_rename_unlock(zfs_zlock_t **zlpp) 3649 { 3650 zfs_zlock_t *zl; 3651 3652 while ((zl = *zlpp) != NULL) { 3653 if (zl->zl_znode != NULL) 3654 VN_RELE(ZTOV(zl->zl_znode)); 3655 rw_exit(zl->zl_rwlock); 3656 *zlpp = zl->zl_next; 3657 kmem_free(zl, sizeof (*zl)); 3658 } 3659 } 3660 3661 /* 3662 * Search back through the directory tree, using the ".." entries. 3663 * Lock each directory in the chain to prevent concurrent renames. 3664 * Fail any attempt to move a directory into one of its own descendants. 3665 * XXX - z_parent_lock can overlap with map or grow locks 3666 */ 3667 static int 3668 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3669 { 3670 zfs_zlock_t *zl; 3671 znode_t *zp = tdzp; 3672 uint64_t rootid = zp->z_zfsvfs->z_root; 3673 uint64_t oidp = zp->z_id; 3674 krwlock_t *rwlp = &szp->z_parent_lock; 3675 krw_t rw = RW_WRITER; 3676 3677 /* 3678 * First pass write-locks szp and compares to zp->z_id. 3679 * Later passes read-lock zp and compare to zp->z_parent. 3680 */ 3681 do { 3682 if (!rw_tryenter(rwlp, rw)) { 3683 /* 3684 * Another thread is renaming in this path. 3685 * Note that if we are a WRITER, we don't have any 3686 * parent_locks held yet. 3687 */ 3688 if (rw == RW_READER && zp->z_id > szp->z_id) { 3689 /* 3690 * Drop our locks and restart 3691 */ 3692 zfs_rename_unlock(&zl); 3693 *zlpp = NULL; 3694 zp = tdzp; 3695 oidp = zp->z_id; 3696 rwlp = &szp->z_parent_lock; 3697 rw = RW_WRITER; 3698 continue; 3699 } else { 3700 /* 3701 * Wait for other thread to drop its locks 3702 */ 3703 rw_enter(rwlp, rw); 3704 } 3705 } 3706 3707 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3708 zl->zl_rwlock = rwlp; 3709 zl->zl_znode = NULL; 3710 zl->zl_next = *zlpp; 3711 *zlpp = zl; 3712 3713 if (oidp == szp->z_id) /* We're a descendant of szp */ 3714 return (SET_ERROR(EINVAL)); 3715 3716 if (oidp == rootid) /* We've hit the top */ 3717 return (0); 3718 3719 if (rw == RW_READER) { /* i.e. not the first pass */ 3720 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3721 if (error) 3722 return (error); 3723 zl->zl_znode = zp; 3724 } 3725 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3726 &oidp, sizeof (oidp)); 3727 rwlp = &zp->z_parent_lock; 3728 rw = RW_READER; 3729 3730 } while (zp->z_id != sdzp->z_id); 3731 3732 return (0); 3733 } 3734 3735 /* 3736 * Move an entry from the provided source directory to the target 3737 * directory. Change the entry name as indicated. 3738 * 3739 * IN: sdvp - Source directory containing the "old entry". 3740 * snm - Old entry name. 3741 * tdvp - Target directory to contain the "new entry". 3742 * tnm - New entry name. 3743 * cr - credentials of caller. 3744 * ct - caller context 3745 * flags - case flags 3746 * 3747 * RETURN: 0 on success, error code on failure. 3748 * 3749 * Timestamps: 3750 * sdvp,tdvp - ctime|mtime updated 3751 */ 3752 /*ARGSUSED*/ 3753 static int 3754 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3755 caller_context_t *ct, int flags) 3756 { 3757 znode_t *tdzp, *szp, *tzp; 3758 znode_t *sdzp = VTOZ(sdvp); 3759 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3760 zilog_t *zilog; 3761 vnode_t *realvp; 3762 zfs_dirlock_t *sdl, *tdl; 3763 dmu_tx_t *tx; 3764 zfs_zlock_t *zl; 3765 int cmp, serr, terr; 3766 int error = 0, rm_err = 0; 3767 int zflg = 0; 3768 boolean_t waited = B_FALSE; 3769 3770 ZFS_ENTER(zfsvfs); 3771 ZFS_VERIFY_ZP(sdzp); 3772 zilog = zfsvfs->z_log; 3773 3774 /* 3775 * Make sure we have the real vp for the target directory. 3776 */ 3777 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3778 tdvp = realvp; 3779 3780 tdzp = VTOZ(tdvp); 3781 ZFS_VERIFY_ZP(tdzp); 3782 3783 /* 3784 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3785 * ctldir appear to have the same v_vfsp. 3786 */ 3787 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3788 ZFS_EXIT(zfsvfs); 3789 return (SET_ERROR(EXDEV)); 3790 } 3791 3792 if (zfsvfs->z_utf8 && u8_validate(tnm, 3793 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3794 ZFS_EXIT(zfsvfs); 3795 return (SET_ERROR(EILSEQ)); 3796 } 3797 3798 if (flags & FIGNORECASE) 3799 zflg |= ZCILOOK; 3800 3801 top: 3802 szp = NULL; 3803 tzp = NULL; 3804 zl = NULL; 3805 3806 /* 3807 * This is to prevent the creation of links into attribute space 3808 * by renaming a linked file into/outof an attribute directory. 3809 * See the comment in zfs_link() for why this is considered bad. 3810 */ 3811 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3812 ZFS_EXIT(zfsvfs); 3813 return (SET_ERROR(EINVAL)); 3814 } 3815 3816 /* 3817 * Lock source and target directory entries. To prevent deadlock, 3818 * a lock ordering must be defined. We lock the directory with 3819 * the smallest object id first, or if it's a tie, the one with 3820 * the lexically first name. 3821 */ 3822 if (sdzp->z_id < tdzp->z_id) { 3823 cmp = -1; 3824 } else if (sdzp->z_id > tdzp->z_id) { 3825 cmp = 1; 3826 } else { 3827 /* 3828 * First compare the two name arguments without 3829 * considering any case folding. 3830 */ 3831 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3832 3833 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3834 ASSERT(error == 0 || !zfsvfs->z_utf8); 3835 if (cmp == 0) { 3836 /* 3837 * POSIX: "If the old argument and the new argument 3838 * both refer to links to the same existing file, 3839 * the rename() function shall return successfully 3840 * and perform no other action." 3841 */ 3842 ZFS_EXIT(zfsvfs); 3843 return (0); 3844 } 3845 /* 3846 * If the file system is case-folding, then we may 3847 * have some more checking to do. A case-folding file 3848 * system is either supporting mixed case sensitivity 3849 * access or is completely case-insensitive. Note 3850 * that the file system is always case preserving. 3851 * 3852 * In mixed sensitivity mode case sensitive behavior 3853 * is the default. FIGNORECASE must be used to 3854 * explicitly request case insensitive behavior. 3855 * 3856 * If the source and target names provided differ only 3857 * by case (e.g., a request to rename 'tim' to 'Tim'), 3858 * we will treat this as a special case in the 3859 * case-insensitive mode: as long as the source name 3860 * is an exact match, we will allow this to proceed as 3861 * a name-change request. 3862 */ 3863 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3864 (zfsvfs->z_case == ZFS_CASE_MIXED && 3865 flags & FIGNORECASE)) && 3866 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3867 &error) == 0) { 3868 /* 3869 * case preserving rename request, require exact 3870 * name matches 3871 */ 3872 zflg |= ZCIEXACT; 3873 zflg &= ~ZCILOOK; 3874 } 3875 } 3876 3877 /* 3878 * If the source and destination directories are the same, we should 3879 * grab the z_name_lock of that directory only once. 3880 */ 3881 if (sdzp == tdzp) { 3882 zflg |= ZHAVELOCK; 3883 rw_enter(&sdzp->z_name_lock, RW_READER); 3884 } 3885 3886 if (cmp < 0) { 3887 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3888 ZEXISTS | zflg, NULL, NULL); 3889 terr = zfs_dirent_lock(&tdl, 3890 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3891 } else { 3892 terr = zfs_dirent_lock(&tdl, 3893 tdzp, tnm, &tzp, zflg, NULL, NULL); 3894 serr = zfs_dirent_lock(&sdl, 3895 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3896 NULL, NULL); 3897 } 3898 3899 if (serr) { 3900 /* 3901 * Source entry invalid or not there. 