xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision 8412fdadc46d5bd0355a53fda7bda83e60803108)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 /* Portions Copyright 2007 Jeremy Teo */
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/vm.h>
47 #include <vm/seg_vn.h>
48 #include <vm/pvn.h>
49 #include <vm/as.h>
50 #include <vm/kpm.h>
51 #include <vm/seg_kpm.h>
52 #include <sys/mman.h>
53 #include <sys/pathname.h>
54 #include <sys/cmn_err.h>
55 #include <sys/errno.h>
56 #include <sys/unistd.h>
57 #include <sys/zfs_dir.h>
58 #include <sys/zfs_acl.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/dmu.h>
62 #include <sys/dmu_objset.h>
63 #include <sys/spa.h>
64 #include <sys/txg.h>
65 #include <sys/dbuf.h>
66 #include <sys/zap.h>
67 #include <sys/sa.h>
68 #include <sys/dirent.h>
69 #include <sys/policy.h>
70 #include <sys/sunddi.h>
71 #include <sys/filio.h>
72 #include <sys/sid.h>
73 #include "fs/fs_subr.h"
74 #include <sys/zfs_ctldir.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/zfs_sa.h>
77 #include <sys/dnlc.h>
78 #include <sys/zfs_rlock.h>
79 #include <sys/extdirent.h>
80 #include <sys/kidmap.h>
81 #include <sys/cred.h>
82 #include <sys/attr.h>
83 
84 /*
85  * Programming rules.
86  *
87  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
88  * properly lock its in-core state, create a DMU transaction, do the work,
89  * record this work in the intent log (ZIL), commit the DMU transaction,
90  * and wait for the intent log to commit if it is a synchronous operation.
91  * Moreover, the vnode ops must work in both normal and log replay context.
92  * The ordering of events is important to avoid deadlocks and references
93  * to freed memory.  The example below illustrates the following Big Rules:
94  *
95  *  (1)	A check must be made in each zfs thread for a mounted file system.
96  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
97  *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
98  *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
99  *	can return EIO from the calling function.
100  *
101  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
102  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
103  *	First, if it's the last reference, the vnode/znode
104  *	can be freed, so the zp may point to freed memory.  Second, the last
105  *	reference will call zfs_zinactive(), which may induce a lot of work --
106  *	pushing cached pages (which acquires range locks) and syncing out
107  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
108  *	which could deadlock the system if you were already holding one.
109  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
110  *
111  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
112  *	as they can span dmu_tx_assign() calls.
113  *
114  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
115  *      dmu_tx_assign().  This is critical because we don't want to block
116  *      while holding locks.
117  *
118  *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
119  *	reduces lock contention and CPU usage when we must wait (note that if
120  *	throughput is constrained by the storage, nearly every transaction
121  *	must wait).
122  *
123  *      Note, in particular, that if a lock is sometimes acquired before
124  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
125  *      to use a non-blocking assign can deadlock the system.  The scenario:
126  *
127  *	Thread A has grabbed a lock before calling dmu_tx_assign().
128  *	Thread B is in an already-assigned tx, and blocks for this lock.
129  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
130  *	forever, because the previous txg can't quiesce until B's tx commits.
131  *
132  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
133  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
134  *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
135  *	to indicate that this operation has already called dmu_tx_wait().
136  *	This will ensure that we don't retry forever, waiting a short bit
137  *	each time.
138  *
139  *  (5)	If the operation succeeded, generate the intent log entry for it
140  *	before dropping locks.  This ensures that the ordering of events
141  *	in the intent log matches the order in which they actually occurred.
142  *	During ZIL replay the zfs_log_* functions will update the sequence
143  *	number to indicate the zil transaction has replayed.
144  *
145  *  (6)	At the end of each vnode op, the DMU tx must always commit,
146  *	regardless of whether there were any errors.
147  *
148  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
149  *	to ensure that synchronous semantics are provided when necessary.
150  *
151  * In general, this is how things should be ordered in each vnode op:
152  *
153  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
154  * top:
155  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
156  *	rw_enter(...);			// grab any other locks you need
157  *	tx = dmu_tx_create(...);	// get DMU tx
158  *	dmu_tx_hold_*();		// hold each object you might modify
159  *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
160  *	if (error) {
161  *		rw_exit(...);		// drop locks
162  *		zfs_dirent_unlock(dl);	// unlock directory entry
163  *		VN_RELE(...);		// release held vnodes
164  *		if (error == ERESTART) {
165  *			waited = B_TRUE;
166  *			dmu_tx_wait(tx);
167  *			dmu_tx_abort(tx);
168  *			goto top;
169  *		}
170  *		dmu_tx_abort(tx);	// abort DMU tx
171  *		ZFS_EXIT(zfsvfs);	// finished in zfs
172  *		return (error);		// really out of space
173  *	}
174  *	error = do_real_work();		// do whatever this VOP does
175  *	if (error == 0)
176  *		zfs_log_*(...);		// on success, make ZIL entry
177  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
178  *	rw_exit(...);			// drop locks
179  *	zfs_dirent_unlock(dl);		// unlock directory entry
180  *	VN_RELE(...);			// release held vnodes
181  *	zil_commit(zilog, foid);	// synchronous when necessary
182  *	ZFS_EXIT(zfsvfs);		// finished in zfs
183  *	return (error);			// done, report error
184  */
185 
186 /* ARGSUSED */
187 static int
188 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
189 {
190 	znode_t	*zp = VTOZ(*vpp);
191 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
192 
193 	ZFS_ENTER(zfsvfs);
194 	ZFS_VERIFY_ZP(zp);
195 
196 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
197 	    ((flag & FAPPEND) == 0)) {
198 		ZFS_EXIT(zfsvfs);
199 		return (SET_ERROR(EPERM));
200 	}
201 
202 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
203 	    ZTOV(zp)->v_type == VREG &&
204 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
205 		if (fs_vscan(*vpp, cr, 0) != 0) {
206 			ZFS_EXIT(zfsvfs);
207 			return (SET_ERROR(EACCES));
208 		}
209 	}
210 
211 	/* Keep a count of the synchronous opens in the znode */
212 	if (flag & (FSYNC | FDSYNC))
213 		atomic_inc_32(&zp->z_sync_cnt);
214 
215 	ZFS_EXIT(zfsvfs);
216 	return (0);
217 }
218 
219 /* ARGSUSED */
220 static int
221 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
222     caller_context_t *ct)
223 {
224 	znode_t	*zp = VTOZ(vp);
225 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
226 
227 	/*
228 	 * Clean up any locks held by this process on the vp.
229 	 */
230 	cleanlocks(vp, ddi_get_pid(), 0);
231 	cleanshares(vp, ddi_get_pid());
232 
233 	ZFS_ENTER(zfsvfs);
234 	ZFS_VERIFY_ZP(zp);
235 
236 	/* Decrement the synchronous opens in the znode */
237 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
238 		atomic_dec_32(&zp->z_sync_cnt);
239 
240 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
241 	    ZTOV(zp)->v_type == VREG &&
242 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
243 		VERIFY(fs_vscan(vp, cr, 1) == 0);
244 
245 	ZFS_EXIT(zfsvfs);
246 	return (0);
247 }
248 
249 /*
250  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
251  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
252  */
253 static int
254 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
255 {
256 	znode_t	*zp = VTOZ(vp);
257 	uint64_t noff = (uint64_t)*off; /* new offset */
258 	uint64_t file_sz;
259 	int error;
260 	boolean_t hole;
261 
262 	file_sz = zp->z_size;
263 	if (noff >= file_sz)  {
264 		return (SET_ERROR(ENXIO));
265 	}
266 
267 	if (cmd == _FIO_SEEK_HOLE)
268 		hole = B_TRUE;
269 	else
270 		hole = B_FALSE;
271 
272 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
273 
274 	if (error == ESRCH)
275 		return (SET_ERROR(ENXIO));
276 
277 	/*
278 	 * We could find a hole that begins after the logical end-of-file,
279 	 * because dmu_offset_next() only works on whole blocks.  If the
280 	 * EOF falls mid-block, then indicate that the "virtual hole"
281 	 * at the end of the file begins at the logical EOF, rather than
282 	 * at the end of the last block.
283 	 */
284 	if (noff > file_sz) {
285 		ASSERT(hole);
286 		noff = file_sz;
287 	}
288 
289 	if (noff < *off)
290 		return (error);
291 	*off = noff;
292 	return (error);
293 }
294 
295 /* ARGSUSED */
296 static int
297 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
298     int *rvalp, caller_context_t *ct)
299 {
300 	offset_t off;
301 	offset_t ndata;
302 	dmu_object_info_t doi;
303 	int error;
304 	zfsvfs_t *zfsvfs;
305 	znode_t *zp;
306 
307 	switch (com) {
308 	case _FIOFFS:
309 	{
310 		return (zfs_sync(vp->v_vfsp, 0, cred));
311 
312 		/*
313 		 * The following two ioctls are used by bfu.  Faking out,
314 		 * necessary to avoid bfu errors.
315 		 */
316 	}
317 	case _FIOGDIO:
318 	case _FIOSDIO:
319 	{
320 		return (0);
321 	}
322 
323 	case _FIO_SEEK_DATA:
324 	case _FIO_SEEK_HOLE:
325 	{
326 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
327 			return (SET_ERROR(EFAULT));
328 
329 		zp = VTOZ(vp);
330 		zfsvfs = zp->z_zfsvfs;
331 		ZFS_ENTER(zfsvfs);
332 		ZFS_VERIFY_ZP(zp);
333 
334 		/* offset parameter is in/out */
335 		error = zfs_holey(vp, com, &off);
336 		ZFS_EXIT(zfsvfs);
337 		if (error)
338 			return (error);
339 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
340 			return (SET_ERROR(EFAULT));
341 		return (0);
342 	}
343 	case _FIO_COUNT_FILLED:
344 	{
345 		/*
346 		 * _FIO_COUNT_FILLED adds a new ioctl command which
347 		 * exposes the number of filled blocks in a
348 		 * ZFS object.
349 		 */
350 		zp = VTOZ(vp);
351 		zfsvfs = zp->z_zfsvfs;
352 		ZFS_ENTER(zfsvfs);
353 		ZFS_VERIFY_ZP(zp);
354 
355 		/*
356 		 * Wait for all dirty blocks for this object
357 		 * to get synced out to disk, and the DMU info
358 		 * updated.
359 		 */
360 		error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
361 		if (error) {
362 			ZFS_EXIT(zfsvfs);
363 			return (error);
364 		}
365 
366 		/*
367 		 * Retrieve fill count from DMU object.
368 		 */
369 		error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
370 		if (error) {
371 			ZFS_EXIT(zfsvfs);
372 			return (error);
373 		}
374 
375 		ndata = doi.doi_fill_count;
376 
377 		ZFS_EXIT(zfsvfs);
378 		if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
379 			return (SET_ERROR(EFAULT));
380 		return (0);
381 	}
382 	}
383 	return (SET_ERROR(ENOTTY));
384 }
385 
386 /*
387  * Utility functions to map and unmap a single physical page.  These
388  * are used to manage the mappable copies of ZFS file data, and therefore
389  * do not update ref/mod bits.
390  */
391 caddr_t
392 zfs_map_page(page_t *pp, enum seg_rw rw)
393 {
394 	if (kpm_enable)
395 		return (hat_kpm_mapin(pp, 0));
396 	ASSERT(rw == S_READ || rw == S_WRITE);
397 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
398 	    (caddr_t)-1));
399 }
400 
401 void
402 zfs_unmap_page(page_t *pp, caddr_t addr)
403 {
404 	if (kpm_enable) {
405 		hat_kpm_mapout(pp, 0, addr);
406 	} else {
407 		ppmapout(addr);
408 	}
409 }
410 
411 /*
412  * When a file is memory mapped, we must keep the IO data synchronized
413  * between the DMU cache and the memory mapped pages.  What this means:
414  *
415  * On Write:	If we find a memory mapped page, we write to *both*
416  *		the page and the dmu buffer.
417  */
418 static void
419 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
420 {
421 	int64_t	off;
422 
423 	off = start & PAGEOFFSET;
424 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
425 		page_t *pp;
426 		uint64_t nbytes = MIN(PAGESIZE - off, len);
427 
428 		if (pp = page_lookup(vp, start, SE_SHARED)) {
429 			caddr_t va;
430 
431 			va = zfs_map_page(pp, S_WRITE);
432 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
433 			    DMU_READ_PREFETCH);
434 			zfs_unmap_page(pp, va);
435 			page_unlock(pp);
436 		}
437 		len -= nbytes;
438 		off = 0;
439 	}
440 }
441 
442 /*
443  * When a file is memory mapped, we must keep the IO data synchronized
444  * between the DMU cache and the memory mapped pages.  What this means:
445  *
446  * On Read:	We "read" preferentially from memory mapped pages,
447  *		else we default from the dmu buffer.
448  *
449  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
450  *	 the file is memory mapped.
451  */
452 static int
453 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
454 {
455 	znode_t *zp = VTOZ(vp);
456 	int64_t	start, off;
457 	int len = nbytes;
458 	int error = 0;
459 
460 	start = uio->uio_loffset;
461 	off = start & PAGEOFFSET;
462 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
463 		page_t *pp;
464 		uint64_t bytes = MIN(PAGESIZE - off, len);
465 
466 		if (pp = page_lookup(vp, start, SE_SHARED)) {
467 			caddr_t va;
468 
469 			va = zfs_map_page(pp, S_READ);
470 			error = uiomove(va + off, bytes, UIO_READ, uio);
471 			zfs_unmap_page(pp, va);
472 			page_unlock(pp);
473 		} else {
474 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
475 			    uio, bytes);
476 		}
477 		len -= bytes;
478 		off = 0;
479 		if (error)
480 			break;
481 	}
482 	return (error);
483 }
484 
485 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
486 
487 /*
488  * Read bytes from specified file into supplied buffer.
489  *
490  *	IN:	vp	- vnode of file to be read from.
491  *		uio	- structure supplying read location, range info,
492  *			  and return buffer.
493  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
494  *		cr	- credentials of caller.
495  *		ct	- caller context
496  *
497  *	OUT:	uio	- updated offset and range, buffer filled.
498  *
499  *	RETURN:	0 on success, error code on failure.
500  *
501  * Side Effects:
502  *	vp - atime updated if byte count > 0
503  */
504 /* ARGSUSED */
505 static int
506 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
507 {
508 	znode_t		*zp = VTOZ(vp);
509 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
510 	ssize_t		n, nbytes;
511 	int		error = 0;
512 	rl_t		*rl;
513 	xuio_t		*xuio = NULL;
514 
515 	ZFS_ENTER(zfsvfs);
516 	ZFS_VERIFY_ZP(zp);
517 
518 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
519 		ZFS_EXIT(zfsvfs);
520 		return (SET_ERROR(EACCES));
521 	}
522 
523 	/*
524 	 * Validate file offset
525 	 */
526 	if (uio->uio_loffset < (offset_t)0) {
527 		ZFS_EXIT(zfsvfs);
528 		return (SET_ERROR(EINVAL));
529 	}
530 
531 	/*
532 	 * Fasttrack empty reads
533 	 */
534 	if (uio->uio_resid == 0) {
535 		ZFS_EXIT(zfsvfs);
536 		return (0);
537 	}
538 
539 	/*
540 	 * Check for mandatory locks
541 	 */
542 	if (MANDMODE(zp->z_mode)) {
543 		if (error = chklock(vp, FREAD,
544 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
545 			ZFS_EXIT(zfsvfs);
546 			return (error);
547 		}
548 	}
549 
550 	/*
551 	 * If we're in FRSYNC mode, sync out this znode before reading it.
552 	 */
553 	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
554 		zil_commit(zfsvfs->z_log, zp->z_id);
555 
556 	/*
557 	 * Lock the range against changes.
558 	 */
559 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
560 
561 	/*
562 	 * If we are reading past end-of-file we can skip
563 	 * to the end; but we might still need to set atime.
564 	 */
565 	if (uio->uio_loffset >= zp->z_size) {
566 		error = 0;
567 		goto out;
568 	}
569 
570 	ASSERT(uio->uio_loffset < zp->z_size);
571 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
572 
573 	if ((uio->uio_extflg == UIO_XUIO) &&
574 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
575 		int nblk;
576 		int blksz = zp->z_blksz;
577 		uint64_t offset = uio->uio_loffset;
578 
579 		xuio = (xuio_t *)uio;
580 		if ((ISP2(blksz))) {
581 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
582 			    blksz)) / blksz;
583 		} else {
584 			ASSERT(offset + n <= blksz);
585 			nblk = 1;
586 		}
587 		(void) dmu_xuio_init(xuio, nblk);
588 
589 		if (vn_has_cached_data(vp)) {
590 			/*
591 			 * For simplicity, we always allocate a full buffer
592 			 * even if we only expect to read a portion of a block.
593 			 */
594 			while (--nblk >= 0) {
595 				(void) dmu_xuio_add(xuio,
596 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
597 				    blksz), 0, blksz);
598 			}
599 		}
600 	}
601 
602 	while (n > 0) {
603 		nbytes = MIN(n, zfs_read_chunk_size -
604 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
605 
606 		if (vn_has_cached_data(vp)) {
607 			error = mappedread(vp, nbytes, uio);
608 		} else {
609 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
610 			    uio, nbytes);
611 		}
612 		if (error) {
613 			/* convert checksum errors into IO errors */
614 			if (error == ECKSUM)
615 				error = SET_ERROR(EIO);
616 			break;
617 		}
618 
619 		n -= nbytes;
620 	}
621 out:
622 	zfs_range_unlock(rl);
623 
624 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
625 	ZFS_EXIT(zfsvfs);
626 	return (error);
627 }
628 
629 /*
630  * Write the bytes to a file.
631  *
632  *	IN:	vp	- vnode of file to be written to.
633  *		uio	- structure supplying write location, range info,
634  *			  and data buffer.
635  *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
636  *			  set if in append mode.
637  *		cr	- credentials of caller.
638  *		ct	- caller context (NFS/CIFS fem monitor only)
639  *
640  *	OUT:	uio	- updated offset and range.
641  *
642  *	RETURN:	0 on success, error code on failure.
