1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2015 Joyent, Inc. 27 * Copyright 2017 Nexenta Systems, Inc. 28 */ 29 30 /* Portions Copyright 2007 Jeremy Teo */ 31 /* Portions Copyright 2010 Robert Milkowski */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/time.h> 36 #include <sys/systm.h> 37 #include <sys/sysmacros.h> 38 #include <sys/resource.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/stat.h> 44 #include <sys/kmem.h> 45 #include <sys/taskq.h> 46 #include <sys/uio.h> 47 #include <sys/vmsystm.h> 48 #include <sys/atomic.h> 49 #include <sys/vm.h> 50 #include <vm/seg_vn.h> 51 #include <vm/pvn.h> 52 #include <vm/as.h> 53 #include <vm/kpm.h> 54 #include <vm/seg_kpm.h> 55 #include <sys/mman.h> 56 #include <sys/pathname.h> 57 #include <sys/cmn_err.h> 58 #include <sys/errno.h> 59 #include <sys/unistd.h> 60 #include <sys/zfs_dir.h> 61 #include <sys/zfs_acl.h> 62 #include <sys/zfs_ioctl.h> 63 #include <sys/fs/zfs.h> 64 #include <sys/dmu.h> 65 #include <sys/dmu_objset.h> 66 #include <sys/spa.h> 67 #include <sys/txg.h> 68 #include <sys/dbuf.h> 69 #include <sys/zap.h> 70 #include <sys/sa.h> 71 #include <sys/dirent.h> 72 #include <sys/policy.h> 73 #include <sys/sunddi.h> 74 #include <sys/filio.h> 75 #include <sys/sid.h> 76 #include "fs/fs_subr.h" 77 #include <sys/zfs_ctldir.h> 78 #include <sys/zfs_fuid.h> 79 #include <sys/zfs_sa.h> 80 #include <sys/dnlc.h> 81 #include <sys/zfs_rlock.h> 82 #include <sys/extdirent.h> 83 #include <sys/kidmap.h> 84 #include <sys/cred.h> 85 #include <sys/attr.h> 86 #include <sys/zil.h> 87 88 /* 89 * Programming rules. 90 * 91 * Each vnode op performs some logical unit of work. To do this, the ZPL must 92 * properly lock its in-core state, create a DMU transaction, do the work, 93 * record this work in the intent log (ZIL), commit the DMU transaction, 94 * and wait for the intent log to commit if it is a synchronous operation. 95 * Moreover, the vnode ops must work in both normal and log replay context. 96 * The ordering of events is important to avoid deadlocks and references 97 * to freed memory. The example below illustrates the following Big Rules: 98 * 99 * (1) A check must be made in each zfs thread for a mounted file system. 100 * This is done avoiding races using ZFS_ENTER(zfsvfs). 101 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 102 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 103 * can return EIO from the calling function. 104 * 105 * (2) VN_RELE() should always be the last thing except for zil_commit() 106 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 107 * First, if it's the last reference, the vnode/znode 108 * can be freed, so the zp may point to freed memory. Second, the last 109 * reference will call zfs_zinactive(), which may induce a lot of work -- 110 * pushing cached pages (which acquires range locks) and syncing out 111 * cached atime changes. Third, zfs_zinactive() may require a new tx, 112 * which could deadlock the system if you were already holding one. 113 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 114 * 115 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 116 * as they can span dmu_tx_assign() calls. 117 * 118 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 119 * dmu_tx_assign(). This is critical because we don't want to block 120 * while holding locks. 121 * 122 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 123 * reduces lock contention and CPU usage when we must wait (note that if 124 * throughput is constrained by the storage, nearly every transaction 125 * must wait). 126 * 127 * Note, in particular, that if a lock is sometimes acquired before 128 * the tx assigns, and sometimes after (e.g. z_lock), then failing 129 * to use a non-blocking assign can deadlock the system. The scenario: 130 * 131 * Thread A has grabbed a lock before calling dmu_tx_assign(). 132 * Thread B is in an already-assigned tx, and blocks for this lock. 133 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 134 * forever, because the previous txg can't quiesce until B's tx commits. 135 * 136 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 137 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 138 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, 139 * to indicate that this operation has already called dmu_tx_wait(). 140 * This will ensure that we don't retry forever, waiting a short bit 141 * each time. 142 * 143 * (5) If the operation succeeded, generate the intent log entry for it 144 * before dropping locks. This ensures that the ordering of events 145 * in the intent log matches the order in which they actually occurred. 146 * During ZIL replay the zfs_log_* functions will update the sequence 147 * number to indicate the zil transaction has replayed. 148 * 149 * (6) At the end of each vnode op, the DMU tx must always commit, 150 * regardless of whether there were any errors. 151 * 152 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 153 * to ensure that synchronous semantics are provided when necessary. 154 * 155 * In general, this is how things should be ordered in each vnode op: 156 * 157 * ZFS_ENTER(zfsvfs); // exit if unmounted 158 * top: 159 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 160 * rw_enter(...); // grab any other locks you need 161 * tx = dmu_tx_create(...); // get DMU tx 162 * dmu_tx_hold_*(); // hold each object you might modify 163 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 164 * if (error) { 165 * rw_exit(...); // drop locks 166 * zfs_dirent_unlock(dl); // unlock directory entry 167 * VN_RELE(...); // release held vnodes 168 * if (error == ERESTART) { 169 * waited = B_TRUE; 170 * dmu_tx_wait(tx); 171 * dmu_tx_abort(tx); 172 * goto top; 173 * } 174 * dmu_tx_abort(tx); // abort DMU tx 175 * ZFS_EXIT(zfsvfs); // finished in zfs 176 * return (error); // really out of space 177 * } 178 * error = do_real_work(); // do whatever this VOP does 179 * if (error == 0) 180 * zfs_log_*(...); // on success, make ZIL entry 181 * dmu_tx_commit(tx); // commit DMU tx -- error or not 182 * rw_exit(...); // drop locks 183 * zfs_dirent_unlock(dl); // unlock directory entry 184 * VN_RELE(...); // release held vnodes 185 * zil_commit(zilog, foid); // synchronous when necessary 186 * ZFS_EXIT(zfsvfs); // finished in zfs 187 * return (error); // done, report error 188 */ 189 190 /* ARGSUSED */ 191 static int 192 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 193 { 194 znode_t *zp = VTOZ(*vpp); 195 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 196 197 ZFS_ENTER(zfsvfs); 198 ZFS_VERIFY_ZP(zp); 199 200 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 201 ((flag & FAPPEND) == 0)) { 202 ZFS_EXIT(zfsvfs); 203 return (SET_ERROR(EPERM)); 204 } 205 206 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 207 ZTOV(zp)->v_type == VREG && 208 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 209 if (fs_vscan(*vpp, cr, 0) != 0) { 210 ZFS_EXIT(zfsvfs); 211 return (SET_ERROR(EACCES)); 212 } 213 } 214 215 /* Keep a count of the synchronous opens in the znode */ 216 if (flag & (FSYNC | FDSYNC)) 217 atomic_inc_32(&zp->z_sync_cnt); 218 219 ZFS_EXIT(zfsvfs); 220 return (0); 221 } 222 223 /* ARGSUSED */ 224 static int 225 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 226 caller_context_t *ct) 227 { 228 znode_t *zp = VTOZ(vp); 229 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 230 231 /* 232 * Clean up any locks held by this process on the vp. 233 */ 234 cleanlocks(vp, ddi_get_pid(), 0); 235 cleanshares(vp, ddi_get_pid()); 236 237 ZFS_ENTER(zfsvfs); 238 ZFS_VERIFY_ZP(zp); 239 240 /* Decrement the synchronous opens in the znode */ 241 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 242 atomic_dec_32(&zp->z_sync_cnt); 243 244 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 245 ZTOV(zp)->v_type == VREG && 246 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 247 VERIFY(fs_vscan(vp, cr, 1) == 0); 248 249 ZFS_EXIT(zfsvfs); 250 return (0); 251 } 252 253 /* 254 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 255 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 256 */ 257 static int 258 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 259 { 260 znode_t *zp = VTOZ(vp); 261 uint64_t noff = (uint64_t)*off; /* new offset */ 262 uint64_t file_sz; 263 int error; 264 boolean_t hole; 265 266 file_sz = zp->z_size; 267 if (noff >= file_sz) { 268 return (SET_ERROR(ENXIO)); 269 } 270 271 if (cmd == _FIO_SEEK_HOLE) 272 hole = B_TRUE; 273 else 274 hole = B_FALSE; 275 276 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 277 278 if (error == ESRCH) 279 return (SET_ERROR(ENXIO)); 280 281 /* 282 * We could find a hole that begins after the logical end-of-file, 283 * because dmu_offset_next() only works on whole blocks. If the 284 * EOF falls mid-block, then indicate that the "virtual hole" 285 * at the end of the file begins at the logical EOF, rather than 286 * at the end of the last block. 287 */ 288 if (noff > file_sz) { 289 ASSERT(hole); 290 noff = file_sz; 291 } 292 293 if (noff < *off) 294 return (error); 295 *off = noff; 296 return (error); 297 } 298 299 /* ARGSUSED */ 300 static int 301 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 302 int *rvalp, caller_context_t *ct) 303 { 304 offset_t off; 305 offset_t ndata; 306 dmu_object_info_t doi; 307 int error; 308 zfsvfs_t *zfsvfs; 309 znode_t *zp; 310 311 switch (com) { 312 case _FIOFFS: 313 { 314 return (zfs_sync(vp->v_vfsp, 0, cred)); 315 316 /* 317 * The following two ioctls are used by bfu. Faking out, 318 * necessary to avoid bfu errors. 319 */ 320 } 321 case _FIOGDIO: 322 case _FIOSDIO: 323 { 324 return (0); 325 } 326 327 case _FIO_SEEK_DATA: 328 case _FIO_SEEK_HOLE: 329 { 330 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 331 return (SET_ERROR(EFAULT)); 332 333 zp = VTOZ(vp); 334 zfsvfs = zp->z_zfsvfs; 335 ZFS_ENTER(zfsvfs); 336 ZFS_VERIFY_ZP(zp); 337 338 /* offset parameter is in/out */ 339 error = zfs_holey(vp, com, &off); 340 ZFS_EXIT(zfsvfs); 341 if (error) 342 return (error); 343 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 344 return (SET_ERROR(EFAULT)); 345 return (0); 346 } 347 case _FIO_COUNT_FILLED: 348 { 349 /* 350 * _FIO_COUNT_FILLED adds a new ioctl command which 351 * exposes the number of filled blocks in a 352 * ZFS object. 353 */ 354 zp = VTOZ(vp); 355 zfsvfs = zp->z_zfsvfs; 356 ZFS_ENTER(zfsvfs); 357 ZFS_VERIFY_ZP(zp); 358 359 /* 360 * Wait for all dirty blocks for this object 361 * to get synced out to disk, and the DMU info 362 * updated. 363 */ 364 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 365 if (error) { 366 ZFS_EXIT(zfsvfs); 367 return (error); 368 } 369 370 /* 371 * Retrieve fill count from DMU object. 372 */ 373 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 374 if (error) { 375 ZFS_EXIT(zfsvfs); 376 return (error); 377 } 378 379 ndata = doi.doi_fill_count; 380 381 ZFS_EXIT(zfsvfs); 382 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 383 return (SET_ERROR(EFAULT)); 384 return (0); 385 } 386 } 387 return (SET_ERROR(ENOTTY)); 388 } 389 390 /* 391 * Utility functions to map and unmap a single physical page. These 392 * are used to manage the mappable copies of ZFS file data, and therefore 393 * do not update ref/mod bits. 394 */ 395 caddr_t 396 zfs_map_page(page_t *pp, enum seg_rw rw) 397 { 398 if (kpm_enable) 399 return (hat_kpm_mapin(pp, 0)); 400 ASSERT(rw == S_READ || rw == S_WRITE); 401 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 402 (caddr_t)-1)); 403 } 404 405 void 406 zfs_unmap_page(page_t *pp, caddr_t addr) 407 { 408 if (kpm_enable) { 409 hat_kpm_mapout(pp, 0, addr); 410 } else { 411 ppmapout(addr); 412 } 413 } 414 415 /* 416 * When a file is memory mapped, we must keep the IO data synchronized 417 * between the DMU cache and the memory mapped pages. What this means: 418 * 419 * On Write: If we find a memory mapped page, we write to *both* 420 * the page and the dmu buffer. 421 */ 422 static void 423 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 424 { 425 int64_t off; 426 427 off = start & PAGEOFFSET; 428 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 429 page_t *pp; 430 uint64_t nbytes = MIN(PAGESIZE - off, len); 431 432 if (pp = page_lookup(vp, start, SE_SHARED)) { 433 caddr_t va; 434 435 va = zfs_map_page(pp, S_WRITE); 436 (void) dmu_read(os, oid, start+off, nbytes, va+off, 437 DMU_READ_PREFETCH); 438 zfs_unmap_page(pp, va); 439 page_unlock(pp); 440 } 441 len -= nbytes; 442 off = 0; 443 } 444 } 445 446 /* 447 * When a file is memory mapped, we must keep the IO data synchronized 448 * between the DMU cache and the memory mapped pages. What this means: 449 * 450 * On Read: We "read" preferentially from memory mapped pages, 451 * else we default from the dmu buffer. 452 * 453 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 454 * the file is memory mapped. 455 */ 456 static int 457 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 458 { 459 znode_t *zp = VTOZ(vp); 460 int64_t start, off; 461 int len = nbytes; 462 int error = 0; 463 464 start = uio->uio_loffset; 465 off = start & PAGEOFFSET; 466 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 467 page_t *pp; 468 uint64_t bytes = MIN(PAGESIZE - off, len); 469 470 if (pp = page_lookup(vp, start, SE_SHARED)) { 471 caddr_t va; 472 473 va = zfs_map_page(pp, S_READ); 474 error = uiomove(va + off, bytes, UIO_READ, uio); 475 zfs_unmap_page(pp, va); 476 page_unlock(pp); 477 } else { 478 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 479 uio, bytes); 480 } 481 len -= bytes; 482 off = 0; 483 if (error) 484 break; 485 } 486 return (error); 487 } 488 489 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 490 491 /* 492 * Read bytes from specified file into supplied buffer. 493 * 494 * IN: vp - vnode of file to be read from. 495 * uio - structure supplying read location, range info, 496 * and return buffer. 497 * ioflag - SYNC flags; used to provide FRSYNC semantics. 498 * cr - credentials of caller. 499 * ct - caller context 500 * 501 * OUT: uio - updated offset and range, buffer filled. 502 * 503 * RETURN: 0 on success, error code on failure. 504 * 505 * Side Effects: 506 * vp - atime updated if byte count > 0 507 */ 508 /* ARGSUSED */ 509 static int 510 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 511 { 512 znode_t *zp = VTOZ(vp); 513 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 514 ssize_t n, nbytes; 515 int error = 0; 516 rl_t *rl; 517 xuio_t *xuio = NULL; 518 519 ZFS_ENTER(zfsvfs); 520 ZFS_VERIFY_ZP(zp); 521 522 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 523 ZFS_EXIT(zfsvfs); 524 return (SET_ERROR(EACCES)); 525 } 526 527 /* 528 * Validate file offset 529 */ 530 if (uio->uio_loffset < (offset_t)0) { 531 ZFS_EXIT(zfsvfs); 532 return (SET_ERROR(EINVAL)); 533 } 534 535 /* 536 * Fasttrack empty reads 537 */ 538 if (uio->uio_resid == 0) { 539 ZFS_EXIT(zfsvfs); 540 return (0); 541 } 542 543 /* 544 * Check for mandatory locks 545 */ 546 if (MANDMODE(zp->z_mode)) { 547 if (error = chklock(vp, FREAD, 548 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 549 ZFS_EXIT(zfsvfs); 550 return (error); 551 } 552 } 553 554 /* 555 * If we're in FRSYNC mode, sync out this znode before reading it. 556 */ 557 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 558 zil_commit(zfsvfs->z_log, zp->z_id); 559 560 /* 561 * Lock the range against changes. 562 */ 563 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 564 565 /* 566 * If we are reading past end-of-file we can skip 567 * to the end; but we might still need to set atime. 568 */ 569 if (uio->uio_loffset >= zp->z_size) { 570 error = 0; 571 goto out; 572 } 573 574 ASSERT(uio->uio_loffset < zp->z_size); 575 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 576 577 if ((uio->uio_extflg == UIO_XUIO) && 578 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 579 int nblk; 580 int blksz = zp->z_blksz; 581 uint64_t offset = uio->uio_loffset; 582 583 xuio = (xuio_t *)uio; 584 if ((ISP2(blksz))) { 585 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 586 blksz)) / blksz; 587 } else { 588 ASSERT(offset + n <= blksz); 589 nblk = 1; 590 } 591 (void) dmu_xuio_init(xuio, nblk); 592 593 if (vn_has_cached_data(vp)) { 594 /* 595 * For simplicity, we always allocate a full buffer 596 * even if we only expect to read a portion of a block. 597 */ 598 while (--nblk >= 0) { 599 (void) dmu_xuio_add(xuio, 600 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 601 blksz), 0, blksz); 602 } 603 } 604 } 605 606 while (n > 0) { 607 nbytes = MIN(n, zfs_read_chunk_size - 608 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 609 610 if (vn_has_cached_data(vp)) { 611 error = mappedread(vp, nbytes, uio); 612 } else { 613 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 614 uio, nbytes); 615 } 616 if (error) { 617 /* convert checksum errors into IO errors */ 618 if (error == ECKSUM) 619 error = SET_ERROR(EIO); 620 break; 621 } 622 623 n -= nbytes; 624 } 625 out: 626 zfs_range_unlock(rl); 627 628 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 629 ZFS_EXIT(zfsvfs); 630 return (error); 631 } 632 633 /* 634 * Write the bytes to a file. 635 * 636 * IN: vp - vnode of file to be written to. 637 * uio - structure supplying write location, range info, 638 * and data buffer. 639 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 640 * set if in append mode. 641 * cr - credentials of caller. 642 * ct - caller context (NFS/CIFS fem monitor only) 643 * 644 * OUT: uio - updated offset and range. 645 * 646 * RETURN: 0 on success, error code on failure. 647 * 648 * Timestamps: 649 * vp - ctime|mtime updated if byte count > 0 650 */ 651 652 /* ARGSUSED */ 653 static int 654 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 655 { 656 znode_t *zp = VTOZ(vp); 657 rlim64_t limit = uio->uio_llimit; 658 ssize_t start_resid = uio->uio_resid; 659 ssize_t tx_bytes; 660 uint64_t end_size; 661 dmu_tx_t *tx; 662 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 663 zilog_t *zilog; 664 offset_t woff; 665 ssize_t n, nbytes; 666 rl_t *rl; 667 int max_blksz = zfsvfs->z_max_blksz; 668 int error = 0; 669 arc_buf_t *abuf; 670 iovec_t *aiov = NULL; 671 xuio_t *xuio = NULL; 672 int i_iov = 0; 673 int iovcnt = uio->uio_iovcnt; 674 iovec_t *iovp = uio->uio_iov; 675 int write_eof; 676 int count = 0; 677 sa_bulk_attr_t bulk[4]; 678 uint64_t mtime[2], ctime[2]; 679 680 /* 681 * Fasttrack empty write 682 */ 683 n = start_resid; 684 if (n == 0) 685 return (0); 686 687 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 688 limit = MAXOFFSET_T; 689 690 ZFS_ENTER(zfsvfs); 691 ZFS_VERIFY_ZP(zp); 692 693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 694 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 695 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 696 &zp->z_size, 8); 697 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 698 &zp->z_pflags, 8); 699 700 /* 701 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 702 * callers might not be able to detect properly that we are read-only, 703 * so check it explicitly here. 704 */ 705 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 706 ZFS_EXIT(zfsvfs); 707 return (SET_ERROR(EROFS)); 708 } 709 710 /* 711 * If immutable or not appending then return EPERM. 