3902 */ 3903 if (!terr) { 3904 zfs_dirent_unlock(tdl); 3905 if (tzp) 3906 VN_RELE(ZTOV(tzp)); 3907 } 3908 3909 if (sdzp == tdzp) 3910 rw_exit(&sdzp->z_name_lock); 3911 3912 if (strcmp(snm, "..") == 0) 3913 serr = SET_ERROR(EINVAL); 3914 ZFS_EXIT(zfsvfs); 3915 return (serr); 3916 } 3917 if (terr) { 3918 zfs_dirent_unlock(sdl); 3919 VN_RELE(ZTOV(szp)); 3920 3921 if (sdzp == tdzp) 3922 rw_exit(&sdzp->z_name_lock); 3923 3924 if (strcmp(tnm, "..") == 0) 3925 terr = SET_ERROR(EINVAL); 3926 ZFS_EXIT(zfsvfs); 3927 return (terr); 3928 } 3929 3930 /* 3931 * If we are using project inheritance, it means if the directory has 3932 * ZFS_PROJINHERIT set, then its descendant directories will inherit 3933 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under 3934 * such case, we only allow renames into our tree when the project 3935 * IDs are the same. 3936 */ 3937 if (tdzp->z_pflags & ZFS_PROJINHERIT && 3938 tdzp->z_projid != szp->z_projid) { 3939 error = SET_ERROR(EXDEV); 3940 goto out; 3941 } 3942 3943 /* 3944 * Must have write access at the source to remove the old entry 3945 * and write access at the target to create the new entry. 3946 * Note that if target and source are the same, this can be 3947 * done in a single check. 3948 */ 3949 3950 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3951 goto out; 3952 3953 if (ZTOV(szp)->v_type == VDIR) { 3954 /* 3955 * Check to make sure rename is valid. 3956 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3957 */ 3958 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3959 goto out; 3960 } 3961 3962 /* 3963 * Does target exist? 3964 */ 3965 if (tzp) { 3966 /* 3967 * Source and target must be the same type. 3968 */ 3969 if (ZTOV(szp)->v_type == VDIR) { 3970 if (ZTOV(tzp)->v_type != VDIR) { 3971 error = SET_ERROR(ENOTDIR); 3972 goto out; 3973 } 3974 } else { 3975 if (ZTOV(tzp)->v_type == VDIR) { 3976 error = SET_ERROR(EISDIR); 3977 goto out; 3978 } 3979 } 3980 /* 3981 * POSIX dictates that when the source and target 3982 * entries refer to the same file object, rename 3983 * must do nothing and exit without error. 3984 */ 3985 if (szp->z_id == tzp->z_id) { 3986 error = 0; 3987 goto out; 3988 } 3989 } 3990 3991 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct); 3992 if (tzp) 3993 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3994 3995 /* 3996 * notify the target directory if it is not the same 3997 * as source directory. 3998 */ 3999 if (tdvp != sdvp) { 4000 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct); 4001 } 4002 4003 tx = dmu_tx_create(zfsvfs->z_os); 4004 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4005 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 4006 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 4007 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 4008 if (sdzp != tdzp) { 4009 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 4010 zfs_sa_upgrade_txholds(tx, tdzp); 4011 } 4012 if (tzp) { 4013 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 4014 zfs_sa_upgrade_txholds(tx, tzp); 4015 } 4016 4017 zfs_sa_upgrade_txholds(tx, szp); 4018 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 4019 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4020 if (error) { 4021 if (zl != NULL) 4022 zfs_rename_unlock(&zl); 4023 zfs_dirent_unlock(sdl); 4024 zfs_dirent_unlock(tdl); 4025 4026 if (sdzp == tdzp) 4027 rw_exit(&sdzp->z_name_lock); 4028 4029 VN_RELE(ZTOV(szp)); 4030 if (tzp) 4031 VN_RELE(ZTOV(tzp)); 4032 if (error == ERESTART) { 4033 waited = B_TRUE; 4034 dmu_tx_wait(tx); 4035 dmu_tx_abort(tx); 4036 goto top; 4037 } 4038 dmu_tx_abort(tx); 4039 ZFS_EXIT(zfsvfs); 4040 return (error); 4041 } 4042 4043 if (tzp) /* Attempt to remove the existing target */ 4044 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 4045 4046 if (error == 0) { 4047 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 4048 if (error == 0) { 4049 szp->z_pflags |= ZFS_AV_MODIFIED; 4050 if (tdzp->z_pflags & ZFS_PROJINHERIT) 4051 szp->z_pflags |= ZFS_PROJINHERIT; 4052 4053 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 4054 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 4055 ASSERT0(error); 4056 4057 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 4058 if (error == 0) { 4059 zfs_log_rename(zilog, tx, TX_RENAME | 4060 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 4061 sdl->dl_name, tdzp, tdl->dl_name, szp); 4062 4063 /* 4064 * Update path information for the target vnode 4065 */ 4066 vn_renamepath(tdvp, ZTOV(szp), tnm, 4067 strlen(tnm)); 4068 } else { 4069 /* 4070 * At this point, we have successfully created 4071 * the target name, but have failed to remove 4072 * the source name. Since the create was done 4073 * with the ZRENAMING flag, there are 4074 * complications; for one, the link count is 4075 * wrong. The easiest way to deal with this 4076 * is to remove the newly created target, and 4077 * return the original error. This must 4078 * succeed; fortunately, it is very unlikely to 4079 * fail, since we just created it. 4080 */ 4081 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 4082 ZRENAMING, NULL), ==, 0); 4083 } 4084 } 4085 } 4086 4087 dmu_tx_commit(tx); 4088 4089 if (tzp && rm_err == 0) 4090 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 4091 4092 if (error == 0) { 4093 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 4094 /* notify the target dir if it is not the same as source dir */ 4095 if (tdvp != sdvp) 4096 vnevent_rename_dest_dir(tdvp, ct); 4097 } 4098 out: 4099 if (zl != NULL) 4100 zfs_rename_unlock(&zl); 4101 4102 zfs_dirent_unlock(sdl); 4103 zfs_dirent_unlock(tdl); 4104 4105 if (sdzp == tdzp) 4106 rw_exit(&sdzp->z_name_lock); 4107 4108 4109 VN_RELE(ZTOV(szp)); 4110 if (tzp) 4111 VN_RELE(ZTOV(tzp)); 4112 4113 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4114 zil_commit(zilog, 0); 4115 4116 ZFS_EXIT(zfsvfs); 4117 return (error); 4118 } 4119 4120 /* 4121 * Insert the indicated symbolic reference entry into the directory. 4122 * 4123 * IN: dvp - Directory to contain new symbolic link. 4124 * link - Name for new symlink entry. 4125 * vap - Attributes of new entry. 4126 * cr - credentials of caller. 4127 * ct - caller context 4128 * flags - case flags 4129 * 4130 * RETURN: 0 on success, error code on failure. 4131 * 4132 * Timestamps: 4133 * dvp - ctime|mtime updated 4134 */ 4135 /*ARGSUSED*/ 4136 static int 4137 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 4138 caller_context_t *ct, int flags) 4139 { 4140 znode_t *zp, *dzp = VTOZ(dvp); 4141 zfs_dirlock_t *dl; 4142 dmu_tx_t *tx; 4143 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4144 zilog_t *zilog; 4145 uint64_t len = strlen(link); 4146 int error; 4147 int zflg = ZNEW; 4148 zfs_acl_ids_t acl_ids; 4149 boolean_t fuid_dirtied; 4150 uint64_t txtype = TX_SYMLINK; 4151 boolean_t waited = B_FALSE; 4152 4153 ASSERT(vap->va_type == VLNK); 4154 4155 ZFS_ENTER(zfsvfs); 4156 ZFS_VERIFY_ZP(dzp); 4157 zilog = zfsvfs->z_log; 4158 4159 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 4160 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4161 ZFS_EXIT(zfsvfs); 4162 return (SET_ERROR(EILSEQ)); 4163 } 4164 if (flags & FIGNORECASE) 4165 zflg |= ZCILOOK; 4166 4167 if (len > MAXPATHLEN) { 4168 ZFS_EXIT(zfsvfs); 4169 return (SET_ERROR(ENAMETOOLONG)); 4170 } 4171 4172 if ((error = zfs_acl_ids_create(dzp, 0, 4173 vap, cr, NULL, &acl_ids)) != 0) { 4174 ZFS_EXIT(zfsvfs); 4175 return (error); 4176 } 4177 top: 4178 /* 4179 * Attempt to lock directory; fail if entry already exists. 