643  *
644  * Timestamps:
645  *	vp - ctime|mtime updated if byte count > 0
646  */
647 
648 /* ARGSUSED */
649 static int
650 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
651 {
652 	znode_t		*zp = VTOZ(vp);
653 	rlim64_t	limit = uio->uio_llimit;
654 	ssize_t		start_resid = uio->uio_resid;
655 	ssize_t		tx_bytes;
656 	uint64_t	end_size;
657 	dmu_tx_t	*tx;
658 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
659 	zilog_t		*zilog;
660 	offset_t	woff;
661 	ssize_t		n, nbytes;
662 	rl_t		*rl;
663 	int		max_blksz = zfsvfs->z_max_blksz;
664 	int		error = 0;
665 	arc_buf_t	*abuf;
666 	iovec_t		*aiov = NULL;
667 	xuio_t		*xuio = NULL;
668 	int		i_iov = 0;
669 	int		iovcnt = uio->uio_iovcnt;
670 	iovec_t		*iovp = uio->uio_iov;
671 	int		write_eof;
672 	int		count = 0;
673 	sa_bulk_attr_t	bulk[4];
674 	uint64_t	mtime[2], ctime[2];
675 
676 	/*
677 	 * Fasttrack empty write
678 	 */
679 	n = start_resid;
680 	if (n == 0)
681 		return (0);
682 
683 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
684 		limit = MAXOFFSET_T;
685 
686 	ZFS_ENTER(zfsvfs);
687 	ZFS_VERIFY_ZP(zp);
688 
689 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
690 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
691 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
692 	    &zp->z_size, 8);
693 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
694 	    &zp->z_pflags, 8);
695 
696 	/*
697 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
698 	 * callers might not be able to detect properly that we are read-only,
699 	 * so check it explicitly here.
700 	 */
701 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
702 		ZFS_EXIT(zfsvfs);
703 		return (SET_ERROR(EROFS));
704 	}
705 
706 	/*
707 	 * If immutable or not appending then return EPERM
708 	 */
709 	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
710 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
711 	    (uio->uio_loffset < zp->z_size))) {
712 		ZFS_EXIT(zfsvfs);
713 		return (SET_ERROR(EPERM));
714 	}
715 
716 	zilog = zfsvfs->z_log;
717 
718 	/*
719 	 * Validate file offset
720 	 */
721 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
722 	if (woff < 0) {
723 		ZFS_EXIT(zfsvfs);
724 		return (SET_ERROR(EINVAL));
725 	}
726 
727 	/*
728 	 * Check for mandatory locks before calling zfs_range_lock()
729 	 * in order to prevent a deadlock with locks set via fcntl().
730 	 */
731 	if (MANDMODE((mode_t)zp->z_mode) &&
732 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
733 		ZFS_EXIT(zfsvfs);
734 		return (error);
735 	}
736 
737 	/*
738 	 * Pre-fault the pages to ensure slow (eg NFS) pages
739 	 * don't hold up txg.
740 	 * Skip this if uio contains loaned arc_buf.
741 	 */
742 	if ((uio->uio_extflg == UIO_XUIO) &&
743 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
744 		xuio = (xuio_t *)uio;
745 	else
746 		uio_prefaultpages(MIN(n, max_blksz), uio);
747 
748 	/*
749 	 * If in append mode, set the io offset pointer to eof.
750 	 */
751 	if (ioflag & FAPPEND) {
752 		/*
753 		 * Obtain an appending range lock to guarantee file append
754 		 * semantics.  We reset the write offset once we have the lock.
755 		 */
756 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
757 		woff = rl->r_off;
758 		if (rl->r_len == UINT64_MAX) {
759 			/*
760 			 * We overlocked the file because this write will cause
761 			 * the file block size to increase.
762 			 * Note that zp_size cannot change with this lock held.
763 			 */
764 			woff = zp->z_size;
765 		}
766 		uio->uio_loffset = woff;
767 	} else {
768 		/*
769 		 * Note that if the file block size will change as a result of
770 		 * this write, then this range lock will lock the entire file
771 		 * so that we can re-write the block safely.
772 		 */
773 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
774 	}
775 
776 	if (woff >= limit) {
777 		zfs_range_unlock(rl);
778 		ZFS_EXIT(zfsvfs);
779 		return (SET_ERROR(EFBIG));
780 	}
781 
782 	if ((woff + n) > limit || woff > (limit - n))
783 		n = limit - woff;
784 
785 	/* Will this write extend the file length? */
786 	write_eof = (woff + n > zp->z_size);
787 
788 	end_size = MAX(zp->z_size, woff + n);
789 
790 	/*
791 	 * Write the file in reasonable size chunks.  Each chunk is written
792 	 * in a separate transaction; this keeps the intent log records small
793 	 * and allows us to do more fine-grained space accounting.
794 	 */
795 	while (n > 0) {
796 		abuf = NULL;
797 		woff = uio->uio_loffset;
798 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
799 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
800 			if (abuf != NULL)
801 				dmu_return_arcbuf(abuf);
802 			error = SET_ERROR(EDQUOT);
803 			break;
804 		}
805 
806 		if (xuio && abuf == NULL) {
807 			ASSERT(i_iov < iovcnt);
808 			aiov = &iovp[i_iov];
809 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
810 			dmu_xuio_clear(xuio, i_iov);
811 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
812 			    iovec_t *, aiov, arc_buf_t *, abuf);
813 			ASSERT((aiov->iov_base == abuf->b_data) ||
814 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
815 			    aiov->iov_len == arc_buf_size(abuf)));
816 			i_iov++;
817 		} else if (abuf == NULL && n >= max_blksz &&
818 		    woff >= zp->z_size &&
819 		    P2PHASE(woff, max_blksz) == 0 &&
820 		    zp->z_blksz == max_blksz) {
821 			/*
822 			 * This write covers a full block.  "Borrow" a buffer
823 			 * from the dmu so that we can fill it before we enter
824 			 * a transaction.  This avoids the possibility of
825 			 * holding up the transaction if the data copy hangs
826 			 * up on a pagefault (e.g., from an NFS server mapping).
827 			 */
828 			size_t cbytes;
829 
830 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
831 			    max_blksz);
832 			ASSERT(abuf != NULL);
833 			ASSERT(arc_buf_size(abuf) == max_blksz);
834 			if (error = uiocopy(abuf->b_data, max_blksz,
835 			    UIO_WRITE, uio, &cbytes)) {
836 				dmu_return_arcbuf(abuf);
837 				break;
838 			}
839 			ASSERT(cbytes == max_blksz);
840 		}
841 
842 		/*
843 		 * Start a transaction.
844 		 */
845 		tx = dmu_tx_create(zfsvfs->z_os);
846 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
847 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
848 		zfs_sa_upgrade_txholds(tx, zp);
849 		error = dmu_tx_assign(tx, TXG_WAIT);
850 		if (error) {
851 			dmu_tx_abort(tx);
852 			if (abuf != NULL)
853 				dmu_return_arcbuf(abuf);
854 			break;
855 		}
856 
857 		/*
858 		 * If zfs_range_lock() over-locked we grow the blocksize
859 		 * and then reduce the lock range.  This will only happen
860 		 * on the first iteration since zfs_range_reduce() will
861 		 * shrink down r_len to the appropriate size.
862 		 */
863 		if (rl->r_len == UINT64_MAX) {
864 			uint64_t new_blksz;
865 
866 			if (zp->z_blksz > max_blksz) {
867 				/*
868 				 * File's blocksize is already larger than the
869 				 * "recordsize" property.  Only let it grow to
870 				 * the next power of 2.
871 				 */
872 				ASSERT(!ISP2(zp->z_blksz));
873 				new_blksz = MIN(end_size,
874 				    1 << highbit64(zp->z_blksz));
875 			} else {
876 				new_blksz = MIN(end_size, max_blksz);
877 			}
878 			zfs_grow_blocksize(zp, new_blksz, tx);
879 			zfs_range_reduce(rl, woff, n);
880 		}
881 
882 		/*
883 		 * XXX - should we really limit each write to z_max_blksz?
884 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
885 		 */
886 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
887 
888 		if (abuf == NULL) {
889 			tx_bytes = uio->uio_resid;
890 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
891 			    uio, nbytes, tx);
892 			tx_bytes -= uio->uio_resid;
893 		} else {
894 			tx_bytes = nbytes;
895 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
896 			/*
897 			 * If this is not a full block write, but we are
898 			 * extending the file past EOF and this data starts
899 			 * block-aligned, use assign_arcbuf().  Otherwise,
900 			 * write via dmu_write().
901 			 */
902 			if (tx_bytes < max_blksz && (!write_eof ||
903 			    aiov->iov_base != abuf->b_data)) {
904 				ASSERT(xuio);
905 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
906 				    aiov->iov_len, aiov->iov_base, tx);
907 				dmu_return_arcbuf(abuf);
908 				xuio_stat_wbuf_copied();
909 			} else {
910 				ASSERT(xuio || tx_bytes == max_blksz);
911 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
912 				    woff, abuf, tx);
913 			}
914 			ASSERT(tx_bytes <= uio->uio_resid);
915 			uioskip(uio, tx_bytes);
916 		}
917 		if (tx_bytes && vn_has_cached_data(vp)) {
918 			update_pages(vp, woff,
919 			    tx_bytes, zfsvfs->z_os, zp->z_id);
920 		}
921 
922 		/*
923 		 * If we made no progress, we're done.  If we made even
924 		 * partial progress, update the znode and ZIL accordingly.
925 		 */
926 		if (tx_bytes == 0) {
927 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
928 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
929 			dmu_tx_commit(tx);
930 			ASSERT(error != 0);
931 			break;
932 		}
933 
934 		/*
935 		 * Clear Set-UID/Set-GID bits on successful write if not
936 		 * privileged and at least one of the excute bits is set.
937 		 *
938 		 * It would be nice to to this after all writes have
939 		 * been done, but that would still expose the ISUID/ISGID
940 		 * to another app after the partial write is committed.
941 		 *
942 		 * Note: we don't call zfs_fuid_map_id() here because
943 		 * user 0 is not an ephemeral uid.
944 		 */
945 		mutex_enter(&zp->z_acl_lock);
946 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
947 		    (S_IXUSR >> 6))) != 0 &&
948 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
949 		    secpolicy_vnode_setid_retain(cr,
950 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
951 			uint64_t newmode;
952 			zp->z_mode &= ~(S_ISUID | S_ISGID);
953 			newmode = zp->z_mode;
954 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
955 			    (void *)&newmode, sizeof (uint64_t), tx);
956 		}
957 		mutex_exit(&zp->z_acl_lock);
958 
959 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
960 		    B_TRUE);
961 
962 		/*
963 		 * Update the file size (zp_size) if it has changed;
964 		 * account for possible concurrent updates.
965 		 */
966 		while ((end_size = zp->z_size) < uio->uio_loffset) {
967 			(void) atomic_cas_64(&zp->z_size, end_size,
968 			    uio->uio_loffset);
969 			ASSERT(error == 0);
970 		}
971 		/*
972 		 * If we are replaying and eof is non zero then force
973 		 * the file size to the specified eof. Note, there's no
974 		 * concurrency during replay.
975 		 */
976 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
977 			zp->z_size = zfsvfs->z_replay_eof;
978 
979 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
980 
981 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
982 		dmu_tx_commit(tx);
983 
984 		if (error != 0)
985 			break;
986 		ASSERT(tx_bytes == nbytes);
987 		n -= nbytes;
988 
989 		if (!xuio && n > 0)
990 			uio_prefaultpages(MIN(n, max_blksz), uio);
991 	}
992 
993 	zfs_range_unlock(rl);
994 
995 	/*
996 	 * If we're in replay mode, or we made no progress, return error.
997 	 * Otherwise, it's at least a partial write, so it's successful.
998 	 */
999 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1000 		ZFS_EXIT(zfsvfs);
1001 		return (error);
1002 	}
1003 
1004 	if (ioflag & (FSYNC | FDSYNC) ||
1005 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1006 		zil_commit(zilog, zp->z_id);
1007 
1008 	ZFS_EXIT(zfsvfs);
1009 	return (0);
1010 }
1011 
1012 void
1013 zfs_get_done(zgd_t *zgd, int error)
1014 {
1015 	znode_t *zp = zgd->zgd_private;
1016 	objset_t *os = zp->z_zfsvfs->z_os;
1017 
1018 	if (zgd->zgd_db)
1019 		dmu_buf_rele(zgd->zgd_db, zgd);
1020 
1021 	zfs_range_unlock(zgd->zgd_rl);
1022 
1023 	/*
1024 	 * Release the vnode asynchronously as we currently have the
1025 	 * txg stopped from syncing.
1026 	 */
1027 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1028 
1029 	if (error == 0 && zgd->zgd_bp)
1030 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1031 
1032 	kmem_free(zgd, sizeof (zgd_t));
1033 }
1034 
1035 #ifdef DEBUG
1036 static int zil_fault_io = 0;
1037 #endif
1038 
1039 /*
1040  * Get data to generate a TX_WRITE intent log record.
1041  */
1042 int
1043 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1044 {
1045 	zfsvfs_t *zfsvfs = arg;
1046 	objset_t *os = zfsvfs->z_os;
1047 	znode_t *zp;
1048 	uint64_t object = lr->lr_foid;
1049 	uint64_t offset = lr->lr_offset;
1050 	uint64_t size = lr->lr_length;
1051 	blkptr_t *bp = &lr->lr_blkptr;
1052 	dmu_buf_t *db;
1053 	zgd_t *zgd;
1054 	int error = 0;
1055 
1056 	ASSERT(zio != NULL);
1057 	ASSERT(size != 0);
1058 
1059 	/*
1060 	 * Nothing to do if the file has been removed
1061 	 */
1062 	if (zfs_zget(zfsvfs, object, &zp) != 0)
1063 		return (SET_ERROR(ENOENT));
1064 	if (zp->z_unlinked) {
1065 		/*
1066 		 * Release the vnode asynchronously as we currently have the
1067 		 * txg stopped from syncing.
1068 		 */
1069 		VN_RELE_ASYNC(ZTOV(zp),
1070 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1071 		return (SET_ERROR(ENOENT));
1072 	}
1073 
1074 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1075 	zgd->zgd_zilog = zfsvfs->z_log;
1076 	zgd->zgd_private = zp;
1077 
1078 	/*
1079 	 * Write records come in two flavors: immediate and indirect.
1080 	 * For small writes it's cheaper to store the data with the
1081 	 * log record (immediate); for large writes it's cheaper to
1082 	 * sync the data and get a pointer to it (indirect) so that
1083 	 * we don't have to write the data twice.
1084 	 */
1085 	if (buf != NULL) { /* immediate write */
1086 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1087 		/* test for truncation needs to be done while range locked */
1088 		if (offset >= zp->z_size) {
1089 			error = SET_ERROR(ENOENT);
1090 		} else {
1091 			error = dmu_read(os, object, offset, size, buf,
1092 			    DMU_READ_NO_PREFETCH);
1093 		}
1094 		ASSERT(error == 0 || error == ENOENT);
1095 	} else { /* indirect write */
1096 		/*
1097 		 * Have to lock the whole block to ensure when it's
1098 		 * written out and it's checksum is being calculated
1099 		 * that no one can change the data. We need to re-check
1100 		 * blocksize after we get the lock in case it's changed!
1101 		 */
1102 		for (;;) {
1103 			uint64_t blkoff;
1104 			size = zp->z_blksz;
1105 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1106 			offset -= blkoff;
1107 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1108 			    RL_READER);
1109 			if (zp->z_blksz == size)
1110 				break;
1111 			offset += blkoff;
1112 			zfs_range_unlock(zgd->zgd_rl);
1113 		}
1114 		/* test for truncation needs to be done while range locked */
1115 		if (lr->lr_offset >= zp->z_size)
1116 			error = SET_ERROR(ENOENT);
1117 #ifdef DEBUG
1118 		if (zil_fault_io) {
1119 			error = SET_ERROR(EIO);
1120 			zil_fault_io = 0;
1121 		}
1122 #endif
1123 		if (error == 0)
1124 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1125 			    DMU_READ_NO_PREFETCH);
1126 
1127 		if (error == 0) {
1128 			blkptr_t *obp = dmu_buf_get_blkptr(db);
1129 			if (obp) {
1130 				ASSERT(BP_IS_HOLE(bp));
1131 				*bp = *obp;
1132 			}
1133 
1134 			zgd->zgd_db = db;
1135 			zgd->zgd_bp = bp;
1136 
1137 			ASSERT(db->db_offset == offset);
1138 			ASSERT(db->db_size == size);
1139 
1140 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1141 			    zfs_get_done, zgd);
1142 			ASSERT(error || lr->lr_length <= zp->z_blksz);
1143 
1144 			/*
1145 			 * On success, we need to wait for the write I/O
1146 			 * initiated by dmu_sync() to complete before we can
1147 			 * release this dbuf.  We will finish everything up
1148 			 * in the zfs_get_done() callback.
1149 			 */
1150 			if (error == 0)
1151 				return (0);
1152 
1153 			if (error == EALREADY) {
1154 				lr->lr_common.lrc_txtype = TX_WRITE2;
1155 				error = 0;
1156 			}
1157 		}
1158 	}
1159 
1160 	zfs_get_done(zgd, error);
1161 
1162 	return (error);
1163 }
1164 
1165 /*ARGSUSED*/
1166 static int
1167 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1168     caller_context_t *ct)
1169 {
1170 	znode_t *zp = VTOZ(vp);
1171 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1172 	int error;
1173 
1174 	ZFS_ENTER(zfsvfs);
1175 	ZFS_VERIFY_ZP(zp);
1176 
1177 	if (flag & V_ACE_MASK)
1178 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1179 	else
1180 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1181 
1182 	ZFS_EXIT(zfsvfs);
1183 	return (error);
1184 }
1185 
1186 /*
1187  * If vnode is for a device return a specfs vnode instead.
1188  */
1189 static int
1190 specvp_check(vnode_t **vpp, cred_t *cr)
1191 {
1192 	int error = 0;
1193 
1194 	if (IS_DEVVP(*vpp)) {
1195 		struct vnode *svp;
1196 
1197 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1198 		VN_RELE(*vpp);
1199 		if (svp == NULL)
1200 			error = SET_ERROR(ENOSYS);
1201 		*vpp = svp;
1202 	}
1203 	return (error);
1204 }
1205 
1206 
1207 /*
1208  * Lookup an entry in a directory, or an extended attribute directory.
1209  * If it exists, return a held vnode reference for it.
1210  *
1211  *	IN:	dvp	- vnode of directory to search.
1212  *		nm	- name of entry to lookup.
1213  *		pnp	- full pathname to lookup [UNUSED].
1214  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1215  *		rdir	- root directory vnode [UNUSED].
1216  *		cr	- credentials of caller.
1217  *		ct	- caller context
1218  *		direntflags - directory lookup flags
1219  *		realpnp - returned pathname.
1220  *
1221  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1222  *
1223  *	RETURN:	0 on success, error code on failure.