712 * Intentionally allow ZFS_READONLY through here. 713 * See zfs_zaccess_common() 714 */ 715 if ((zp->z_pflags & ZFS_IMMUTABLE) || 716 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 717 (uio->uio_loffset < zp->z_size))) { 718 ZFS_EXIT(zfsvfs); 719 return (SET_ERROR(EPERM)); 720 } 721 722 zilog = zfsvfs->z_log; 723 724 /* 725 * Validate file offset 726 */ 727 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 728 if (woff < 0) { 729 ZFS_EXIT(zfsvfs); 730 return (SET_ERROR(EINVAL)); 731 } 732 733 /* 734 * Check for mandatory locks before calling zfs_range_lock() 735 * in order to prevent a deadlock with locks set via fcntl(). 736 */ 737 if (MANDMODE((mode_t)zp->z_mode) && 738 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 739 ZFS_EXIT(zfsvfs); 740 return (error); 741 } 742 743 /* 744 * Pre-fault the pages to ensure slow (eg NFS) pages 745 * don't hold up txg. 746 * Skip this if uio contains loaned arc_buf. 747 */ 748 if ((uio->uio_extflg == UIO_XUIO) && 749 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 750 xuio = (xuio_t *)uio; 751 else 752 uio_prefaultpages(MIN(n, max_blksz), uio); 753 754 /* 755 * If in append mode, set the io offset pointer to eof. 756 */ 757 if (ioflag & FAPPEND) { 758 /* 759 * Obtain an appending range lock to guarantee file append 760 * semantics. We reset the write offset once we have the lock. 761 */ 762 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 763 woff = rl->r_off; 764 if (rl->r_len == UINT64_MAX) { 765 /* 766 * We overlocked the file because this write will cause 767 * the file block size to increase. 768 * Note that zp_size cannot change with this lock held. 769 */ 770 woff = zp->z_size; 771 } 772 uio->uio_loffset = woff; 773 } else { 774 /* 775 * Note that if the file block size will change as a result of 776 * this write, then this range lock will lock the entire file 777 * so that we can re-write the block safely. 778 */ 779 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 780 } 781 782 if (woff >= limit) { 783 zfs_range_unlock(rl); 784 ZFS_EXIT(zfsvfs); 785 return (SET_ERROR(EFBIG)); 786 } 787 788 if ((woff + n) > limit || woff > (limit - n)) 789 n = limit - woff; 790 791 /* Will this write extend the file length? */ 792 write_eof = (woff + n > zp->z_size); 793 794 end_size = MAX(zp->z_size, woff + n); 795 796 /* 797 * Write the file in reasonable size chunks. Each chunk is written 798 * in a separate transaction; this keeps the intent log records small 799 * and allows us to do more fine-grained space accounting. 800 */ 801 while (n > 0) { 802 abuf = NULL; 803 woff = uio->uio_loffset; 804 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 805 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 806 if (abuf != NULL) 807 dmu_return_arcbuf(abuf); 808 error = SET_ERROR(EDQUOT); 809 break; 810 } 811 812 if (xuio && abuf == NULL) { 813 ASSERT(i_iov < iovcnt); 814 aiov = &iovp[i_iov]; 815 abuf = dmu_xuio_arcbuf(xuio, i_iov); 816 dmu_xuio_clear(xuio, i_iov); 817 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 818 iovec_t *, aiov, arc_buf_t *, abuf); 819 ASSERT((aiov->iov_base == abuf->b_data) || 820 ((char *)aiov->iov_base - (char *)abuf->b_data + 821 aiov->iov_len == arc_buf_size(abuf))); 822 i_iov++; 823 } else if (abuf == NULL && n >= max_blksz && 824 woff >= zp->z_size && 825 P2PHASE(woff, max_blksz) == 0 && 826 zp->z_blksz == max_blksz) { 827 /* 828 * This write covers a full block. "Borrow" a buffer 829 * from the dmu so that we can fill it before we enter 830 * a transaction. This avoids the possibility of 831 * holding up the transaction if the data copy hangs 832 * up on a pagefault (e.g., from an NFS server mapping). 833 */ 834 size_t cbytes; 835 836 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 837 max_blksz); 838 ASSERT(abuf != NULL); 839 ASSERT(arc_buf_size(abuf) == max_blksz); 840 if (error = uiocopy(abuf->b_data, max_blksz, 841 UIO_WRITE, uio, &cbytes)) { 842 dmu_return_arcbuf(abuf); 843 break; 844 } 845 ASSERT(cbytes == max_blksz); 846 } 847 848 /* 849 * Start a transaction. 850 */ 851 tx = dmu_tx_create(zfsvfs->z_os); 852 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 853 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 854 zfs_sa_upgrade_txholds(tx, zp); 855 error = dmu_tx_assign(tx, TXG_WAIT); 856 if (error) { 857 dmu_tx_abort(tx); 858 if (abuf != NULL) 859 dmu_return_arcbuf(abuf); 860 break; 861 } 862 863 /* 864 * If zfs_range_lock() over-locked we grow the blocksize 865 * and then reduce the lock range. This will only happen 866 * on the first iteration since zfs_range_reduce() will 867 * shrink down r_len to the appropriate size. 868 */ 869 if (rl->r_len == UINT64_MAX) { 870 uint64_t new_blksz; 871 872 if (zp->z_blksz > max_blksz) { 873 /* 874 * File's blocksize is already larger than the 875 * "recordsize" property. Only let it grow to 876 * the next power of 2. 877 */ 878 ASSERT(!ISP2(zp->z_blksz)); 879 new_blksz = MIN(end_size, 880 1 << highbit64(zp->z_blksz)); 881 } else { 882 new_blksz = MIN(end_size, max_blksz); 883 } 884 zfs_grow_blocksize(zp, new_blksz, tx); 885 zfs_range_reduce(rl, woff, n); 886 } 887 888 /* 889 * XXX - should we really limit each write to z_max_blksz? 890 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 891 */ 892 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 893 894 if (abuf == NULL) { 895 tx_bytes = uio->uio_resid; 896 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 897 uio, nbytes, tx); 898 tx_bytes -= uio->uio_resid; 899 } else { 900 tx_bytes = nbytes; 901 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 902 /* 903 * If this is not a full block write, but we are 904 * extending the file past EOF and this data starts 905 * block-aligned, use assign_arcbuf(). Otherwise, 906 * write via dmu_write(). 907 */ 908 if (tx_bytes < max_blksz && (!write_eof || 909 aiov->iov_base != abuf->b_data)) { 910 ASSERT(xuio); 911 dmu_write(zfsvfs->z_os, zp->z_id, woff, 912 aiov->iov_len, aiov->iov_base, tx); 913 dmu_return_arcbuf(abuf); 914 xuio_stat_wbuf_copied(); 915 } else { 916 ASSERT(xuio || tx_bytes == max_blksz); 917 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 918 woff, abuf, tx); 919 } 920 ASSERT(tx_bytes <= uio->uio_resid); 921 uioskip(uio, tx_bytes); 922 } 923 if (tx_bytes && vn_has_cached_data(vp)) { 924 update_pages(vp, woff, 925 tx_bytes, zfsvfs->z_os, zp->z_id); 926 } 927 928 /* 929 * If we made no progress, we're done. If we made even 930 * partial progress, update the znode and ZIL accordingly. 931 */ 932 if (tx_bytes == 0) { 933 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 934 (void *)&zp->z_size, sizeof (uint64_t), tx); 935 dmu_tx_commit(tx); 936 ASSERT(error != 0); 937 break; 938 } 939 940 /* 941 * Clear Set-UID/Set-GID bits on successful write if not 942 * privileged and at least one of the excute bits is set. 943 * 944 * It would be nice to to this after all writes have 945 * been done, but that would still expose the ISUID/ISGID 946 * to another app after the partial write is committed. 947 * 948 * Note: we don't call zfs_fuid_map_id() here because 949 * user 0 is not an ephemeral uid. 950 */ 951 mutex_enter(&zp->z_acl_lock); 952 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 953 (S_IXUSR >> 6))) != 0 && 954 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 955 secpolicy_vnode_setid_retain(cr, 956 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 957 uint64_t newmode; 958 zp->z_mode &= ~(S_ISUID | S_ISGID); 959 newmode = zp->z_mode; 960 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 961 (void *)&newmode, sizeof (uint64_t), tx); 962 } 963 mutex_exit(&zp->z_acl_lock); 964 965 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 966 B_TRUE); 967 968 /* 969 * Update the file size (zp_size) if it has changed; 970 * account for possible concurrent updates. 971 */ 972 while ((end_size = zp->z_size) < uio->uio_loffset) { 973 (void) atomic_cas_64(&zp->z_size, end_size, 974 uio->uio_loffset); 975 ASSERT(error == 0); 976 } 977 /* 978 * If we are replaying and eof is non zero then force 979 * the file size to the specified eof. Note, there's no 980 * concurrency during replay. 981 */ 982 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 983 zp->z_size = zfsvfs->z_replay_eof; 984 985 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 986 987 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 988 dmu_tx_commit(tx); 989 990 if (error != 0) 991 break; 992 ASSERT(tx_bytes == nbytes); 993 n -= nbytes; 994 995 if (!xuio && n > 0) 996 uio_prefaultpages(MIN(n, max_blksz), uio); 997 } 998 999 zfs_range_unlock(rl); 1000 1001 /* 1002 * If we're in replay mode, or we made no progress, return error. 1003 * Otherwise, it's at least a partial write, so it's successful. 1004 */ 1005 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1006 ZFS_EXIT(zfsvfs); 1007 return (error); 1008 } 1009 1010 if (ioflag & (FSYNC | FDSYNC) || 1011 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1012 zil_commit(zilog, zp->z_id); 1013 1014 ZFS_EXIT(zfsvfs); 1015 return (0); 1016 } 1017 1018 void 1019 zfs_get_done(zgd_t *zgd, int error) 1020 { 1021 znode_t *zp = zgd->zgd_private; 1022 objset_t *os = zp->z_zfsvfs->z_os; 1023 1024 if (zgd->zgd_db) 1025 dmu_buf_rele(zgd->zgd_db, zgd); 1026 1027 zfs_range_unlock(zgd->zgd_rl); 1028 1029 /* 1030 * Release the vnode asynchronously as we currently have the 1031 * txg stopped from syncing. 1032 */ 1033 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1034 1035 if (error == 0 && zgd->zgd_bp) 1036 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1037 1038 kmem_free(zgd, sizeof (zgd_t)); 1039 } 1040 1041 #ifdef DEBUG 1042 static int zil_fault_io = 0; 1043 #endif 1044 1045 /* 1046 * Get data to generate a TX_WRITE intent log record. 1047 */ 1048 int 1049 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) 1050 { 1051 zfsvfs_t *zfsvfs = arg; 1052 objset_t *os = zfsvfs->z_os; 1053 znode_t *zp; 1054 uint64_t object = lr->lr_foid; 1055 uint64_t offset = lr->lr_offset; 1056 uint64_t size = lr->lr_length; 1057 dmu_buf_t *db; 1058 zgd_t *zgd; 1059 int error = 0; 1060 1061 ASSERT3P(lwb, !=, NULL); 1062 ASSERT3P(zio, !=, NULL); 1063 ASSERT3U(size, !=, 0); 1064 1065 /* 1066 * Nothing to do if the file has been removed 1067 */ 1068 if (zfs_zget(zfsvfs, object, &zp) != 0) 1069 return (SET_ERROR(ENOENT)); 1070 if (zp->z_unlinked) { 1071 /* 1072 * Release the vnode asynchronously as we currently have the 1073 * txg stopped from syncing. 1074 */ 1075 VN_RELE_ASYNC(ZTOV(zp), 1076 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1077 return (SET_ERROR(ENOENT)); 1078 } 1079 1080 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1081 zgd->zgd_lwb = lwb; 1082 zgd->zgd_private = zp; 1083 1084 /* 1085 * Write records come in two flavors: immediate and indirect. 1086 * For small writes it's cheaper to store the data with the 1087 * log record (immediate); for large writes it's cheaper to 1088 * sync the data and get a pointer to it (indirect) so that 1089 * we don't have to write the data twice. 1090 */ 1091 if (buf != NULL) { /* immediate write */ 1092 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1093 /* test for truncation needs to be done while range locked */ 1094 if (offset >= zp->z_size) { 1095 error = SET_ERROR(ENOENT); 1096 } else { 1097 error = dmu_read(os, object, offset, size, buf, 1098 DMU_READ_NO_PREFETCH); 1099 } 1100 ASSERT(error == 0 || error == ENOENT); 1101 } else { /* indirect write */ 1102 /* 1103 * Have to lock the whole block to ensure when it's 1104 * written out and its checksum is being calculated 1105 * that no one can change the data. We need to re-check 1106 * blocksize after we get the lock in case it's changed! 1107 */ 1108 for (;;) { 1109 uint64_t blkoff; 1110 size = zp->z_blksz; 1111 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1112 offset -= blkoff; 1113 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1114 RL_READER); 1115 if (zp->z_blksz == size) 1116 break; 1117 offset += blkoff; 1118 zfs_range_unlock(zgd->zgd_rl); 1119 } 1120 /* test for truncation needs to be done while range locked */ 1121 if (lr->lr_offset >= zp->z_size) 1122 error = SET_ERROR(ENOENT); 1123 #ifdef DEBUG 1124 if (zil_fault_io) { 1125 error = SET_ERROR(EIO); 1126 zil_fault_io = 0; 1127 } 1128 #endif 1129 if (error == 0) 1130 error = dmu_buf_hold(os, object, offset, zgd, &db, 1131 DMU_READ_NO_PREFETCH); 1132 1133 if (error == 0) { 1134 blkptr_t *bp = &lr->lr_blkptr; 1135 1136 zgd->zgd_db = db; 1137 zgd->zgd_bp = bp; 1138 1139 ASSERT(db->db_offset == offset); 1140 ASSERT(db->db_size == size); 1141 1142 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1143 zfs_get_done, zgd); 1144 ASSERT(error || lr->lr_length <= size); 1145 1146 /* 1147 * On success, we need to wait for the write I/O 1148 * initiated by dmu_sync() to complete before we can 1149 * release this dbuf. We will finish everything up 1150 * in the zfs_get_done() callback. 1151 */ 1152 if (error == 0) 1153 return (0); 1154 1155 if (error == EALREADY) { 1156 lr->lr_common.lrc_txtype = TX_WRITE2; 1157 error = 0; 1158 } 1159 } 1160 } 1161 1162 zfs_get_done(zgd, error); 1163 1164 return (error); 1165 } 1166 1167 /*ARGSUSED*/ 1168 static int 1169 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1170 caller_context_t *ct) 1171 { 1172 znode_t *zp = VTOZ(vp); 1173 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1174 int error; 1175 1176 ZFS_ENTER(zfsvfs); 1177 ZFS_VERIFY_ZP(zp); 1178 1179 if (flag & V_ACE_MASK) 1180 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1181 else 1182 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1183 1184 ZFS_EXIT(zfsvfs); 1185 return (error); 1186 } 1187 1188 /* 1189 * If vnode is for a device return a specfs vnode instead. 1190 */ 1191 static int 1192 specvp_check(vnode_t **vpp, cred_t *cr) 1193 { 1194 int error = 0; 1195 1196 if (IS_DEVVP(*vpp)) { 1197 struct vnode *svp; 1198 1199 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1200 VN_RELE(*vpp); 1201 if (svp == NULL) 1202 error = SET_ERROR(ENOSYS); 1203 *vpp = svp; 1204 } 1205 return (error); 1206 } 1207 1208 1209 /* 1210 * Lookup an entry in a directory, or an extended attribute directory. 1211 * If it exists, return a held vnode reference for it. 1212 * 1213 * IN: dvp - vnode of directory to search. 1214 * nm - name of entry to lookup. 1215 * pnp - full pathname to lookup [UNUSED]. 1216 * flags - LOOKUP_XATTR set if looking for an attribute. 1217 * rdir - root directory vnode [UNUSED]. 1218 * cr - credentials of caller. 1219 * ct - caller context 1220 * direntflags - directory lookup flags 1221 * realpnp - returned pathname. 1222 * 1223 * OUT: vpp - vnode of located entry, NULL if not found. 1224 * 1225 * RETURN: 0 on success, error code on failure. 1226 * 1227 * Timestamps: 1228 * NA 1229 */ 1230 /* ARGSUSED */ 1231 static int 1232 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1233 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1234 int *direntflags, pathname_t *realpnp) 1235 { 1236 znode_t *zdp = VTOZ(dvp); 1237 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1238 int error = 0; 1239 1240 /* 1241 * Fast path lookup, however we must skip DNLC lookup 1242 * for case folding or normalizing lookups because the 1243 * DNLC code only stores the passed in name. This means 1244 * creating 'a' and removing 'A' on a case insensitive 1245 * file system would work, but DNLC still thinks 'a' 1246 * exists and won't let you create it again on the next 1247 * pass through fast path. 1248 */ 1249 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1250 1251 if (dvp->v_type != VDIR) { 1252 return (SET_ERROR(ENOTDIR)); 1253 } else if (zdp->z_sa_hdl == NULL) { 1254 return (SET_ERROR(EIO)); 1255 } 1256 1257 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1258 error = zfs_fastaccesschk_execute(zdp, cr); 1259 if (!error) { 1260 *vpp = dvp; 1261 VN_HOLD(*vpp); 1262 return (0); 1263 } 1264 return (error); 1265 } else if (!zdp->z_zfsvfs->z_norm && 1266 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) { 1267 1268 vnode_t *tvp = dnlc_lookup(dvp, nm); 1269 1270 if (tvp) { 1271 error = zfs_fastaccesschk_execute(zdp, cr); 1272 if (error) { 1273 VN_RELE(tvp); 1274 return (error); 1275 } 1276 if (tvp == DNLC_NO_VNODE) { 1277 VN_RELE(tvp); 1278 return (SET_ERROR(ENOENT)); 1279 } else { 1280 *vpp = tvp; 1281 return (specvp_check(vpp, cr)); 1282 } 1283 } 1284 } 1285 } 1286 1287 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1288 1289 ZFS_ENTER(zfsvfs); 1290 ZFS_VERIFY_ZP(zdp); 1291 1292 *vpp = NULL; 1293 1294 if (flags & LOOKUP_XATTR) { 1295 /* 1296 * If the xattr property is off, refuse the lookup request. 1297 */ 1298 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1299 ZFS_EXIT(zfsvfs); 1300 return (SET_ERROR(EINVAL)); 1301 } 1302 1303 /* 1304 * We don't allow recursive attributes.. 1305 * Maybe someday we will. 1306 */ 1307 if (zdp->z_pflags & ZFS_XATTR) { 1308 ZFS_EXIT(zfsvfs); 1309 return (SET_ERROR(EINVAL)); 1310 } 1311 1312 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1313 ZFS_EXIT(zfsvfs); 1314 return (error); 1315 } 1316 1317 /* 1318 * Do we have permission to get into attribute directory? 1319 */ 1320 1321 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1322 B_FALSE, cr)) { 1323 VN_RELE(*vpp); 1324 *vpp = NULL; 1325 } 1326 1327 ZFS_EXIT(zfsvfs); 1328 return (error); 1329 } 1330 1331 if (dvp->v_type != VDIR) { 1332 ZFS_EXIT(zfsvfs); 1333 return (SET_ERROR(ENOTDIR)); 1334 } 1335 1336 /* 1337 * Check accessibility of directory. 1338 */ 1339 1340 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1341 ZFS_EXIT(zfsvfs); 1342 return (error); 1343 } 1344 1345 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1346 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1347 ZFS_EXIT(zfsvfs); 1348 return (SET_ERROR(EILSEQ)); 1349 } 1350 1351 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1352 if (error == 0) 1353 error = specvp_check(vpp, cr); 1354 1355 ZFS_EXIT(zfsvfs); 1356 return (error); 1357 } 1358 1359 /* 1360 * Attempt to create a new entry in a directory. If the entry 1361 * already exists, truncate the file if permissible, else return 1362 * an error. Return the vp of the created or trunc'd file. 1363 * 1364 * IN: dvp - vnode of directory to put new file entry in. 1365 * name - name of new file entry. 