4180 */ 4181 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 4182 if (error) { 4183 zfs_acl_ids_free(&acl_ids); 4184 ZFS_EXIT(zfsvfs); 4185 return (error); 4186 } 4187 4188 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4189 zfs_acl_ids_free(&acl_ids); 4190 zfs_dirent_unlock(dl); 4191 ZFS_EXIT(zfsvfs); 4192 return (error); 4193 } 4194 4195 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) { 4196 zfs_acl_ids_free(&acl_ids); 4197 zfs_dirent_unlock(dl); 4198 ZFS_EXIT(zfsvfs); 4199 return (SET_ERROR(EDQUOT)); 4200 } 4201 tx = dmu_tx_create(zfsvfs->z_os); 4202 fuid_dirtied = zfsvfs->z_fuid_dirty; 4203 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 4204 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4205 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 4206 ZFS_SA_BASE_ATTR_SIZE + len); 4207 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 4208 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 4209 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 4210 acl_ids.z_aclp->z_acl_bytes); 4211 } 4212 if (fuid_dirtied) 4213 zfs_fuid_txhold(zfsvfs, tx); 4214 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4215 if (error) { 4216 zfs_dirent_unlock(dl); 4217 if (error == ERESTART) { 4218 waited = B_TRUE; 4219 dmu_tx_wait(tx); 4220 dmu_tx_abort(tx); 4221 goto top; 4222 } 4223 zfs_acl_ids_free(&acl_ids); 4224 dmu_tx_abort(tx); 4225 ZFS_EXIT(zfsvfs); 4226 return (error); 4227 } 4228 4229 /* 4230 * Create a new object for the symlink. 4231 * for version 4 ZPL datsets the symlink will be an SA attribute 4232 */ 4233 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 4234 4235 if (fuid_dirtied) 4236 zfs_fuid_sync(zfsvfs, tx); 4237 4238 mutex_enter(&zp->z_lock); 4239 if (zp->z_is_sa) 4240 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 4241 link, len, tx); 4242 else 4243 zfs_sa_symlink(zp, link, len, tx); 4244 mutex_exit(&zp->z_lock); 4245 4246 zp->z_size = len; 4247 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 4248 &zp->z_size, sizeof (zp->z_size), tx); 4249 /* 4250 * Insert the new object into the directory. 4251 */ 4252 (void) zfs_link_create(dl, zp, tx, ZNEW); 4253 4254 if (flags & FIGNORECASE) 4255 txtype |= TX_CI; 4256 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 4257 4258 zfs_acl_ids_free(&acl_ids); 4259 4260 dmu_tx_commit(tx); 4261 4262 zfs_dirent_unlock(dl); 4263 4264 VN_RELE(ZTOV(zp)); 4265 4266 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4267 zil_commit(zilog, 0); 4268 4269 ZFS_EXIT(zfsvfs); 4270 return (error); 4271 } 4272 4273 /* 4274 * Return, in the buffer contained in the provided uio structure, 4275 * the symbolic path referred to by vp. 4276 * 4277 * IN: vp - vnode of symbolic link. 4278 * uio - structure to contain the link path. 4279 * cr - credentials of caller. 4280 * ct - caller context 4281 * 4282 * OUT: uio - structure containing the link path. 4283 * 4284 * RETURN: 0 on success, error code on failure. 4285 * 4286 * Timestamps: 4287 * vp - atime updated 4288 */ 4289 /* ARGSUSED */ 4290 static int 4291 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 4292 { 4293 znode_t *zp = VTOZ(vp); 4294 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4295 int error; 4296 4297 ZFS_ENTER(zfsvfs); 4298 ZFS_VERIFY_ZP(zp); 4299 4300 mutex_enter(&zp->z_lock); 4301 if (zp->z_is_sa) 4302 error = sa_lookup_uio(zp->z_sa_hdl, 4303 SA_ZPL_SYMLINK(zfsvfs), uio); 4304 else 4305 error = zfs_sa_readlink(zp, uio); 4306 mutex_exit(&zp->z_lock); 4307 4308 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4309 4310 ZFS_EXIT(zfsvfs); 4311 return (error); 4312 } 4313 4314 /* 4315 * Insert a new entry into directory tdvp referencing svp. 4316 * 4317 * IN: tdvp - Directory to contain new entry. 4318 * svp - vnode of new entry. 4319 * name - name of new entry. 4320 * cr - credentials of caller. 4321 * ct - caller context 4322 * 4323 * RETURN: 0 on success, error code on failure. 4324 * 4325 * Timestamps: 4326 * tdvp - ctime|mtime updated 4327 * svp - ctime updated 4328 */ 4329 /* ARGSUSED */ 4330 static int 4331 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 4332 caller_context_t *ct, int flags) 4333 { 4334 znode_t *dzp = VTOZ(tdvp); 4335 znode_t *tzp, *szp; 4336 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4337 zilog_t *zilog; 4338 zfs_dirlock_t *dl; 4339 dmu_tx_t *tx; 4340 vnode_t *realvp; 4341 int error; 4342 int zf = ZNEW; 4343 uint64_t parent; 4344 uid_t owner; 4345 boolean_t waited = B_FALSE; 4346 4347 ASSERT(tdvp->v_type == VDIR); 4348 4349 ZFS_ENTER(zfsvfs); 4350 ZFS_VERIFY_ZP(dzp); 4351 zilog = zfsvfs->z_log; 4352 4353 if (VOP_REALVP(svp, &realvp, ct) == 0) 4354 svp = realvp; 4355 4356 /* 4357 * POSIX dictates that we return EPERM here. 4358 * Better choices include ENOTSUP or EISDIR. 4359 */ 4360 if (svp->v_type == VDIR) { 4361 ZFS_EXIT(zfsvfs); 4362 return (SET_ERROR(EPERM)); 4363 } 4364 4365 szp = VTOZ(svp); 4366 ZFS_VERIFY_ZP(szp); 4367 4368 /* 4369 * If we are using project inheritance, it means if the directory has 4370 * ZFS_PROJINHERIT set, then its descendant directories will inherit 4371 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under 4372 * such case, we only allow hard link creation in our tree when the 4373 * project IDs are the same. 4374 */ 4375 if (dzp->z_pflags & ZFS_PROJINHERIT && dzp->z_projid != szp->z_projid) { 4376 ZFS_EXIT(zfsvfs); 4377 return (SET_ERROR(EXDEV)); 4378 } 4379 4380 /* 4381 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4382 * ctldir appear to have the same v_vfsp. 4383 */ 4384 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4385 ZFS_EXIT(zfsvfs); 4386 return (SET_ERROR(EXDEV)); 4387 } 4388 4389 /* Prevent links to .zfs/shares files */ 4390 4391 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4392 &parent, sizeof (uint64_t))) != 0) { 4393 ZFS_EXIT(zfsvfs); 4394 return (error); 4395 } 4396 if (parent == zfsvfs->z_shares_dir) { 4397 ZFS_EXIT(zfsvfs); 4398 return (SET_ERROR(EPERM)); 4399 } 4400 4401 if (zfsvfs->z_utf8 && u8_validate(name, 4402 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4403 ZFS_EXIT(zfsvfs); 4404 return (SET_ERROR(EILSEQ)); 4405 } 4406 if (flags & FIGNORECASE) 4407 zf |= ZCILOOK; 4408 4409 /* 4410 * We do not support links between attributes and non-attributes 4411 * because of the potential security risk of creating links 4412 * into "normal" file space in order to circumvent restrictions 4413 * imposed in attribute space. 4414 */ 4415 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4416 ZFS_EXIT(zfsvfs); 4417 return (SET_ERROR(EINVAL)); 4418 } 4419 4420 4421 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4422 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4423 ZFS_EXIT(zfsvfs); 4424 return (SET_ERROR(EPERM)); 4425 } 4426 4427 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4428 ZFS_EXIT(zfsvfs); 4429 return (error); 4430 } 4431 4432 top: 4433 /* 4434 * Attempt to lock directory; fail if entry already exists. 