1224  *
1225  * Timestamps:
1226  *	NA
1227  */
1228 /* ARGSUSED */
1229 static int
1230 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1231     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1232     int *direntflags, pathname_t *realpnp)
1233 {
1234 	znode_t *zdp = VTOZ(dvp);
1235 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1236 	int	error = 0;
1237 
1238 	/* fast path */
1239 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1240 
1241 		if (dvp->v_type != VDIR) {
1242 			return (SET_ERROR(ENOTDIR));
1243 		} else if (zdp->z_sa_hdl == NULL) {
1244 			return (SET_ERROR(EIO));
1245 		}
1246 
1247 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1248 			error = zfs_fastaccesschk_execute(zdp, cr);
1249 			if (!error) {
1250 				*vpp = dvp;
1251 				VN_HOLD(*vpp);
1252 				return (0);
1253 			}
1254 			return (error);
1255 		} else {
1256 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1257 
1258 			if (tvp) {
1259 				error = zfs_fastaccesschk_execute(zdp, cr);
1260 				if (error) {
1261 					VN_RELE(tvp);
1262 					return (error);
1263 				}
1264 				if (tvp == DNLC_NO_VNODE) {
1265 					VN_RELE(tvp);
1266 					return (SET_ERROR(ENOENT));
1267 				} else {
1268 					*vpp = tvp;
1269 					return (specvp_check(vpp, cr));
1270 				}
1271 			}
1272 		}
1273 	}
1274 
1275 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1276 
1277 	ZFS_ENTER(zfsvfs);
1278 	ZFS_VERIFY_ZP(zdp);
1279 
1280 	*vpp = NULL;
1281 
1282 	if (flags & LOOKUP_XATTR) {
1283 		/*
1284 		 * If the xattr property is off, refuse the lookup request.
1285 		 */
1286 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1287 			ZFS_EXIT(zfsvfs);
1288 			return (SET_ERROR(EINVAL));
1289 		}
1290 
1291 		/*
1292 		 * We don't allow recursive attributes..
1293 		 * Maybe someday we will.
1294 		 */
1295 		if (zdp->z_pflags & ZFS_XATTR) {
1296 			ZFS_EXIT(zfsvfs);
1297 			return (SET_ERROR(EINVAL));
1298 		}
1299 
1300 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1301 			ZFS_EXIT(zfsvfs);
1302 			return (error);
1303 		}
1304 
1305 		/*
1306 		 * Do we have permission to get into attribute directory?
1307 		 */
1308 
1309 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1310 		    B_FALSE, cr)) {
1311 			VN_RELE(*vpp);
1312 			*vpp = NULL;
1313 		}
1314 
1315 		ZFS_EXIT(zfsvfs);
1316 		return (error);
1317 	}
1318 
1319 	if (dvp->v_type != VDIR) {
1320 		ZFS_EXIT(zfsvfs);
1321 		return (SET_ERROR(ENOTDIR));
1322 	}
1323 
1324 	/*
1325 	 * Check accessibility of directory.
1326 	 */
1327 
1328 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1329 		ZFS_EXIT(zfsvfs);
1330 		return (error);
1331 	}
1332 
1333 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1334 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1335 		ZFS_EXIT(zfsvfs);
1336 		return (SET_ERROR(EILSEQ));
1337 	}
1338 
1339 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1340 	if (error == 0)
1341 		error = specvp_check(vpp, cr);
1342 
1343 	ZFS_EXIT(zfsvfs);
1344 	return (error);
1345 }
1346 
1347 /*
1348  * Attempt to create a new entry in a directory.  If the entry
1349  * already exists, truncate the file if permissible, else return
1350  * an error.  Return the vp of the created or trunc'd file.
1351  *
1352  *	IN:	dvp	- vnode of directory to put new file entry in.
1353  *		name	- name of new file entry.
1354  *		vap	- attributes of new file.
1355  *		excl	- flag indicating exclusive or non-exclusive mode.
1356  *		mode	- mode to open file with.
1357  *		cr	- credentials of caller.
1358  *		flag	- large file flag [UNUSED].
1359  *		ct	- caller context
1360  *		vsecp	- ACL to be set
1361  *
1362  *	OUT:	vpp	- vnode of created or trunc'd entry.
1363  *
1364  *	RETURN:	0 on success, error code on failure.
1365  *
1366  * Timestamps:
1367  *	dvp - ctime|mtime updated if new entry created
1368  *	 vp - ctime|mtime always, atime if new
1369  */
1370 
1371 /* ARGSUSED */
1372 static int
1373 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1374     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1375     vsecattr_t *vsecp)
1376 {
1377 	znode_t		*zp, *dzp = VTOZ(dvp);
1378 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1379 	zilog_t		*zilog;
1380 	objset_t	*os;
1381 	zfs_dirlock_t	*dl;
1382 	dmu_tx_t	*tx;
1383 	int		error;
1384 	ksid_t		*ksid;
1385 	uid_t		uid;
1386 	gid_t		gid = crgetgid(cr);
1387 	zfs_acl_ids_t   acl_ids;
1388 	boolean_t	fuid_dirtied;
1389 	boolean_t	have_acl = B_FALSE;
1390 	boolean_t	waited = B_FALSE;
1391 
1392 	/*
1393 	 * If we have an ephemeral id, ACL, or XVATTR then
1394 	 * make sure file system is at proper version
1395 	 */
1396 
1397 	ksid = crgetsid(cr, KSID_OWNER);
1398 	if (ksid)
1399 		uid = ksid_getid(ksid);
1400 	else
1401 		uid = crgetuid(cr);
1402 
1403 	if (zfsvfs->z_use_fuids == B_FALSE &&
1404 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1405 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1406 		return (SET_ERROR(EINVAL));
1407 
1408 	ZFS_ENTER(zfsvfs);
1409 	ZFS_VERIFY_ZP(dzp);
1410 	os = zfsvfs->z_os;
1411 	zilog = zfsvfs->z_log;
1412 
1413 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1414 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1415 		ZFS_EXIT(zfsvfs);
1416 		return (SET_ERROR(EILSEQ));
1417 	}
1418 
1419 	if (vap->va_mask & AT_XVATTR) {
1420 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1421 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1422 			ZFS_EXIT(zfsvfs);
1423 			return (error);
1424 		}
1425 	}
1426 top:
1427 	*vpp = NULL;
1428 
1429 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1430 		vap->va_mode &= ~VSVTX;
1431 
1432 	if (*name == '\0') {
1433 		/*
1434 		 * Null component name refers to the directory itself.
1435 		 */
1436 		VN_HOLD(dvp);
1437 		zp = dzp;
1438 		dl = NULL;
1439 		error = 0;
1440 	} else {
1441 		/* possible VN_HOLD(zp) */
1442 		int zflg = 0;
1443 
1444 		if (flag & FIGNORECASE)
1445 			zflg |= ZCILOOK;
1446 
1447 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1448 		    NULL, NULL);
1449 		if (error) {
1450 			if (have_acl)
1451 				zfs_acl_ids_free(&acl_ids);
1452 			if (strcmp(name, "..") == 0)
1453 				error = SET_ERROR(EISDIR);
1454 			ZFS_EXIT(zfsvfs);
1455 			return (error);
1456 		}
1457 	}
1458 
1459 	if (zp == NULL) {
1460 		uint64_t txtype;
1461 
1462 		/*
1463 		 * Create a new file object and update the directory
1464 		 * to reference it.
1465 		 */
1466 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1467 			if (have_acl)
1468 				zfs_acl_ids_free(&acl_ids);
1469 			goto out;
1470 		}
1471 
1472 		/*
1473 		 * We only support the creation of regular files in
1474 		 * extended attribute directories.
1475 		 */
1476 
1477 		if ((dzp->z_pflags & ZFS_XATTR) &&
1478 		    (vap->va_type != VREG)) {
1479 			if (have_acl)
1480 				zfs_acl_ids_free(&acl_ids);
1481 			error = SET_ERROR(EINVAL);
1482 			goto out;
1483 		}
1484 
1485 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1486 		    cr, vsecp, &acl_ids)) != 0)
1487 			goto out;
1488 		have_acl = B_TRUE;
1489 
1490 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1491 			zfs_acl_ids_free(&acl_ids);
1492 			error = SET_ERROR(EDQUOT);
1493 			goto out;
1494 		}
1495 
1496 		tx = dmu_tx_create(os);
1497 
1498 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1499 		    ZFS_SA_BASE_ATTR_SIZE);
1500 
1501 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1502 		if (fuid_dirtied)
1503 			zfs_fuid_txhold(zfsvfs, tx);
1504 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1505 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1506 		if (!zfsvfs->z_use_sa &&
1507 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1508 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1509 			    0, acl_ids.z_aclp->z_acl_bytes);
1510 		}
1511 		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1512 		if (error) {
1513 			zfs_dirent_unlock(dl);
1514 			if (error == ERESTART) {
1515 				waited = B_TRUE;
1516 				dmu_tx_wait(tx);
1517 				dmu_tx_abort(tx);
1518 				goto top;
1519 			}
1520 			zfs_acl_ids_free(&acl_ids);
1521 			dmu_tx_abort(tx);
1522 			ZFS_EXIT(zfsvfs);
1523 			return (error);
1524 		}
1525 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1526 
1527 		if (fuid_dirtied)
1528 			zfs_fuid_sync(zfsvfs, tx);
1529 
1530 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1531 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1532 		if (flag & FIGNORECASE)
1533 			txtype |= TX_CI;
1534 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1535 		    vsecp, acl_ids.z_fuidp, vap);
1536 		zfs_acl_ids_free(&acl_ids);
1537 		dmu_tx_commit(tx);
1538 	} else {
1539 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1540 
1541 		if (have_acl)
1542 			zfs_acl_ids_free(&acl_ids);
1543 		have_acl = B_FALSE;
1544 
1545 		/*
1546 		 * A directory entry already exists for this name.
1547 		 */
1548 		/*
1549 		 * Can't truncate an existing file if in exclusive mode.
1550 		 */
1551 		if (excl == EXCL) {
1552 			error = SET_ERROR(EEXIST);
1553 			goto out;
1554 		}
1555 		/*
1556 		 * Can't open a directory for writing.
1557 		 */
1558 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1559 			error = SET_ERROR(EISDIR);
1560 			goto out;
1561 		}
1562 		/*
1563 		 * Verify requested access to file.
1564 		 */
1565 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1566 			goto out;
1567 		}
1568 
1569 		mutex_enter(&dzp->z_lock);
1570 		dzp->z_seq++;
1571 		mutex_exit(&dzp->z_lock);
1572 
1573 		/*
1574 		 * Truncate regular files if requested.
1575 		 */
1576 		if ((ZTOV(zp)->v_type == VREG) &&
1577 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1578 			/* we can't hold any locks when calling zfs_freesp() */
1579 			zfs_dirent_unlock(dl);
1580 			dl = NULL;
1581 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1582 			if (error == 0) {
1583 				vnevent_create(ZTOV(zp), ct);
1584 			}
1585 		}
1586 	}
1587 out:
1588 
1589 	if (dl)
1590 		zfs_dirent_unlock(dl);
1591 
1592 	if (error) {
1593 		if (zp)
1594 			VN_RELE(ZTOV(zp));
1595 	} else {
1596 		*vpp = ZTOV(zp);
1597 		error = specvp_check(vpp, cr);
1598 	}
1599 
1600 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1601 		zil_commit(zilog, 0);
1602 
1603 	ZFS_EXIT(zfsvfs);
1604 	return (error);
1605 }
1606 
1607 /*
1608  * Remove an entry from a directory.
1609  *
1610  *	IN:	dvp	- vnode of directory to remove entry from.
1611  *		name	- name of entry to remove.
1612  *		cr	- credentials of caller.
1613  *		ct	- caller context
1614  *		flags	- case flags
1615  *
1616  *	RETURN:	0 on success, error code on failure.
1617  *
1618  * Timestamps:
1619  *	dvp - ctime|mtime
1620  *	 vp - ctime (if nlink > 0)
1621  */
1622 
1623 uint64_t null_xattr = 0;
1624 
1625 /*ARGSUSED*/
1626 static int
1627 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1628     int flags)
1629 {
1630 	znode_t		*zp, *dzp = VTOZ(dvp);
1631 	znode_t		*xzp;
1632 	vnode_t		*vp;
1633 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1634 	zilog_t		*zilog;
1635 	uint64_t	acl_obj, xattr_obj;
1636 	uint64_t	xattr_obj_unlinked = 0;
1637 	uint64_t	obj = 0;
1638 	zfs_dirlock_t	*dl;
1639 	dmu_tx_t	*tx;
1640 	boolean_t	may_delete_now, delete_now = FALSE;
1641 	boolean_t	unlinked, toobig = FALSE;
1642 	uint64_t	txtype;
1643 	pathname_t	*realnmp = NULL;
1644 	pathname_t	realnm;
1645 	int		error;
1646 	int		zflg = ZEXISTS;
1647 	boolean_t	waited = B_FALSE;
1648 
1649 	ZFS_ENTER(zfsvfs);
1650 	ZFS_VERIFY_ZP(dzp);
1651 	zilog = zfsvfs->z_log;
1652 
1653 	if (flags & FIGNORECASE) {
1654 		zflg |= ZCILOOK;
1655 		pn_alloc(&realnm);
1656 		realnmp = &realnm;
1657 	}
1658 
1659 top:
1660 	xattr_obj = 0;
1661 	xzp = NULL;
1662 	/*
1663 	 * Attempt to lock directory; fail if entry doesn't exist.
1664 	 */
1665 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1666 	    NULL, realnmp)) {
1667 		if (realnmp)
1668 			pn_free(realnmp);
1669 		ZFS_EXIT(zfsvfs);
1670 		return (error);
1671 	}
1672 
1673 	vp = ZTOV(zp);
1674 
1675 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1676 		goto out;
1677 	}
1678 
1679 	/*
1680 	 * Need to use rmdir for removing directories.
1681 	 */
1682 	if (vp->v_type == VDIR) {
1683 		error = SET_ERROR(EPERM);
1684 		goto out;
1685 	}
1686 
1687 	vnevent_remove(vp, dvp, name, ct);
1688 
1689 	if (realnmp)
1690 		dnlc_remove(dvp, realnmp->pn_buf);
1691 	else
1692 		dnlc_remove(dvp, name);
1693 
1694 	mutex_enter(&vp->v_lock);
1695 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1696 	mutex_exit(&vp->v_lock);
1697 
1698 	/*
1699 	 * We may delete the znode now, or we may put it in the unlinked set;
1700 	 * it depends on whether we're the last link, and on whether there are
1701 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1702 	 * allow for either case.
1703 	 */
1704 	obj = zp->z_id;
1705 	tx = dmu_tx_create(zfsvfs->z_os);
1706 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1707 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1708 	zfs_sa_upgrade_txholds(tx, zp);
1709 	zfs_sa_upgrade_txholds(tx, dzp);
1710 	if (may_delete_now) {
1711 		toobig =
1712 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1713 		/* if the file is too big, only hold_free a token amount */
1714 		dmu_tx_hold_free(tx, zp->z_id, 0,
1715 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1716 	}
1717 
1718 	/* are there any extended attributes? */
1719 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1720 	    &xattr_obj, sizeof (xattr_obj));
1721 	if (error == 0 && xattr_obj) {
1722 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1723 		ASSERT0(error);
1724 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1725 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1726 	}
1727 
1728 	mutex_enter(&zp->z_lock);
1729 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1730 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1731 	mutex_exit(&zp->z_lock);
1732 
1733 	/* charge as an update -- would be nice not to charge at all */
1734 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1735 
1736 	/*
1737 	 * Mark this transaction as typically resulting in a net free of
1738 	 * space, unless object removal will be delayed indefinitely
1739 	 * (due to active holds on the vnode due to the file being open).
1740 	 */
1741 	if (may_delete_now)
1742 		dmu_tx_mark_netfree(tx);
1743 
1744 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1745 	if (error) {
1746 		zfs_dirent_unlock(dl);
1747 		VN_RELE(vp);
1748 		if (xzp)
1749 			VN_RELE(ZTOV(xzp));
1750 		if (error == ERESTART) {
1751 			waited = B_TRUE;
1752 			dmu_tx_wait(tx);
1753 			dmu_tx_abort(tx);
1754 			goto top;
1755 		}
1756 		if (realnmp)
1757 			pn_free(realnmp);
1758 		dmu_tx_abort(tx);
1759 		ZFS_EXIT(zfsvfs);
1760 		return (error);
1761 	}
1762 
1763 	/*
1764 	 * Remove the directory entry.
1765 	 */
1766 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1767 
1768 	if (error) {
1769 		dmu_tx_commit(tx);
1770 		goto out;
1771 	}
1772 
1773 	if (unlinked) {
1774 		/*
1775 		 * Hold z_lock so that we can make sure that the ACL obj
1776 		 * hasn't changed.  Could have been deleted due to
1777 		 * zfs_sa_upgrade().
1778 		 */
1779 		mutex_enter(&zp->z_lock);
1780 		mutex_enter(&vp->v_lock);
1781 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1782 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1783 		delete_now = may_delete_now && !toobig &&
1784 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1785 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1786 		    acl_obj;
1787 		mutex_exit(&vp->v_lock);
1788 	}
1789 
1790 	if (delete_now) {
1791 		if (xattr_obj_unlinked) {
1792 			ASSERT3U(xzp->z_links, ==, 2);
1793 			mutex_enter(&xzp->z_lock);
1794 			xzp->z_unlinked = 1;
1795 			xzp->z_links = 0;
1796 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1797 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1798 			ASSERT3U(error,  ==,  0);
1799 			mutex_exit(&xzp->z_lock);
1800 			zfs_unlinked_add(xzp, tx);
1801 
1802 			if (zp->z_is_sa)
1803 				error = sa_remove(zp->z_sa_hdl,
1804 				    SA_ZPL_XATTR(zfsvfs), tx);
1805 			else
1806 				error = sa_update(zp->z_sa_hdl,
1807 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1808 				    sizeof (uint64_t), tx);
1809 			ASSERT0(error);
1810 		}
1811 		mutex_enter(&vp->v_lock);
1812 		vp->v_count--;
1813 		ASSERT0(vp->v_count);
1814 		mutex_exit(&vp->v_lock);
1815 		mutex_exit(&zp->z_lock);
1816 		zfs_znode_delete(zp, tx);
1817 	} else if (unlinked) {
1818 		mutex_exit(&zp->z_lock);
1819 		zfs_unlinked_add(zp, tx);
1820 	}
1821 
1822 	txtype = TX_REMOVE;
1823 	if (flags & FIGNORECASE)
1824 		txtype |= TX_CI;
1825 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1826 
1827 	dmu_tx_commit(tx);
1828 out:
1829 	if (realnmp)
1830 		pn_free(realnmp);
1831 
1832 	zfs_dirent_unlock(dl);
1833 
1834 	if (!delete_now)
1835 		VN_RELE(vp);
1836 	if (xzp)
1837 		VN_RELE(ZTOV(xzp));
1838 
1839 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1840 		zil_commit(zilog, 0);
1841 
1842 	ZFS_EXIT(zfsvfs);
1843 	return (error);
1844 }
1845 
1846 /*
1847  * Create a new directory and insert it into dvp using the name
1848  * provided.  Return a pointer to the inserted directory.
1849  *
1850  *	IN:	dvp	- vnode of directory to add subdir to.
1851  *		dirname	- name of new directory.
1852  *		vap	- attributes of new directory.