1366 * vap - attributes of new file. 1367 * excl - flag indicating exclusive or non-exclusive mode. 1368 * mode - mode to open file with. 1369 * cr - credentials of caller. 1370 * flag - large file flag [UNUSED]. 1371 * ct - caller context 1372 * vsecp - ACL to be set 1373 * 1374 * OUT: vpp - vnode of created or trunc'd entry. 1375 * 1376 * RETURN: 0 on success, error code on failure. 1377 * 1378 * Timestamps: 1379 * dvp - ctime|mtime updated if new entry created 1380 * vp - ctime|mtime always, atime if new 1381 */ 1382 1383 /* ARGSUSED */ 1384 static int 1385 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1386 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1387 vsecattr_t *vsecp) 1388 { 1389 znode_t *zp, *dzp = VTOZ(dvp); 1390 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1391 zilog_t *zilog; 1392 objset_t *os; 1393 zfs_dirlock_t *dl; 1394 dmu_tx_t *tx; 1395 int error; 1396 ksid_t *ksid; 1397 uid_t uid; 1398 gid_t gid = crgetgid(cr); 1399 zfs_acl_ids_t acl_ids; 1400 boolean_t fuid_dirtied; 1401 boolean_t have_acl = B_FALSE; 1402 boolean_t waited = B_FALSE; 1403 1404 /* 1405 * If we have an ephemeral id, ACL, or XVATTR then 1406 * make sure file system is at proper version 1407 */ 1408 1409 ksid = crgetsid(cr, KSID_OWNER); 1410 if (ksid) 1411 uid = ksid_getid(ksid); 1412 else 1413 uid = crgetuid(cr); 1414 1415 if (zfsvfs->z_use_fuids == B_FALSE && 1416 (vsecp || (vap->va_mask & AT_XVATTR) || 1417 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1418 return (SET_ERROR(EINVAL)); 1419 1420 ZFS_ENTER(zfsvfs); 1421 ZFS_VERIFY_ZP(dzp); 1422 os = zfsvfs->z_os; 1423 zilog = zfsvfs->z_log; 1424 1425 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1426 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1427 ZFS_EXIT(zfsvfs); 1428 return (SET_ERROR(EILSEQ)); 1429 } 1430 1431 if (vap->va_mask & AT_XVATTR) { 1432 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1433 crgetuid(cr), cr, vap->va_type)) != 0) { 1434 ZFS_EXIT(zfsvfs); 1435 return (error); 1436 } 1437 } 1438 top: 1439 *vpp = NULL; 1440 1441 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1442 vap->va_mode &= ~VSVTX; 1443 1444 if (*name == '\0') { 1445 /* 1446 * Null component name refers to the directory itself. 1447 */ 1448 VN_HOLD(dvp); 1449 zp = dzp; 1450 dl = NULL; 1451 error = 0; 1452 } else { 1453 /* possible VN_HOLD(zp) */ 1454 int zflg = 0; 1455 1456 if (flag & FIGNORECASE) 1457 zflg |= ZCILOOK; 1458 1459 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1460 NULL, NULL); 1461 if (error) { 1462 if (have_acl) 1463 zfs_acl_ids_free(&acl_ids); 1464 if (strcmp(name, "..") == 0) 1465 error = SET_ERROR(EISDIR); 1466 ZFS_EXIT(zfsvfs); 1467 return (error); 1468 } 1469 } 1470 1471 if (zp == NULL) { 1472 uint64_t txtype; 1473 1474 /* 1475 * Create a new file object and update the directory 1476 * to reference it. 1477 */ 1478 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1479 if (have_acl) 1480 zfs_acl_ids_free(&acl_ids); 1481 goto out; 1482 } 1483 1484 /* 1485 * We only support the creation of regular files in 1486 * extended attribute directories. 1487 */ 1488 1489 if ((dzp->z_pflags & ZFS_XATTR) && 1490 (vap->va_type != VREG)) { 1491 if (have_acl) 1492 zfs_acl_ids_free(&acl_ids); 1493 error = SET_ERROR(EINVAL); 1494 goto out; 1495 } 1496 1497 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1498 cr, vsecp, &acl_ids)) != 0) 1499 goto out; 1500 have_acl = B_TRUE; 1501 1502 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1503 zfs_acl_ids_free(&acl_ids); 1504 error = SET_ERROR(EDQUOT); 1505 goto out; 1506 } 1507 1508 tx = dmu_tx_create(os); 1509 1510 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1511 ZFS_SA_BASE_ATTR_SIZE); 1512 1513 fuid_dirtied = zfsvfs->z_fuid_dirty; 1514 if (fuid_dirtied) 1515 zfs_fuid_txhold(zfsvfs, tx); 1516 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1517 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1518 if (!zfsvfs->z_use_sa && 1519 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1520 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1521 0, acl_ids.z_aclp->z_acl_bytes); 1522 } 1523 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1524 if (error) { 1525 zfs_dirent_unlock(dl); 1526 if (error == ERESTART) { 1527 waited = B_TRUE; 1528 dmu_tx_wait(tx); 1529 dmu_tx_abort(tx); 1530 goto top; 1531 } 1532 zfs_acl_ids_free(&acl_ids); 1533 dmu_tx_abort(tx); 1534 ZFS_EXIT(zfsvfs); 1535 return (error); 1536 } 1537 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1538 1539 if (fuid_dirtied) 1540 zfs_fuid_sync(zfsvfs, tx); 1541 1542 (void) zfs_link_create(dl, zp, tx, ZNEW); 1543 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1544 if (flag & FIGNORECASE) 1545 txtype |= TX_CI; 1546 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1547 vsecp, acl_ids.z_fuidp, vap); 1548 zfs_acl_ids_free(&acl_ids); 1549 dmu_tx_commit(tx); 1550 } else { 1551 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1552 1553 if (have_acl) 1554 zfs_acl_ids_free(&acl_ids); 1555 have_acl = B_FALSE; 1556 1557 /* 1558 * A directory entry already exists for this name. 1559 */ 1560 /* 1561 * Can't truncate an existing file if in exclusive mode. 1562 */ 1563 if (excl == EXCL) { 1564 error = SET_ERROR(EEXIST); 1565 goto out; 1566 } 1567 /* 1568 * Can't open a directory for writing. 1569 */ 1570 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1571 error = SET_ERROR(EISDIR); 1572 goto out; 1573 } 1574 /* 1575 * Verify requested access to file. 1576 */ 1577 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1578 goto out; 1579 } 1580 1581 mutex_enter(&dzp->z_lock); 1582 dzp->z_seq++; 1583 mutex_exit(&dzp->z_lock); 1584 1585 /* 1586 * Truncate regular files if requested. 1587 */ 1588 if ((ZTOV(zp)->v_type == VREG) && 1589 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1590 /* we can't hold any locks when calling zfs_freesp() */ 1591 zfs_dirent_unlock(dl); 1592 dl = NULL; 1593 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1594 if (error == 0) { 1595 vnevent_create(ZTOV(zp), ct); 1596 } 1597 } 1598 } 1599 out: 1600 1601 if (dl) 1602 zfs_dirent_unlock(dl); 1603 1604 if (error) { 1605 if (zp) 1606 VN_RELE(ZTOV(zp)); 1607 } else { 1608 *vpp = ZTOV(zp); 1609 error = specvp_check(vpp, cr); 1610 } 1611 1612 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1613 zil_commit(zilog, 0); 1614 1615 ZFS_EXIT(zfsvfs); 1616 return (error); 1617 } 1618 1619 /* 1620 * Remove an entry from a directory. 1621 * 1622 * IN: dvp - vnode of directory to remove entry from. 1623 * name - name of entry to remove. 1624 * cr - credentials of caller. 1625 * ct - caller context 1626 * flags - case flags 1627 * 1628 * RETURN: 0 on success, error code on failure. 1629 * 1630 * Timestamps: 1631 * dvp - ctime|mtime 1632 * vp - ctime (if nlink > 0) 1633 */ 1634 1635 uint64_t null_xattr = 0; 1636 1637 /*ARGSUSED*/ 1638 static int 1639 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1640 int flags) 1641 { 1642 znode_t *zp, *dzp = VTOZ(dvp); 1643 znode_t *xzp; 1644 vnode_t *vp; 1645 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1646 zilog_t *zilog; 1647 uint64_t acl_obj, xattr_obj; 1648 uint64_t xattr_obj_unlinked = 0; 1649 uint64_t obj = 0; 1650 zfs_dirlock_t *dl; 1651 dmu_tx_t *tx; 1652 boolean_t may_delete_now, delete_now = FALSE; 1653 boolean_t unlinked, toobig = FALSE; 1654 uint64_t txtype; 1655 pathname_t *realnmp = NULL; 1656 pathname_t realnm; 1657 int error; 1658 int zflg = ZEXISTS; 1659 boolean_t waited = B_FALSE; 1660 1661 ZFS_ENTER(zfsvfs); 1662 ZFS_VERIFY_ZP(dzp); 1663 zilog = zfsvfs->z_log; 1664 1665 if (flags & FIGNORECASE) { 1666 zflg |= ZCILOOK; 1667 pn_alloc(&realnm); 1668 realnmp = &realnm; 1669 } 1670 1671 top: 1672 xattr_obj = 0; 1673 xzp = NULL; 1674 /* 1675 * Attempt to lock directory; fail if entry doesn't exist. 1676 */ 1677 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1678 NULL, realnmp)) { 1679 if (realnmp) 1680 pn_free(realnmp); 1681 ZFS_EXIT(zfsvfs); 1682 return (error); 1683 } 1684 1685 vp = ZTOV(zp); 1686 1687 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1688 goto out; 1689 } 1690 1691 /* 1692 * Need to use rmdir for removing directories. 1693 */ 1694 if (vp->v_type == VDIR) { 1695 error = SET_ERROR(EPERM); 1696 goto out; 1697 } 1698 1699 vnevent_remove(vp, dvp, name, ct); 1700 1701 if (realnmp) 1702 dnlc_remove(dvp, realnmp->pn_buf); 1703 else 1704 dnlc_remove(dvp, name); 1705 1706 mutex_enter(&vp->v_lock); 1707 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1708 mutex_exit(&vp->v_lock); 1709 1710 /* 1711 * We may delete the znode now, or we may put it in the unlinked set; 1712 * it depends on whether we're the last link, and on whether there are 1713 * other holds on the vnode. So we dmu_tx_hold() the right things to 1714 * allow for either case. 1715 */ 1716 obj = zp->z_id; 1717 tx = dmu_tx_create(zfsvfs->z_os); 1718 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1719 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1720 zfs_sa_upgrade_txholds(tx, zp); 1721 zfs_sa_upgrade_txholds(tx, dzp); 1722 if (may_delete_now) { 1723 toobig = 1724 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1725 /* if the file is too big, only hold_free a token amount */ 1726 dmu_tx_hold_free(tx, zp->z_id, 0, 1727 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1728 } 1729 1730 /* are there any extended attributes? */ 1731 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1732 &xattr_obj, sizeof (xattr_obj)); 1733 if (error == 0 && xattr_obj) { 1734 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1735 ASSERT0(error); 1736 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1737 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1738 } 1739 1740 mutex_enter(&zp->z_lock); 1741 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1742 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1743 mutex_exit(&zp->z_lock); 1744 1745 /* charge as an update -- would be nice not to charge at all */ 1746 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1747 1748 /* 1749 * Mark this transaction as typically resulting in a net free of space 1750 */ 1751 dmu_tx_mark_netfree(tx); 1752 1753 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1754 if (error) { 1755 zfs_dirent_unlock(dl); 1756 VN_RELE(vp); 1757 if (xzp) 1758 VN_RELE(ZTOV(xzp)); 1759 if (error == ERESTART) { 1760 waited = B_TRUE; 1761 dmu_tx_wait(tx); 1762 dmu_tx_abort(tx); 1763 goto top; 1764 } 1765 if (realnmp) 1766 pn_free(realnmp); 1767 dmu_tx_abort(tx); 1768 ZFS_EXIT(zfsvfs); 1769 return (error); 1770 } 1771 1772 /* 1773 * Remove the directory entry. 1774 */ 1775 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1776 1777 if (error) { 1778 dmu_tx_commit(tx); 1779 goto out; 1780 } 1781 1782 if (unlinked) { 1783 /* 1784 * Hold z_lock so that we can make sure that the ACL obj 1785 * hasn't changed. Could have been deleted due to 1786 * zfs_sa_upgrade(). 1787 */ 1788 mutex_enter(&zp->z_lock); 1789 mutex_enter(&vp->v_lock); 1790 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1791 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1792 delete_now = may_delete_now && !toobig && 1793 vp->v_count == 1 && !vn_has_cached_data(vp) && 1794 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1795 acl_obj; 1796 mutex_exit(&vp->v_lock); 1797 } 1798 1799 if (delete_now) { 1800 if (xattr_obj_unlinked) { 1801 ASSERT3U(xzp->z_links, ==, 2); 1802 mutex_enter(&xzp->z_lock); 1803 xzp->z_unlinked = 1; 1804 xzp->z_links = 0; 1805 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1806 &xzp->z_links, sizeof (xzp->z_links), tx); 1807 ASSERT3U(error, ==, 0); 1808 mutex_exit(&xzp->z_lock); 1809 zfs_unlinked_add(xzp, tx); 1810 1811 if (zp->z_is_sa) 1812 error = sa_remove(zp->z_sa_hdl, 1813 SA_ZPL_XATTR(zfsvfs), tx); 1814 else 1815 error = sa_update(zp->z_sa_hdl, 1816 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1817 sizeof (uint64_t), tx); 1818 ASSERT0(error); 1819 } 1820 mutex_enter(&vp->v_lock); 1821 VN_RELE_LOCKED(vp); 1822 ASSERT0(vp->v_count); 1823 mutex_exit(&vp->v_lock); 1824 mutex_exit(&zp->z_lock); 1825 zfs_znode_delete(zp, tx); 1826 } else if (unlinked) { 1827 mutex_exit(&zp->z_lock); 1828 zfs_unlinked_add(zp, tx); 1829 } 1830 1831 txtype = TX_REMOVE; 1832 if (flags & FIGNORECASE) 1833 txtype |= TX_CI; 1834 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1835 1836 dmu_tx_commit(tx); 1837 out: 1838 if (realnmp) 1839 pn_free(realnmp); 1840 1841 zfs_dirent_unlock(dl); 1842 1843 if (!delete_now) 1844 VN_RELE(vp); 1845 if (xzp) 1846 VN_RELE(ZTOV(xzp)); 1847 1848 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1849 zil_commit(zilog, 0); 1850 1851 ZFS_EXIT(zfsvfs); 1852 return (error); 1853 } 1854 1855 /* 1856 * Create a new directory and insert it into dvp using the name 1857 * provided. Return a pointer to the inserted directory. 1858 * 1859 * IN: dvp - vnode of directory to add subdir to. 1860 * dirname - name of new directory. 1861 * vap - attributes of new directory. 1862 * cr - credentials of caller. 1863 * ct - caller context 1864 * flags - case flags 1865 * vsecp - ACL to be set 1866 * 1867 * OUT: vpp - vnode of created directory. 1868 * 1869 * RETURN: 0 on success, error code on failure. 1870 * 1871 * Timestamps: 1872 * dvp - ctime|mtime updated 1873 * vp - ctime|mtime|atime updated 1874 */ 1875 /*ARGSUSED*/ 1876 static int 1877 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1878 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1879 { 1880 znode_t *zp, *dzp = VTOZ(dvp); 1881 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1882 zilog_t *zilog; 1883 zfs_dirlock_t *dl; 1884 uint64_t txtype; 1885 dmu_tx_t *tx; 1886 int error; 1887 int zf = ZNEW; 1888 ksid_t *ksid; 1889 uid_t uid; 1890 gid_t gid = crgetgid(cr); 1891 zfs_acl_ids_t acl_ids; 1892 boolean_t fuid_dirtied; 1893 boolean_t waited = B_FALSE; 1894 1895 ASSERT(vap->va_type == VDIR); 1896 1897 /* 1898 * If we have an ephemeral id, ACL, or XVATTR then 1899 * make sure file system is at proper version 1900 */ 1901 1902 ksid = crgetsid(cr, KSID_OWNER); 1903 if (ksid) 1904 uid = ksid_getid(ksid); 1905 else 1906 uid = crgetuid(cr); 1907 if (zfsvfs->z_use_fuids == B_FALSE && 1908 (vsecp || (vap->va_mask & AT_XVATTR) || 1909 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1910 return (SET_ERROR(EINVAL)); 1911 1912 ZFS_ENTER(zfsvfs); 1913 ZFS_VERIFY_ZP(dzp); 1914 zilog = zfsvfs->z_log; 1915 1916 if (dzp->z_pflags & ZFS_XATTR) { 1917 ZFS_EXIT(zfsvfs); 1918 return (SET_ERROR(EINVAL)); 1919 } 1920 1921 if (zfsvfs->z_utf8 && u8_validate(dirname, 1922 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1923 ZFS_EXIT(zfsvfs); 1924 return (SET_ERROR(EILSEQ)); 1925 } 1926 if (flags & FIGNORECASE) 1927 zf |= ZCILOOK; 1928 1929 if (vap->va_mask & AT_XVATTR) { 1930 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1931 crgetuid(cr), cr, vap->va_type)) != 0) { 1932 ZFS_EXIT(zfsvfs); 1933 return (error); 1934 } 1935 } 1936 1937 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1938 vsecp, &acl_ids)) != 0) { 1939 ZFS_EXIT(zfsvfs); 1940 return (error); 1941 } 1942 /* 1943 * First make sure the new directory doesn't exist. 1944 * 1945 * Existence is checked first to make sure we don't return 1946 * EACCES instead of EEXIST which can cause some applications 1947 * to fail. 1948 */ 1949 top: 1950 *vpp = NULL; 1951 1952 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1953 NULL, NULL)) { 1954 zfs_acl_ids_free(&acl_ids); 1955 ZFS_EXIT(zfsvfs); 1956 return (error); 1957 } 1958 1959 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1960 zfs_acl_ids_free(&acl_ids); 1961 zfs_dirent_unlock(dl); 1962 ZFS_EXIT(zfsvfs); 1963 return (error); 1964 } 1965 1966 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1967 zfs_acl_ids_free(&acl_ids); 1968 zfs_dirent_unlock(dl); 1969 ZFS_EXIT(zfsvfs); 1970 return (SET_ERROR(EDQUOT)); 1971 } 1972 1973 /* 1974 * Add a new entry to the directory. 1975 */ 1976 tx = dmu_tx_create(zfsvfs->z_os); 1977 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1978 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1979 fuid_dirtied = zfsvfs->z_fuid_dirty; 1980 if (fuid_dirtied) 1981 zfs_fuid_txhold(zfsvfs, tx); 1982 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1983 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1984 acl_ids.z_aclp->z_acl_bytes); 1985 } 1986 1987 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1988 ZFS_SA_BASE_ATTR_SIZE); 1989 1990 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1991 if (error) { 1992 zfs_dirent_unlock(dl); 1993 if (error == ERESTART) { 1994 waited = B_TRUE; 1995 dmu_tx_wait(tx); 1996 dmu_tx_abort(tx); 1997 goto top; 1998 } 1999 zfs_acl_ids_free(&acl_ids); 2000 dmu_tx_abort(tx); 2001 ZFS_EXIT(zfsvfs); 2002 return (error); 2003 } 2004 2005 /* 2006 * Create new node. 2007 */ 2008 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 2009 2010 if (fuid_dirtied) 2011 zfs_fuid_sync(zfsvfs, tx); 2012 2013 /* 2014 * Now put new name in parent dir. 2015 */ 2016 (void) zfs_link_create(dl, zp, tx, ZNEW); 2017 2018 *vpp = ZTOV(zp); 2019 2020 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2021 if (flags & FIGNORECASE) 2022 txtype |= TX_CI; 2023 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2024 acl_ids.z_fuidp, vap); 2025 2026 zfs_acl_ids_free(&acl_ids); 2027 2028 dmu_tx_commit(tx); 2029 2030 zfs_dirent_unlock(dl); 2031 2032 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2033 zil_commit(zilog, 0); 2034 2035 ZFS_EXIT(zfsvfs); 2036 return (0); 2037 } 2038 2039 /* 2040 * Remove a directory subdir entry. If the current working 2041 * directory is the same as the subdir to be removed, the 2042 * remove will fail. 2043 * 2044 * IN: dvp - vnode of directory to remove from. 2045 * name - name of directory to be removed. 2046 * cwd - vnode of current working directory. 2047 * cr - credentials of caller. 2048 * ct - caller context 2049 * flags - case flags 2050 * 2051 * RETURN: 0 on success, error code on failure. 2052 * 2053 * Timestamps: 2054 * dvp - ctime|mtime updated 2055 */ 2056 /*ARGSUSED*/ 2057 static int 2058 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2059 caller_context_t *ct, int flags) 2060 { 2061 znode_t *dzp = VTOZ(dvp); 2062 znode_t *zp; 2063 vnode_t *vp; 2064 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2065 zilog_t *zilog; 2066 zfs_dirlock_t *dl; 2067 dmu_tx_t *tx; 2068 int error; 2069 int zflg = ZEXISTS; 2070 boolean_t waited = B_FALSE; 2071 2072 ZFS_ENTER(zfsvfs); 2073 ZFS_VERIFY_ZP(dzp); 2074 zilog = zfsvfs->z_log; 2075 2076 if (flags & FIGNORECASE) 2077 zflg |= ZCILOOK; 2078 top: 2079 zp = NULL; 2080 2081 /* 2082 * Attempt to lock directory; fail if entry doesn't exist. 