4435 */ 4436 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4437 if (error) { 4438 ZFS_EXIT(zfsvfs); 4439 return (error); 4440 } 4441 4442 tx = dmu_tx_create(zfsvfs->z_os); 4443 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4444 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4445 zfs_sa_upgrade_txholds(tx, szp); 4446 zfs_sa_upgrade_txholds(tx, dzp); 4447 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4448 if (error) { 4449 zfs_dirent_unlock(dl); 4450 if (error == ERESTART) { 4451 waited = B_TRUE; 4452 dmu_tx_wait(tx); 4453 dmu_tx_abort(tx); 4454 goto top; 4455 } 4456 dmu_tx_abort(tx); 4457 ZFS_EXIT(zfsvfs); 4458 return (error); 4459 } 4460 4461 error = zfs_link_create(dl, szp, tx, 0); 4462 4463 if (error == 0) { 4464 uint64_t txtype = TX_LINK; 4465 if (flags & FIGNORECASE) 4466 txtype |= TX_CI; 4467 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4468 } 4469 4470 dmu_tx_commit(tx); 4471 4472 zfs_dirent_unlock(dl); 4473 4474 if (error == 0) { 4475 vnevent_link(svp, ct); 4476 } 4477 4478 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4479 zil_commit(zilog, 0); 4480 4481 ZFS_EXIT(zfsvfs); 4482 return (error); 4483 } 4484 4485 /* 4486 * zfs_null_putapage() is used when the file system has been force 4487 * unmounted. It just drops the pages. 4488 */ 4489 /* ARGSUSED */ 4490 static int 4491 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4492 size_t *lenp, int flags, cred_t *cr) 4493 { 4494 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4495 return (0); 4496 } 4497 4498 /* 4499 * Push a page out to disk, klustering if possible. 4500 * 4501 * IN: vp - file to push page to. 4502 * pp - page to push. 4503 * flags - additional flags. 4504 * cr - credentials of caller. 4505 * 4506 * OUT: offp - start of range pushed. 4507 * lenp - len of range pushed. 4508 * 4509 * RETURN: 0 on success, error code on failure. 4510 * 4511 * NOTE: callers must have locked the page to be pushed. On 4512 * exit, the page (and all other pages in the kluster) must be 4513 * unlocked. 4514 */ 4515 /* ARGSUSED */ 4516 static int 4517 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4518 size_t *lenp, int flags, cred_t *cr) 4519 { 4520 znode_t *zp = VTOZ(vp); 4521 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4522 dmu_tx_t *tx; 4523 u_offset_t off, koff; 4524 size_t len, klen; 4525 int err; 4526 4527 off = pp->p_offset; 4528 len = PAGESIZE; 4529 /* 4530 * If our blocksize is bigger than the page size, try to kluster 4531 * multiple pages so that we write a full block (thus avoiding 4532 * a read-modify-write). 4533 */ 4534 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4535 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4536 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4537 ASSERT(koff <= zp->z_size); 4538 if (koff + klen > zp->z_size) 4539 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4540 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4541 } 4542 ASSERT3U(btop(len), ==, btopr(len)); 4543 4544 /* 4545 * Can't push pages past end-of-file. 4546 */ 4547 if (off >= zp->z_size) { 4548 /* ignore all pages */ 4549 err = 0; 4550 goto out; 4551 } else if (off + len > zp->z_size) { 4552 int npages = btopr(zp->z_size - off); 4553 page_t *trunc; 4554 4555 page_list_break(&pp, &trunc, npages); 4556 /* ignore pages past end of file */ 4557 if (trunc) 4558 pvn_write_done(trunc, flags); 4559 len = zp->z_size - off; 4560 } 4561 4562 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, zp->z_uid) || 4563 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, zp->z_gid)) { 4564 err = SET_ERROR(EDQUOT); 4565 goto out; 4566 } 4567 tx = dmu_tx_create(zfsvfs->z_os); 4568 dmu_tx_hold_write(tx, zp->z_id, off, len); 4569 4570 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4571 zfs_sa_upgrade_txholds(tx, zp); 4572 err = dmu_tx_assign(tx, TXG_WAIT); 4573 if (err != 0) { 4574 dmu_tx_abort(tx); 4575 goto out; 4576 } 4577 4578 if (zp->z_blksz <= PAGESIZE) { 4579 caddr_t va = zfs_map_page(pp, S_READ); 4580 ASSERT3U(len, <=, PAGESIZE); 4581 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4582 zfs_unmap_page(pp, va); 4583 } else { 4584 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4585 } 4586 4587 if (err == 0) { 4588 uint64_t mtime[2], ctime[2]; 4589 sa_bulk_attr_t bulk[3]; 4590 int count = 0; 4591 4592 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4593 &mtime, 16); 4594 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4595 &ctime, 16); 4596 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4597 &zp->z_pflags, 8); 4598 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4599 B_TRUE); 4600 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 4601 ASSERT0(err); 4602 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4603 } 4604 dmu_tx_commit(tx); 4605 4606 out: 4607 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4608 if (offp) 4609 *offp = off; 4610 if (lenp) 4611 *lenp = len; 4612 4613 return (err); 4614 } 4615 4616 /* 4617 * Copy the portion of the file indicated from pages into the file. 4618 * The pages are stored in a page list attached to the files vnode. 4619 * 4620 * IN: vp - vnode of file to push page data to. 4621 * off - position in file to put data. 4622 * len - amount of data to write. 4623 * flags - flags to control the operation. 4624 * cr - credentials of caller. 4625 * ct - caller context. 4626 * 4627 * RETURN: 0 on success, error code on failure. 4628 * 4629 * Timestamps: 4630 * vp - ctime|mtime updated 4631 */ 4632 /*ARGSUSED*/ 4633 static int 4634 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4635 caller_context_t *ct) 4636 { 4637 znode_t *zp = VTOZ(vp); 4638 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4639 page_t *pp; 4640 size_t io_len; 4641 u_offset_t io_off; 4642 uint_t blksz; 4643 locked_range_t *lr; 4644 int error = 0; 4645 4646 ZFS_ENTER(zfsvfs); 4647 ZFS_VERIFY_ZP(zp); 4648 4649 /* 4650 * There's nothing to do if no data is cached. 4651 */ 4652 if (!vn_has_cached_data(vp)) { 4653 ZFS_EXIT(zfsvfs); 4654 return (0); 4655 } 4656 4657 /* 4658 * Align this request to the file block size in case we kluster. 4659 * XXX - this can result in pretty aggresive locking, which can 4660 * impact simultanious read/write access. One option might be 4661 * to break up long requests (len == 0) into block-by-block 4662 * operations to get narrower locking. 4663 */ 4664 blksz = zp->z_blksz; 4665 if (ISP2(blksz)) 4666 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4667 else 4668 io_off = 0; 4669 if (len > 0 && ISP2(blksz)) 4670 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4671 else 4672 io_len = 0; 4673 4674 if (io_len == 0) { 4675 /* 4676 * Search the entire vp list for pages >= io_off. 4677 */ 4678 lr = rangelock_enter(&zp->z_rangelock, 4679 io_off, UINT64_MAX, RL_WRITER); 4680 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4681 goto out; 4682 } 4683 lr = rangelock_enter(&zp->z_rangelock, io_off, io_len, RL_WRITER); 4684 4685 if (off > zp->z_size) { 4686 /* past end of file */ 4687 rangelock_exit(lr); 4688 ZFS_EXIT(zfsvfs); 4689 return (0); 4690 } 4691 4692 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4693 4694 for (off = io_off; io_off < off + len; io_off += io_len) { 4695 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4696 pp = page_lookup(vp, io_off, 4697 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4698 } else { 4699 pp = page_lookup_nowait(vp, io_off, 4700 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4701 } 4702 4703 if (pp != NULL && pvn_getdirty(pp, flags)) { 4704 int err; 4705 4706 /* 4707 * Found a dirty page to push 4708 */ 4709 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4710 if (err) 4711 error = err; 4712 } else { 4713 io_len = PAGESIZE; 4714 } 4715 } 4716 out: 4717 rangelock_exit(lr); 4718 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4719 zil_commit(zfsvfs->z_log, zp->z_id); 4720 ZFS_EXIT(zfsvfs); 4721 return (error); 4722 } 4723 4724 /*ARGSUSED*/ 4725 void 4726 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4727 { 4728 znode_t *zp = VTOZ(vp); 4729 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4730 int error; 4731 4732 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4733 if (zp->z_sa_hdl == NULL) { 4734 /* 4735 * The fs has been unmounted, or we did a 4736 * suspend/resume and this file no longer exists. 