1853  *		cr	- credentials of caller.
1854  *		ct	- caller context
1855  *		flags	- case flags
1856  *		vsecp	- ACL to be set
1857  *
1858  *	OUT:	vpp	- vnode of created directory.
1859  *
1860  *	RETURN:	0 on success, error code on failure.
1861  *
1862  * Timestamps:
1863  *	dvp - ctime|mtime updated
1864  *	 vp - ctime|mtime|atime updated
1865  */
1866 /*ARGSUSED*/
1867 static int
1868 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1869     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1870 {
1871 	znode_t		*zp, *dzp = VTOZ(dvp);
1872 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1873 	zilog_t		*zilog;
1874 	zfs_dirlock_t	*dl;
1875 	uint64_t	txtype;
1876 	dmu_tx_t	*tx;
1877 	int		error;
1878 	int		zf = ZNEW;
1879 	ksid_t		*ksid;
1880 	uid_t		uid;
1881 	gid_t		gid = crgetgid(cr);
1882 	zfs_acl_ids_t   acl_ids;
1883 	boolean_t	fuid_dirtied;
1884 	boolean_t	waited = B_FALSE;
1885 
1886 	ASSERT(vap->va_type == VDIR);
1887 
1888 	/*
1889 	 * If we have an ephemeral id, ACL, or XVATTR then
1890 	 * make sure file system is at proper version
1891 	 */
1892 
1893 	ksid = crgetsid(cr, KSID_OWNER);
1894 	if (ksid)
1895 		uid = ksid_getid(ksid);
1896 	else
1897 		uid = crgetuid(cr);
1898 	if (zfsvfs->z_use_fuids == B_FALSE &&
1899 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1900 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1901 		return (SET_ERROR(EINVAL));
1902 
1903 	ZFS_ENTER(zfsvfs);
1904 	ZFS_VERIFY_ZP(dzp);
1905 	zilog = zfsvfs->z_log;
1906 
1907 	if (dzp->z_pflags & ZFS_XATTR) {
1908 		ZFS_EXIT(zfsvfs);
1909 		return (SET_ERROR(EINVAL));
1910 	}
1911 
1912 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1913 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1914 		ZFS_EXIT(zfsvfs);
1915 		return (SET_ERROR(EILSEQ));
1916 	}
1917 	if (flags & FIGNORECASE)
1918 		zf |= ZCILOOK;
1919 
1920 	if (vap->va_mask & AT_XVATTR) {
1921 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1922 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1923 			ZFS_EXIT(zfsvfs);
1924 			return (error);
1925 		}
1926 	}
1927 
1928 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1929 	    vsecp, &acl_ids)) != 0) {
1930 		ZFS_EXIT(zfsvfs);
1931 		return (error);
1932 	}
1933 	/*
1934 	 * First make sure the new directory doesn't exist.
1935 	 *
1936 	 * Existence is checked first to make sure we don't return
1937 	 * EACCES instead of EEXIST which can cause some applications
1938 	 * to fail.
1939 	 */
1940 top:
1941 	*vpp = NULL;
1942 
1943 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1944 	    NULL, NULL)) {
1945 		zfs_acl_ids_free(&acl_ids);
1946 		ZFS_EXIT(zfsvfs);
1947 		return (error);
1948 	}
1949 
1950 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1951 		zfs_acl_ids_free(&acl_ids);
1952 		zfs_dirent_unlock(dl);
1953 		ZFS_EXIT(zfsvfs);
1954 		return (error);
1955 	}
1956 
1957 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1958 		zfs_acl_ids_free(&acl_ids);
1959 		zfs_dirent_unlock(dl);
1960 		ZFS_EXIT(zfsvfs);
1961 		return (SET_ERROR(EDQUOT));
1962 	}
1963 
1964 	/*
1965 	 * Add a new entry to the directory.
1966 	 */
1967 	tx = dmu_tx_create(zfsvfs->z_os);
1968 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1969 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1970 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1971 	if (fuid_dirtied)
1972 		zfs_fuid_txhold(zfsvfs, tx);
1973 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1974 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1975 		    acl_ids.z_aclp->z_acl_bytes);
1976 	}
1977 
1978 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1979 	    ZFS_SA_BASE_ATTR_SIZE);
1980 
1981 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1982 	if (error) {
1983 		zfs_dirent_unlock(dl);
1984 		if (error == ERESTART) {
1985 			waited = B_TRUE;
1986 			dmu_tx_wait(tx);
1987 			dmu_tx_abort(tx);
1988 			goto top;
1989 		}
1990 		zfs_acl_ids_free(&acl_ids);
1991 		dmu_tx_abort(tx);
1992 		ZFS_EXIT(zfsvfs);
1993 		return (error);
1994 	}
1995 
1996 	/*
1997 	 * Create new node.
1998 	 */
1999 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2000 
2001 	if (fuid_dirtied)
2002 		zfs_fuid_sync(zfsvfs, tx);
2003 
2004 	/*
2005 	 * Now put new name in parent dir.
2006 	 */
2007 	(void) zfs_link_create(dl, zp, tx, ZNEW);
2008 
2009 	*vpp = ZTOV(zp);
2010 
2011 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2012 	if (flags & FIGNORECASE)
2013 		txtype |= TX_CI;
2014 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2015 	    acl_ids.z_fuidp, vap);
2016 
2017 	zfs_acl_ids_free(&acl_ids);
2018 
2019 	dmu_tx_commit(tx);
2020 
2021 	zfs_dirent_unlock(dl);
2022 
2023 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2024 		zil_commit(zilog, 0);
2025 
2026 	ZFS_EXIT(zfsvfs);
2027 	return (0);
2028 }
2029 
2030 /*
2031  * Remove a directory subdir entry.  If the current working
2032  * directory is the same as the subdir to be removed, the
2033  * remove will fail.
2034  *
2035  *	IN:	dvp	- vnode of directory to remove from.
2036  *		name	- name of directory to be removed.
2037  *		cwd	- vnode of current working directory.
2038  *		cr	- credentials of caller.
2039  *		ct	- caller context
2040  *		flags	- case flags
2041  *
2042  *	RETURN:	0 on success, error code on failure.
2043  *
2044  * Timestamps:
2045  *	dvp - ctime|mtime updated
2046  */
2047 /*ARGSUSED*/
2048 static int
2049 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2050     caller_context_t *ct, int flags)
2051 {
2052 	znode_t		*dzp = VTOZ(dvp);
2053 	znode_t		*zp;
2054 	vnode_t		*vp;
2055 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2056 	zilog_t		*zilog;
2057 	zfs_dirlock_t	*dl;
2058 	dmu_tx_t	*tx;
2059 	int		error;
2060 	int		zflg = ZEXISTS;
2061 	boolean_t	waited = B_FALSE;
2062 
2063 	ZFS_ENTER(zfsvfs);
2064 	ZFS_VERIFY_ZP(dzp);
2065 	zilog = zfsvfs->z_log;
2066 
2067 	if (flags & FIGNORECASE)
2068 		zflg |= ZCILOOK;
2069 top:
2070 	zp = NULL;
2071 
2072 	/*
2073 	 * Attempt to lock directory; fail if entry doesn't exist.
2074 	 */
2075 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2076 	    NULL, NULL)) {
2077 		ZFS_EXIT(zfsvfs);
2078 		return (error);
2079 	}
2080 
2081 	vp = ZTOV(zp);
2082 
2083 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2084 		goto out;
2085 	}
2086 
2087 	if (vp->v_type != VDIR) {
2088 		error = SET_ERROR(ENOTDIR);
2089 		goto out;
2090 	}
2091 
2092 	if (vp == cwd) {
2093 		error = SET_ERROR(EINVAL);
2094 		goto out;
2095 	}
2096 
2097 	vnevent_rmdir(vp, dvp, name, ct);
2098 
2099 	/*
2100 	 * Grab a lock on the directory to make sure that noone is
2101 	 * trying to add (or lookup) entries while we are removing it.
2102 	 */
2103 	rw_enter(&zp->z_name_lock, RW_WRITER);
2104 
2105 	/*
2106 	 * Grab a lock on the parent pointer to make sure we play well
2107 	 * with the treewalk and directory rename code.
2108 	 */
2109 	rw_enter(&zp->z_parent_lock, RW_WRITER);
2110 
2111 	tx = dmu_tx_create(zfsvfs->z_os);
2112 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2113 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2114 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2115 	zfs_sa_upgrade_txholds(tx, zp);
2116 	zfs_sa_upgrade_txholds(tx, dzp);
2117 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2118 	if (error) {
2119 		rw_exit(&zp->z_parent_lock);
2120 		rw_exit(&zp->z_name_lock);
2121 		zfs_dirent_unlock(dl);
2122 		VN_RELE(vp);
2123 		if (error == ERESTART) {
2124 			waited = B_TRUE;
2125 			dmu_tx_wait(tx);
2126 			dmu_tx_abort(tx);
2127 			goto top;
2128 		}
2129 		dmu_tx_abort(tx);
2130 		ZFS_EXIT(zfsvfs);
2131 		return (error);
2132 	}
2133 
2134 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2135 
2136 	if (error == 0) {
2137 		uint64_t txtype = TX_RMDIR;
2138 		if (flags & FIGNORECASE)
2139 			txtype |= TX_CI;
2140 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2141 	}
2142 
2143 	dmu_tx_commit(tx);
2144 
2145 	rw_exit(&zp->z_parent_lock);
2146 	rw_exit(&zp->z_name_lock);
2147 out:
2148 	zfs_dirent_unlock(dl);
2149 
2150 	VN_RELE(vp);
2151 
2152 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2153 		zil_commit(zilog, 0);
2154 
2155 	ZFS_EXIT(zfsvfs);
2156 	return (error);
2157 }
2158 
2159 /*
2160  * Read as many directory entries as will fit into the provided
2161  * buffer from the given directory cursor position (specified in
2162  * the uio structure).
2163  *
2164  *	IN:	vp	- vnode of directory to read.
2165  *		uio	- structure supplying read location, range info,
2166  *			  and return buffer.
2167  *		cr	- credentials of caller.
2168  *		ct	- caller context
2169  *		flags	- case flags
2170  *
2171  *	OUT:	uio	- updated offset and range, buffer filled.
2172  *		eofp	- set to true if end-of-file detected.
2173  *
2174  *	RETURN:	0 on success, error code on failure.
2175  *
2176  * Timestamps:
2177  *	vp - atime updated
2178  *
2179  * Note that the low 4 bits of the cookie returned by zap is always zero.
2180  * This allows us to use the low range for "special" directory entries:
2181  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2182  * we use the offset 2 for the '.zfs' directory.
2183  */
2184 /* ARGSUSED */
2185 static int
2186 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2187     caller_context_t *ct, int flags)
2188 {
2189 	znode_t		*zp = VTOZ(vp);
2190 	iovec_t		*iovp;
2191 	edirent_t	*eodp;
2192 	dirent64_t	*odp;
2193 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2194 	objset_t	*os;
2195 	caddr_t		outbuf;
2196 	size_t		bufsize;
2197 	zap_cursor_t	zc;
2198 	zap_attribute_t	zap;
2199 	uint_t		bytes_wanted;
2200 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2201 	uint64_t	parent;
2202 	int		local_eof;
2203 	int		outcount;
2204 	int		error;
2205 	uint8_t		prefetch;
2206 	boolean_t	check_sysattrs;
2207 
2208 	ZFS_ENTER(zfsvfs);
2209 	ZFS_VERIFY_ZP(zp);
2210 
2211 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2212 	    &parent, sizeof (parent))) != 0) {
2213 		ZFS_EXIT(zfsvfs);
2214 		return (error);
2215 	}
2216 
2217 	/*
2218 	 * If we are not given an eof variable,
2219 	 * use a local one.
2220 	 */
2221 	if (eofp == NULL)
2222 		eofp = &local_eof;
2223 
2224 	/*
2225 	 * Check for valid iov_len.
2226 	 */
2227 	if (uio->uio_iov->iov_len <= 0) {
2228 		ZFS_EXIT(zfsvfs);
2229 		return (SET_ERROR(EINVAL));
2230 	}
2231 
2232 	/*
2233 	 * Quit if directory has been removed (posix)
2234 	 */
2235 	if ((*eofp = zp->z_unlinked) != 0) {
2236 		ZFS_EXIT(zfsvfs);
2237 		return (0);
2238 	}
2239 
2240 	error = 0;
2241 	os = zfsvfs->z_os;
2242 	offset = uio->uio_loffset;
2243 	prefetch = zp->z_zn_prefetch;
2244 
2245 	/*
2246 	 * Initialize the iterator cursor.
2247 	 */
2248 	if (offset <= 3) {
2249 		/*
2250 		 * Start iteration from the beginning of the directory.
2251 		 */
2252 		zap_cursor_init(&zc, os, zp->z_id);
2253 	} else {
2254 		/*
2255 		 * The offset is a serialized cursor.
2256 		 */
2257 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2258 	}
2259 
2260 	/*
2261 	 * Get space to change directory entries into fs independent format.
2262 	 */
2263 	iovp = uio->uio_iov;
2264 	bytes_wanted = iovp->iov_len;
2265 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2266 		bufsize = bytes_wanted;
2267 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2268 		odp = (struct dirent64 *)outbuf;
2269 	} else {
2270 		bufsize = bytes_wanted;
2271 		outbuf = NULL;
2272 		odp = (struct dirent64 *)iovp->iov_base;
2273 	}
2274 	eodp = (struct edirent *)odp;
2275 
2276 	/*
2277 	 * If this VFS supports the system attribute view interface; and
2278 	 * we're looking at an extended attribute directory; and we care
2279 	 * about normalization conflicts on this vfs; then we must check
2280 	 * for normalization conflicts with the sysattr name space.
2281 	 */
2282 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2283 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2284 	    (flags & V_RDDIR_ENTFLAGS);
2285 
2286 	/*
2287 	 * Transform to file-system independent format
2288 	 */
2289 	outcount = 0;
2290 	while (outcount < bytes_wanted) {
2291 		ino64_t objnum;
2292 		ushort_t reclen;
2293 		off64_t *next = NULL;
2294 
2295 		/*
2296 		 * Special case `.', `..', and `.zfs'.
2297 		 */
2298 		if (offset == 0) {
2299 			(void) strcpy(zap.za_name, ".");
2300 			zap.za_normalization_conflict = 0;
2301 			objnum = zp->z_id;
2302 		} else if (offset == 1) {
2303 			(void) strcpy(zap.za_name, "..");
2304 			zap.za_normalization_conflict = 0;
2305 			objnum = parent;
2306 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2307 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2308 			zap.za_normalization_conflict = 0;
2309 			objnum = ZFSCTL_INO_ROOT;
2310 		} else {
2311 			/*
2312 			 * Grab next entry.
2313 			 */
2314 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2315 				if ((*eofp = (error == ENOENT)) != 0)
2316 					break;
2317 				else
2318 					goto update;
2319 			}
2320 
2321 			if (zap.za_integer_length != 8 ||
2322 			    zap.za_num_integers != 1) {
2323 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2324 				    "entry, obj = %lld, offset = %lld\n",
2325 				    (u_longlong_t)zp->z_id,
2326 				    (u_longlong_t)offset);
2327 				error = SET_ERROR(ENXIO);
2328 				goto update;
2329 			}
2330 
2331 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2332 			/*
2333 			 * MacOS X can extract the object type here such as:
2334 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2335 			 */
2336 
2337 			if (check_sysattrs && !zap.za_normalization_conflict) {
2338 				zap.za_normalization_conflict =
2339 				    xattr_sysattr_casechk(zap.za_name);
2340 			}
2341 		}
2342 
2343 		if (flags & V_RDDIR_ACCFILTER) {
2344 			/*
2345 			 * If we have no access at all, don't include
2346 			 * this entry in the returned information
2347 			 */
2348 			znode_t	*ezp;
2349 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2350 				goto skip_entry;
2351 			if (!zfs_has_access(ezp, cr)) {
2352 				VN_RELE(ZTOV(ezp));
2353 				goto skip_entry;
2354 			}
2355 			VN_RELE(ZTOV(ezp));
2356 		}
2357 
2358 		if (flags & V_RDDIR_ENTFLAGS)
2359 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2360 		else
2361 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2362 
2363 		/*
2364 		 * Will this entry fit in the buffer?
2365 		 */
2366 		if (outcount + reclen > bufsize) {
2367 			/*
2368 			 * Did we manage to fit anything in the buffer?
2369 			 */
2370 			if (!outcount) {
2371 				error = SET_ERROR(EINVAL);
2372 				goto update;
2373 			}
2374 			break;
2375 		}
2376 		if (flags & V_RDDIR_ENTFLAGS) {
2377 			/*
2378 			 * Add extended flag entry:
2379 			 */
2380 			eodp->ed_ino = objnum;
2381 			eodp->ed_reclen = reclen;
2382 			/* NOTE: ed_off is the offset for the *next* entry */
2383 			next = &(eodp->ed_off);
2384 			eodp->ed_eflags = zap.za_normalization_conflict ?
2385 			    ED_CASE_CONFLICT : 0;
2386 			(void) strncpy(eodp->ed_name, zap.za_name,
2387 			    EDIRENT_NAMELEN(reclen));
2388 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2389 		} else {
2390 			/*
2391 			 * Add normal entry:
2392 			 */
2393 			odp->d_ino = objnum;
2394 			odp->d_reclen = reclen;
2395 			/* NOTE: d_off is the offset for the *next* entry */
2396 			next = &(odp->d_off);
2397 			(void) strncpy(odp->d_name, zap.za_name,
2398 			    DIRENT64_NAMELEN(reclen));
2399 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2400 		}
2401 		outcount += reclen;
2402 
2403 		ASSERT(outcount <= bufsize);
2404 
2405 		/* Prefetch znode */
2406 		if (prefetch)
2407 			dmu_prefetch(os, objnum, 0, 0);
2408 
2409 	skip_entry:
2410 		/*
2411 		 * Move to the next entry, fill in the previous offset.
2412 		 */
2413 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2414 			zap_cursor_advance(&zc);
2415 			offset = zap_cursor_serialize(&zc);
2416 		} else {
2417 			offset += 1;
2418 		}
2419 		if (next)
2420 			*next = offset;
2421 	}
2422 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2423 
2424 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2425 		iovp->iov_base += outcount;
2426 		iovp->iov_len -= outcount;
2427 		uio->uio_resid -= outcount;
2428 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2429 		/*
2430 		 * Reset the pointer.
2431 		 */
2432 		offset = uio->uio_loffset;
2433 	}
2434 
2435 update:
2436 	zap_cursor_fini(&zc);
2437 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2438 		kmem_free(outbuf, bufsize);
2439 
2440 	if (error == ENOENT)
2441 		error = 0;
2442 
2443 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2444 
2445 	uio->uio_loffset = offset;
2446 	ZFS_EXIT(zfsvfs);
2447 	return (error);
2448 }
2449 
2450 ulong_t zfs_fsync_sync_cnt = 4;
2451 
2452 static int
2453 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2454 {
2455 	znode_t	*zp = VTOZ(vp);
2456 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2457 
2458 	/*
2459 	 * Regardless of whether this is required for standards conformance,
2460 	 * this is the logical behavior when fsync() is called on a file with
2461 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2462 	 * going to be pushed out as part of the zil_commit().