2083 */ 2084 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2085 NULL, NULL)) { 2086 ZFS_EXIT(zfsvfs); 2087 return (error); 2088 } 2089 2090 vp = ZTOV(zp); 2091 2092 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2093 goto out; 2094 } 2095 2096 if (vp->v_type != VDIR) { 2097 error = SET_ERROR(ENOTDIR); 2098 goto out; 2099 } 2100 2101 if (vp == cwd) { 2102 error = SET_ERROR(EINVAL); 2103 goto out; 2104 } 2105 2106 vnevent_rmdir(vp, dvp, name, ct); 2107 2108 /* 2109 * Grab a lock on the directory to make sure that noone is 2110 * trying to add (or lookup) entries while we are removing it. 2111 */ 2112 rw_enter(&zp->z_name_lock, RW_WRITER); 2113 2114 /* 2115 * Grab a lock on the parent pointer to make sure we play well 2116 * with the treewalk and directory rename code. 2117 */ 2118 rw_enter(&zp->z_parent_lock, RW_WRITER); 2119 2120 tx = dmu_tx_create(zfsvfs->z_os); 2121 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2122 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2123 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2124 zfs_sa_upgrade_txholds(tx, zp); 2125 zfs_sa_upgrade_txholds(tx, dzp); 2126 dmu_tx_mark_netfree(tx); 2127 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2128 if (error) { 2129 rw_exit(&zp->z_parent_lock); 2130 rw_exit(&zp->z_name_lock); 2131 zfs_dirent_unlock(dl); 2132 VN_RELE(vp); 2133 if (error == ERESTART) { 2134 waited = B_TRUE; 2135 dmu_tx_wait(tx); 2136 dmu_tx_abort(tx); 2137 goto top; 2138 } 2139 dmu_tx_abort(tx); 2140 ZFS_EXIT(zfsvfs); 2141 return (error); 2142 } 2143 2144 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2145 2146 if (error == 0) { 2147 uint64_t txtype = TX_RMDIR; 2148 if (flags & FIGNORECASE) 2149 txtype |= TX_CI; 2150 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2151 } 2152 2153 dmu_tx_commit(tx); 2154 2155 rw_exit(&zp->z_parent_lock); 2156 rw_exit(&zp->z_name_lock); 2157 out: 2158 zfs_dirent_unlock(dl); 2159 2160 VN_RELE(vp); 2161 2162 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2163 zil_commit(zilog, 0); 2164 2165 ZFS_EXIT(zfsvfs); 2166 return (error); 2167 } 2168 2169 /* 2170 * Read as many directory entries as will fit into the provided 2171 * buffer from the given directory cursor position (specified in 2172 * the uio structure). 2173 * 2174 * IN: vp - vnode of directory to read. 2175 * uio - structure supplying read location, range info, 2176 * and return buffer. 2177 * cr - credentials of caller. 2178 * ct - caller context 2179 * flags - case flags 2180 * 2181 * OUT: uio - updated offset and range, buffer filled. 2182 * eofp - set to true if end-of-file detected. 2183 * 2184 * RETURN: 0 on success, error code on failure. 2185 * 2186 * Timestamps: 2187 * vp - atime updated 2188 * 2189 * Note that the low 4 bits of the cookie returned by zap is always zero. 2190 * This allows us to use the low range for "special" directory entries: 2191 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2192 * we use the offset 2 for the '.zfs' directory. 2193 */ 2194 /* ARGSUSED */ 2195 static int 2196 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2197 caller_context_t *ct, int flags) 2198 { 2199 znode_t *zp = VTOZ(vp); 2200 iovec_t *iovp; 2201 edirent_t *eodp; 2202 dirent64_t *odp; 2203 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2204 objset_t *os; 2205 caddr_t outbuf; 2206 size_t bufsize; 2207 zap_cursor_t zc; 2208 zap_attribute_t zap; 2209 uint_t bytes_wanted; 2210 uint64_t offset; /* must be unsigned; checks for < 1 */ 2211 uint64_t parent; 2212 int local_eof; 2213 int outcount; 2214 int error; 2215 uint8_t prefetch; 2216 boolean_t check_sysattrs; 2217 2218 ZFS_ENTER(zfsvfs); 2219 ZFS_VERIFY_ZP(zp); 2220 2221 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2222 &parent, sizeof (parent))) != 0) { 2223 ZFS_EXIT(zfsvfs); 2224 return (error); 2225 } 2226 2227 /* 2228 * If we are not given an eof variable, 2229 * use a local one. 2230 */ 2231 if (eofp == NULL) 2232 eofp = &local_eof; 2233 2234 /* 2235 * Check for valid iov_len. 2236 */ 2237 if (uio->uio_iov->iov_len <= 0) { 2238 ZFS_EXIT(zfsvfs); 2239 return (SET_ERROR(EINVAL)); 2240 } 2241 2242 /* 2243 * Quit if directory has been removed (posix) 2244 */ 2245 if ((*eofp = zp->z_unlinked) != 0) { 2246 ZFS_EXIT(zfsvfs); 2247 return (0); 2248 } 2249 2250 error = 0; 2251 os = zfsvfs->z_os; 2252 offset = uio->uio_loffset; 2253 prefetch = zp->z_zn_prefetch; 2254 2255 /* 2256 * Initialize the iterator cursor. 2257 */ 2258 if (offset <= 3) { 2259 /* 2260 * Start iteration from the beginning of the directory. 2261 */ 2262 zap_cursor_init(&zc, os, zp->z_id); 2263 } else { 2264 /* 2265 * The offset is a serialized cursor. 2266 */ 2267 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2268 } 2269 2270 /* 2271 * Get space to change directory entries into fs independent format. 2272 */ 2273 iovp = uio->uio_iov; 2274 bytes_wanted = iovp->iov_len; 2275 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2276 bufsize = bytes_wanted; 2277 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2278 odp = (struct dirent64 *)outbuf; 2279 } else { 2280 bufsize = bytes_wanted; 2281 outbuf = NULL; 2282 odp = (struct dirent64 *)iovp->iov_base; 2283 } 2284 eodp = (struct edirent *)odp; 2285 2286 /* 2287 * If this VFS supports the system attribute view interface; and 2288 * we're looking at an extended attribute directory; and we care 2289 * about normalization conflicts on this vfs; then we must check 2290 * for normalization conflicts with the sysattr name space. 2291 */ 2292 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2293 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2294 (flags & V_RDDIR_ENTFLAGS); 2295 2296 /* 2297 * Transform to file-system independent format 2298 */ 2299 outcount = 0; 2300 while (outcount < bytes_wanted) { 2301 ino64_t objnum; 2302 ushort_t reclen; 2303 off64_t *next = NULL; 2304 2305 /* 2306 * Special case `.', `..', and `.zfs'. 2307 */ 2308 if (offset == 0) { 2309 (void) strcpy(zap.za_name, "."); 2310 zap.za_normalization_conflict = 0; 2311 objnum = zp->z_id; 2312 } else if (offset == 1) { 2313 (void) strcpy(zap.za_name, ".."); 2314 zap.za_normalization_conflict = 0; 2315 objnum = parent; 2316 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2317 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2318 zap.za_normalization_conflict = 0; 2319 objnum = ZFSCTL_INO_ROOT; 2320 } else { 2321 /* 2322 * Grab next entry. 2323 */ 2324 if (error = zap_cursor_retrieve(&zc, &zap)) { 2325 if ((*eofp = (error == ENOENT)) != 0) 2326 break; 2327 else 2328 goto update; 2329 } 2330 2331 if (zap.za_integer_length != 8 || 2332 zap.za_num_integers != 1) { 2333 cmn_err(CE_WARN, "zap_readdir: bad directory " 2334 "entry, obj = %lld, offset = %lld\n", 2335 (u_longlong_t)zp->z_id, 2336 (u_longlong_t)offset); 2337 error = SET_ERROR(ENXIO); 2338 goto update; 2339 } 2340 2341 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2342 /* 2343 * MacOS X can extract the object type here such as: 2344 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2345 */ 2346 2347 if (check_sysattrs && !zap.za_normalization_conflict) { 2348 zap.za_normalization_conflict = 2349 xattr_sysattr_casechk(zap.za_name); 2350 } 2351 } 2352 2353 if (flags & V_RDDIR_ACCFILTER) { 2354 /* 2355 * If we have no access at all, don't include 2356 * this entry in the returned information 2357 */ 2358 znode_t *ezp; 2359 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2360 goto skip_entry; 2361 if (!zfs_has_access(ezp, cr)) { 2362 VN_RELE(ZTOV(ezp)); 2363 goto skip_entry; 2364 } 2365 VN_RELE(ZTOV(ezp)); 2366 } 2367 2368 if (flags & V_RDDIR_ENTFLAGS) 2369 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2370 else 2371 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2372 2373 /* 2374 * Will this entry fit in the buffer? 2375 */ 2376 if (outcount + reclen > bufsize) { 2377 /* 2378 * Did we manage to fit anything in the buffer? 2379 */ 2380 if (!outcount) { 2381 error = SET_ERROR(EINVAL); 2382 goto update; 2383 } 2384 break; 2385 } 2386 if (flags & V_RDDIR_ENTFLAGS) { 2387 /* 2388 * Add extended flag entry: 2389 */ 2390 eodp->ed_ino = objnum; 2391 eodp->ed_reclen = reclen; 2392 /* NOTE: ed_off is the offset for the *next* entry */ 2393 next = &(eodp->ed_off); 2394 eodp->ed_eflags = zap.za_normalization_conflict ? 2395 ED_CASE_CONFLICT : 0; 2396 (void) strncpy(eodp->ed_name, zap.za_name, 2397 EDIRENT_NAMELEN(reclen)); 2398 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2399 } else { 2400 /* 2401 * Add normal entry: 2402 */ 2403 odp->d_ino = objnum; 2404 odp->d_reclen = reclen; 2405 /* NOTE: d_off is the offset for the *next* entry */ 2406 next = &(odp->d_off); 2407 (void) strncpy(odp->d_name, zap.za_name, 2408 DIRENT64_NAMELEN(reclen)); 2409 odp = (dirent64_t *)((intptr_t)odp + reclen); 2410 } 2411 outcount += reclen; 2412 2413 ASSERT(outcount <= bufsize); 2414 2415 /* Prefetch znode */ 2416 if (prefetch) 2417 dmu_prefetch(os, objnum, 0, 0, 0, 2418 ZIO_PRIORITY_SYNC_READ); 2419 2420 skip_entry: 2421 /* 2422 * Move to the next entry, fill in the previous offset. 2423 */ 2424 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2425 zap_cursor_advance(&zc); 2426 offset = zap_cursor_serialize(&zc); 2427 } else { 2428 offset += 1; 2429 } 2430 if (next) 2431 *next = offset; 2432 } 2433 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2434 2435 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2436 iovp->iov_base += outcount; 2437 iovp->iov_len -= outcount; 2438 uio->uio_resid -= outcount; 2439 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2440 /* 2441 * Reset the pointer. 2442 */ 2443 offset = uio->uio_loffset; 2444 } 2445 2446 update: 2447 zap_cursor_fini(&zc); 2448 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2449 kmem_free(outbuf, bufsize); 2450 2451 if (error == ENOENT) 2452 error = 0; 2453 2454 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2455 2456 uio->uio_loffset = offset; 2457 ZFS_EXIT(zfsvfs); 2458 return (error); 2459 } 2460 2461 ulong_t zfs_fsync_sync_cnt = 4; 2462 2463 static int 2464 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2465 { 2466 znode_t *zp = VTOZ(vp); 2467 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2468 2469 /* 2470 * Regardless of whether this is required for standards conformance, 2471 * this is the logical behavior when fsync() is called on a file with 2472 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2473 * going to be pushed out as part of the zil_commit(). 2474 */ 2475 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2476 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2477 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2478 2479 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2480 2481 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2482 ZFS_ENTER(zfsvfs); 2483 ZFS_VERIFY_ZP(zp); 2484 zil_commit(zfsvfs->z_log, zp->z_id); 2485 ZFS_EXIT(zfsvfs); 2486 } 2487 return (0); 2488 } 2489 2490 2491 /* 2492 * Get the requested file attributes and place them in the provided 2493 * vattr structure. 2494 * 2495 * IN: vp - vnode of file. 2496 * vap - va_mask identifies requested attributes. 2497 * If AT_XVATTR set, then optional attrs are requested 2498 * flags - ATTR_NOACLCHECK (CIFS server context) 2499 * cr - credentials of caller. 2500 * ct - caller context 2501 * 2502 * OUT: vap - attribute values. 2503 * 2504 * RETURN: 0 (always succeeds). 2505 */ 2506 /* ARGSUSED */ 2507 static int 2508 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2509 caller_context_t *ct) 2510 { 2511 znode_t *zp = VTOZ(vp); 2512 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2513 int error = 0; 2514 uint64_t links; 2515 uint64_t mtime[2], ctime[2]; 2516 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2517 xoptattr_t *xoap = NULL; 2518 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2519 sa_bulk_attr_t bulk[2]; 2520 int count = 0; 2521 2522 ZFS_ENTER(zfsvfs); 2523 ZFS_VERIFY_ZP(zp); 2524 2525 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2526 2527 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2528 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2529 2530 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2531 ZFS_EXIT(zfsvfs); 2532 return (error); 2533 } 2534 2535 /* 2536 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2537 * Also, if we are the owner don't bother, since owner should 2538 * always be allowed to read basic attributes of file. 2539 */ 2540 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2541 (vap->va_uid != crgetuid(cr))) { 2542 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2543 skipaclchk, cr)) { 2544 ZFS_EXIT(zfsvfs); 2545 return (error); 2546 } 2547 } 2548 2549 /* 2550 * Return all attributes. It's cheaper to provide the answer 2551 * than to determine whether we were asked the question. 2552 */ 2553 2554 mutex_enter(&zp->z_lock); 2555 vap->va_type = vp->v_type; 2556 vap->va_mode = zp->z_mode & MODEMASK; 2557 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2558 vap->va_nodeid = zp->z_id; 2559 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2560 links = zp->z_links + 1; 2561 else 2562 links = zp->z_links; 2563 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2564 vap->va_size = zp->z_size; 2565 vap->va_rdev = vp->v_rdev; 2566 vap->va_seq = zp->z_seq; 2567 2568 /* 2569 * Add in any requested optional attributes and the create time. 2570 * Also set the corresponding bits in the returned attribute bitmap. 2571 */ 2572 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2573 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2574 xoap->xoa_archive = 2575 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2576 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2577 } 2578 2579 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2580 xoap->xoa_readonly = 2581 ((zp->z_pflags & ZFS_READONLY) != 0); 2582 XVA_SET_RTN(xvap, XAT_READONLY); 2583 } 2584 2585 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2586 xoap->xoa_system = 2587 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2588 XVA_SET_RTN(xvap, XAT_SYSTEM); 2589 } 2590 2591 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2592 xoap->xoa_hidden = 2593 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2594 XVA_SET_RTN(xvap, XAT_HIDDEN); 2595 } 2596 2597 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2598 xoap->xoa_nounlink = 2599 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2600 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2601 } 2602 2603 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2604 xoap->xoa_immutable = 2605 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2606 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2607 } 2608 2609 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2610 xoap->xoa_appendonly = 2611 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2612 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2613 } 2614 2615 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2616 xoap->xoa_nodump = 2617 ((zp->z_pflags & ZFS_NODUMP) != 0); 2618 XVA_SET_RTN(xvap, XAT_NODUMP); 2619 } 2620 2621 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2622 xoap->xoa_opaque = 2623 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2624 XVA_SET_RTN(xvap, XAT_OPAQUE); 2625 } 2626 2627 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2628 xoap->xoa_av_quarantined = 2629 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2630 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2631 } 2632 2633 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2634 xoap->xoa_av_modified = 2635 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2636 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2637 } 2638 2639 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2640 vp->v_type == VREG) { 2641 zfs_sa_get_scanstamp(zp, xvap); 2642 } 2643 2644 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2645 uint64_t times[2]; 2646 2647 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2648 times, sizeof (times)); 2649 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2650 XVA_SET_RTN(xvap, XAT_CREATETIME); 2651 } 2652 2653 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2654 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2655 XVA_SET_RTN(xvap, XAT_REPARSE); 2656 } 2657 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2658 xoap->xoa_generation = zp->z_gen; 2659 XVA_SET_RTN(xvap, XAT_GEN); 2660 } 2661 2662 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2663 xoap->xoa_offline = 2664 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2665 XVA_SET_RTN(xvap, XAT_OFFLINE); 2666 } 2667 2668 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2669 xoap->xoa_sparse = 2670 ((zp->z_pflags & ZFS_SPARSE) != 0); 2671 XVA_SET_RTN(xvap, XAT_SPARSE); 2672 } 2673 } 2674 2675 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2676 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2677 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2678 2679 mutex_exit(&zp->z_lock); 2680 2681 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2682 2683 if (zp->z_blksz == 0) { 2684 /* 2685 * Block size hasn't been set; suggest maximal I/O transfers. 2686 */ 2687 vap->va_blksize = zfsvfs->z_max_blksz; 2688 } 2689 2690 ZFS_EXIT(zfsvfs); 2691 return (0); 2692 } 2693 2694 /* 2695 * Set the file attributes to the values contained in the 2696 * vattr structure. 2697 * 2698 * IN: vp - vnode of file to be modified. 2699 * vap - new attribute values. 2700 * If AT_XVATTR set, then optional attrs are being set 2701 * flags - ATTR_UTIME set if non-default time values provided. 2702 * - ATTR_NOACLCHECK (CIFS context only). 2703 * cr - credentials of caller. 2704 * ct - caller context 2705 * 2706 * RETURN: 0 on success, error code on failure. 2707 * 2708 * Timestamps: 2709 * vp - ctime updated, mtime updated if size changed. 