4737 */ 4738 if (vn_has_cached_data(vp)) { 4739 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4740 B_INVAL, cr); 4741 } 4742 4743 mutex_enter(&zp->z_lock); 4744 mutex_enter(&vp->v_lock); 4745 ASSERT(vp->v_count == 1); 4746 VN_RELE_LOCKED(vp); 4747 mutex_exit(&vp->v_lock); 4748 mutex_exit(&zp->z_lock); 4749 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4750 zfs_znode_free(zp); 4751 return; 4752 } 4753 4754 /* 4755 * Attempt to push any data in the page cache. If this fails 4756 * we will get kicked out later in zfs_zinactive(). 4757 */ 4758 if (vn_has_cached_data(vp)) { 4759 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4760 cr); 4761 } 4762 4763 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4764 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4765 4766 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4767 zfs_sa_upgrade_txholds(tx, zp); 4768 error = dmu_tx_assign(tx, TXG_WAIT); 4769 if (error) { 4770 dmu_tx_abort(tx); 4771 } else { 4772 mutex_enter(&zp->z_lock); 4773 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4774 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4775 zp->z_atime_dirty = 0; 4776 mutex_exit(&zp->z_lock); 4777 dmu_tx_commit(tx); 4778 } 4779 } 4780 4781 zfs_zinactive(zp); 4782 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4783 } 4784 4785 /* 4786 * Bounds-check the seek operation. 4787 * 4788 * IN: vp - vnode seeking within 4789 * ooff - old file offset 4790 * noffp - pointer to new file offset 4791 * ct - caller context 4792 * 4793 * RETURN: 0 on success, EINVAL if new offset invalid. 4794 */ 4795 /* ARGSUSED */ 4796 static int 4797 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4798 caller_context_t *ct) 4799 { 4800 if (vp->v_type == VDIR) 4801 return (0); 4802 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4803 } 4804 4805 /* 4806 * Pre-filter the generic locking function to trap attempts to place 4807 * a mandatory lock on a memory mapped file. 4808 */ 4809 static int 4810 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4811 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4812 { 4813 znode_t *zp = VTOZ(vp); 4814 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4815 4816 ZFS_ENTER(zfsvfs); 4817 ZFS_VERIFY_ZP(zp); 4818 4819 /* 4820 * We are following the UFS semantics with respect to mapcnt 4821 * here: If we see that the file is mapped already, then we will 4822 * return an error, but we don't worry about races between this 4823 * function and zfs_map(). 4824 */ 4825 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4826 ZFS_EXIT(zfsvfs); 4827 return (SET_ERROR(EAGAIN)); 4828 } 4829 ZFS_EXIT(zfsvfs); 4830 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4831 } 4832 4833 /* 4834 * If we can't find a page in the cache, we will create a new page 4835 * and fill it with file data. For efficiency, we may try to fill 4836 * multiple pages at once (klustering) to fill up the supplied page 4837 * list. Note that the pages to be filled are held with an exclusive 4838 * lock to prevent access by other threads while they are being filled. 4839 */ 4840 static int 4841 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4842 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4843 { 4844 znode_t *zp = VTOZ(vp); 4845 page_t *pp, *cur_pp; 4846 objset_t *os = zp->z_zfsvfs->z_os; 4847 u_offset_t io_off, total; 4848 size_t io_len; 4849 int err; 4850 4851 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4852 /* 4853 * We only have a single page, don't bother klustering 4854 */ 4855 io_off = off; 4856 io_len = PAGESIZE; 4857 pp = page_create_va(vp, io_off, io_len, 4858 PG_EXCL | PG_WAIT, seg, addr); 4859 } else { 4860 /* 4861 * Try to find enough pages to fill the page list 4862 */ 4863 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4864 &io_len, off, plsz, 0); 4865 } 4866 if (pp == NULL) { 4867 /* 4868 * The page already exists, nothing to do here. 4869 */ 4870 *pl = NULL; 4871 return (0); 4872 } 4873 4874 /* 4875 * Fill the pages in the kluster. 4876 */ 4877 cur_pp = pp; 4878 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4879 caddr_t va; 4880 4881 ASSERT3U(io_off, ==, cur_pp->p_offset); 4882 va = zfs_map_page(cur_pp, S_WRITE); 4883 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4884 DMU_READ_PREFETCH); 4885 zfs_unmap_page(cur_pp, va); 4886 if (err) { 4887 /* On error, toss the entire kluster */ 4888 pvn_read_done(pp, B_ERROR); 4889 /* convert checksum errors into IO errors */ 4890 if (err == ECKSUM) 4891 err = SET_ERROR(EIO); 4892 return (err); 4893 } 4894 cur_pp = cur_pp->p_next; 4895 } 4896 4897 /* 4898 * Fill in the page list array from the kluster starting 4899 * from the desired offset `off'. 4900 * NOTE: the page list will always be null terminated. 4901 */ 4902 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4903 ASSERT(pl == NULL || (*pl)->p_offset == off); 4904 4905 return (0); 4906 } 4907 4908 /* 4909 * Return pointers to the pages for the file region [off, off + len] 4910 * in the pl array. If plsz is greater than len, this function may 4911 * also return page pointers from after the specified region 4912 * (i.e. the region [off, off + plsz]). These additional pages are 4913 * only returned if they are already in the cache, or were created as 4914 * part of a klustered read. 4915 * 4916 * IN: vp - vnode of file to get data from. 4917 * off - position in file to get data from. 4918 * len - amount of data to retrieve. 4919 * plsz - length of provided page list. 4920 * seg - segment to obtain pages for. 4921 * addr - virtual address of fault. 4922 * rw - mode of created pages. 4923 * cr - credentials of caller. 4924 * ct - caller context. 4925 * 4926 * OUT: protp - protection mode of created pages. 4927 * pl - list of pages created. 4928 * 4929 * RETURN: 0 on success, error code on failure. 4930 * 4931 * Timestamps: 4932 * vp - atime updated 4933 */ 4934 /* ARGSUSED */ 4935 static int 4936 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4937 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4938 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4939 { 4940 znode_t *zp = VTOZ(vp); 4941 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4942 page_t **pl0 = pl; 4943 int err = 0; 4944 4945 /* we do our own caching, faultahead is unnecessary */ 4946 if (pl == NULL) 4947 return (0); 4948 else if (len > plsz) 4949 len = plsz; 4950 else 4951 len = P2ROUNDUP(len, PAGESIZE); 4952 ASSERT(plsz >= len); 4953 4954 ZFS_ENTER(zfsvfs); 4955 ZFS_VERIFY_ZP(zp); 4956 4957 if (protp) 4958 *protp = PROT_ALL; 4959 4960 /* 4961 * Loop through the requested range [off, off + len) looking 4962 * for pages. If we don't find a page, we will need to create 4963 * a new page and fill it with data from the file. 4964 */ 4965 while (len > 0) { 4966 if (*pl = page_lookup(vp, off, SE_SHARED)) 4967 *(pl+1) = NULL; 4968 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4969 goto out; 4970 while (*pl) { 4971 ASSERT3U((*pl)->p_offset, ==, off); 4972 off += PAGESIZE; 4973 addr += PAGESIZE; 4974 if (len > 0) { 4975 ASSERT3U(len, >=, PAGESIZE); 4976 len -= PAGESIZE; 4977 } 4978 ASSERT3U(plsz, >=, PAGESIZE); 4979 plsz -= PAGESIZE; 4980 pl++; 4981 } 4982 } 4983 4984 /* 4985 * Fill out the page array with any pages already in the cache. 