2463 	 */
2464 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2465 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2466 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2467 
2468 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2469 
2470 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2471 		ZFS_ENTER(zfsvfs);
2472 		ZFS_VERIFY_ZP(zp);
2473 		zil_commit(zfsvfs->z_log, zp->z_id);
2474 		ZFS_EXIT(zfsvfs);
2475 	}
2476 	return (0);
2477 }
2478 
2479 
2480 /*
2481  * Get the requested file attributes and place them in the provided
2482  * vattr structure.
2483  *
2484  *	IN:	vp	- vnode of file.
2485  *		vap	- va_mask identifies requested attributes.
2486  *			  If AT_XVATTR set, then optional attrs are requested
2487  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2488  *		cr	- credentials of caller.
2489  *		ct	- caller context
2490  *
2491  *	OUT:	vap	- attribute values.
2492  *
2493  *	RETURN:	0 (always succeeds).
2494  */
2495 /* ARGSUSED */
2496 static int
2497 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2498     caller_context_t *ct)
2499 {
2500 	znode_t *zp = VTOZ(vp);
2501 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2502 	int	error = 0;
2503 	uint64_t links;
2504 	uint64_t mtime[2], ctime[2];
2505 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2506 	xoptattr_t *xoap = NULL;
2507 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2508 	sa_bulk_attr_t bulk[2];
2509 	int count = 0;
2510 
2511 	ZFS_ENTER(zfsvfs);
2512 	ZFS_VERIFY_ZP(zp);
2513 
2514 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2515 
2516 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2517 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2518 
2519 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2520 		ZFS_EXIT(zfsvfs);
2521 		return (error);
2522 	}
2523 
2524 	/*
2525 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2526 	 * Also, if we are the owner don't bother, since owner should
2527 	 * always be allowed to read basic attributes of file.
2528 	 */
2529 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2530 	    (vap->va_uid != crgetuid(cr))) {
2531 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2532 		    skipaclchk, cr)) {
2533 			ZFS_EXIT(zfsvfs);
2534 			return (error);
2535 		}
2536 	}
2537 
2538 	/*
2539 	 * Return all attributes.  It's cheaper to provide the answer
2540 	 * than to determine whether we were asked the question.
2541 	 */
2542 
2543 	mutex_enter(&zp->z_lock);
2544 	vap->va_type = vp->v_type;
2545 	vap->va_mode = zp->z_mode & MODEMASK;
2546 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2547 	vap->va_nodeid = zp->z_id;
2548 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2549 		links = zp->z_links + 1;
2550 	else
2551 		links = zp->z_links;
2552 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2553 	vap->va_size = zp->z_size;
2554 	vap->va_rdev = vp->v_rdev;
2555 	vap->va_seq = zp->z_seq;
2556 
2557 	/*
2558 	 * Add in any requested optional attributes and the create time.
2559 	 * Also set the corresponding bits in the returned attribute bitmap.
2560 	 */
2561 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2562 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2563 			xoap->xoa_archive =
2564 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2565 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2566 		}
2567 
2568 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2569 			xoap->xoa_readonly =
2570 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2571 			XVA_SET_RTN(xvap, XAT_READONLY);
2572 		}
2573 
2574 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2575 			xoap->xoa_system =
2576 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2577 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2578 		}
2579 
2580 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2581 			xoap->xoa_hidden =
2582 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2583 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2584 		}
2585 
2586 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2587 			xoap->xoa_nounlink =
2588 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2589 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2590 		}
2591 
2592 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2593 			xoap->xoa_immutable =
2594 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2595 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2596 		}
2597 
2598 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2599 			xoap->xoa_appendonly =
2600 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2601 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2602 		}
2603 
2604 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2605 			xoap->xoa_nodump =
2606 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2607 			XVA_SET_RTN(xvap, XAT_NODUMP);
2608 		}
2609 
2610 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2611 			xoap->xoa_opaque =
2612 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2613 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2614 		}
2615 
2616 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2617 			xoap->xoa_av_quarantined =
2618 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2619 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2620 		}
2621 
2622 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2623 			xoap->xoa_av_modified =
2624 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2625 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2626 		}
2627 
2628 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2629 		    vp->v_type == VREG) {
2630 			zfs_sa_get_scanstamp(zp, xvap);
2631 		}
2632 
2633 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2634 			uint64_t times[2];
2635 
2636 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2637 			    times, sizeof (times));
2638 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2639 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2640 		}
2641 
2642 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2643 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2644 			XVA_SET_RTN(xvap, XAT_REPARSE);
2645 		}
2646 		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2647 			xoap->xoa_generation = zp->z_gen;
2648 			XVA_SET_RTN(xvap, XAT_GEN);
2649 		}
2650 
2651 		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2652 			xoap->xoa_offline =
2653 			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2654 			XVA_SET_RTN(xvap, XAT_OFFLINE);
2655 		}
2656 
2657 		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2658 			xoap->xoa_sparse =
2659 			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2660 			XVA_SET_RTN(xvap, XAT_SPARSE);
2661 		}
2662 	}
2663 
2664 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2665 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2666 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2667 
2668 	mutex_exit(&zp->z_lock);
2669 
2670 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2671 
2672 	if (zp->z_blksz == 0) {
2673 		/*
2674 		 * Block size hasn't been set; suggest maximal I/O transfers.
2675 		 */
2676 		vap->va_blksize = zfsvfs->z_max_blksz;
2677 	}
2678 
2679 	ZFS_EXIT(zfsvfs);
2680 	return (0);
2681 }
2682 
2683 /*
2684  * Set the file attributes to the values contained in the
2685  * vattr structure.
2686  *
2687  *	IN:	vp	- vnode of file to be modified.
2688  *		vap	- new attribute values.
2689  *			  If AT_XVATTR set, then optional attrs are being set
2690  *		flags	- ATTR_UTIME set if non-default time values provided.
2691  *			- ATTR_NOACLCHECK (CIFS context only).
2692  *		cr	- credentials of caller.
2693  *		ct	- caller context
2694  *
2695  *	RETURN:	0 on success, error code on failure.
2696  *
2697  * Timestamps:
2698  *	vp - ctime updated, mtime updated if size changed.
2699  */
2700 /* ARGSUSED */
2701 static int
2702 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2703     caller_context_t *ct)
2704 {
2705 	znode_t		*zp = VTOZ(vp);
2706 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2707 	zilog_t		*zilog;
2708 	dmu_tx_t	*tx;
2709 	vattr_t		oldva;
2710 	xvattr_t	tmpxvattr;
2711 	uint_t		mask = vap->va_mask;
2712 	uint_t		saved_mask = 0;
2713 	int		trim_mask = 0;
2714 	uint64_t	new_mode;
2715 	uint64_t	new_uid, new_gid;
2716 	uint64_t	xattr_obj;
2717 	uint64_t	mtime[2], ctime[2];
2718 	znode_t		*attrzp;
2719 	int		need_policy = FALSE;
2720 	int		err, err2;
2721 	zfs_fuid_info_t *fuidp = NULL;
2722 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2723 	xoptattr_t	*xoap;
2724 	zfs_acl_t	*aclp;
2725 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2726 	boolean_t	fuid_dirtied = B_FALSE;
2727 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2728 	int		count = 0, xattr_count = 0;
2729 
2730 	if (mask == 0)
2731 		return (0);
2732 
2733 	if (mask & AT_NOSET)
2734 		return (SET_ERROR(EINVAL));
2735 
2736 	ZFS_ENTER(zfsvfs);
2737 	ZFS_VERIFY_ZP(zp);
2738 
2739 	zilog = zfsvfs->z_log;
2740 
2741 	/*
2742 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2743 	 * that file system is at proper version level
2744 	 */
2745 
2746 	if (zfsvfs->z_use_fuids == B_FALSE &&
2747 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2748 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2749 	    (mask & AT_XVATTR))) {
2750 		ZFS_EXIT(zfsvfs);
2751 		return (SET_ERROR(EINVAL));
2752 	}
2753 
2754 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2755 		ZFS_EXIT(zfsvfs);
2756 		return (SET_ERROR(EISDIR));
2757 	}
2758 
2759 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2760 		ZFS_EXIT(zfsvfs);
2761 		return (SET_ERROR(EINVAL));
2762 	}
2763 
2764 	/*
2765 	 * If this is an xvattr_t, then get a pointer to the structure of
2766 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2767 	 */
2768 	xoap = xva_getxoptattr(xvap);
2769 
2770 	xva_init(&tmpxvattr);
2771 
2772 	/*
2773 	 * Immutable files can only alter immutable bit and atime
2774 	 */
2775 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2776 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2777 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2778 		ZFS_EXIT(zfsvfs);
2779 		return (SET_ERROR(EPERM));
2780 	}
2781 
2782 	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2783 		ZFS_EXIT(zfsvfs);
2784 		return (SET_ERROR(EPERM));
2785 	}
2786 
2787 	/*
2788 	 * Verify timestamps doesn't overflow 32 bits.
2789 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2790 	 * handle times greater than 2039.  This check should be removed
2791 	 * once large timestamps are fully supported.
2792 	 */
2793 	if (mask & (AT_ATIME | AT_MTIME)) {
2794 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2795 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2796 			ZFS_EXIT(zfsvfs);
2797 			return (SET_ERROR(EOVERFLOW));
2798 		}
2799 	}
2800 
2801 top:
2802 	attrzp = NULL;
2803 	aclp = NULL;
2804 
2805 	/* Can this be moved to before the top label? */
2806 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2807 		ZFS_EXIT(zfsvfs);
2808 		return (SET_ERROR(EROFS));
2809 	}
2810 
2811 	/*
2812 	 * First validate permissions
2813 	 */
2814 
2815 	if (mask & AT_SIZE) {
2816 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2817 		if (err) {
2818 			ZFS_EXIT(zfsvfs);
2819 			return (err);
2820 		}
2821 		/*
2822 		 * XXX - Note, we are not providing any open
2823 		 * mode flags here (like FNDELAY), so we may
2824 		 * block if there are locks present... this
2825 		 * should be addressed in openat().
2826 		 */
2827 		/* XXX - would it be OK to generate a log record here? */
2828 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2829 		if (err) {
2830 			ZFS_EXIT(zfsvfs);
2831 			return (err);
2832 		}
2833 
2834 		if (vap->va_size == 0)
2835 			vnevent_truncate(ZTOV(zp), ct);
2836 	}
2837 
2838 	if (mask & (AT_ATIME|AT_MTIME) ||
2839 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2840 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2841 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2842 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2843 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2844 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2845 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2846 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2847 		    skipaclchk, cr);
2848 	}
2849 
2850 	if (mask & (AT_UID|AT_GID)) {
2851 		int	idmask = (mask & (AT_UID|AT_GID));
2852 		int	take_owner;
2853 		int	take_group;
2854 
2855 		/*
2856 		 * NOTE: even if a new mode is being set,
2857 		 * we may clear S_ISUID/S_ISGID bits.
2858 		 */
2859 
2860 		if (!(mask & AT_MODE))
2861 			vap->va_mode = zp->z_mode;
2862 
2863 		/*
2864 		 * Take ownership or chgrp to group we are a member of
2865 		 */
2866 
2867 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2868 		take_group = (mask & AT_GID) &&
2869 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2870 
2871 		/*
2872 		 * If both AT_UID and AT_GID are set then take_owner and
2873 		 * take_group must both be set in order to allow taking
2874 		 * ownership.
2875 		 *
2876 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2877 		 *
2878 		 */
2879 
2880 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2881 		    ((idmask == AT_UID) && take_owner) ||
2882 		    ((idmask == AT_GID) && take_group)) {
2883 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2884 			    skipaclchk, cr) == 0) {
2885 				/*
2886 				 * Remove setuid/setgid for non-privileged users
2887 				 */
2888 				secpolicy_setid_clear(vap, cr);
2889 				trim_mask = (mask & (AT_UID|AT_GID));
2890 			} else {
2891 				need_policy =  TRUE;
2892 			}
2893 		} else {
2894 			need_policy =  TRUE;
2895 		}
2896 	}
2897 
2898 	mutex_enter(&zp->z_lock);
2899 	oldva.va_mode = zp->z_mode;
2900 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2901 	if (mask & AT_XVATTR) {
2902 		/*
2903 		 * Update xvattr mask to include only those attributes
2904 		 * that are actually changing.
2905 		 *
2906 		 * the bits will be restored prior to actually setting
2907 		 * the attributes so the caller thinks they were set.
2908 		 */
2909 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2910 			if (xoap->xoa_appendonly !=
2911 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2912 				need_policy = TRUE;
2913 			} else {
2914 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2915 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2916 			}
2917 		}
2918 
2919 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2920 			if (xoap->xoa_nounlink !=
2921 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2922 				need_policy = TRUE;
2923 			} else {
2924 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2925 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2926 			}
2927 		}
2928 
2929 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2930 			if (xoap->xoa_immutable !=
2931 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2932 				need_policy = TRUE;
2933 			} else {
2934 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2935 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2936 			}
2937 		}
2938 
2939 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2940 			if (xoap->xoa_nodump !=
2941 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2942 				need_policy = TRUE;
2943 			} else {
2944 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2945 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2946 			}
2947 		}
2948 
2949 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2950 			if (xoap->xoa_av_modified !=
2951 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2952 				need_policy = TRUE;
2953 			} else {
2954 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2955 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2956 			}
2957 		}
2958 
2959 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2960 			if ((vp->v_type != VREG &&
2961 			    xoap->xoa_av_quarantined) ||
2962 			    xoap->xoa_av_quarantined !=
2963 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2964 				need_policy = TRUE;
2965 			} else {
2966 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2967 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2968 			}
2969 		}
2970 
2971 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2972 			mutex_exit(&zp->z_lock);
2973 			ZFS_EXIT(zfsvfs);
2974 			return (SET_ERROR(EPERM));
2975 		}
2976 
2977 		if (need_policy == FALSE &&
2978 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2979 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2980 			need_policy = TRUE;
2981 		}
2982 	}
2983 
2984 	mutex_exit(&zp->z_lock);
2985 
2986 	if (mask & AT_MODE) {
2987 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2988 			err = secpolicy_setid_setsticky_clear(vp, vap,
2989 			    &oldva, cr);
2990 			if (err) {
2991 				ZFS_EXIT(zfsvfs);
2992 				return (err);
2993 			}
2994 			trim_mask |= AT_MODE;
2995 		} else {
2996 			need_policy = TRUE;
2997 		}
2998 	}
2999 
3000 	if (need_policy) {
3001 		/*
3002 		 * If trim_mask is set then take ownership
3003 		 * has been granted or write_acl is present and user
3004 		 * has the ability to modify mode.  In that case remove
3005 		 * UID|GID and or MODE from mask so that
3006 		 * secpolicy_vnode_setattr() doesn't revoke it.
3007 		 */
3008 
3009 		if (trim_mask) {
3010 			saved_mask = vap->va_mask;
3011 			vap->va_mask &= ~trim_mask;
3012 		}
3013 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3014 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3015 		if (err) {
3016 			ZFS_EXIT(zfsvfs);
3017 			return (err);
3018 		}
3019 
3020 		if (trim_mask)
3021 			vap->va_mask |= saved_mask;
3022 	}
3023 
3024 	/*
3025 	 * secpolicy_vnode_setattr, or take ownership may have
3026 	 * changed va_mask
3027 	 */
3028 	mask = vap->va_mask;
3029 
3030 	if ((mask & (AT_UID | AT_GID))) {
3031 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3032 		    &xattr_obj, sizeof (xattr_obj));
3033 
3034 		if (err == 0 && xattr_obj) {
3035 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3036 			if (err)
3037 				goto out2;
3038 		}
3039 		if (mask & AT_UID) {
3040 			new_uid = zfs_fuid_create(zfsvfs,
3041 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3042 			if (new_uid != zp->z_uid &&
3043 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3044 				if (attrzp)
3045 					VN_RELE(ZTOV(attrzp));
3046 				err = SET_ERROR(EDQUOT);
3047 				goto out2;
3048 			}
3049 		}
3050 
3051 		if (mask & AT_GID) {
3052 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3053 			    cr, ZFS_GROUP, &fuidp);
3054 			if (new_gid != zp->z_gid &&
3055 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3056 				if (attrzp)
3057 					VN_RELE(ZTOV(attrzp));
3058 				err = SET_ERROR(EDQUOT);
3059 				goto out2;
3060 			}
3061 		}
3062 	}
3063 	tx = dmu_tx_create(zfsvfs->z_os);
3064 
3065 	if (mask & AT_MODE) {
3066 		uint64_t pmode = zp->z_mode;
3067 		uint64_t acl_obj;
3068 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3069 
3070 		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3071 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3072 			err = SET_ERROR(EPERM);
3073 			goto out;
3074 		}
3075 
3076 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3077 			goto out;
3078 
3079 		mutex_enter(&zp->z_lock);
3080 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3081 			/*
3082 			 * Are we upgrading ACL from old V0 format
3083 			 * to V1 format?
3084 			 */
3085 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3086 			    zfs_znode_acl_version(zp) ==
3087 			    ZFS_ACL_VERSION_INITIAL) {
3088 				dmu_tx_hold_free(tx, acl_obj, 0,
3089 				    DMU_OBJECT_END);
3090 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3091 				    0, aclp->z_acl_bytes);
3092 			} else {
3093 				dmu_tx_hold_write(tx, acl_obj, 0,
3094 				    aclp->z_acl_bytes);
3095 			}
3096 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3097 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3098 			    0, aclp->z_acl_bytes);
3099 		}
3100 		mutex_exit(&zp->z_lock);
3101 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3102 	} else {
3103 		if ((mask & AT_XVATTR) &&
3104 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3105 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3106 		else
3107 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3108 	}
3109 
3110 	if (attrzp) {
3111 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3112 	}
3113 
3114 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3115 	if (fuid_dirtied)
3116 		zfs_fuid_txhold(zfsvfs, tx);
3117 
3118 	zfs_sa_upgrade_txholds(tx, zp);
3119 
3120 	err = dmu_tx_assign(tx, TXG_WAIT);
3121 	if (err)
3122 		goto out;
3123 
3124 	count = 0;
3125 	/*
3126 	 * Set each attribute requested.
3127 	 * We group settings according to the locks they need to acquire.
3128 	 *
3129 	 * Note: you cannot set ctime directly, although it will be
3130 	 * updated as a side-effect of calling this function.