2710 */ 2711 /* ARGSUSED */ 2712 static int 2713 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2714 caller_context_t *ct) 2715 { 2716 znode_t *zp = VTOZ(vp); 2717 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2718 zilog_t *zilog; 2719 dmu_tx_t *tx; 2720 vattr_t oldva; 2721 xvattr_t tmpxvattr; 2722 uint_t mask = vap->va_mask; 2723 uint_t saved_mask = 0; 2724 int trim_mask = 0; 2725 uint64_t new_mode; 2726 uint64_t new_uid, new_gid; 2727 uint64_t xattr_obj; 2728 uint64_t mtime[2], ctime[2]; 2729 znode_t *attrzp; 2730 int need_policy = FALSE; 2731 int err, err2; 2732 zfs_fuid_info_t *fuidp = NULL; 2733 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2734 xoptattr_t *xoap; 2735 zfs_acl_t *aclp; 2736 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2737 boolean_t fuid_dirtied = B_FALSE; 2738 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2739 int count = 0, xattr_count = 0; 2740 2741 if (mask == 0) 2742 return (0); 2743 2744 if (mask & AT_NOSET) 2745 return (SET_ERROR(EINVAL)); 2746 2747 ZFS_ENTER(zfsvfs); 2748 ZFS_VERIFY_ZP(zp); 2749 2750 zilog = zfsvfs->z_log; 2751 2752 /* 2753 * Make sure that if we have ephemeral uid/gid or xvattr specified 2754 * that file system is at proper version level 2755 */ 2756 2757 if (zfsvfs->z_use_fuids == B_FALSE && 2758 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2759 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2760 (mask & AT_XVATTR))) { 2761 ZFS_EXIT(zfsvfs); 2762 return (SET_ERROR(EINVAL)); 2763 } 2764 2765 if (mask & AT_SIZE && vp->v_type == VDIR) { 2766 ZFS_EXIT(zfsvfs); 2767 return (SET_ERROR(EISDIR)); 2768 } 2769 2770 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2771 ZFS_EXIT(zfsvfs); 2772 return (SET_ERROR(EINVAL)); 2773 } 2774 2775 /* 2776 * If this is an xvattr_t, then get a pointer to the structure of 2777 * optional attributes. If this is NULL, then we have a vattr_t. 2778 */ 2779 xoap = xva_getxoptattr(xvap); 2780 2781 xva_init(&tmpxvattr); 2782 2783 /* 2784 * Immutable files can only alter immutable bit and atime 2785 */ 2786 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2787 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2788 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2789 ZFS_EXIT(zfsvfs); 2790 return (SET_ERROR(EPERM)); 2791 } 2792 2793 /* 2794 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 2795 */ 2796 2797 /* 2798 * Verify timestamps doesn't overflow 32 bits. 2799 * ZFS can handle large timestamps, but 32bit syscalls can't 2800 * handle times greater than 2039. This check should be removed 2801 * once large timestamps are fully supported. 2802 */ 2803 if (mask & (AT_ATIME | AT_MTIME)) { 2804 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2805 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2806 ZFS_EXIT(zfsvfs); 2807 return (SET_ERROR(EOVERFLOW)); 2808 } 2809 } 2810 2811 top: 2812 attrzp = NULL; 2813 aclp = NULL; 2814 2815 /* Can this be moved to before the top label? */ 2816 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2817 ZFS_EXIT(zfsvfs); 2818 return (SET_ERROR(EROFS)); 2819 } 2820 2821 /* 2822 * First validate permissions 2823 */ 2824 2825 if (mask & AT_SIZE) { 2826 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2827 if (err) { 2828 ZFS_EXIT(zfsvfs); 2829 return (err); 2830 } 2831 /* 2832 * XXX - Note, we are not providing any open 2833 * mode flags here (like FNDELAY), so we may 2834 * block if there are locks present... this 2835 * should be addressed in openat(). 2836 */ 2837 /* XXX - would it be OK to generate a log record here? */ 2838 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2839 if (err) { 2840 ZFS_EXIT(zfsvfs); 2841 return (err); 2842 } 2843 2844 if (vap->va_size == 0) 2845 vnevent_truncate(ZTOV(zp), ct); 2846 } 2847 2848 if (mask & (AT_ATIME|AT_MTIME) || 2849 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2850 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2851 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2852 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2853 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2854 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2855 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2856 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2857 skipaclchk, cr); 2858 } 2859 2860 if (mask & (AT_UID|AT_GID)) { 2861 int idmask = (mask & (AT_UID|AT_GID)); 2862 int take_owner; 2863 int take_group; 2864 2865 /* 2866 * NOTE: even if a new mode is being set, 2867 * we may clear S_ISUID/S_ISGID bits. 2868 */ 2869 2870 if (!(mask & AT_MODE)) 2871 vap->va_mode = zp->z_mode; 2872 2873 /* 2874 * Take ownership or chgrp to group we are a member of 2875 */ 2876 2877 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2878 take_group = (mask & AT_GID) && 2879 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2880 2881 /* 2882 * If both AT_UID and AT_GID are set then take_owner and 2883 * take_group must both be set in order to allow taking 2884 * ownership. 2885 * 2886 * Otherwise, send the check through secpolicy_vnode_setattr() 2887 * 2888 */ 2889 2890 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2891 ((idmask == AT_UID) && take_owner) || 2892 ((idmask == AT_GID) && take_group)) { 2893 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2894 skipaclchk, cr) == 0) { 2895 /* 2896 * Remove setuid/setgid for non-privileged users 2897 */ 2898 secpolicy_setid_clear(vap, cr); 2899 trim_mask = (mask & (AT_UID|AT_GID)); 2900 } else { 2901 need_policy = TRUE; 2902 } 2903 } else { 2904 need_policy = TRUE; 2905 } 2906 } 2907 2908 mutex_enter(&zp->z_lock); 2909 oldva.va_mode = zp->z_mode; 2910 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2911 if (mask & AT_XVATTR) { 2912 /* 2913 * Update xvattr mask to include only those attributes 2914 * that are actually changing. 2915 * 2916 * the bits will be restored prior to actually setting 2917 * the attributes so the caller thinks they were set. 2918 */ 2919 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2920 if (xoap->xoa_appendonly != 2921 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2922 need_policy = TRUE; 2923 } else { 2924 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2925 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2926 } 2927 } 2928 2929 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2930 if (xoap->xoa_nounlink != 2931 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2932 need_policy = TRUE; 2933 } else { 2934 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2935 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2936 } 2937 } 2938 2939 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2940 if (xoap->xoa_immutable != 2941 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2942 need_policy = TRUE; 2943 } else { 2944 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2945 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2946 } 2947 } 2948 2949 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2950 if (xoap->xoa_nodump != 2951 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2952 need_policy = TRUE; 2953 } else { 2954 XVA_CLR_REQ(xvap, XAT_NODUMP); 2955 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2956 } 2957 } 2958 2959 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2960 if (xoap->xoa_av_modified != 2961 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2962 need_policy = TRUE; 2963 } else { 2964 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2965 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2966 } 2967 } 2968 2969 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2970 if ((vp->v_type != VREG && 2971 xoap->xoa_av_quarantined) || 2972 xoap->xoa_av_quarantined != 2973 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2974 need_policy = TRUE; 2975 } else { 2976 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2977 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2978 } 2979 } 2980 2981 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2982 mutex_exit(&zp->z_lock); 2983 ZFS_EXIT(zfsvfs); 2984 return (SET_ERROR(EPERM)); 2985 } 2986 2987 if (need_policy == FALSE && 2988 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2989 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2990 need_policy = TRUE; 2991 } 2992 } 2993 2994 mutex_exit(&zp->z_lock); 2995 2996 if (mask & AT_MODE) { 2997 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2998 err = secpolicy_setid_setsticky_clear(vp, vap, 2999 &oldva, cr); 3000 if (err) { 3001 ZFS_EXIT(zfsvfs); 3002 return (err); 3003 } 3004 trim_mask |= AT_MODE; 3005 } else { 3006 need_policy = TRUE; 3007 } 3008 } 3009 3010 if (need_policy) { 3011 /* 3012 * If trim_mask is set then take ownership 3013 * has been granted or write_acl is present and user 3014 * has the ability to modify mode. In that case remove 3015 * UID|GID and or MODE from mask so that 3016 * secpolicy_vnode_setattr() doesn't revoke it. 3017 */ 3018 3019 if (trim_mask) { 3020 saved_mask = vap->va_mask; 3021 vap->va_mask &= ~trim_mask; 3022 } 3023 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3024 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3025 if (err) { 3026 ZFS_EXIT(zfsvfs); 3027 return (err); 3028 } 3029 3030 if (trim_mask) 3031 vap->va_mask |= saved_mask; 3032 } 3033 3034 /* 3035 * secpolicy_vnode_setattr, or take ownership may have 3036 * changed va_mask 3037 */ 3038 mask = vap->va_mask; 3039 3040 if ((mask & (AT_UID | AT_GID))) { 3041 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3042 &xattr_obj, sizeof (xattr_obj)); 3043 3044 if (err == 0 && xattr_obj) { 3045 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3046 if (err) 3047 goto out2; 3048 } 3049 if (mask & AT_UID) { 3050 new_uid = zfs_fuid_create(zfsvfs, 3051 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3052 if (new_uid != zp->z_uid && 3053 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 3054 if (attrzp) 3055 VN_RELE(ZTOV(attrzp)); 3056 err = SET_ERROR(EDQUOT); 3057 goto out2; 3058 } 3059 } 3060 3061 if (mask & AT_GID) { 3062 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3063 cr, ZFS_GROUP, &fuidp); 3064 if (new_gid != zp->z_gid && 3065 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 3066 if (attrzp) 3067 VN_RELE(ZTOV(attrzp)); 3068 err = SET_ERROR(EDQUOT); 3069 goto out2; 3070 } 3071 } 3072 } 3073 tx = dmu_tx_create(zfsvfs->z_os); 3074 3075 if (mask & AT_MODE) { 3076 uint64_t pmode = zp->z_mode; 3077 uint64_t acl_obj; 3078 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3079 3080 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3081 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3082 err = SET_ERROR(EPERM); 3083 goto out; 3084 } 3085 3086 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3087 goto out; 3088 3089 mutex_enter(&zp->z_lock); 3090 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3091 /* 3092 * Are we upgrading ACL from old V0 format 3093 * to V1 format? 3094 */ 3095 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3096 zfs_znode_acl_version(zp) == 3097 ZFS_ACL_VERSION_INITIAL) { 3098 dmu_tx_hold_free(tx, acl_obj, 0, 3099 DMU_OBJECT_END); 3100 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3101 0, aclp->z_acl_bytes); 3102 } else { 3103 dmu_tx_hold_write(tx, acl_obj, 0, 3104 aclp->z_acl_bytes); 3105 } 3106 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3107 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3108 0, aclp->z_acl_bytes); 3109 } 3110 mutex_exit(&zp->z_lock); 3111 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3112 } else { 3113 if ((mask & AT_XVATTR) && 3114 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3115 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3116 else 3117 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3118 } 3119 3120 if (attrzp) { 3121 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3122 } 3123 3124 fuid_dirtied = zfsvfs->z_fuid_dirty; 3125 if (fuid_dirtied) 3126 zfs_fuid_txhold(zfsvfs, tx); 3127 3128 zfs_sa_upgrade_txholds(tx, zp); 3129 3130 err = dmu_tx_assign(tx, TXG_WAIT); 3131 if (err) 3132 goto out; 3133 3134 count = 0; 3135 /* 3136 * Set each attribute requested. 3137 * We group settings according to the locks they need to acquire. 3138 * 3139 * Note: you cannot set ctime directly, although it will be 3140 * updated as a side-effect of calling this function. 3141 */ 3142 3143 3144 if (mask & (AT_UID|AT_GID|AT_MODE)) 3145 mutex_enter(&zp->z_acl_lock); 3146 mutex_enter(&zp->z_lock); 3147 3148 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3149 &zp->z_pflags, sizeof (zp->z_pflags)); 3150 3151 if (attrzp) { 3152 if (mask & (AT_UID|AT_GID|AT_MODE)) 3153 mutex_enter(&attrzp->z_acl_lock); 3154 mutex_enter(&attrzp->z_lock); 3155 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3156 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3157 sizeof (attrzp->z_pflags)); 3158 } 3159 3160 if (mask & (AT_UID|AT_GID)) { 3161 3162 if (mask & AT_UID) { 3163 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3164 &new_uid, sizeof (new_uid)); 3165 zp->z_uid = new_uid; 3166 if (attrzp) { 3167 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3168 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3169 sizeof (new_uid)); 3170 attrzp->z_uid = new_uid; 3171 } 3172 } 3173 3174 if (mask & AT_GID) { 3175 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3176 NULL, &new_gid, sizeof (new_gid)); 3177 zp->z_gid = new_gid; 3178 if (attrzp) { 3179 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3180 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3181 sizeof (new_gid)); 3182 attrzp->z_gid = new_gid; 3183 } 3184 } 3185 if (!(mask & AT_MODE)) { 3186 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3187 NULL, &new_mode, sizeof (new_mode)); 3188 new_mode = zp->z_mode; 3189 } 3190 err = zfs_acl_chown_setattr(zp); 3191 ASSERT(err == 0); 3192 if (attrzp) { 3193 err = zfs_acl_chown_setattr(attrzp); 3194 ASSERT(err == 0); 3195 } 3196 } 3197 3198 if (mask & AT_MODE) { 3199 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3200 &new_mode, sizeof (new_mode)); 3201 zp->z_mode = new_mode; 3202 ASSERT3U((uintptr_t)aclp, !=, NULL); 3203 err = zfs_aclset_common(zp, aclp, cr, tx); 3204 ASSERT0(err); 3205 if (zp->z_acl_cached) 3206 zfs_acl_free(zp->z_acl_cached); 3207 zp->z_acl_cached = aclp; 3208 aclp = NULL; 3209 } 3210 3211 3212 if (mask & AT_ATIME) { 3213 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3214 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3215 &zp->z_atime, sizeof (zp->z_atime)); 3216 } 3217 3218 if (mask & AT_MTIME) { 3219 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3220 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3221 mtime, sizeof (mtime)); 3222 } 3223 3224 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3225 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3227 NULL, mtime, sizeof (mtime)); 3228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3229 &ctime, sizeof (ctime)); 3230 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3231 B_TRUE); 3232 } else if (mask != 0) { 3233 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3234 &ctime, sizeof (ctime)); 3235 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3236 B_TRUE); 3237 if (attrzp) { 3238 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3239 SA_ZPL_CTIME(zfsvfs), NULL, 3240 &ctime, sizeof (ctime)); 3241 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3242 mtime, ctime, B_TRUE); 3243 } 3244 } 3245 /* 3246 * Do this after setting timestamps to prevent timestamp 3247 * update from toggling bit 3248 */ 3249 3250 if (xoap && (mask & AT_XVATTR)) { 3251 3252 /* 3253 * restore trimmed off masks 3254 * so that return masks can be set for caller. 3255 */ 3256 3257 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3258 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3259 } 3260 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3261 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3262 } 3263 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3264 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3265 } 3266 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3267 XVA_SET_REQ(xvap, XAT_NODUMP); 3268 } 3269 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3270 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3271 } 3272 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3273 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3274 } 3275 3276 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3277 ASSERT(vp->v_type == VREG); 3278 3279 zfs_xvattr_set(zp, xvap, tx); 3280 } 3281 3282 if (fuid_dirtied) 3283 zfs_fuid_sync(zfsvfs, tx); 3284 3285 if (mask != 0) 3286 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3287 3288 mutex_exit(&zp->z_lock); 3289 if (mask & (AT_UID|AT_GID|AT_MODE)) 3290 mutex_exit(&zp->z_acl_lock); 3291 3292 if (attrzp) { 3293 if (mask & (AT_UID|AT_GID|AT_MODE)) 3294 mutex_exit(&attrzp->z_acl_lock); 3295 mutex_exit(&attrzp->z_lock); 3296 } 3297 out: 3298 if (err == 0 && attrzp) { 3299 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3300 xattr_count, tx); 3301 ASSERT(err2 == 0); 3302 } 3303 3304 if (attrzp) 3305 VN_RELE(ZTOV(attrzp)); 3306 3307 if (aclp) 3308 zfs_acl_free(aclp); 3309 3310 if (fuidp) { 3311 zfs_fuid_info_free(fuidp); 3312 fuidp = NULL; 3313 } 3314 3315 if (err) { 3316 dmu_tx_abort(tx); 3317 if (err == ERESTART) 3318 goto top; 3319 } else { 3320 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3321 dmu_tx_commit(tx); 3322 } 3323 3324 out2: 3325 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3326 zil_commit(zilog, 0); 3327 3328 ZFS_EXIT(zfsvfs); 3329 return (err); 3330 } 3331 3332 typedef struct zfs_zlock { 3333 krwlock_t *zl_rwlock; /* lock we acquired */ 3334 znode_t *zl_znode; /* znode we held */ 3335 struct zfs_zlock *zl_next; /* next in list */ 3336 } zfs_zlock_t; 3337 3338 /* 3339 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3340 */ 3341 static void 3342 zfs_rename_unlock(zfs_zlock_t **zlpp) 3343 { 3344 zfs_zlock_t *zl; 3345 3346 while ((zl = *zlpp) != NULL) { 3347 if (zl->zl_znode != NULL) 3348 VN_RELE(ZTOV(zl->zl_znode)); 3349 rw_exit(zl->zl_rwlock); 3350 *zlpp = zl->zl_next; 3351 kmem_free(zl, sizeof (*zl)); 3352 } 3353 } 3354 3355 /* 3356 * Search back through the directory tree, using the ".." entries. 3357 * Lock each directory in the chain to prevent concurrent renames. 3358 * Fail any attempt to move a directory into one of its own descendants. 3359 * XXX - z_parent_lock can overlap with map or grow locks 3360 */ 3361 static int 3362 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3363 { 3364 zfs_zlock_t *zl; 3365 znode_t *zp = tdzp; 3366 uint64_t rootid = zp->z_zfsvfs->z_root; 3367 uint64_t oidp = zp->z_id; 3368 krwlock_t *rwlp = &szp->z_parent_lock; 3369 krw_t rw = RW_WRITER; 3370 3371 /* 3372 * First pass write-locks szp and compares to zp->z_id. 3373 * Later passes read-lock zp and compare to zp->z_parent. 3374 */ 3375 do { 3376 if (!rw_tryenter(rwlp, rw)) { 3377 /* 3378 * Another thread is renaming in this path. 3379 * Note that if we are a WRITER, we don't have any 3380 * parent_locks held yet. 3381 */ 3382 if (rw == RW_READER && zp->z_id > szp->z_id) { 3383 /* 3384 * Drop our locks and restart 3385 */ 3386 zfs_rename_unlock(&zl); 3387 *zlpp = NULL; 3388 zp = tdzp; 3389 oidp = zp->z_id; 3390 rwlp = &szp->z_parent_lock; 3391 rw = RW_WRITER; 3392 continue; 3393 } else { 3394 /* 3395 * Wait for other thread to drop its locks 3396 */ 3397 rw_enter(rwlp, rw); 3398 } 3399 } 3400 3401 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3402 zl->zl_rwlock = rwlp; 3403 zl->zl_znode = NULL; 3404 zl->zl_next = *zlpp; 3405 *zlpp = zl; 3406 3407 if (oidp == szp->z_id) /* We're a descendant of szp */ 3408 return (SET_ERROR(EINVAL)); 3409 3410 if (oidp == rootid) /* We've hit the top */ 3411 return (0); 3412 3413 if (rw == RW_READER) { /* i.e. not the first pass */ 3414 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3415 if (error) 3416 return (error); 3417 zl->zl_znode = zp; 3418 } 3419 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3420 &oidp, sizeof (oidp)); 3421 rwlp = &zp->z_parent_lock; 3422 rw = RW_READER; 3423 3424 } while (zp->z_id != sdzp->z_id); 3425 3426 return (0); 3427 } 3428 3429 /* 3430 * Move an entry from the provided source directory to the target 3431 * directory. Change the entry name as indicated. 