4986 */ 4987 while (plsz > 0 && 4988 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4989 off += PAGESIZE; 4990 plsz -= PAGESIZE; 4991 } 4992 out: 4993 if (err) { 4994 /* 4995 * Release any pages we have previously locked. 4996 */ 4997 while (pl > pl0) 4998 page_unlock(*--pl); 4999 } else { 5000 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 5001 } 5002 5003 *pl = NULL; 5004 5005 ZFS_EXIT(zfsvfs); 5006 return (err); 5007 } 5008 5009 /* 5010 * Request a memory map for a section of a file. This code interacts 5011 * with common code and the VM system as follows: 5012 * 5013 * - common code calls mmap(), which ends up in smmap_common() 5014 * - this calls VOP_MAP(), which takes you into (say) zfs 5015 * - zfs_map() calls as_map(), passing segvn_create() as the callback 5016 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 5017 * - zfs_addmap() updates z_mapcnt 5018 */ 5019 /*ARGSUSED*/ 5020 static int 5021 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5022 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 5023 caller_context_t *ct) 5024 { 5025 znode_t *zp = VTOZ(vp); 5026 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5027 segvn_crargs_t vn_a; 5028 int error; 5029 5030 ZFS_ENTER(zfsvfs); 5031 ZFS_VERIFY_ZP(zp); 5032 5033 /* 5034 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 5035 */ 5036 5037 if ((prot & PROT_WRITE) && (zp->z_pflags & 5038 (ZFS_IMMUTABLE | ZFS_APPENDONLY))) { 5039 ZFS_EXIT(zfsvfs); 5040 return (SET_ERROR(EPERM)); 5041 } 5042 5043 if ((prot & (PROT_READ | PROT_EXEC)) && 5044 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 5045 ZFS_EXIT(zfsvfs); 5046 return (SET_ERROR(EACCES)); 5047 } 5048 5049 if (vp->v_flag & VNOMAP) { 5050 ZFS_EXIT(zfsvfs); 5051 return (SET_ERROR(ENOSYS)); 5052 } 5053 5054 if (off < 0 || len > MAXOFFSET_T - off) { 5055 ZFS_EXIT(zfsvfs); 5056 return (SET_ERROR(ENXIO)); 5057 } 5058 5059 if (vp->v_type != VREG) { 5060 ZFS_EXIT(zfsvfs); 5061 return (SET_ERROR(ENODEV)); 5062 } 5063 5064 /* 5065 * If file is locked, disallow mapping. 5066 */ 5067 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 5068 ZFS_EXIT(zfsvfs); 5069 return (SET_ERROR(EAGAIN)); 5070 } 5071 5072 as_rangelock(as); 5073 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5074 if (error != 0) { 5075 as_rangeunlock(as); 5076 ZFS_EXIT(zfsvfs); 5077 return (error); 5078 } 5079 5080 vn_a.vp = vp; 5081 vn_a.offset = (u_offset_t)off; 5082 vn_a.type = flags & MAP_TYPE; 5083 vn_a.prot = prot; 5084 vn_a.maxprot = maxprot; 5085 vn_a.cred = cr; 5086 vn_a.amp = NULL; 5087 vn_a.flags = flags & ~MAP_TYPE; 5088 vn_a.szc = 0; 5089 vn_a.lgrp_mem_policy_flags = 0; 5090 5091 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5092 5093 as_rangeunlock(as); 5094 ZFS_EXIT(zfsvfs); 5095 return (error); 5096 } 5097 5098 /* ARGSUSED */ 5099 static int 5100 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5101 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 5102 caller_context_t *ct) 5103 { 5104 uint64_t pages = btopr(len); 5105 5106 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 5107 return (0); 5108 } 5109 5110 /* 5111 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 5112 * more accurate mtime for the associated file. Since we don't have a way of 5113 * detecting when the data was actually modified, we have to resort to 5114 * heuristics. If an explicit msync() is done, then we mark the mtime when the 5115 * last page is pushed. The problem occurs when the msync() call is omitted, 5116 * which by far the most common case: 5117 * 5118 * open() 5119 * mmap() 5120 * <modify memory> 5121 * munmap() 5122 * close() 5123 * <time lapse> 5124 * putpage() via fsflush 5125 * 5126 * If we wait until fsflush to come along, we can have a modification time that 5127 * is some arbitrary point in the future. In order to prevent this in the 5128 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 5129 * torn down. 5130 */ 5131 /* ARGSUSED */ 5132 static int 5133 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5134 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 5135 caller_context_t *ct) 5136 { 5137 uint64_t pages = btopr(len); 5138 5139 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 5140 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 5141 5142 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 5143 vn_has_cached_data(vp)) 5144 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 5145 5146 return (0); 5147 } 5148 5149 /* 5150 * Free or allocate space in a file. Currently, this function only 5151 * supports the `F_FREESP' command. However, this command is somewhat 5152 * misnamed, as its functionality includes the ability to allocate as 5153 * well as free space. 5154 * 5155 * IN: vp - vnode of file to free data in. 5156 * cmd - action to take (only F_FREESP supported). 5157 * bfp - section of file to free/alloc. 5158 * flag - current file open mode flags. 5159 * offset - current file offset. 5160 * cr - credentials of caller [UNUSED]. 5161 * ct - caller context. 5162 * 5163 * RETURN: 0 on success, error code on failure. 5164 * 5165 * Timestamps: 5166 * vp - ctime|mtime updated 5167 */ 5168 /* ARGSUSED */ 5169 static int 5170 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 5171 offset_t offset, cred_t *cr, caller_context_t *ct) 5172 { 5173 znode_t *zp = VTOZ(vp); 5174 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5175 uint64_t off, len; 5176 int error; 5177 5178 ZFS_ENTER(zfsvfs); 5179 ZFS_VERIFY_ZP(zp); 5180 5181 if (cmd != F_FREESP) { 5182 ZFS_EXIT(zfsvfs); 5183 return (SET_ERROR(EINVAL)); 5184 } 5185 5186 /* 5187 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 5188 * callers might not be able to detect properly that we are read-only, 5189 * so check it explicitly here. 5190 */ 5191 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 5192 ZFS_EXIT(zfsvfs); 5193 return (SET_ERROR(EROFS)); 5194 } 5195 5196 if (error = convoff(vp, bfp, 0, offset)) { 5197 ZFS_EXIT(zfsvfs); 5198 return (error); 5199 } 5200 5201 if (bfp->l_len < 0) { 5202 ZFS_EXIT(zfsvfs); 5203 return (SET_ERROR(EINVAL)); 5204 } 5205 5206 off = bfp->l_start; 5207 len = bfp->l_len; /* 0 means from off to end of file */ 5208 5209 error = zfs_freesp(zp, off, len, flag, TRUE); 5210 5211 if (error == 0 && off == 0 && len == 0) 5212 vnevent_truncate(ZTOV(zp), ct); 5213 5214 ZFS_EXIT(zfsvfs); 5215 return (error); 5216 } 5217 5218 /*ARGSUSED*/ 5219 static int 5220 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 5221 { 5222 znode_t *zp = VTOZ(vp); 5223 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5224 uint32_t gen; 5225 uint64_t gen64; 5226 uint64_t object = zp->z_id; 5227 zfid_short_t *zfid; 5228 int size, i, error; 5229 5230 ZFS_ENTER(zfsvfs); 5231 ZFS_VERIFY_ZP(zp); 5232 5233 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 5234 &gen64, sizeof (uint64_t))) != 0) { 5235 ZFS_EXIT(zfsvfs); 5236 return (error); 5237 } 5238 5239 gen = (uint32_t)gen64; 5240 5241 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 5242 if (fidp->fid_len < size) { 5243 fidp->fid_len = size; 5244 ZFS_EXIT(zfsvfs); 5245 return (SET_ERROR(ENOSPC)); 5246 } 5247 5248 zfid = (zfid_short_t *)fidp; 5249 5250 zfid->zf_len = size; 5251 5252 for (i = 0; i < sizeof (zfid->zf_object); i++) 5253 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 5254 