3131 	 */
3132 
3133 
3134 	if (mask & (AT_UID|AT_GID|AT_MODE))
3135 		mutex_enter(&zp->z_acl_lock);
3136 	mutex_enter(&zp->z_lock);
3137 
3138 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3139 	    &zp->z_pflags, sizeof (zp->z_pflags));
3140 
3141 	if (attrzp) {
3142 		if (mask & (AT_UID|AT_GID|AT_MODE))
3143 			mutex_enter(&attrzp->z_acl_lock);
3144 		mutex_enter(&attrzp->z_lock);
3145 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3146 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3147 		    sizeof (attrzp->z_pflags));
3148 	}
3149 
3150 	if (mask & (AT_UID|AT_GID)) {
3151 
3152 		if (mask & AT_UID) {
3153 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3154 			    &new_uid, sizeof (new_uid));
3155 			zp->z_uid = new_uid;
3156 			if (attrzp) {
3157 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3158 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3159 				    sizeof (new_uid));
3160 				attrzp->z_uid = new_uid;
3161 			}
3162 		}
3163 
3164 		if (mask & AT_GID) {
3165 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3166 			    NULL, &new_gid, sizeof (new_gid));
3167 			zp->z_gid = new_gid;
3168 			if (attrzp) {
3169 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3170 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3171 				    sizeof (new_gid));
3172 				attrzp->z_gid = new_gid;
3173 			}
3174 		}
3175 		if (!(mask & AT_MODE)) {
3176 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3177 			    NULL, &new_mode, sizeof (new_mode));
3178 			new_mode = zp->z_mode;
3179 		}
3180 		err = zfs_acl_chown_setattr(zp);
3181 		ASSERT(err == 0);
3182 		if (attrzp) {
3183 			err = zfs_acl_chown_setattr(attrzp);
3184 			ASSERT(err == 0);
3185 		}
3186 	}
3187 
3188 	if (mask & AT_MODE) {
3189 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3190 		    &new_mode, sizeof (new_mode));
3191 		zp->z_mode = new_mode;
3192 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3193 		err = zfs_aclset_common(zp, aclp, cr, tx);
3194 		ASSERT0(err);
3195 		if (zp->z_acl_cached)
3196 			zfs_acl_free(zp->z_acl_cached);
3197 		zp->z_acl_cached = aclp;
3198 		aclp = NULL;
3199 	}
3200 
3201 
3202 	if (mask & AT_ATIME) {
3203 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3204 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3205 		    &zp->z_atime, sizeof (zp->z_atime));
3206 	}
3207 
3208 	if (mask & AT_MTIME) {
3209 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3210 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3211 		    mtime, sizeof (mtime));
3212 	}
3213 
3214 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3215 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3216 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3217 		    NULL, mtime, sizeof (mtime));
3218 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3219 		    &ctime, sizeof (ctime));
3220 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3221 		    B_TRUE);
3222 	} else if (mask != 0) {
3223 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3224 		    &ctime, sizeof (ctime));
3225 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3226 		    B_TRUE);
3227 		if (attrzp) {
3228 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3229 			    SA_ZPL_CTIME(zfsvfs), NULL,
3230 			    &ctime, sizeof (ctime));
3231 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3232 			    mtime, ctime, B_TRUE);
3233 		}
3234 	}
3235 	/*
3236 	 * Do this after setting timestamps to prevent timestamp
3237 	 * update from toggling bit
3238 	 */
3239 
3240 	if (xoap && (mask & AT_XVATTR)) {
3241 
3242 		/*
3243 		 * restore trimmed off masks
3244 		 * so that return masks can be set for caller.
3245 		 */
3246 
3247 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3248 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3249 		}
3250 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3251 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3252 		}
3253 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3254 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3255 		}
3256 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3257 			XVA_SET_REQ(xvap, XAT_NODUMP);
3258 		}
3259 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3260 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3261 		}
3262 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3263 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3264 		}
3265 
3266 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3267 			ASSERT(vp->v_type == VREG);
3268 
3269 		zfs_xvattr_set(zp, xvap, tx);
3270 	}
3271 
3272 	if (fuid_dirtied)
3273 		zfs_fuid_sync(zfsvfs, tx);
3274 
3275 	if (mask != 0)
3276 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3277 
3278 	mutex_exit(&zp->z_lock);
3279 	if (mask & (AT_UID|AT_GID|AT_MODE))
3280 		mutex_exit(&zp->z_acl_lock);
3281 
3282 	if (attrzp) {
3283 		if (mask & (AT_UID|AT_GID|AT_MODE))
3284 			mutex_exit(&attrzp->z_acl_lock);
3285 		mutex_exit(&attrzp->z_lock);
3286 	}
3287 out:
3288 	if (err == 0 && attrzp) {
3289 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3290 		    xattr_count, tx);
3291 		ASSERT(err2 == 0);
3292 	}
3293 
3294 	if (attrzp)
3295 		VN_RELE(ZTOV(attrzp));
3296 
3297 	if (aclp)
3298 		zfs_acl_free(aclp);
3299 
3300 	if (fuidp) {
3301 		zfs_fuid_info_free(fuidp);
3302 		fuidp = NULL;
3303 	}
3304 
3305 	if (err) {
3306 		dmu_tx_abort(tx);
3307 		if (err == ERESTART)
3308 			goto top;
3309 	} else {
3310 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3311 		dmu_tx_commit(tx);
3312 	}
3313 
3314 out2:
3315 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3316 		zil_commit(zilog, 0);
3317 
3318 	ZFS_EXIT(zfsvfs);
3319 	return (err);
3320 }
3321 
3322 typedef struct zfs_zlock {
3323 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3324 	znode_t		*zl_znode;	/* znode we held */
3325 	struct zfs_zlock *zl_next;	/* next in list */
3326 } zfs_zlock_t;
3327 
3328 /*
3329  * Drop locks and release vnodes that were held by zfs_rename_lock().
3330  */
3331 static void
3332 zfs_rename_unlock(zfs_zlock_t **zlpp)
3333 {
3334 	zfs_zlock_t *zl;
3335 
3336 	while ((zl = *zlpp) != NULL) {
3337 		if (zl->zl_znode != NULL)
3338 			VN_RELE(ZTOV(zl->zl_znode));
3339 		rw_exit(zl->zl_rwlock);
3340 		*zlpp = zl->zl_next;
3341 		kmem_free(zl, sizeof (*zl));
3342 	}
3343 }
3344 
3345 /*
3346  * Search back through the directory tree, using the ".." entries.
3347  * Lock each directory in the chain to prevent concurrent renames.
3348  * Fail any attempt to move a directory into one of its own descendants.
3349  * XXX - z_parent_lock can overlap with map or grow locks
3350  */
3351 static int
3352 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3353 {
3354 	zfs_zlock_t	*zl;
3355 	znode_t		*zp = tdzp;
3356 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3357 	uint64_t	oidp = zp->z_id;
3358 	krwlock_t	*rwlp = &szp->z_parent_lock;
3359 	krw_t		rw = RW_WRITER;
3360 
3361 	/*
3362 	 * First pass write-locks szp and compares to zp->z_id.
3363 	 * Later passes read-lock zp and compare to zp->z_parent.
3364 	 */
3365 	do {
3366 		if (!rw_tryenter(rwlp, rw)) {
3367 			/*
3368 			 * Another thread is renaming in this path.
3369 			 * Note that if we are a WRITER, we don't have any
3370 			 * parent_locks held yet.
3371 			 */
3372 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3373 				/*
3374 				 * Drop our locks and restart
3375 				 */
3376 				zfs_rename_unlock(&zl);
3377 				*zlpp = NULL;
3378 				zp = tdzp;
3379 				oidp = zp->z_id;
3380 				rwlp = &szp->z_parent_lock;
3381 				rw = RW_WRITER;
3382 				continue;
3383 			} else {
3384 				/*
3385 				 * Wait for other thread to drop its locks
3386 				 */
3387 				rw_enter(rwlp, rw);
3388 			}
3389 		}
3390 
3391 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3392 		zl->zl_rwlock = rwlp;
3393 		zl->zl_znode = NULL;
3394 		zl->zl_next = *zlpp;
3395 		*zlpp = zl;
3396 
3397 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3398 			return (SET_ERROR(EINVAL));
3399 
3400 		if (oidp == rootid)		/* We've hit the top */
3401 			return (0);
3402 
3403 		if (rw == RW_READER) {		/* i.e. not the first pass */
3404 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3405 			if (error)
3406 				return (error);
3407 			zl->zl_znode = zp;
3408 		}
3409 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3410 		    &oidp, sizeof (oidp));
3411 		rwlp = &zp->z_parent_lock;
3412 		rw = RW_READER;
3413 
3414 	} while (zp->z_id != sdzp->z_id);
3415 
3416 	return (0);
3417 }
3418 
3419 /*
3420  * Move an entry from the provided source directory to the target
3421  * directory.  Change the entry name as indicated.
3422  *
3423  *	IN:	sdvp	- Source directory containing the "old entry".
3424  *		snm	- Old entry name.
3425  *		tdvp	- Target directory to contain the "new entry".
3426  *		tnm	- New entry name.
3427  *		cr	- credentials of caller.
3428  *		ct	- caller context
3429  *		flags	- case flags
3430  *
3431  *	RETURN:	0 on success, error code on failure.
3432  *
3433  * Timestamps:
3434  *	sdvp,tdvp - ctime|mtime updated
3435  */
3436 /*ARGSUSED*/
3437 static int
3438 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3439     caller_context_t *ct, int flags)
3440 {
3441 	znode_t		*tdzp, *szp, *tzp;
3442 	znode_t		*sdzp = VTOZ(sdvp);
3443 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3444 	zilog_t		*zilog;
3445 	vnode_t		*realvp;
3446 	zfs_dirlock_t	*sdl, *tdl;
3447 	dmu_tx_t	*tx;
3448 	zfs_zlock_t	*zl;
3449 	int		cmp, serr, terr;
3450 	int		error = 0;
3451 	int		zflg = 0;
3452 	boolean_t	waited = B_FALSE;
3453 
3454 	ZFS_ENTER(zfsvfs);
3455 	ZFS_VERIFY_ZP(sdzp);
3456 	zilog = zfsvfs->z_log;
3457 
3458 	/*
3459 	 * Make sure we have the real vp for the target directory.
3460 	 */
3461 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3462 		tdvp = realvp;
3463 
3464 	tdzp = VTOZ(tdvp);
3465 	ZFS_VERIFY_ZP(tdzp);
3466 
3467 	/*
3468 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3469 	 * ctldir appear to have the same v_vfsp.
3470 	 */
3471 	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3472 		ZFS_EXIT(zfsvfs);
3473 		return (SET_ERROR(EXDEV));
3474 	}
3475 
3476 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3477 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3478 		ZFS_EXIT(zfsvfs);
3479 		return (SET_ERROR(EILSEQ));
3480 	}
3481 
3482 	if (flags & FIGNORECASE)
3483 		zflg |= ZCILOOK;
3484 
3485 top:
3486 	szp = NULL;
3487 	tzp = NULL;
3488 	zl = NULL;
3489 
3490 	/*
3491 	 * This is to prevent the creation of links into attribute space
3492 	 * by renaming a linked file into/outof an attribute directory.
3493 	 * See the comment in zfs_link() for why this is considered bad.
3494 	 */
3495 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3496 		ZFS_EXIT(zfsvfs);
3497 		return (SET_ERROR(EINVAL));
3498 	}
3499 
3500 	/*
3501 	 * Lock source and target directory entries.  To prevent deadlock,
3502 	 * a lock ordering must be defined.  We lock the directory with
3503 	 * the smallest object id first, or if it's a tie, the one with
3504 	 * the lexically first name.
3505 	 */
3506 	if (sdzp->z_id < tdzp->z_id) {
3507 		cmp = -1;
3508 	} else if (sdzp->z_id > tdzp->z_id) {
3509 		cmp = 1;
3510 	} else {
3511 		/*
3512 		 * First compare the two name arguments without
3513 		 * considering any case folding.
3514 		 */
3515 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3516 
3517 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3518 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3519 		if (cmp == 0) {
3520 			/*
3521 			 * POSIX: "If the old argument and the new argument
3522 			 * both refer to links to the same existing file,
3523 			 * the rename() function shall return successfully
3524 			 * and perform no other action."
3525 			 */
3526 			ZFS_EXIT(zfsvfs);
3527 			return (0);
3528 		}
3529 		/*
3530 		 * If the file system is case-folding, then we may
3531 		 * have some more checking to do.  A case-folding file
3532 		 * system is either supporting mixed case sensitivity
3533 		 * access or is completely case-insensitive.  Note
3534 		 * that the file system is always case preserving.
3535 		 *
3536 		 * In mixed sensitivity mode case sensitive behavior
3537 		 * is the default.  FIGNORECASE must be used to
3538 		 * explicitly request case insensitive behavior.
3539 		 *
3540 		 * If the source and target names provided differ only
3541 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3542 		 * we will treat this as a special case in the
3543 		 * case-insensitive mode: as long as the source name
3544 		 * is an exact match, we will allow this to proceed as
3545 		 * a name-change request.
3546 		 */
3547 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3548 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3549 		    flags & FIGNORECASE)) &&
3550 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3551 		    &error) == 0) {
3552 			/*
3553 			 * case preserving rename request, require exact
3554 			 * name matches
3555 			 */
3556 			zflg |= ZCIEXACT;
3557 			zflg &= ~ZCILOOK;
3558 		}
3559 	}
3560 
3561 	/*
3562 	 * If the source and destination directories are the same, we should
3563 	 * grab the z_name_lock of that directory only once.
3564 	 */
3565 	if (sdzp == tdzp) {
3566 		zflg |= ZHAVELOCK;
3567 		rw_enter(&sdzp->z_name_lock, RW_READER);
3568 	}
3569 
3570 	if (cmp < 0) {
3571 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3572 		    ZEXISTS | zflg, NULL, NULL);
3573 		terr = zfs_dirent_lock(&tdl,
3574 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3575 	} else {
3576 		terr = zfs_dirent_lock(&tdl,
3577 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3578 		serr = zfs_dirent_lock(&sdl,
3579 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3580 		    NULL, NULL);
3581 	}
3582 
3583 	if (serr) {
3584 		/*
3585 		 * Source entry invalid or not there.
3586 		 */
3587 		if (!terr) {
3588 			zfs_dirent_unlock(tdl);
3589 			if (tzp)
3590 				VN_RELE(ZTOV(tzp));
3591 		}
3592 
3593 		if (sdzp == tdzp)
3594 			rw_exit(&sdzp->z_name_lock);
3595 
3596 		if (strcmp(snm, "..") == 0)
3597 			serr = SET_ERROR(EINVAL);
3598 		ZFS_EXIT(zfsvfs);
3599 		return (serr);
3600 	}
3601 	if (terr) {
3602 		zfs_dirent_unlock(sdl);
3603 		VN_RELE(ZTOV(szp));
3604 
3605 		if (sdzp == tdzp)
3606 			rw_exit(&sdzp->z_name_lock);
3607 
3608 		if (strcmp(tnm, "..") == 0)
3609 			terr = SET_ERROR(EINVAL);
3610 		ZFS_EXIT(zfsvfs);
3611 		return (terr);
3612 	}
3613 
3614 	/*
3615 	 * Must have write access at the source to remove the old entry
3616 	 * and write access at the target to create the new entry.
3617 	 * Note that if target and source are the same, this can be
3618 	 * done in a single check.
3619 	 */
3620 
3621 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3622 		goto out;
3623 
3624 	if (ZTOV(szp)->v_type == VDIR) {
3625 		/*
3626 		 * Check to make sure rename is valid.
3627 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3628 		 */
3629 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3630 			goto out;
3631 	}
3632 
3633 	/*
3634 	 * Does target exist?
3635 	 */
3636 	if (tzp) {
3637 		/*
3638 		 * Source and target must be the same type.
3639 		 */
3640 		if (ZTOV(szp)->v_type == VDIR) {
3641 			if (ZTOV(tzp)->v_type != VDIR) {
3642 				error = SET_ERROR(ENOTDIR);
3643 				goto out;
3644 			}
3645 		} else {
3646 			if (ZTOV(tzp)->v_type == VDIR) {
3647 				error = SET_ERROR(EISDIR);
3648 				goto out;
3649 			}
3650 		}
3651 		/*
3652 		 * POSIX dictates that when the source and target
3653 		 * entries refer to the same file object, rename
3654 		 * must do nothing and exit without error.
3655 		 */
3656 		if (szp->z_id == tzp->z_id) {
3657 			error = 0;
3658 			goto out;
3659 		}
3660 	}
3661 
3662 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3663 	if (tzp)
3664 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3665 
3666 	/*
3667 	 * notify the target directory if it is not the same
3668 	 * as source directory.
3669 	 */
3670 	if (tdvp != sdvp) {
3671 		vnevent_rename_dest_dir(tdvp, ct);
3672 	}
3673 
3674 	tx = dmu_tx_create(zfsvfs->z_os);
3675 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3676 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3677 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3678 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3679 	if (sdzp != tdzp) {
3680 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3681 		zfs_sa_upgrade_txholds(tx, tdzp);
3682 	}
3683 	if (tzp) {
3684 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3685 		zfs_sa_upgrade_txholds(tx, tzp);
3686 	}
3687 
3688 	zfs_sa_upgrade_txholds(tx, szp);
3689 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3690 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3691 	if (error) {
3692 		if (zl != NULL)
3693 			zfs_rename_unlock(&zl);
3694 		zfs_dirent_unlock(sdl);
3695 		zfs_dirent_unlock(tdl);
3696 
3697 		if (sdzp == tdzp)
3698 			rw_exit(&sdzp->z_name_lock);
3699 
3700 		VN_RELE(ZTOV(szp));
3701 		if (tzp)
3702 			VN_RELE(ZTOV(tzp));
3703 		if (error == ERESTART) {
3704 			waited = B_TRUE;
3705 			dmu_tx_wait(tx);
3706 			dmu_tx_abort(tx);
3707 			goto top;
3708 		}
3709 		dmu_tx_abort(tx);
3710 		ZFS_EXIT(zfsvfs);
3711 		return (error);
3712 	}
3713 
3714 	if (tzp)	/* Attempt to remove the existing target */
3715 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3716 
3717 	if (error == 0) {
3718 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3719 		if (error == 0) {
3720 			szp->z_pflags |= ZFS_AV_MODIFIED;
3721 
3722 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3723 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3724 			ASSERT0(error);
3725 
3726 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3727 			if (error == 0) {
3728 				zfs_log_rename(zilog, tx, TX_RENAME |
3729 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3730 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3731 
3732 				/*
3733 				 * Update path information for the target vnode
3734 				 */
3735 				vn_renamepath(tdvp, ZTOV(szp), tnm,
3736 				    strlen(tnm));
3737 			} else {
3738 				/*
3739 				 * At this point, we have successfully created
3740 				 * the target name, but have failed to remove
3741 				 * the source name.  Since the create was done
3742 				 * with the ZRENAMING flag, there are
3743 				 * complications; for one, the link count is
3744 				 * wrong.  The easiest way to deal with this
3745 				 * is to remove the newly created target, and
3746 				 * return the original error.  This must
3747 				 * succeed; fortunately, it is very unlikely to
3748 				 * fail, since we just created it.