3432 * 3433 * IN: sdvp - Source directory containing the "old entry". 3434 * snm - Old entry name. 3435 * tdvp - Target directory to contain the "new entry". 3436 * tnm - New entry name. 3437 * cr - credentials of caller. 3438 * ct - caller context 3439 * flags - case flags 3440 * 3441 * RETURN: 0 on success, error code on failure. 3442 * 3443 * Timestamps: 3444 * sdvp,tdvp - ctime|mtime updated 3445 */ 3446 /*ARGSUSED*/ 3447 static int 3448 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3449 caller_context_t *ct, int flags) 3450 { 3451 znode_t *tdzp, *szp, *tzp; 3452 znode_t *sdzp = VTOZ(sdvp); 3453 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3454 zilog_t *zilog; 3455 vnode_t *realvp; 3456 zfs_dirlock_t *sdl, *tdl; 3457 dmu_tx_t *tx; 3458 zfs_zlock_t *zl; 3459 int cmp, serr, terr; 3460 int error = 0, rm_err = 0; 3461 int zflg = 0; 3462 boolean_t waited = B_FALSE; 3463 3464 ZFS_ENTER(zfsvfs); 3465 ZFS_VERIFY_ZP(sdzp); 3466 zilog = zfsvfs->z_log; 3467 3468 /* 3469 * Make sure we have the real vp for the target directory. 3470 */ 3471 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3472 tdvp = realvp; 3473 3474 tdzp = VTOZ(tdvp); 3475 ZFS_VERIFY_ZP(tdzp); 3476 3477 /* 3478 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3479 * ctldir appear to have the same v_vfsp. 3480 */ 3481 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3482 ZFS_EXIT(zfsvfs); 3483 return (SET_ERROR(EXDEV)); 3484 } 3485 3486 if (zfsvfs->z_utf8 && u8_validate(tnm, 3487 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3488 ZFS_EXIT(zfsvfs); 3489 return (SET_ERROR(EILSEQ)); 3490 } 3491 3492 if (flags & FIGNORECASE) 3493 zflg |= ZCILOOK; 3494 3495 top: 3496 szp = NULL; 3497 tzp = NULL; 3498 zl = NULL; 3499 3500 /* 3501 * This is to prevent the creation of links into attribute space 3502 * by renaming a linked file into/outof an attribute directory. 3503 * See the comment in zfs_link() for why this is considered bad. 3504 */ 3505 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3506 ZFS_EXIT(zfsvfs); 3507 return (SET_ERROR(EINVAL)); 3508 } 3509 3510 /* 3511 * Lock source and target directory entries. To prevent deadlock, 3512 * a lock ordering must be defined. We lock the directory with 3513 * the smallest object id first, or if it's a tie, the one with 3514 * the lexically first name. 3515 */ 3516 if (sdzp->z_id < tdzp->z_id) { 3517 cmp = -1; 3518 } else if (sdzp->z_id > tdzp->z_id) { 3519 cmp = 1; 3520 } else { 3521 /* 3522 * First compare the two name arguments without 3523 * considering any case folding. 3524 */ 3525 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3526 3527 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3528 ASSERT(error == 0 || !zfsvfs->z_utf8); 3529 if (cmp == 0) { 3530 /* 3531 * POSIX: "If the old argument and the new argument 3532 * both refer to links to the same existing file, 3533 * the rename() function shall return successfully 3534 * and perform no other action." 3535 */ 3536 ZFS_EXIT(zfsvfs); 3537 return (0); 3538 } 3539 /* 3540 * If the file system is case-folding, then we may 3541 * have some more checking to do. A case-folding file 3542 * system is either supporting mixed case sensitivity 3543 * access or is completely case-insensitive. Note 3544 * that the file system is always case preserving. 3545 * 3546 * In mixed sensitivity mode case sensitive behavior 3547 * is the default. FIGNORECASE must be used to 3548 * explicitly request case insensitive behavior. 3549 * 3550 * If the source and target names provided differ only 3551 * by case (e.g., a request to rename 'tim' to 'Tim'), 3552 * we will treat this as a special case in the 3553 * case-insensitive mode: as long as the source name 3554 * is an exact match, we will allow this to proceed as 3555 * a name-change request. 3556 */ 3557 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3558 (zfsvfs->z_case == ZFS_CASE_MIXED && 3559 flags & FIGNORECASE)) && 3560 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3561 &error) == 0) { 3562 /* 3563 * case preserving rename request, require exact 3564 * name matches 3565 */ 3566 zflg |= ZCIEXACT; 3567 zflg &= ~ZCILOOK; 3568 } 3569 } 3570 3571 /* 3572 * If the source and destination directories are the same, we should 3573 * grab the z_name_lock of that directory only once. 3574 */ 3575 if (sdzp == tdzp) { 3576 zflg |= ZHAVELOCK; 3577 rw_enter(&sdzp->z_name_lock, RW_READER); 3578 } 3579 3580 if (cmp < 0) { 3581 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3582 ZEXISTS | zflg, NULL, NULL); 3583 terr = zfs_dirent_lock(&tdl, 3584 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3585 } else { 3586 terr = zfs_dirent_lock(&tdl, 3587 tdzp, tnm, &tzp, zflg, NULL, NULL); 3588 serr = zfs_dirent_lock(&sdl, 3589 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3590 NULL, NULL); 3591 } 3592 3593 if (serr) { 3594 /* 3595 * Source entry invalid or not there. 3596 */ 3597 if (!terr) { 3598 zfs_dirent_unlock(tdl); 3599 if (tzp) 3600 VN_RELE(ZTOV(tzp)); 3601 } 3602 3603 if (sdzp == tdzp) 3604 rw_exit(&sdzp->z_name_lock); 3605 3606 if (strcmp(snm, "..") == 0) 3607 serr = SET_ERROR(EINVAL); 3608 ZFS_EXIT(zfsvfs); 3609 return (serr); 3610 } 3611 if (terr) { 3612 zfs_dirent_unlock(sdl); 3613 VN_RELE(ZTOV(szp)); 3614 3615 if (sdzp == tdzp) 3616 rw_exit(&sdzp->z_name_lock); 3617 3618 if (strcmp(tnm, "..") == 0) 3619 terr = SET_ERROR(EINVAL); 3620 ZFS_EXIT(zfsvfs); 3621 return (terr); 3622 } 3623 3624 /* 3625 * Must have write access at the source to remove the old entry 3626 * and write access at the target to create the new entry. 3627 * Note that if target and source are the same, this can be 3628 * done in a single check. 3629 */ 3630 3631 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3632 goto out; 3633 3634 if (ZTOV(szp)->v_type == VDIR) { 3635 /* 3636 * Check to make sure rename is valid. 3637 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3638 */ 3639 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3640 goto out; 3641 } 3642 3643 /* 3644 * Does target exist? 3645 */ 3646 if (tzp) { 3647 /* 3648 * Source and target must be the same type. 3649 */ 3650 if (ZTOV(szp)->v_type == VDIR) { 3651 if (ZTOV(tzp)->v_type != VDIR) { 3652 error = SET_ERROR(ENOTDIR); 3653 goto out; 3654 } 3655 } else { 3656 if (ZTOV(tzp)->v_type == VDIR) { 3657 error = SET_ERROR(EISDIR); 3658 goto out; 3659 } 3660 } 3661 /* 3662 * POSIX dictates that when the source and target 3663 * entries refer to the same file object, rename 3664 * must do nothing and exit without error. 3665 */ 3666 if (szp->z_id == tzp->z_id) { 3667 error = 0; 3668 goto out; 3669 } 3670 } 3671 3672 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct); 3673 if (tzp) 3674 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3675 3676 /* 3677 * notify the target directory if it is not the same 3678 * as source directory. 3679 */ 3680 if (tdvp != sdvp) { 3681 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct); 3682 } 3683 3684 tx = dmu_tx_create(zfsvfs->z_os); 3685 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3686 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3687 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3688 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3689 if (sdzp != tdzp) { 3690 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3691 zfs_sa_upgrade_txholds(tx, tdzp); 3692 } 3693 if (tzp) { 3694 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3695 zfs_sa_upgrade_txholds(tx, tzp); 3696 } 3697 3698 zfs_sa_upgrade_txholds(tx, szp); 3699 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3700 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3701 if (error) { 3702 if (zl != NULL) 3703 zfs_rename_unlock(&zl); 3704 zfs_dirent_unlock(sdl); 3705 zfs_dirent_unlock(tdl); 3706 3707 if (sdzp == tdzp) 3708 rw_exit(&sdzp->z_name_lock); 3709 3710 VN_RELE(ZTOV(szp)); 3711 if (tzp) 3712 VN_RELE(ZTOV(tzp)); 3713 if (error == ERESTART) { 3714 waited = B_TRUE; 3715 dmu_tx_wait(tx); 3716 dmu_tx_abort(tx); 3717 goto top; 3718 } 3719 dmu_tx_abort(tx); 3720 ZFS_EXIT(zfsvfs); 3721 return (error); 3722 } 3723 3724 if (tzp) /* Attempt to remove the existing target */ 3725 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3726 3727 if (error == 0) { 3728 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3729 if (error == 0) { 3730 szp->z_pflags |= ZFS_AV_MODIFIED; 3731 3732 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3733 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3734 ASSERT0(error); 3735 3736 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3737 if (error == 0) { 3738 zfs_log_rename(zilog, tx, TX_RENAME | 3739 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3740 sdl->dl_name, tdzp, tdl->dl_name, szp); 3741 3742 /* 3743 * Update path information for the target vnode 3744 */ 3745 vn_renamepath(tdvp, ZTOV(szp), tnm, 3746 strlen(tnm)); 3747 } else { 3748 /* 3749 * At this point, we have successfully created 3750 * the target name, but have failed to remove 3751 * the source name. Since the create was done 3752 * with the ZRENAMING flag, there are 3753 * complications; for one, the link count is 3754 * wrong. The easiest way to deal with this 3755 * is to remove the newly created target, and 3756 * return the original error. This must 3757 * succeed; fortunately, it is very unlikely to 3758 * fail, since we just created it. 3759 */ 3760 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3761 ZRENAMING, NULL), ==, 0); 3762 } 3763 } 3764 } 3765 3766 dmu_tx_commit(tx); 3767 3768 if (tzp && rm_err == 0) 3769 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3770 3771 if (error == 0) { 3772 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3773 /* notify the target dir if it is not the same as source dir */ 3774 if (tdvp != sdvp) 3775 vnevent_rename_dest_dir(tdvp, ct); 3776 } 3777 out: 3778 if (zl != NULL) 3779 zfs_rename_unlock(&zl); 3780 3781 zfs_dirent_unlock(sdl); 3782 zfs_dirent_unlock(tdl); 3783 3784 if (sdzp == tdzp) 3785 rw_exit(&sdzp->z_name_lock); 3786 3787 3788 VN_RELE(ZTOV(szp)); 3789 if (tzp) 3790 VN_RELE(ZTOV(tzp)); 3791 3792 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3793 zil_commit(zilog, 0); 3794 3795 ZFS_EXIT(zfsvfs); 3796 return (error); 3797 } 3798 3799 /* 3800 * Insert the indicated symbolic reference entry into the directory. 3801 * 3802 * IN: dvp - Directory to contain new symbolic link. 3803 * link - Name for new symlink entry. 3804 * vap - Attributes of new entry. 3805 * cr - credentials of caller. 3806 * ct - caller context 3807 * flags - case flags 3808 * 3809 * RETURN: 0 on success, error code on failure. 3810 * 3811 * Timestamps: 3812 * dvp - ctime|mtime updated 3813 */ 3814 /*ARGSUSED*/ 3815 static int 3816 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3817 caller_context_t *ct, int flags) 3818 { 3819 znode_t *zp, *dzp = VTOZ(dvp); 3820 zfs_dirlock_t *dl; 3821 dmu_tx_t *tx; 3822 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3823 zilog_t *zilog; 3824 uint64_t len = strlen(link); 3825 int error; 3826 int zflg = ZNEW; 3827 zfs_acl_ids_t acl_ids; 3828 boolean_t fuid_dirtied; 3829 uint64_t txtype = TX_SYMLINK; 3830 boolean_t waited = B_FALSE; 3831 3832 ASSERT(vap->va_type == VLNK); 3833 3834 ZFS_ENTER(zfsvfs); 3835 ZFS_VERIFY_ZP(dzp); 3836 zilog = zfsvfs->z_log; 3837 3838 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3839 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3840 ZFS_EXIT(zfsvfs); 3841 return (SET_ERROR(EILSEQ)); 3842 } 3843 if (flags & FIGNORECASE) 3844 zflg |= ZCILOOK; 3845 3846 if (len > MAXPATHLEN) { 3847 ZFS_EXIT(zfsvfs); 3848 return (SET_ERROR(ENAMETOOLONG)); 3849 } 3850 3851 if ((error = zfs_acl_ids_create(dzp, 0, 3852 vap, cr, NULL, &acl_ids)) != 0) { 3853 ZFS_EXIT(zfsvfs); 3854 return (error); 3855 } 3856 top: 3857 /* 3858 * Attempt to lock directory; fail if entry already exists. 3859 */ 3860 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3861 if (error) { 3862 zfs_acl_ids_free(&acl_ids); 3863 ZFS_EXIT(zfsvfs); 3864 return (error); 3865 } 3866 3867 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3868 zfs_acl_ids_free(&acl_ids); 3869 zfs_dirent_unlock(dl); 3870 ZFS_EXIT(zfsvfs); 3871 return (error); 3872 } 3873 3874 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3875 zfs_acl_ids_free(&acl_ids); 3876 zfs_dirent_unlock(dl); 3877 ZFS_EXIT(zfsvfs); 3878 return (SET_ERROR(EDQUOT)); 3879 } 3880 tx = dmu_tx_create(zfsvfs->z_os); 3881 fuid_dirtied = zfsvfs->z_fuid_dirty; 3882 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3883 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3884 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3885 ZFS_SA_BASE_ATTR_SIZE + len); 3886 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3887 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3888 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3889 acl_ids.z_aclp->z_acl_bytes); 3890 } 3891 if (fuid_dirtied) 3892 zfs_fuid_txhold(zfsvfs, tx); 3893 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3894 if (error) { 3895 zfs_dirent_unlock(dl); 3896 if (error == ERESTART) { 3897 waited = B_TRUE; 3898 dmu_tx_wait(tx); 3899 dmu_tx_abort(tx); 3900 goto top; 3901 } 3902 zfs_acl_ids_free(&acl_ids); 3903 dmu_tx_abort(tx); 3904 ZFS_EXIT(zfsvfs); 3905 return (error); 3906 } 3907 3908 /* 3909 * Create a new object for the symlink. 3910 * for version 4 ZPL datsets the symlink will be an SA attribute 3911 */ 3912 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3913 3914 if (fuid_dirtied) 3915 zfs_fuid_sync(zfsvfs, tx); 3916 3917 mutex_enter(&zp->z_lock); 3918 if (zp->z_is_sa) 3919 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3920 link, len, tx); 3921 else 3922 zfs_sa_symlink(zp, link, len, tx); 3923 mutex_exit(&zp->z_lock); 3924 3925 zp->z_size = len; 3926 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3927 &zp->z_size, sizeof (zp->z_size), tx); 3928 /* 3929 * Insert the new object into the directory. 3930 */ 3931 (void) zfs_link_create(dl, zp, tx, ZNEW); 3932 3933 if (flags & FIGNORECASE) 3934 txtype |= TX_CI; 3935 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3936 3937 zfs_acl_ids_free(&acl_ids); 3938 3939 dmu_tx_commit(tx); 3940 3941 zfs_dirent_unlock(dl); 3942 3943 VN_RELE(ZTOV(zp)); 3944 3945 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3946 zil_commit(zilog, 0); 3947 3948 ZFS_EXIT(zfsvfs); 3949 return (error); 3950 } 3951 3952 /* 3953 * Return, in the buffer contained in the provided uio structure, 3954 * the symbolic path referred to by vp. 3955 * 3956 * IN: vp - vnode of symbolic link. 3957 * uio - structure to contain the link path. 3958 * cr - credentials of caller. 3959 * ct - caller context 3960 * 3961 * OUT: uio - structure containing the link path. 3962 * 3963 * RETURN: 0 on success, error code on failure. 3964 * 3965 * Timestamps: 3966 * vp - atime updated 3967 */ 3968 /* ARGSUSED */ 3969 static int 3970 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3971 { 3972 znode_t *zp = VTOZ(vp); 3973 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3974 int error; 3975 3976 ZFS_ENTER(zfsvfs); 3977 ZFS_VERIFY_ZP(zp); 3978 3979 mutex_enter(&zp->z_lock); 3980 if (zp->z_is_sa) 3981 error = sa_lookup_uio(zp->z_sa_hdl, 3982 SA_ZPL_SYMLINK(zfsvfs), uio); 3983 else 3984 error = zfs_sa_readlink(zp, uio); 3985 mutex_exit(&zp->z_lock); 3986 3987 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3988 3989 ZFS_EXIT(zfsvfs); 3990 return (error); 3991 } 3992 3993 /* 3994 * Insert a new entry into directory tdvp referencing svp. 3995 * 3996 * IN: tdvp - Directory to contain new entry. 3997 * svp - vnode of new entry. 3998 * name - name of new entry. 3999 * cr - credentials of caller. 4000 * ct - caller context 4001 * 4002 * RETURN: 0 on success, error code on failure. 4003 * 4004 * Timestamps: 4005 * tdvp - ctime|mtime updated 4006 * svp - ctime updated 4007 */ 4008 /* ARGSUSED */ 4009 static int 4010 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 4011 caller_context_t *ct, int flags) 4012 { 4013 znode_t *dzp = VTOZ(tdvp); 4014 znode_t *tzp, *szp; 4015 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4016 zilog_t *zilog; 4017 zfs_dirlock_t *dl; 4018 dmu_tx_t *tx; 4019 vnode_t *realvp; 4020 int error; 4021 int zf = ZNEW; 4022 uint64_t parent; 4023 uid_t owner; 4024 boolean_t waited = B_FALSE; 4025 4026 ASSERT(tdvp->v_type == VDIR); 4027 4028 ZFS_ENTER(zfsvfs); 4029 ZFS_VERIFY_ZP(dzp); 4030 zilog = zfsvfs->z_log; 4031 4032 if (VOP_REALVP(svp, &realvp, ct) == 0) 4033 svp = realvp; 4034 4035 /* 4036 * POSIX dictates that we return EPERM here. 4037 * Better choices include ENOTSUP or EISDIR. 4038 */ 4039 if (svp->v_type == VDIR) { 4040 ZFS_EXIT(zfsvfs); 4041 return (SET_ERROR(EPERM)); 4042 } 4043 4044 szp = VTOZ(svp); 4045 ZFS_VERIFY_ZP(szp); 4046 4047 /* 4048 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4049 * ctldir appear to have the same v_vfsp. 4050 */ 4051 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4052 ZFS_EXIT(zfsvfs); 4053 return (SET_ERROR(EXDEV)); 4054 } 4055 4056 /* Prevent links to .zfs/shares files */ 4057 4058 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4059 &parent, sizeof (uint64_t))) != 0) { 4060 ZFS_EXIT(zfsvfs); 4061 return (error); 4062 } 4063 if (parent == zfsvfs->z_shares_dir) { 4064 ZFS_EXIT(zfsvfs); 4065 return (SET_ERROR(EPERM)); 4066 } 4067 4068 if (zfsvfs->z_utf8 && u8_validate(name, 4069 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4070 ZFS_EXIT(zfsvfs); 4071 return (SET_ERROR(EILSEQ)); 4072 } 4073 if (flags & FIGNORECASE) 4074 zf |= ZCILOOK; 4075 4076 /* 4077 * We do not support links between attributes and non-attributes 4078 * because of the potential security risk of creating links 4079 * into "normal" file space in order to circumvent restrictions 4080 * imposed in attribute space. 4081 */ 4082 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4083 ZFS_EXIT(zfsvfs); 4084 return (SET_ERROR(EINVAL)); 4085 } 4086 4087 4088 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4089 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4090 ZFS_EXIT(zfsvfs); 4091 return (SET_ERROR(EPERM)); 4092 } 4093 4094 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4095 ZFS_EXIT(zfsvfs); 4096 return (error); 4097 } 4098 4099 top: 4100 /* 4101 * Attempt to lock directory; fail if entry already exists. 