5255 /* Must have a non-zero generation number to distinguish from .zfs */ 5256 if (gen == 0) 5257 gen = 1; 5258 for (i = 0; i < sizeof (zfid->zf_gen); i++) 5259 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 5260 5261 if (size == LONG_FID_LEN) { 5262 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 5263 zfid_long_t *zlfid; 5264 5265 zlfid = (zfid_long_t *)fidp; 5266 5267 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 5268 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 5269 5270 /* XXX - this should be the generation number for the objset */ 5271 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 5272 zlfid->zf_setgen[i] = 0; 5273 } 5274 5275 ZFS_EXIT(zfsvfs); 5276 return (0); 5277 } 5278 5279 static int 5280 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 5281 caller_context_t *ct) 5282 { 5283 znode_t *zp, *xzp; 5284 zfsvfs_t *zfsvfs; 5285 zfs_dirlock_t *dl; 5286 int error; 5287 5288 switch (cmd) { 5289 case _PC_LINK_MAX: 5290 *valp = ULONG_MAX; 5291 return (0); 5292 5293 case _PC_FILESIZEBITS: 5294 *valp = 64; 5295 return (0); 5296 5297 case _PC_XATTR_EXISTS: 5298 zp = VTOZ(vp); 5299 zfsvfs = zp->z_zfsvfs; 5300 ZFS_ENTER(zfsvfs); 5301 ZFS_VERIFY_ZP(zp); 5302 *valp = 0; 5303 error = zfs_dirent_lock(&dl, zp, "", &xzp, 5304 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 5305 if (error == 0) { 5306 zfs_dirent_unlock(dl); 5307 if (!zfs_dirempty(xzp)) 5308 *valp = 1; 5309 VN_RELE(ZTOV(xzp)); 5310 } else if (error == ENOENT) { 5311 /* 5312 * If there aren't extended attributes, it's the 5313 * same as having zero of them. 5314 */ 5315 error = 0; 5316 } 5317 ZFS_EXIT(zfsvfs); 5318 return (error); 5319 5320 case _PC_SATTR_ENABLED: 5321 case _PC_SATTR_EXISTS: 5322 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 5323 (vp->v_type == VREG || vp->v_type == VDIR); 5324 return (0); 5325 5326 case _PC_ACCESS_FILTERING: 5327 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 5328 vp->v_type == VDIR; 5329 return (0); 5330 5331 case _PC_ACL_ENABLED: 5332 *valp = _ACL_ACE_ENABLED; 5333 return (0); 5334 5335 case _PC_MIN_HOLE_SIZE: 5336 *valp = (ulong_t)SPA_MINBLOCKSIZE; 5337 return (0); 5338 5339 case _PC_TIMESTAMP_RESOLUTION: 5340 /* nanosecond timestamp resolution */ 5341 *valp = 1L; 5342 return (0); 5343 5344 default: 5345 return (fs_pathconf(vp, cmd, valp, cr, ct)); 5346 } 5347 } 5348 5349 /*ARGSUSED*/ 5350 static int 5351 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5352 caller_context_t *ct) 5353 { 5354 znode_t *zp = VTOZ(vp); 5355 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5356 int error; 5357 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5358 5359 ZFS_ENTER(zfsvfs); 5360 ZFS_VERIFY_ZP(zp); 5361 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5362 ZFS_EXIT(zfsvfs); 5363 5364 return (error); 5365 } 5366 5367 /*ARGSUSED*/ 5368 static int 5369 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5370 caller_context_t *ct) 5371 { 5372 znode_t *zp = VTOZ(vp); 5373 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5374 int error; 5375 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5376 zilog_t *zilog = zfsvfs->z_log; 5377 5378 ZFS_ENTER(zfsvfs); 5379 ZFS_VERIFY_ZP(zp); 5380 5381 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5382 5383 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5384 zil_commit(zilog, 0); 5385 5386 ZFS_EXIT(zfsvfs); 5387 return (error); 5388 } 5389 5390 /* 5391 * The smallest read we may consider to loan out an arcbuf. 5392 * This must be a power of 2. 5393 */ 5394 int zcr_blksz_min = (1 << 10); /* 1K */ 5395 /* 5396 * If set to less than the file block size, allow loaning out of an 5397 * arcbuf for a partial block read. This must be a power of 2. 5398 */ 5399 int zcr_blksz_max = (1 << 17); /* 128K */ 5400 5401 /*ARGSUSED*/ 5402 static int 5403 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5404 caller_context_t *ct) 5405 { 5406 znode_t *zp = VTOZ(vp); 5407 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5408 int max_blksz = zfsvfs->z_max_blksz; 5409 uio_t *uio = &xuio->xu_uio; 5410 ssize_t size = uio->uio_resid; 5411 offset_t offset = uio->uio_loffset; 5412 int blksz; 5413 int fullblk, i; 5414 arc_buf_t *abuf; 5415 ssize_t maxsize; 5416 int preamble, postamble; 5417 5418 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5419 return (SET_ERROR(EINVAL)); 5420 5421 ZFS_ENTER(zfsvfs); 5422 ZFS_VERIFY_ZP(zp); 5423 switch (ioflag) { 5424 case UIO_WRITE: 5425 /* 5426 * Loan out an arc_buf for write if write size is bigger than 5427 * max_blksz, and the file's block size is also max_blksz. 5428 */ 5429 blksz = max_blksz; 5430 if (size < blksz || zp->z_blksz != blksz) { 5431 ZFS_EXIT(zfsvfs); 5432 return (SET_ERROR(EINVAL)); 5433 } 5434 /* 5435 * Caller requests buffers for write before knowing where the 5436 * write offset might be (e.g. NFS TCP write). 5437 */ 5438 if (offset == -1) { 5439 preamble = 0; 5440 } else { 5441 preamble = P2PHASE(offset, blksz); 5442 if (preamble) { 5443 preamble = blksz - preamble; 5444 size -= preamble; 5445 } 5446 } 5447 5448 postamble = P2PHASE(size, blksz); 5449 size -= postamble; 5450 5451 fullblk = size / blksz; 5452 (void) dmu_xuio_init(xuio, 5453 (preamble != 0) + fullblk + (postamble != 0)); 5454 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5455 int, postamble, int, 5456 (preamble != 0) + fullblk + (postamble != 0)); 5457 5458 /* 5459 * Have to fix iov base/len for partial buffers. They 5460 * currently represent full arc_buf's. 5461 */ 5462 if (preamble) { 5463 /* data begins in the middle of the arc_buf */ 5464 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5465 blksz); 5466 ASSERT(abuf); 5467 (void) dmu_xuio_add(xuio, abuf, 5468 blksz - preamble, preamble); 5469 } 5470 5471 for (i = 0; i < fullblk; i++) { 5472 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5473 blksz); 5474 ASSERT(abuf); 5475 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5476 } 5477 5478 if (postamble) { 5479 /* data ends in the middle of the arc_buf */ 5480 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5481 blksz); 5482 ASSERT(abuf); 5483 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5484 } 5485 break; 5486 case UIO_READ: 5487 /* 5488 * Loan out an arc_buf for read if the read size is larger than 5489 * the current file block size. Block alignment is not 5490 * considered. Partial arc_buf will be loaned out for read. 5491 */ 5492 blksz = zp->z_blksz; 5493 if (blksz < zcr_blksz_min) 5494 blksz = zcr_blksz_min; 5495 if (blksz > zcr_blksz_max) 5496 blksz = zcr_blksz_max; 5497 /* avoid potential complexity of dealing with it */ 5498 if (blksz > max_blksz) { 5499 ZFS_EXIT(zfsvfs); 5500 return (SET_ERROR(EINVAL)); 5501 } 5502 5503 maxsize = zp->z_size - uio->uio_loffset; 5504 if (size > maxsize) 5505 size = maxsize; 5506 5507 if (size < blksz || vn_has_cached_data(vp)) { 5508 ZFS_EXIT(zfsvfs); 5509 return (SET_ERROR(EINVAL)); 5510 } 5511 break; 5512 default: 5513 ZFS_EXIT(zfsvfs); 5514 return (SET_ERROR(EINVAL)); 5515 } 5516 5517 uio->uio_extflg = UIO_XUIO; 5518 XUIO_XUZC_RW(xuio) = ioflag; 5519 ZFS_EXIT(zfsvfs); 5520 return (0); 5521 } 5522 5523 /*ARGSUSED*/ 5524 static int 5525 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5526 { 5527 int i; 5528 arc_buf_t *abuf; 5529 int ioflag = XUIO_XUZC_RW(xuio); 5530 5531 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5532 5533 i = dmu_xuio_cnt(xuio); 5534 while (i-- > 0) { 5535 abuf = dmu_xuio_arcbuf(xuio, i); 5536 /* 5537 * if abuf == NULL, it must be a write buffer 5538 * that has been returned in zfs_write(). 