3749 				 */
3750 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3751 				    ZRENAMING, NULL), ==, 0);
3752 			}
3753 		}
3754 	}
3755 
3756 	dmu_tx_commit(tx);
3757 out:
3758 	if (zl != NULL)
3759 		zfs_rename_unlock(&zl);
3760 
3761 	zfs_dirent_unlock(sdl);
3762 	zfs_dirent_unlock(tdl);
3763 
3764 	if (sdzp == tdzp)
3765 		rw_exit(&sdzp->z_name_lock);
3766 
3767 
3768 	VN_RELE(ZTOV(szp));
3769 	if (tzp)
3770 		VN_RELE(ZTOV(tzp));
3771 
3772 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3773 		zil_commit(zilog, 0);
3774 
3775 	ZFS_EXIT(zfsvfs);
3776 	return (error);
3777 }
3778 
3779 /*
3780  * Insert the indicated symbolic reference entry into the directory.
3781  *
3782  *	IN:	dvp	- Directory to contain new symbolic link.
3783  *		link	- Name for new symlink entry.
3784  *		vap	- Attributes of new entry.
3785  *		cr	- credentials of caller.
3786  *		ct	- caller context
3787  *		flags	- case flags
3788  *
3789  *	RETURN:	0 on success, error code on failure.
3790  *
3791  * Timestamps:
3792  *	dvp - ctime|mtime updated
3793  */
3794 /*ARGSUSED*/
3795 static int
3796 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3797     caller_context_t *ct, int flags)
3798 {
3799 	znode_t		*zp, *dzp = VTOZ(dvp);
3800 	zfs_dirlock_t	*dl;
3801 	dmu_tx_t	*tx;
3802 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3803 	zilog_t		*zilog;
3804 	uint64_t	len = strlen(link);
3805 	int		error;
3806 	int		zflg = ZNEW;
3807 	zfs_acl_ids_t	acl_ids;
3808 	boolean_t	fuid_dirtied;
3809 	uint64_t	txtype = TX_SYMLINK;
3810 	boolean_t	waited = B_FALSE;
3811 
3812 	ASSERT(vap->va_type == VLNK);
3813 
3814 	ZFS_ENTER(zfsvfs);
3815 	ZFS_VERIFY_ZP(dzp);
3816 	zilog = zfsvfs->z_log;
3817 
3818 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3819 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3820 		ZFS_EXIT(zfsvfs);
3821 		return (SET_ERROR(EILSEQ));
3822 	}
3823 	if (flags & FIGNORECASE)
3824 		zflg |= ZCILOOK;
3825 
3826 	if (len > MAXPATHLEN) {
3827 		ZFS_EXIT(zfsvfs);
3828 		return (SET_ERROR(ENAMETOOLONG));
3829 	}
3830 
3831 	if ((error = zfs_acl_ids_create(dzp, 0,
3832 	    vap, cr, NULL, &acl_ids)) != 0) {
3833 		ZFS_EXIT(zfsvfs);
3834 		return (error);
3835 	}
3836 top:
3837 	/*
3838 	 * Attempt to lock directory; fail if entry already exists.
3839 	 */
3840 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3841 	if (error) {
3842 		zfs_acl_ids_free(&acl_ids);
3843 		ZFS_EXIT(zfsvfs);
3844 		return (error);
3845 	}
3846 
3847 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3848 		zfs_acl_ids_free(&acl_ids);
3849 		zfs_dirent_unlock(dl);
3850 		ZFS_EXIT(zfsvfs);
3851 		return (error);
3852 	}
3853 
3854 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3855 		zfs_acl_ids_free(&acl_ids);
3856 		zfs_dirent_unlock(dl);
3857 		ZFS_EXIT(zfsvfs);
3858 		return (SET_ERROR(EDQUOT));
3859 	}
3860 	tx = dmu_tx_create(zfsvfs->z_os);
3861 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3862 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3863 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3864 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3865 	    ZFS_SA_BASE_ATTR_SIZE + len);
3866 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3867 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3868 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3869 		    acl_ids.z_aclp->z_acl_bytes);
3870 	}
3871 	if (fuid_dirtied)
3872 		zfs_fuid_txhold(zfsvfs, tx);
3873 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3874 	if (error) {
3875 		zfs_dirent_unlock(dl);
3876 		if (error == ERESTART) {
3877 			waited = B_TRUE;
3878 			dmu_tx_wait(tx);
3879 			dmu_tx_abort(tx);
3880 			goto top;
3881 		}
3882 		zfs_acl_ids_free(&acl_ids);
3883 		dmu_tx_abort(tx);
3884 		ZFS_EXIT(zfsvfs);
3885 		return (error);
3886 	}
3887 
3888 	/*
3889 	 * Create a new object for the symlink.
3890 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3891 	 */
3892 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3893 
3894 	if (fuid_dirtied)
3895 		zfs_fuid_sync(zfsvfs, tx);
3896 
3897 	mutex_enter(&zp->z_lock);
3898 	if (zp->z_is_sa)
3899 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3900 		    link, len, tx);
3901 	else
3902 		zfs_sa_symlink(zp, link, len, tx);
3903 	mutex_exit(&zp->z_lock);
3904 
3905 	zp->z_size = len;
3906 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3907 	    &zp->z_size, sizeof (zp->z_size), tx);
3908 	/*
3909 	 * Insert the new object into the directory.
3910 	 */
3911 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3912 
3913 	if (flags & FIGNORECASE)
3914 		txtype |= TX_CI;
3915 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3916 
3917 	zfs_acl_ids_free(&acl_ids);
3918 
3919 	dmu_tx_commit(tx);
3920 
3921 	zfs_dirent_unlock(dl);
3922 
3923 	VN_RELE(ZTOV(zp));
3924 
3925 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3926 		zil_commit(zilog, 0);
3927 
3928 	ZFS_EXIT(zfsvfs);
3929 	return (error);
3930 }
3931 
3932 /*
3933  * Return, in the buffer contained in the provided uio structure,
3934  * the symbolic path referred to by vp.
3935  *
3936  *	IN:	vp	- vnode of symbolic link.
3937  *		uio	- structure to contain the link path.
3938  *		cr	- credentials of caller.
3939  *		ct	- caller context
3940  *
3941  *	OUT:	uio	- structure containing the link path.
3942  *
3943  *	RETURN:	0 on success, error code on failure.
3944  *
3945  * Timestamps:
3946  *	vp - atime updated
3947  */
3948 /* ARGSUSED */
3949 static int
3950 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3951 {
3952 	znode_t		*zp = VTOZ(vp);
3953 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3954 	int		error;
3955 
3956 	ZFS_ENTER(zfsvfs);
3957 	ZFS_VERIFY_ZP(zp);
3958 
3959 	mutex_enter(&zp->z_lock);
3960 	if (zp->z_is_sa)
3961 		error = sa_lookup_uio(zp->z_sa_hdl,
3962 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3963 	else
3964 		error = zfs_sa_readlink(zp, uio);
3965 	mutex_exit(&zp->z_lock);
3966 
3967 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3968 
3969 	ZFS_EXIT(zfsvfs);
3970 	return (error);
3971 }
3972 
3973 /*
3974  * Insert a new entry into directory tdvp referencing svp.
3975  *
3976  *	IN:	tdvp	- Directory to contain new entry.
3977  *		svp	- vnode of new entry.
3978  *		name	- name of new entry.
3979  *		cr	- credentials of caller.
3980  *		ct	- caller context
3981  *
3982  *	RETURN:	0 on success, error code on failure.
3983  *
3984  * Timestamps:
3985  *	tdvp - ctime|mtime updated
3986  *	 svp - ctime updated
3987  */
3988 /* ARGSUSED */
3989 static int
3990 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3991     caller_context_t *ct, int flags)
3992 {
3993 	znode_t		*dzp = VTOZ(tdvp);
3994 	znode_t		*tzp, *szp;
3995 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3996 	zilog_t		*zilog;
3997 	zfs_dirlock_t	*dl;
3998 	dmu_tx_t	*tx;
3999 	vnode_t		*realvp;
4000 	int		error;
4001 	int		zf = ZNEW;
4002 	uint64_t	parent;
4003 	uid_t		owner;
4004 	boolean_t	waited = B_FALSE;
4005 
4006 	ASSERT(tdvp->v_type == VDIR);
4007 
4008 	ZFS_ENTER(zfsvfs);
4009 	ZFS_VERIFY_ZP(dzp);
4010 	zilog = zfsvfs->z_log;
4011 
4012 	if (VOP_REALVP(svp, &realvp, ct) == 0)
4013 		svp = realvp;
4014 
4015 	/*
4016 	 * POSIX dictates that we return EPERM here.
4017 	 * Better choices include ENOTSUP or EISDIR.
4018 	 */
4019 	if (svp->v_type == VDIR) {
4020 		ZFS_EXIT(zfsvfs);
4021 		return (SET_ERROR(EPERM));
4022 	}
4023 
4024 	szp = VTOZ(svp);
4025 	ZFS_VERIFY_ZP(szp);
4026 
4027 	/*
4028 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4029 	 * ctldir appear to have the same v_vfsp.
4030 	 */
4031 	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4032 		ZFS_EXIT(zfsvfs);
4033 		return (SET_ERROR(EXDEV));
4034 	}
4035 
4036 	/* Prevent links to .zfs/shares files */
4037 
4038 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4039 	    &parent, sizeof (uint64_t))) != 0) {
4040 		ZFS_EXIT(zfsvfs);
4041 		return (error);
4042 	}
4043 	if (parent == zfsvfs->z_shares_dir) {
4044 		ZFS_EXIT(zfsvfs);
4045 		return (SET_ERROR(EPERM));
4046 	}
4047 
4048 	if (zfsvfs->z_utf8 && u8_validate(name,
4049 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4050 		ZFS_EXIT(zfsvfs);
4051 		return (SET_ERROR(EILSEQ));
4052 	}
4053 	if (flags & FIGNORECASE)
4054 		zf |= ZCILOOK;
4055 
4056 	/*
4057 	 * We do not support links between attributes and non-attributes
4058 	 * because of the potential security risk of creating links
4059 	 * into "normal" file space in order to circumvent restrictions
4060 	 * imposed in attribute space.
4061 	 */
4062 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4063 		ZFS_EXIT(zfsvfs);
4064 		return (SET_ERROR(EINVAL));
4065 	}
4066 
4067 
4068 	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4069 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4070 		ZFS_EXIT(zfsvfs);
4071 		return (SET_ERROR(EPERM));
4072 	}
4073 
4074 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4075 		ZFS_EXIT(zfsvfs);
4076 		return (error);
4077 	}
4078 
4079 top:
4080 	/*
4081 	 * Attempt to lock directory; fail if entry already exists.
4082 	 */
4083 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4084 	if (error) {
4085 		ZFS_EXIT(zfsvfs);
4086 		return (error);
4087 	}
4088 
4089 	tx = dmu_tx_create(zfsvfs->z_os);
4090 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4091 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4092 	zfs_sa_upgrade_txholds(tx, szp);
4093 	zfs_sa_upgrade_txholds(tx, dzp);
4094 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4095 	if (error) {
4096 		zfs_dirent_unlock(dl);
4097 		if (error == ERESTART) {
4098 			waited = B_TRUE;
4099 			dmu_tx_wait(tx);
4100 			dmu_tx_abort(tx);
4101 			goto top;
4102 		}
4103 		dmu_tx_abort(tx);
4104 		ZFS_EXIT(zfsvfs);
4105 		return (error);
4106 	}
4107 
4108 	error = zfs_link_create(dl, szp, tx, 0);
4109 
4110 	if (error == 0) {
4111 		uint64_t txtype = TX_LINK;
4112 		if (flags & FIGNORECASE)
4113 			txtype |= TX_CI;
4114 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4115 	}
4116 
4117 	dmu_tx_commit(tx);
4118 
4119 	zfs_dirent_unlock(dl);
4120 
4121 	if (error == 0) {
4122 		vnevent_link(svp, ct);
4123 	}
4124 
4125 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4126 		zil_commit(zilog, 0);
4127 
4128 	ZFS_EXIT(zfsvfs);
4129 	return (error);
4130 }
4131 
4132 /*
4133  * zfs_null_putapage() is used when the file system has been force
4134  * unmounted. It just drops the pages.
4135  */
4136 /* ARGSUSED */
4137 static int
4138 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4139 		size_t *lenp, int flags, cred_t *cr)
4140 {
4141 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4142 	return (0);
4143 }
4144 
4145 /*
4146  * Push a page out to disk, klustering if possible.
4147  *
4148  *	IN:	vp	- file to push page to.
4149  *		pp	- page to push.
4150  *		flags	- additional flags.
4151  *		cr	- credentials of caller.
4152  *
4153  *	OUT:	offp	- start of range pushed.
4154  *		lenp	- len of range pushed.
4155  *
4156  *	RETURN:	0 on success, error code on failure.
4157  *
4158  * NOTE: callers must have locked the page to be pushed.  On
4159  * exit, the page (and all other pages in the kluster) must be
4160  * unlocked.
4161  */
4162 /* ARGSUSED */
4163 static int
4164 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4165 		size_t *lenp, int flags, cred_t *cr)
4166 {
4167 	znode_t		*zp = VTOZ(vp);
4168 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4169 	dmu_tx_t	*tx;
4170 	u_offset_t	off, koff;
4171 	size_t		len, klen;
4172 	int		err;
4173 
4174 	off = pp->p_offset;
4175 	len = PAGESIZE;
4176 	/*
4177 	 * If our blocksize is bigger than the page size, try to kluster
4178 	 * multiple pages so that we write a full block (thus avoiding
4179 	 * a read-modify-write).
4180 	 */
4181 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4182 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4183 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4184 		ASSERT(koff <= zp->z_size);
4185 		if (koff + klen > zp->z_size)
4186 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4187 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4188 	}
4189 	ASSERT3U(btop(len), ==, btopr(len));
4190 
4191 	/*
4192 	 * Can't push pages past end-of-file.
4193 	 */
4194 	if (off >= zp->z_size) {
4195 		/* ignore all pages */
4196 		err = 0;
4197 		goto out;
4198 	} else if (off + len > zp->z_size) {
4199 		int npages = btopr(zp->z_size - off);
4200 		page_t *trunc;
4201 
4202 		page_list_break(&pp, &trunc, npages);
4203 		/* ignore pages past end of file */
4204 		if (trunc)
4205 			pvn_write_done(trunc, flags);
4206 		len = zp->z_size - off;
4207 	}
4208 
4209 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4210 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4211 		err = SET_ERROR(EDQUOT);
4212 		goto out;
4213 	}
4214 	tx = dmu_tx_create(zfsvfs->z_os);
4215 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4216 
4217 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4218 	zfs_sa_upgrade_txholds(tx, zp);
4219 	err = dmu_tx_assign(tx, TXG_WAIT);
4220 	if (err != 0) {
4221 		dmu_tx_abort(tx);
4222 		goto out;
4223 	}
4224 
4225 	if (zp->z_blksz <= PAGESIZE) {
4226 		caddr_t va = zfs_map_page(pp, S_READ);
4227 		ASSERT3U(len, <=, PAGESIZE);
4228 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4229 		zfs_unmap_page(pp, va);
4230 	} else {
4231 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4232 	}
4233 
4234 	if (err == 0) {
4235 		uint64_t mtime[2], ctime[2];
4236 		sa_bulk_attr_t bulk[3];
4237 		int count = 0;
4238 
4239 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4240 		    &mtime, 16);
4241 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4242 		    &ctime, 16);
4243 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4244 		    &zp->z_pflags, 8);
4245 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4246 		    B_TRUE);
4247 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4248 	}
4249 	dmu_tx_commit(tx);
4250 
4251 out:
4252 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4253 	if (offp)
4254 		*offp = off;
4255 	if (lenp)
4256 		*lenp = len;
4257 
4258 	return (err);
4259 }
4260 
4261 /*
4262  * Copy the portion of the file indicated from pages into the file.
4263  * The pages are stored in a page list attached to the files vnode.
4264  *
4265  *	IN:	vp	- vnode of file to push page data to.
4266  *		off	- position in file to put data.
4267  *		len	- amount of data to write.
4268  *		flags	- flags to control the operation.
4269  *		cr	- credentials of caller.
4270  *		ct	- caller context.
4271  *
4272  *	RETURN:	0 on success, error code on failure.
4273  *
4274  * Timestamps:
4275  *	vp - ctime|mtime updated
4276  */
4277 /*ARGSUSED*/
4278 static int
4279 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4280     caller_context_t *ct)
4281 {
4282 	znode_t		*zp = VTOZ(vp);
4283 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4284 	page_t		*pp;
4285 	size_t		io_len;
4286 	u_offset_t	io_off;
4287 	uint_t		blksz;
4288 	rl_t		*rl;
4289 	int		error = 0;
4290 
4291 	ZFS_ENTER(zfsvfs);
4292 	ZFS_VERIFY_ZP(zp);
4293 
4294 	/*
4295 	 * There's nothing to do if no data is cached.
4296 	 */
4297 	if (!vn_has_cached_data(vp)) {
4298 		ZFS_EXIT(zfsvfs);
4299 		return (0);
4300 	}
4301 
4302 	/*
4303 	 * Align this request to the file block size in case we kluster.
4304 	 * XXX - this can result in pretty aggresive locking, which can
4305 	 * impact simultanious read/write access.  One option might be
4306 	 * to break up long requests (len == 0) into block-by-block
4307 	 * operations to get narrower locking.
4308 	 */
4309 	blksz = zp->z_blksz;
4310 	if (ISP2(blksz))
4311 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4312 	else
4313 		io_off = 0;
4314 	if (len > 0 && ISP2(blksz))
4315 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4316 	else
4317 		io_len = 0;
4318 
4319 	if (io_len == 0) {
4320 		/*
4321 		 * Search the entire vp list for pages >= io_off.
4322 		 */
4323 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4324 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4325 		goto out;
4326 	}
4327 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4328 
4329 	if (off > zp->z_size) {
4330 		/* past end of file */
4331 		zfs_range_unlock(rl);
4332 		ZFS_EXIT(zfsvfs);
4333 		return (0);
4334 	}
4335 
4336 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4337 
4338 	for (off = io_off; io_off < off + len; io_off += io_len) {
4339 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4340 			pp = page_lookup(vp, io_off,
4341 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4342 		} else {
4343 			pp = page_lookup_nowait(vp, io_off,
4344 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4345 		}
4346 
4347 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4348 			int err;
4349 
4350 			/*
4351 			 * Found a dirty page to push
4352 			 */
4353 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4354 			if (err)
4355 				error = err;
4356 		} else {
4357 			io_len = PAGESIZE;
4358 		}
4359 	}
4360 out:
4361 	zfs_range_unlock(rl);
4362 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4363 		zil_commit(zfsvfs->z_log, zp->z_id);
4364 	ZFS_EXIT(zfsvfs);
4365 	return (error);
4366 }
4367 
4368 /*ARGSUSED*/
4369 void
4370 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4371 {
4372 	znode_t	*zp = VTOZ(vp);
4373 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4374 	int error;
4375 
4376 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4377 	if (zp->z_sa_hdl == NULL) {
4378 		/*
4379 		 * The fs has been unmounted, or we did a
4380 		 * suspend/resume and this file no longer exists.