4102 */ 4103 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4104 if (error) { 4105 ZFS_EXIT(zfsvfs); 4106 return (error); 4107 } 4108 4109 tx = dmu_tx_create(zfsvfs->z_os); 4110 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4111 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4112 zfs_sa_upgrade_txholds(tx, szp); 4113 zfs_sa_upgrade_txholds(tx, dzp); 4114 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 4115 if (error) { 4116 zfs_dirent_unlock(dl); 4117 if (error == ERESTART) { 4118 waited = B_TRUE; 4119 dmu_tx_wait(tx); 4120 dmu_tx_abort(tx); 4121 goto top; 4122 } 4123 dmu_tx_abort(tx); 4124 ZFS_EXIT(zfsvfs); 4125 return (error); 4126 } 4127 4128 error = zfs_link_create(dl, szp, tx, 0); 4129 4130 if (error == 0) { 4131 uint64_t txtype = TX_LINK; 4132 if (flags & FIGNORECASE) 4133 txtype |= TX_CI; 4134 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4135 } 4136 4137 dmu_tx_commit(tx); 4138 4139 zfs_dirent_unlock(dl); 4140 4141 if (error == 0) { 4142 vnevent_link(svp, ct); 4143 } 4144 4145 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4146 zil_commit(zilog, 0); 4147 4148 ZFS_EXIT(zfsvfs); 4149 return (error); 4150 } 4151 4152 /* 4153 * zfs_null_putapage() is used when the file system has been force 4154 * unmounted. It just drops the pages. 4155 */ 4156 /* ARGSUSED */ 4157 static int 4158 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4159 size_t *lenp, int flags, cred_t *cr) 4160 { 4161 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4162 return (0); 4163 } 4164 4165 /* 4166 * Push a page out to disk, klustering if possible. 4167 * 4168 * IN: vp - file to push page to. 4169 * pp - page to push. 4170 * flags - additional flags. 4171 * cr - credentials of caller. 4172 * 4173 * OUT: offp - start of range pushed. 4174 * lenp - len of range pushed. 4175 * 4176 * RETURN: 0 on success, error code on failure. 4177 * 4178 * NOTE: callers must have locked the page to be pushed. On 4179 * exit, the page (and all other pages in the kluster) must be 4180 * unlocked. 4181 */ 4182 /* ARGSUSED */ 4183 static int 4184 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4185 size_t *lenp, int flags, cred_t *cr) 4186 { 4187 znode_t *zp = VTOZ(vp); 4188 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4189 dmu_tx_t *tx; 4190 u_offset_t off, koff; 4191 size_t len, klen; 4192 int err; 4193 4194 off = pp->p_offset; 4195 len = PAGESIZE; 4196 /* 4197 * If our blocksize is bigger than the page size, try to kluster 4198 * multiple pages so that we write a full block (thus avoiding 4199 * a read-modify-write). 4200 */ 4201 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4202 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4203 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4204 ASSERT(koff <= zp->z_size); 4205 if (koff + klen > zp->z_size) 4206 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4207 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4208 } 4209 ASSERT3U(btop(len), ==, btopr(len)); 4210 4211 /* 4212 * Can't push pages past end-of-file. 4213 */ 4214 if (off >= zp->z_size) { 4215 /* ignore all pages */ 4216 err = 0; 4217 goto out; 4218 } else if (off + len > zp->z_size) { 4219 int npages = btopr(zp->z_size - off); 4220 page_t *trunc; 4221 4222 page_list_break(&pp, &trunc, npages); 4223 /* ignore pages past end of file */ 4224 if (trunc) 4225 pvn_write_done(trunc, flags); 4226 len = zp->z_size - off; 4227 } 4228 4229 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4230 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4231 err = SET_ERROR(EDQUOT); 4232 goto out; 4233 } 4234 tx = dmu_tx_create(zfsvfs->z_os); 4235 dmu_tx_hold_write(tx, zp->z_id, off, len); 4236 4237 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4238 zfs_sa_upgrade_txholds(tx, zp); 4239 err = dmu_tx_assign(tx, TXG_WAIT); 4240 if (err != 0) { 4241 dmu_tx_abort(tx); 4242 goto out; 4243 } 4244 4245 if (zp->z_blksz <= PAGESIZE) { 4246 caddr_t va = zfs_map_page(pp, S_READ); 4247 ASSERT3U(len, <=, PAGESIZE); 4248 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4249 zfs_unmap_page(pp, va); 4250 } else { 4251 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4252 } 4253 4254 if (err == 0) { 4255 uint64_t mtime[2], ctime[2]; 4256 sa_bulk_attr_t bulk[3]; 4257 int count = 0; 4258 4259 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4260 &mtime, 16); 4261 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4262 &ctime, 16); 4263 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4264 &zp->z_pflags, 8); 4265 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4266 B_TRUE); 4267 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 4268 ASSERT0(err); 4269 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4270 } 4271 dmu_tx_commit(tx); 4272 4273 out: 4274 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4275 if (offp) 4276 *offp = off; 4277 if (lenp) 4278 *lenp = len; 4279 4280 return (err); 4281 } 4282 4283 /* 4284 * Copy the portion of the file indicated from pages into the file. 4285 * The pages are stored in a page list attached to the files vnode. 4286 * 4287 * IN: vp - vnode of file to push page data to. 4288 * off - position in file to put data. 4289 * len - amount of data to write. 4290 * flags - flags to control the operation. 4291 * cr - credentials of caller. 4292 * ct - caller context. 4293 * 4294 * RETURN: 0 on success, error code on failure. 4295 * 4296 * Timestamps: 4297 * vp - ctime|mtime updated 4298 */ 4299 /*ARGSUSED*/ 4300 static int 4301 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4302 caller_context_t *ct) 4303 { 4304 znode_t *zp = VTOZ(vp); 4305 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4306 page_t *pp; 4307 size_t io_len; 4308 u_offset_t io_off; 4309 uint_t blksz; 4310 rl_t *rl; 4311 int error = 0; 4312 4313 ZFS_ENTER(zfsvfs); 4314 ZFS_VERIFY_ZP(zp); 4315 4316 /* 4317 * There's nothing to do if no data is cached. 4318 */ 4319 if (!vn_has_cached_data(vp)) { 4320 ZFS_EXIT(zfsvfs); 4321 return (0); 4322 } 4323 4324 /* 4325 * Align this request to the file block size in case we kluster. 4326 * XXX - this can result in pretty aggresive locking, which can 4327 * impact simultanious read/write access. One option might be 4328 * to break up long requests (len == 0) into block-by-block 4329 * operations to get narrower locking. 4330 */ 4331 blksz = zp->z_blksz; 4332 if (ISP2(blksz)) 4333 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4334 else 4335 io_off = 0; 4336 if (len > 0 && ISP2(blksz)) 4337 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4338 else 4339 io_len = 0; 4340 4341 if (io_len == 0) { 4342 /* 4343 * Search the entire vp list for pages >= io_off. 4344 */ 4345 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4346 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4347 goto out; 4348 } 4349 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4350 4351 if (off > zp->z_size) { 4352 /* past end of file */ 4353 zfs_range_unlock(rl); 4354 ZFS_EXIT(zfsvfs); 4355 return (0); 4356 } 4357 4358 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4359 4360 for (off = io_off; io_off < off + len; io_off += io_len) { 4361 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4362 pp = page_lookup(vp, io_off, 4363 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4364 } else { 4365 pp = page_lookup_nowait(vp, io_off, 4366 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4367 } 4368 4369 if (pp != NULL && pvn_getdirty(pp, flags)) { 4370 int err; 4371 4372 /* 4373 * Found a dirty page to push 4374 */ 4375 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4376 if (err) 4377 error = err; 4378 } else { 4379 io_len = PAGESIZE; 4380 } 4381 } 4382 out: 4383 zfs_range_unlock(rl); 4384 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4385 zil_commit(zfsvfs->z_log, zp->z_id); 4386 ZFS_EXIT(zfsvfs); 4387 return (error); 4388 } 4389 4390 /*ARGSUSED*/ 4391 void 4392 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4393 { 4394 znode_t *zp = VTOZ(vp); 4395 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4396 int error; 4397 4398 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4399 if (zp->z_sa_hdl == NULL) { 4400 /* 4401 * The fs has been unmounted, or we did a 4402 * suspend/resume and this file no longer exists. 4403 */ 4404 if (vn_has_cached_data(vp)) { 4405 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4406 B_INVAL, cr); 4407 } 4408 4409 mutex_enter(&zp->z_lock); 4410 mutex_enter(&vp->v_lock); 4411 ASSERT(vp->v_count == 1); 4412 VN_RELE_LOCKED(vp); 4413 mutex_exit(&vp->v_lock); 4414 mutex_exit(&zp->z_lock); 4415 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4416 zfs_znode_free(zp); 4417 return; 4418 } 4419 4420 /* 4421 * Attempt to push any data in the page cache. If this fails 4422 * we will get kicked out later in zfs_zinactive(). 4423 */ 4424 if (vn_has_cached_data(vp)) { 4425 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4426 cr); 4427 } 4428 4429 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4430 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4431 4432 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4433 zfs_sa_upgrade_txholds(tx, zp); 4434 error = dmu_tx_assign(tx, TXG_WAIT); 4435 if (error) { 4436 dmu_tx_abort(tx); 4437 } else { 4438 mutex_enter(&zp->z_lock); 4439 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4440 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4441 zp->z_atime_dirty = 0; 4442 mutex_exit(&zp->z_lock); 4443 dmu_tx_commit(tx); 4444 } 4445 } 4446 4447 zfs_zinactive(zp); 4448 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4449 } 4450 4451 /* 4452 * Bounds-check the seek operation. 4453 * 4454 * IN: vp - vnode seeking within 4455 * ooff - old file offset 4456 * noffp - pointer to new file offset 4457 * ct - caller context 4458 * 4459 * RETURN: 0 on success, EINVAL if new offset invalid. 4460 */ 4461 /* ARGSUSED */ 4462 static int 4463 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4464 caller_context_t *ct) 4465 { 4466 if (vp->v_type == VDIR) 4467 return (0); 4468 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4469 } 4470 4471 /* 4472 * Pre-filter the generic locking function to trap attempts to place 4473 * a mandatory lock on a memory mapped file. 4474 */ 4475 static int 4476 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4477 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4478 { 4479 znode_t *zp = VTOZ(vp); 4480 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4481 4482 ZFS_ENTER(zfsvfs); 4483 ZFS_VERIFY_ZP(zp); 4484 4485 /* 4486 * We are following the UFS semantics with respect to mapcnt 4487 * here: If we see that the file is mapped already, then we will 4488 * return an error, but we don't worry about races between this 4489 * function and zfs_map(). 4490 */ 4491 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4492 ZFS_EXIT(zfsvfs); 4493 return (SET_ERROR(EAGAIN)); 4494 } 4495 ZFS_EXIT(zfsvfs); 4496 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4497 } 4498 4499 /* 4500 * If we can't find a page in the cache, we will create a new page 4501 * and fill it with file data. For efficiency, we may try to fill 4502 * multiple pages at once (klustering) to fill up the supplied page 4503 * list. Note that the pages to be filled are held with an exclusive 4504 * lock to prevent access by other threads while they are being filled. 4505 */ 4506 static int 4507 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4508 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4509 { 4510 znode_t *zp = VTOZ(vp); 4511 page_t *pp, *cur_pp; 4512 objset_t *os = zp->z_zfsvfs->z_os; 4513 u_offset_t io_off, total; 4514 size_t io_len; 4515 int err; 4516 4517 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4518 /* 4519 * We only have a single page, don't bother klustering 4520 */ 4521 io_off = off; 4522 io_len = PAGESIZE; 4523 pp = page_create_va(vp, io_off, io_len, 4524 PG_EXCL | PG_WAIT, seg, addr); 4525 } else { 4526 /* 4527 * Try to find enough pages to fill the page list 4528 */ 4529 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4530 &io_len, off, plsz, 0); 4531 } 4532 if (pp == NULL) { 4533 /* 4534 * The page already exists, nothing to do here. 4535 */ 4536 *pl = NULL; 4537 return (0); 4538 } 4539 4540 /* 4541 * Fill the pages in the kluster. 4542 */ 4543 cur_pp = pp; 4544 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4545 caddr_t va; 4546 4547 ASSERT3U(io_off, ==, cur_pp->p_offset); 4548 va = zfs_map_page(cur_pp, S_WRITE); 4549 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4550 DMU_READ_PREFETCH); 4551 zfs_unmap_page(cur_pp, va); 4552 if (err) { 4553 /* On error, toss the entire kluster */ 4554 pvn_read_done(pp, B_ERROR); 4555 /* convert checksum errors into IO errors */ 4556 if (err == ECKSUM) 4557 err = SET_ERROR(EIO); 4558 return (err); 4559 } 4560 cur_pp = cur_pp->p_next; 4561 } 4562 4563 /* 4564 * Fill in the page list array from the kluster starting 4565 * from the desired offset `off'. 4566 * NOTE: the page list will always be null terminated. 4567 */ 4568 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4569 ASSERT(pl == NULL || (*pl)->p_offset == off); 4570 4571 return (0); 4572 } 4573 4574 /* 4575 * Return pointers to the pages for the file region [off, off + len] 4576 * in the pl array. If plsz is greater than len, this function may 4577 * also return page pointers from after the specified region 4578 * (i.e. the region [off, off + plsz]). These additional pages are 4579 * only returned if they are already in the cache, or were created as 4580 * part of a klustered read. 4581 * 4582 * IN: vp - vnode of file to get data from. 4583 * off - position in file to get data from. 4584 * len - amount of data to retrieve. 4585 * plsz - length of provided page list. 4586 * seg - segment to obtain pages for. 4587 * addr - virtual address of fault. 4588 * rw - mode of created pages. 4589 * cr - credentials of caller. 4590 * ct - caller context. 4591 * 4592 * OUT: protp - protection mode of created pages. 4593 * pl - list of pages created. 4594 * 4595 * RETURN: 0 on success, error code on failure. 4596 * 4597 * Timestamps: 4598 * vp - atime updated 4599 */ 4600 /* ARGSUSED */ 4601 static int 4602 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4603 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4604 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4605 { 4606 znode_t *zp = VTOZ(vp); 4607 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4608 page_t **pl0 = pl; 4609 int err = 0; 4610 4611 /* we do our own caching, faultahead is unnecessary */ 4612 if (pl == NULL) 4613 return (0); 4614 else if (len > plsz) 4615 len = plsz; 4616 else 4617 len = P2ROUNDUP(len, PAGESIZE); 4618 ASSERT(plsz >= len); 4619 4620 ZFS_ENTER(zfsvfs); 4621 ZFS_VERIFY_ZP(zp); 4622 4623 if (protp) 4624 *protp = PROT_ALL; 4625 4626 /* 4627 * Loop through the requested range [off, off + len) looking 4628 * for pages. If we don't find a page, we will need to create 4629 * a new page and fill it with data from the file. 4630 */ 4631 while (len > 0) { 4632 if (*pl = page_lookup(vp, off, SE_SHARED)) 4633 *(pl+1) = NULL; 4634 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4635 goto out; 4636 while (*pl) { 4637 ASSERT3U((*pl)->p_offset, ==, off); 4638 off += PAGESIZE; 4639 addr += PAGESIZE; 4640 if (len > 0) { 4641 ASSERT3U(len, >=, PAGESIZE); 4642 len -= PAGESIZE; 4643 } 4644 ASSERT3U(plsz, >=, PAGESIZE); 4645 plsz -= PAGESIZE; 4646 pl++; 4647 } 4648 } 4649 4650 /* 4651 * Fill out the page array with any pages already in the cache. 4652 */ 4653 while (plsz > 0 && 4654 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4655 off += PAGESIZE; 4656 plsz -= PAGESIZE; 4657 } 4658 out: 4659 if (err) { 4660 /* 4661 * Release any pages we have previously locked. 4662 */ 4663 while (pl > pl0) 4664 page_unlock(*--pl); 4665 } else { 4666 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4667 } 4668 4669 *pl = NULL; 4670 4671 ZFS_EXIT(zfsvfs); 4672 return (err); 4673 } 4674 4675 /* 4676 * Request a memory map for a section of a file. This code interacts 4677 * with common code and the VM system as follows: 4678 * 4679 * - common code calls mmap(), which ends up in smmap_common() 4680 * - this calls VOP_MAP(), which takes you into (say) zfs 4681 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4682 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4683 * - zfs_addmap() updates z_mapcnt 4684 */ 4685 /*ARGSUSED*/ 4686 static int 4687 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4688 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4689 caller_context_t *ct) 4690 { 4691 znode_t *zp = VTOZ(vp); 4692 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4693 segvn_crargs_t vn_a; 4694 int error; 4695 4696 ZFS_ENTER(zfsvfs); 4697 ZFS_VERIFY_ZP(zp); 4698 4699 /* 4700 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 4701 */ 4702 4703 if ((prot & PROT_WRITE) && (zp->z_pflags & 4704 (ZFS_IMMUTABLE | ZFS_APPENDONLY))) { 4705 ZFS_EXIT(zfsvfs); 4706 return (SET_ERROR(EPERM)); 4707 } 4708 4709 if ((prot & (PROT_READ | PROT_EXEC)) && 4710 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4711 ZFS_EXIT(zfsvfs); 4712 return (SET_ERROR(EACCES)); 4713 } 4714 4715 if (vp->v_flag & VNOMAP) { 4716 ZFS_EXIT(zfsvfs); 4717 return (SET_ERROR(ENOSYS)); 4718 } 4719 4720 if (off < 0 || len > MAXOFFSET_T - off) { 4721 ZFS_EXIT(zfsvfs); 4722 return (SET_ERROR(ENXIO)); 4723 } 4724 4725 if (vp->v_type != VREG) { 4726 ZFS_EXIT(zfsvfs); 4727 return (SET_ERROR(ENODEV)); 4728 } 4729 4730 /* 4731 * If file is locked, disallow mapping. 4732 */ 4733 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4734 ZFS_EXIT(zfsvfs); 4735 return (SET_ERROR(EAGAIN)); 4736 } 4737 4738 as_rangelock(as); 4739 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4740 if (error != 0) { 4741 as_rangeunlock(as); 4742 ZFS_EXIT(zfsvfs); 4743 return (error); 4744 } 4745 4746 vn_a.vp = vp; 4747 vn_a.offset = (u_offset_t)off; 4748 vn_a.type = flags & MAP_TYPE; 4749 vn_a.prot = prot; 4750 vn_a.maxprot = maxprot; 4751 vn_a.cred = cr; 4752 vn_a.amp = NULL; 4753 vn_a.flags = flags & ~MAP_TYPE; 4754 vn_a.szc = 0; 4755 vn_a.lgrp_mem_policy_flags = 0; 4756 4757 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4758 4759 as_rangeunlock(as); 4760 ZFS_EXIT(zfsvfs); 4761 return (error); 4762 } 4763 4764 /* ARGSUSED */ 4765 static int 4766 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4767 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4768 caller_context_t *ct) 4769 { 4770 uint64_t pages = btopr(len); 4771 4772 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4773 return (0); 4774 } 4775 4776 /* 4777 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4778 * more accurate mtime for the associated file. Since we don't have a way of 4779 * detecting when the data was actually modified, we have to resort to 4780 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4781 * last page is pushed. The problem occurs when the msync() call is omitted, 4782 * which by far the most common case: 4783 * 4784 * open() 4785 * mmap() 4786 * <modify memory> 4787 * munmap() 4788 * close() 4789 * <time lapse> 4790 * putpage() via fsflush 4791 * 4792 * If we wait until fsflush to come along, we can have a modification time that 4793 * is some arbitrary point in the future. In order to prevent this in the 4794 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4795 * torn down. 4796 */ 4797 /* ARGSUSED */ 4798 static int 4799 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4800 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4801 caller_context_t *ct) 4802 { 4803 uint64_t pages = btopr(len); 4804 4805 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4806 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4807 4808 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4809 vn_has_cached_data(vp)) 4810 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4811 4812 return (0); 4813 } 4814 4815 /* 4816 * Free or allocate space in a file. Currently, this function only 4817 * supports the `F_FREESP' command. However, this command is somewhat 4818 * misnamed, as its functionality includes the ability to allocate as 4819 * well as free space. 