5539 */ 5540 if (abuf) 5541 dmu_return_arcbuf(abuf); 5542 ASSERT(abuf || ioflag == UIO_WRITE); 5543 } 5544 5545 dmu_xuio_fini(xuio); 5546 return (0); 5547 } 5548 5549 /* 5550 * Predeclare these here so that the compiler assumes that 5551 * this is an "old style" function declaration that does 5552 * not include arguments => we won't get type mismatch errors 5553 * in the initializations that follow. 5554 */ 5555 static int zfs_inval(); 5556 static int zfs_isdir(); 5557 5558 static int 5559 zfs_inval() 5560 { 5561 return (SET_ERROR(EINVAL)); 5562 } 5563 5564 static int 5565 zfs_isdir() 5566 { 5567 return (SET_ERROR(EISDIR)); 5568 } 5569 /* 5570 * Directory vnode operations template 5571 */ 5572 vnodeops_t *zfs_dvnodeops; 5573 const fs_operation_def_t zfs_dvnodeops_template[] = { 5574 VOPNAME_OPEN, { .vop_open = zfs_open }, 5575 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5576 VOPNAME_READ, { .error = zfs_isdir }, 5577 VOPNAME_WRITE, { .error = zfs_isdir }, 5578 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5579 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5580 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5581 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5582 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5583 VOPNAME_CREATE, { .vop_create = zfs_create }, 5584 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5585 VOPNAME_LINK, { .vop_link = zfs_link }, 5586 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5587 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5588 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5589 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5590 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5591 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5592 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5593 VOPNAME_FID, { .vop_fid = zfs_fid }, 5594 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5595 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5596 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5597 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5598 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5599 NULL, NULL 5600 }; 5601 5602 /* 5603 * Regular file vnode operations template 5604 */ 5605 vnodeops_t *zfs_fvnodeops; 5606 const fs_operation_def_t zfs_fvnodeops_template[] = { 5607 VOPNAME_OPEN, { .vop_open = zfs_open }, 5608 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5609 VOPNAME_READ, { .vop_read = zfs_read }, 5610 VOPNAME_WRITE, { .vop_write = zfs_write }, 5611 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5612 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5613 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5614 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5615 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5616 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5617 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5618 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5619 VOPNAME_FID, { .vop_fid = zfs_fid }, 5620 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5621 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5622 VOPNAME_SPACE, { .vop_space = zfs_space }, 5623 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5624 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5625 VOPNAME_MAP, { .vop_map = zfs_map }, 5626 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5627 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5628 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5629 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5630 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5631 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5632 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5633 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5634 NULL, NULL 5635 }; 5636 5637 /* 5638 * Symbolic link vnode operations template 5639 */ 5640 vnodeops_t *zfs_symvnodeops; 5641 const fs_operation_def_t zfs_symvnodeops_template[] = { 5642 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5643 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5644 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5645 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5646 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5647 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5648 VOPNAME_FID, { .vop_fid = zfs_fid }, 5649 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5650 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5651 NULL, NULL 5652 }; 5653 5654 /* 5655 * special share hidden files vnode operations template 5656 */ 5657 vnodeops_t *zfs_sharevnodeops; 5658 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5659 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5660 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5661 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5662 VOPNAME_FID, { .vop_fid = zfs_fid }, 5663 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5664 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5665 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5666 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5667 NULL, NULL 5668 }; 5669 5670 /* 5671 * Extended attribute directory vnode operations template 5672 * 5673 * This template is identical to the directory vnodes 5674 * operation template except for restricted operations: 5675 * VOP_MKDIR() 5676 * VOP_SYMLINK() 5677 * 5678 * Note that there are other restrictions embedded in: 5679 * zfs_create() - restrict type to VREG 5680 * zfs_link() - no links into/out of attribute space 5681 * zfs_rename() - no moves into/out of attribute space 5682 */ 5683 vnodeops_t *zfs_xdvnodeops; 5684 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5685 VOPNAME_OPEN, { .vop_open = zfs_open }, 5686 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5687 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5688 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5689 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5690 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5691 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5692 VOPNAME_CREATE, { .vop_create = zfs_create }, 5693 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5694 VOPNAME_LINK, { .vop_link = zfs_link }, 5695 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5696 VOPNAME_MKDIR, { .error = zfs_inval }, 5697 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5698 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5699 VOPNAME_SYMLINK, { .error = zfs_inval }, 5700 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5701 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5702 VOPNAME_FID, { .vop_fid = zfs_fid }, 5703 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5704 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5705 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5706 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5707 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5708 NULL, NULL 5709 }; 5710 5711 /* 5712 * Error vnode operations template 5713 */ 5714 vnodeops_t *zfs_evnodeops; 5715 const fs_operation_def_t zfs_evnodeops_template[] = { 5716 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5717 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5718 NULL, NULL 5719 }; 5720