4820 * 4821 * IN: vp - vnode of file to free data in. 4822 * cmd - action to take (only F_FREESP supported). 4823 * bfp - section of file to free/alloc. 4824 * flag - current file open mode flags. 4825 * offset - current file offset. 4826 * cr - credentials of caller [UNUSED]. 4827 * ct - caller context. 4828 * 4829 * RETURN: 0 on success, error code on failure. 4830 * 4831 * Timestamps: 4832 * vp - ctime|mtime updated 4833 */ 4834 /* ARGSUSED */ 4835 static int 4836 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4837 offset_t offset, cred_t *cr, caller_context_t *ct) 4838 { 4839 znode_t *zp = VTOZ(vp); 4840 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4841 uint64_t off, len; 4842 int error; 4843 4844 ZFS_ENTER(zfsvfs); 4845 ZFS_VERIFY_ZP(zp); 4846 4847 if (cmd != F_FREESP) { 4848 ZFS_EXIT(zfsvfs); 4849 return (SET_ERROR(EINVAL)); 4850 } 4851 4852 /* 4853 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 4854 * callers might not be able to detect properly that we are read-only, 4855 * so check it explicitly here. 4856 */ 4857 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 4858 ZFS_EXIT(zfsvfs); 4859 return (SET_ERROR(EROFS)); 4860 } 4861 4862 if (error = convoff(vp, bfp, 0, offset)) { 4863 ZFS_EXIT(zfsvfs); 4864 return (error); 4865 } 4866 4867 if (bfp->l_len < 0) { 4868 ZFS_EXIT(zfsvfs); 4869 return (SET_ERROR(EINVAL)); 4870 } 4871 4872 off = bfp->l_start; 4873 len = bfp->l_len; /* 0 means from off to end of file */ 4874 4875 error = zfs_freesp(zp, off, len, flag, TRUE); 4876 4877 if (error == 0 && off == 0 && len == 0) 4878 vnevent_truncate(ZTOV(zp), ct); 4879 4880 ZFS_EXIT(zfsvfs); 4881 return (error); 4882 } 4883 4884 /*ARGSUSED*/ 4885 static int 4886 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4887 { 4888 znode_t *zp = VTOZ(vp); 4889 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4890 uint32_t gen; 4891 uint64_t gen64; 4892 uint64_t object = zp->z_id; 4893 zfid_short_t *zfid; 4894 int size, i, error; 4895 4896 ZFS_ENTER(zfsvfs); 4897 ZFS_VERIFY_ZP(zp); 4898 4899 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4900 &gen64, sizeof (uint64_t))) != 0) { 4901 ZFS_EXIT(zfsvfs); 4902 return (error); 4903 } 4904 4905 gen = (uint32_t)gen64; 4906 4907 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4908 if (fidp->fid_len < size) { 4909 fidp->fid_len = size; 4910 ZFS_EXIT(zfsvfs); 4911 return (SET_ERROR(ENOSPC)); 4912 } 4913 4914 zfid = (zfid_short_t *)fidp; 4915 4916 zfid->zf_len = size; 4917 4918 for (i = 0; i < sizeof (zfid->zf_object); i++) 4919 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4920 4921 /* Must have a non-zero generation number to distinguish from .zfs */ 4922 if (gen == 0) 4923 gen = 1; 4924 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4925 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4926 4927 if (size == LONG_FID_LEN) { 4928 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4929 zfid_long_t *zlfid; 4930 4931 zlfid = (zfid_long_t *)fidp; 4932 4933 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4934 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4935 4936 /* XXX - this should be the generation number for the objset */ 4937 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4938 zlfid->zf_setgen[i] = 0; 4939 } 4940 4941 ZFS_EXIT(zfsvfs); 4942 return (0); 4943 } 4944 4945 static int 4946 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4947 caller_context_t *ct) 4948 { 4949 znode_t *zp, *xzp; 4950 zfsvfs_t *zfsvfs; 4951 zfs_dirlock_t *dl; 4952 int error; 4953 4954 switch (cmd) { 4955 case _PC_LINK_MAX: 4956 *valp = ULONG_MAX; 4957 return (0); 4958 4959 case _PC_FILESIZEBITS: 4960 *valp = 64; 4961 return (0); 4962 4963 case _PC_XATTR_EXISTS: 4964 zp = VTOZ(vp); 4965 zfsvfs = zp->z_zfsvfs; 4966 ZFS_ENTER(zfsvfs); 4967 ZFS_VERIFY_ZP(zp); 4968 *valp = 0; 4969 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4970 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4971 if (error == 0) { 4972 zfs_dirent_unlock(dl); 4973 if (!zfs_dirempty(xzp)) 4974 *valp = 1; 4975 VN_RELE(ZTOV(xzp)); 4976 } else if (error == ENOENT) { 4977 /* 4978 * If there aren't extended attributes, it's the 4979 * same as having zero of them. 4980 */ 4981 error = 0; 4982 } 4983 ZFS_EXIT(zfsvfs); 4984 return (error); 4985 4986 case _PC_SATTR_ENABLED: 4987 case _PC_SATTR_EXISTS: 4988 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4989 (vp->v_type == VREG || vp->v_type == VDIR); 4990 return (0); 4991 4992 case _PC_ACCESS_FILTERING: 4993 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4994 vp->v_type == VDIR; 4995 return (0); 4996 4997 case _PC_ACL_ENABLED: 4998 *valp = _ACL_ACE_ENABLED; 4999 return (0); 5000 5001 case _PC_MIN_HOLE_SIZE: 5002 *valp = (ulong_t)SPA_MINBLOCKSIZE; 5003 return (0); 5004 5005 case _PC_TIMESTAMP_RESOLUTION: 5006 /* nanosecond timestamp resolution */ 5007 *valp = 1L; 5008 return (0); 5009 5010 default: 5011 return (fs_pathconf(vp, cmd, valp, cr, ct)); 5012 } 5013 } 5014 5015 /*ARGSUSED*/ 5016 static int 5017 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5018 caller_context_t *ct) 5019 { 5020 znode_t *zp = VTOZ(vp); 5021 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5022 int error; 5023 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5024 5025 ZFS_ENTER(zfsvfs); 5026 ZFS_VERIFY_ZP(zp); 5027 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5028 ZFS_EXIT(zfsvfs); 5029 5030 return (error); 5031 } 5032 5033 /*ARGSUSED*/ 5034 static int 5035 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5036 caller_context_t *ct) 5037 { 5038 znode_t *zp = VTOZ(vp); 5039 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5040 int error; 5041 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5042 zilog_t *zilog = zfsvfs->z_log; 5043 5044 ZFS_ENTER(zfsvfs); 5045 ZFS_VERIFY_ZP(zp); 5046 5047 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5048 5049 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5050 zil_commit(zilog, 0); 5051 5052 ZFS_EXIT(zfsvfs); 5053 return (error); 5054 } 5055 5056 /* 5057 * The smallest read we may consider to loan out an arcbuf. 5058 * This must be a power of 2. 5059 */ 5060 int zcr_blksz_min = (1 << 10); /* 1K */ 5061 /* 5062 * If set to less than the file block size, allow loaning out of an 5063 * arcbuf for a partial block read. This must be a power of 2. 5064 */ 5065 int zcr_blksz_max = (1 << 17); /* 128K */ 5066 5067 /*ARGSUSED*/ 5068 static int 5069 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5070 caller_context_t *ct) 5071 { 5072 znode_t *zp = VTOZ(vp); 5073 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5074 int max_blksz = zfsvfs->z_max_blksz; 5075 uio_t *uio = &xuio->xu_uio; 5076 ssize_t size = uio->uio_resid; 5077 offset_t offset = uio->uio_loffset; 5078 int blksz; 5079 int fullblk, i; 5080 arc_buf_t *abuf; 5081 ssize_t maxsize; 5082 int preamble, postamble; 5083 5084 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5085 return (SET_ERROR(EINVAL)); 5086 5087 ZFS_ENTER(zfsvfs); 5088 ZFS_VERIFY_ZP(zp); 5089 switch (ioflag) { 5090 case UIO_WRITE: 5091 /* 5092 * Loan out an arc_buf for write if write size is bigger than 5093 * max_blksz, and the file's block size is also max_blksz. 5094 */ 5095 blksz = max_blksz; 5096 if (size < blksz || zp->z_blksz != blksz) { 5097 ZFS_EXIT(zfsvfs); 5098 return (SET_ERROR(EINVAL)); 5099 } 5100 /* 5101 * Caller requests buffers for write before knowing where the 5102 * write offset might be (e.g. NFS TCP write). 5103 */ 5104 if (offset == -1) { 5105 preamble = 0; 5106 } else { 5107 preamble = P2PHASE(offset, blksz); 5108 if (preamble) { 5109 preamble = blksz - preamble; 5110 size -= preamble; 5111 } 5112 } 5113 5114 postamble = P2PHASE(size, blksz); 5115 size -= postamble; 5116 5117 fullblk = size / blksz; 5118 (void) dmu_xuio_init(xuio, 5119 (preamble != 0) + fullblk + (postamble != 0)); 5120 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5121 int, postamble, int, 5122 (preamble != 0) + fullblk + (postamble != 0)); 5123 5124 /* 5125 * Have to fix iov base/len for partial buffers. They 5126 * currently represent full arc_buf's. 5127 */ 5128 if (preamble) { 5129 /* data begins in the middle of the arc_buf */ 5130 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5131 blksz); 5132 ASSERT(abuf); 5133 (void) dmu_xuio_add(xuio, abuf, 5134 blksz - preamble, preamble); 5135 } 5136 5137 for (i = 0; i < fullblk; i++) { 5138 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5139 blksz); 5140 ASSERT(abuf); 5141 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5142 } 5143 5144 if (postamble) { 5145 /* data ends in the middle of the arc_buf */ 5146 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5147 blksz); 5148 ASSERT(abuf); 5149 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5150 } 5151 break; 5152 case UIO_READ: 5153 /* 5154 * Loan out an arc_buf for read if the read size is larger than 5155 * the current file block size. Block alignment is not 5156 * considered. Partial arc_buf will be loaned out for read. 5157 */ 5158 blksz = zp->z_blksz; 5159 if (blksz < zcr_blksz_min) 5160 blksz = zcr_blksz_min; 5161 if (blksz > zcr_blksz_max) 5162 blksz = zcr_blksz_max; 5163 /* avoid potential complexity of dealing with it */ 5164 if (blksz > max_blksz) { 5165 ZFS_EXIT(zfsvfs); 5166 return (SET_ERROR(EINVAL)); 5167 } 5168 5169 maxsize = zp->z_size - uio->uio_loffset; 5170 if (size > maxsize) 5171 size = maxsize; 5172 5173 if (size < blksz || vn_has_cached_data(vp)) { 5174 ZFS_EXIT(zfsvfs); 5175 return (SET_ERROR(EINVAL)); 5176 } 5177 break; 5178 default: 5179 ZFS_EXIT(zfsvfs); 5180 return (SET_ERROR(EINVAL)); 5181 } 5182 5183 uio->uio_extflg = UIO_XUIO; 5184 XUIO_XUZC_RW(xuio) = ioflag; 5185 ZFS_EXIT(zfsvfs); 5186 return (0); 5187 } 5188 5189 /*ARGSUSED*/ 5190 static int 5191 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5192 { 5193 int i; 5194 arc_buf_t *abuf; 5195 int ioflag = XUIO_XUZC_RW(xuio); 5196 5197 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5198 5199 i = dmu_xuio_cnt(xuio); 5200 while (i-- > 0) { 5201 abuf = dmu_xuio_arcbuf(xuio, i); 5202 /* 5203 * if abuf == NULL, it must be a write buffer 5204 * that has been returned in zfs_write(). 5205 */ 5206 if (abuf) 5207 dmu_return_arcbuf(abuf); 5208 ASSERT(abuf || ioflag == UIO_WRITE); 5209 } 5210 5211 dmu_xuio_fini(xuio); 5212 return (0); 5213 } 5214 5215 /* 5216 * Predeclare these here so that the compiler assumes that 5217 * this is an "old style" function declaration that does 5218 * not include arguments => we won't get type mismatch errors 5219 * in the initializations that follow. 5220 */ 5221 static int zfs_inval(); 5222 static int zfs_isdir(); 5223 5224 static int 5225 zfs_inval() 5226 { 5227 return (SET_ERROR(EINVAL)); 5228 } 5229 5230 static int 5231 zfs_isdir() 5232 { 5233 return (SET_ERROR(EISDIR)); 5234 } 5235 /* 5236 * Directory vnode operations template 5237 */ 5238 vnodeops_t *zfs_dvnodeops; 5239 const fs_operation_def_t zfs_dvnodeops_template[] = { 5240 VOPNAME_OPEN, { .vop_open = zfs_open }, 5241 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5242 VOPNAME_READ, { .error = zfs_isdir }, 5243 VOPNAME_WRITE, { .error = zfs_isdir }, 5244 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5245 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5246 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5247 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5248 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5249 VOPNAME_CREATE, { .vop_create = zfs_create }, 5250 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5251 VOPNAME_LINK, { .vop_link = zfs_link }, 5252 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5253 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5254 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5255 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5256 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5257 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5258 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5259 VOPNAME_FID, { .vop_fid = zfs_fid }, 5260 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5261 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5262 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5263 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5264 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5265 NULL, NULL 5266 }; 5267 5268 /* 5269 * Regular file vnode operations template 5270 */ 5271 vnodeops_t *zfs_fvnodeops; 5272 const fs_operation_def_t zfs_fvnodeops_template[] = { 5273 VOPNAME_OPEN, { .vop_open = zfs_open }, 5274 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5275 VOPNAME_READ, { .vop_read = zfs_read }, 5276 VOPNAME_WRITE, { .vop_write = zfs_write }, 5277 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5278 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5279 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5280 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5281 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5282 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5283 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5284 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5285 VOPNAME_FID, { .vop_fid = zfs_fid }, 5286 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5287 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5288 VOPNAME_SPACE, { .vop_space = zfs_space }, 5289 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5290 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5291 VOPNAME_MAP, { .vop_map = zfs_map }, 5292 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5293 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5294 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5295 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5296 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5297 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5298 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5299 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5300 NULL, NULL 5301 }; 5302 5303 /* 5304 * Symbolic link vnode operations template 5305 */ 5306 vnodeops_t *zfs_symvnodeops; 5307 const fs_operation_def_t zfs_symvnodeops_template[] = { 5308 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5309 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5310 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5311 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5312 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5313 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5314 VOPNAME_FID, { .vop_fid = zfs_fid }, 5315 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5316 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5317 NULL, NULL 5318 }; 5319 5320 /* 5321 * special share hidden files vnode operations template 5322 */ 5323 vnodeops_t *zfs_sharevnodeops; 5324 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5325 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5326 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5327 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5328 VOPNAME_FID, { .vop_fid = zfs_fid }, 5329 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5330 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5331 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5332 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5333 NULL, NULL 5334 }; 5335 5336 /* 5337 * Extended attribute directory vnode operations template 5338 * 5339 * This template is identical to the directory vnodes 5340 * operation template except for restricted operations: 5341 * VOP_MKDIR() 5342 * VOP_SYMLINK() 5343 * 5344 * Note that there are other restrictions embedded in: 5345 * zfs_create() - restrict type to VREG 5346 * zfs_link() - no links into/out of attribute space 5347 * zfs_rename() - no moves into/out of attribute space 5348 */ 5349 vnodeops_t *zfs_xdvnodeops; 5350 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5351 VOPNAME_OPEN, { .vop_open = zfs_open }, 5352 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5353 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5354 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5355 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5356 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5357 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5358 VOPNAME_CREATE, { .vop_create = zfs_create }, 5359 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5360 VOPNAME_LINK, { .vop_link = zfs_link }, 5361 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5362 VOPNAME_MKDIR, { .error = zfs_inval }, 5363 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5364 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5365 VOPNAME_SYMLINK, { .error = zfs_inval }, 5366 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5367 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5368 VOPNAME_FID, { .vop_fid = zfs_fid }, 5369 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5370 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5371 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5372 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5373 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5374 NULL, NULL 5375 }; 5376 5377 /* 5378 * Error vnode operations template 5379 */ 5380 vnodeops_t *zfs_evnodeops; 5381 const fs_operation_def_t zfs_evnodeops_template[] = { 5382 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5383 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5384 NULL, NULL 5385 }; 5386