4381 		 */
4382 		if (vn_has_cached_data(vp)) {
4383 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4384 			    B_INVAL, cr);
4385 		}
4386 
4387 		mutex_enter(&zp->z_lock);
4388 		mutex_enter(&vp->v_lock);
4389 		ASSERT(vp->v_count == 1);
4390 		vp->v_count = 0;
4391 		mutex_exit(&vp->v_lock);
4392 		mutex_exit(&zp->z_lock);
4393 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4394 		zfs_znode_free(zp);
4395 		return;
4396 	}
4397 
4398 	/*
4399 	 * Attempt to push any data in the page cache.  If this fails
4400 	 * we will get kicked out later in zfs_zinactive().
4401 	 */
4402 	if (vn_has_cached_data(vp)) {
4403 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4404 		    cr);
4405 	}
4406 
4407 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4408 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4409 
4410 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4411 		zfs_sa_upgrade_txholds(tx, zp);
4412 		error = dmu_tx_assign(tx, TXG_WAIT);
4413 		if (error) {
4414 			dmu_tx_abort(tx);
4415 		} else {
4416 			mutex_enter(&zp->z_lock);
4417 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4418 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4419 			zp->z_atime_dirty = 0;
4420 			mutex_exit(&zp->z_lock);
4421 			dmu_tx_commit(tx);
4422 		}
4423 	}
4424 
4425 	zfs_zinactive(zp);
4426 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4427 }
4428 
4429 /*
4430  * Bounds-check the seek operation.
4431  *
4432  *	IN:	vp	- vnode seeking within
4433  *		ooff	- old file offset
4434  *		noffp	- pointer to new file offset
4435  *		ct	- caller context
4436  *
4437  *	RETURN:	0 on success, EINVAL if new offset invalid.
4438  */
4439 /* ARGSUSED */
4440 static int
4441 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4442     caller_context_t *ct)
4443 {
4444 	if (vp->v_type == VDIR)
4445 		return (0);
4446 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4447 }
4448 
4449 /*
4450  * Pre-filter the generic locking function to trap attempts to place
4451  * a mandatory lock on a memory mapped file.
4452  */
4453 static int
4454 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4455     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4456 {
4457 	znode_t *zp = VTOZ(vp);
4458 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4459 
4460 	ZFS_ENTER(zfsvfs);
4461 	ZFS_VERIFY_ZP(zp);
4462 
4463 	/*
4464 	 * We are following the UFS semantics with respect to mapcnt
4465 	 * here: If we see that the file is mapped already, then we will
4466 	 * return an error, but we don't worry about races between this
4467 	 * function and zfs_map().
4468 	 */
4469 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4470 		ZFS_EXIT(zfsvfs);
4471 		return (SET_ERROR(EAGAIN));
4472 	}
4473 	ZFS_EXIT(zfsvfs);
4474 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4475 }
4476 
4477 /*
4478  * If we can't find a page in the cache, we will create a new page
4479  * and fill it with file data.  For efficiency, we may try to fill
4480  * multiple pages at once (klustering) to fill up the supplied page
4481  * list.  Note that the pages to be filled are held with an exclusive
4482  * lock to prevent access by other threads while they are being filled.
4483  */
4484 static int
4485 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4486     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4487 {
4488 	znode_t *zp = VTOZ(vp);
4489 	page_t *pp, *cur_pp;
4490 	objset_t *os = zp->z_zfsvfs->z_os;
4491 	u_offset_t io_off, total;
4492 	size_t io_len;
4493 	int err;
4494 
4495 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4496 		/*
4497 		 * We only have a single page, don't bother klustering
4498 		 */
4499 		io_off = off;
4500 		io_len = PAGESIZE;
4501 		pp = page_create_va(vp, io_off, io_len,
4502 		    PG_EXCL | PG_WAIT, seg, addr);
4503 	} else {
4504 		/*
4505 		 * Try to find enough pages to fill the page list
4506 		 */
4507 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4508 		    &io_len, off, plsz, 0);
4509 	}
4510 	if (pp == NULL) {
4511 		/*
4512 		 * The page already exists, nothing to do here.
4513 		 */
4514 		*pl = NULL;
4515 		return (0);
4516 	}
4517 
4518 	/*
4519 	 * Fill the pages in the kluster.
4520 	 */
4521 	cur_pp = pp;
4522 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4523 		caddr_t va;
4524 
4525 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4526 		va = zfs_map_page(cur_pp, S_WRITE);
4527 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4528 		    DMU_READ_PREFETCH);
4529 		zfs_unmap_page(cur_pp, va);
4530 		if (err) {
4531 			/* On error, toss the entire kluster */
4532 			pvn_read_done(pp, B_ERROR);
4533 			/* convert checksum errors into IO errors */
4534 			if (err == ECKSUM)
4535 				err = SET_ERROR(EIO);
4536 			return (err);
4537 		}
4538 		cur_pp = cur_pp->p_next;
4539 	}
4540 
4541 	/*
4542 	 * Fill in the page list array from the kluster starting
4543 	 * from the desired offset `off'.
4544 	 * NOTE: the page list will always be null terminated.
4545 	 */
4546 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4547 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4548 
4549 	return (0);
4550 }
4551 
4552 /*
4553  * Return pointers to the pages for the file region [off, off + len]
4554  * in the pl array.  If plsz is greater than len, this function may
4555  * also return page pointers from after the specified region
4556  * (i.e. the region [off, off + plsz]).  These additional pages are
4557  * only returned if they are already in the cache, or were created as
4558  * part of a klustered read.
4559  *
4560  *	IN:	vp	- vnode of file to get data from.
4561  *		off	- position in file to get data from.
4562  *		len	- amount of data to retrieve.
4563  *		plsz	- length of provided page list.
4564  *		seg	- segment to obtain pages for.
4565  *		addr	- virtual address of fault.
4566  *		rw	- mode of created pages.
4567  *		cr	- credentials of caller.
4568  *		ct	- caller context.
4569  *
4570  *	OUT:	protp	- protection mode of created pages.
4571  *		pl	- list of pages created.
4572  *
4573  *	RETURN:	0 on success, error code on failure.
4574  *
4575  * Timestamps:
4576  *	vp - atime updated
4577  */
4578 /* ARGSUSED */
4579 static int
4580 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4581     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4582     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4583 {
4584 	znode_t		*zp = VTOZ(vp);
4585 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4586 	page_t		**pl0 = pl;
4587 	int		err = 0;
4588 
4589 	/* we do our own caching, faultahead is unnecessary */
4590 	if (pl == NULL)
4591 		return (0);
4592 	else if (len > plsz)
4593 		len = plsz;
4594 	else
4595 		len = P2ROUNDUP(len, PAGESIZE);
4596 	ASSERT(plsz >= len);
4597 
4598 	ZFS_ENTER(zfsvfs);
4599 	ZFS_VERIFY_ZP(zp);
4600 
4601 	if (protp)
4602 		*protp = PROT_ALL;
4603 
4604 	/*
4605 	 * Loop through the requested range [off, off + len) looking
4606 	 * for pages.  If we don't find a page, we will need to create
4607 	 * a new page and fill it with data from the file.
4608 	 */
4609 	while (len > 0) {
4610 		if (*pl = page_lookup(vp, off, SE_SHARED))
4611 			*(pl+1) = NULL;
4612 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4613 			goto out;
4614 		while (*pl) {
4615 			ASSERT3U((*pl)->p_offset, ==, off);
4616 			off += PAGESIZE;
4617 			addr += PAGESIZE;
4618 			if (len > 0) {
4619 				ASSERT3U(len, >=, PAGESIZE);
4620 				len -= PAGESIZE;
4621 			}
4622 			ASSERT3U(plsz, >=, PAGESIZE);
4623 			plsz -= PAGESIZE;
4624 			pl++;
4625 		}
4626 	}
4627 
4628 	/*
4629 	 * Fill out the page array with any pages already in the cache.
4630 	 */
4631 	while (plsz > 0 &&
4632 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4633 			off += PAGESIZE;
4634 			plsz -= PAGESIZE;
4635 	}
4636 out:
4637 	if (err) {
4638 		/*
4639 		 * Release any pages we have previously locked.
4640 		 */
4641 		while (pl > pl0)
4642 			page_unlock(*--pl);
4643 	} else {
4644 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4645 	}
4646 
4647 	*pl = NULL;
4648 
4649 	ZFS_EXIT(zfsvfs);
4650 	return (err);
4651 }
4652 
4653 /*
4654  * Request a memory map for a section of a file.  This code interacts
4655  * with common code and the VM system as follows:
4656  *
4657  * - common code calls mmap(), which ends up in smmap_common()
4658  * - this calls VOP_MAP(), which takes you into (say) zfs
4659  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4660  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4661  * - zfs_addmap() updates z_mapcnt
4662  */
4663 /*ARGSUSED*/
4664 static int
4665 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4666     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4667     caller_context_t *ct)
4668 {
4669 	znode_t *zp = VTOZ(vp);
4670 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4671 	segvn_crargs_t	vn_a;
4672 	int		error;
4673 
4674 	ZFS_ENTER(zfsvfs);
4675 	ZFS_VERIFY_ZP(zp);
4676 
4677 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4678 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4679 		ZFS_EXIT(zfsvfs);
4680 		return (SET_ERROR(EPERM));
4681 	}
4682 
4683 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4684 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4685 		ZFS_EXIT(zfsvfs);
4686 		return (SET_ERROR(EACCES));
4687 	}
4688 
4689 	if (vp->v_flag & VNOMAP) {
4690 		ZFS_EXIT(zfsvfs);
4691 		return (SET_ERROR(ENOSYS));
4692 	}
4693 
4694 	if (off < 0 || len > MAXOFFSET_T - off) {
4695 		ZFS_EXIT(zfsvfs);
4696 		return (SET_ERROR(ENXIO));
4697 	}
4698 
4699 	if (vp->v_type != VREG) {
4700 		ZFS_EXIT(zfsvfs);
4701 		return (SET_ERROR(ENODEV));
4702 	}
4703 
4704 	/*
4705 	 * If file is locked, disallow mapping.
4706 	 */
4707 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4708 		ZFS_EXIT(zfsvfs);
4709 		return (SET_ERROR(EAGAIN));
4710 	}
4711 
4712 	as_rangelock(as);
4713 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4714 	if (error != 0) {
4715 		as_rangeunlock(as);
4716 		ZFS_EXIT(zfsvfs);
4717 		return (error);
4718 	}
4719 
4720 	vn_a.vp = vp;
4721 	vn_a.offset = (u_offset_t)off;
4722 	vn_a.type = flags & MAP_TYPE;
4723 	vn_a.prot = prot;
4724 	vn_a.maxprot = maxprot;
4725 	vn_a.cred = cr;
4726 	vn_a.amp = NULL;
4727 	vn_a.flags = flags & ~MAP_TYPE;
4728 	vn_a.szc = 0;
4729 	vn_a.lgrp_mem_policy_flags = 0;
4730 
4731 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4732 
4733 	as_rangeunlock(as);
4734 	ZFS_EXIT(zfsvfs);
4735 	return (error);
4736 }
4737 
4738 /* ARGSUSED */
4739 static int
4740 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4741     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4742     caller_context_t *ct)
4743 {
4744 	uint64_t pages = btopr(len);
4745 
4746 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4747 	return (0);
4748 }
4749 
4750 /*
4751  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4752  * more accurate mtime for the associated file.  Since we don't have a way of
4753  * detecting when the data was actually modified, we have to resort to
4754  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4755  * last page is pushed.  The problem occurs when the msync() call is omitted,
4756  * which by far the most common case:
4757  *
4758  *	open()
4759  *	mmap()
4760  *	<modify memory>
4761  *	munmap()
4762  *	close()
4763  *	<time lapse>
4764  *	putpage() via fsflush
4765  *
4766  * If we wait until fsflush to come along, we can have a modification time that
4767  * is some arbitrary point in the future.  In order to prevent this in the
4768  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4769  * torn down.
4770  */
4771 /* ARGSUSED */
4772 static int
4773 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4774     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4775     caller_context_t *ct)
4776 {
4777 	uint64_t pages = btopr(len);
4778 
4779 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4780 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4781 
4782 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4783 	    vn_has_cached_data(vp))
4784 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4785 
4786 	return (0);
4787 }
4788 
4789 /*
4790  * Free or allocate space in a file.  Currently, this function only
4791  * supports the `F_FREESP' command.  However, this command is somewhat
4792  * misnamed, as its functionality includes the ability to allocate as
4793  * well as free space.
4794  *
4795  *	IN:	vp	- vnode of file to free data in.
4796  *		cmd	- action to take (only F_FREESP supported).
4797  *		bfp	- section of file to free/alloc.
4798  *		flag	- current file open mode flags.
4799  *		offset	- current file offset.
4800  *		cr	- credentials of caller [UNUSED].
4801  *		ct	- caller context.
4802  *
4803  *	RETURN:	0 on success, error code on failure.
4804  *
4805  * Timestamps:
4806  *	vp - ctime|mtime updated
4807  */
4808 /* ARGSUSED */
4809 static int
4810 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4811     offset_t offset, cred_t *cr, caller_context_t *ct)
4812 {
4813 	znode_t		*zp = VTOZ(vp);
4814 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4815 	uint64_t	off, len;
4816 	int		error;
4817 
4818 	ZFS_ENTER(zfsvfs);
4819 	ZFS_VERIFY_ZP(zp);
4820 
4821 	if (cmd != F_FREESP) {
4822 		ZFS_EXIT(zfsvfs);
4823 		return (SET_ERROR(EINVAL));
4824 	}
4825 
4826 	/*
4827 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4828 	 * callers might not be able to detect properly that we are read-only,
4829 	 * so check it explicitly here.
4830 	 */
4831 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4832 		ZFS_EXIT(zfsvfs);
4833 		return (SET_ERROR(EROFS));
4834 	}
4835 
4836 	if (error = convoff(vp, bfp, 0, offset)) {
4837 		ZFS_EXIT(zfsvfs);
4838 		return (error);
4839 	}
4840 
4841 	if (bfp->l_len < 0) {
4842 		ZFS_EXIT(zfsvfs);
4843 		return (SET_ERROR(EINVAL));
4844 	}
4845 
4846 	off = bfp->l_start;
4847 	len = bfp->l_len; /* 0 means from off to end of file */
4848 
4849 	error = zfs_freesp(zp, off, len, flag, TRUE);
4850 
4851 	if (error == 0 && off == 0 && len == 0)
4852 		vnevent_truncate(ZTOV(zp), ct);
4853 
4854 	ZFS_EXIT(zfsvfs);
4855 	return (error);
4856 }
4857 
4858 /*ARGSUSED*/
4859 static int
4860 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4861 {
4862 	znode_t		*zp = VTOZ(vp);
4863 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4864 	uint32_t	gen;
4865 	uint64_t	gen64;
4866 	uint64_t	object = zp->z_id;
4867 	zfid_short_t	*zfid;
4868 	int		size, i, error;
4869 
4870 	ZFS_ENTER(zfsvfs);
4871 	ZFS_VERIFY_ZP(zp);
4872 
4873 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4874 	    &gen64, sizeof (uint64_t))) != 0) {
4875 		ZFS_EXIT(zfsvfs);
4876 		return (error);
4877 	}
4878 
4879 	gen = (uint32_t)gen64;
4880 
4881 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4882 	if (fidp->fid_len < size) {
4883 		fidp->fid_len = size;
4884 		ZFS_EXIT(zfsvfs);
4885 		return (SET_ERROR(ENOSPC));
4886 	}
4887 
4888 	zfid = (zfid_short_t *)fidp;
4889 
4890 	zfid->zf_len = size;
4891 
4892 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4893 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4894 
4895 	/* Must have a non-zero generation number to distinguish from .zfs */
4896 	if (gen == 0)
4897 		gen = 1;
4898 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4899 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4900 
4901 	if (size == LONG_FID_LEN) {
4902 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4903 		zfid_long_t	*zlfid;
4904 
4905 		zlfid = (zfid_long_t *)fidp;
4906 
4907 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4908 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4909 
4910 		/* XXX - this should be the generation number for the objset */
4911 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4912 			zlfid->zf_setgen[i] = 0;
4913 	}
4914 
4915 	ZFS_EXIT(zfsvfs);
4916 	return (0);
4917 }
4918 
4919 static int
4920 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4921     caller_context_t *ct)
4922 {
4923 	znode_t		*zp, *xzp;
4924 	zfsvfs_t	*zfsvfs;
4925 	zfs_dirlock_t	*dl;
4926 	int		error;
4927 
4928 	switch (cmd) {
4929 	case _PC_LINK_MAX:
4930 		*valp = ULONG_MAX;
4931 		return (0);
4932 
4933 	case _PC_FILESIZEBITS:
4934 		*valp = 64;
4935 		return (0);
4936 
4937 	case _PC_XATTR_EXISTS:
4938 		zp = VTOZ(vp);
4939 		zfsvfs = zp->z_zfsvfs;
4940 		ZFS_ENTER(zfsvfs);
4941 		ZFS_VERIFY_ZP(zp);
4942 		*valp = 0;
4943 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4944 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4945 		if (error == 0) {
4946 			zfs_dirent_unlock(dl);
4947 			if (!zfs_dirempty(xzp))
4948 				*valp = 1;
4949 			VN_RELE(ZTOV(xzp));
4950 		} else if (error == ENOENT) {
4951 			/*
4952 			 * If there aren't extended attributes, it's the
4953 			 * same as having zero of them.
4954 			 */
4955 			error = 0;
4956 		}
4957 		ZFS_EXIT(zfsvfs);
4958 		return (error);
4959 
4960 	case _PC_SATTR_ENABLED:
4961 	case _PC_SATTR_EXISTS:
4962 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4963 		    (vp->v_type == VREG || vp->v_type == VDIR);
4964 		return (0);
4965 
4966 	case _PC_ACCESS_FILTERING:
4967 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4968 		    vp->v_type == VDIR;
4969 		return (0);
4970 
4971 	case _PC_ACL_ENABLED:
4972 		*valp = _ACL_ACE_ENABLED;
4973 		return (0);
4974 
4975 	case _PC_MIN_HOLE_SIZE:
4976 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4977 		return (0);
4978 
4979 	case _PC_TIMESTAMP_RESOLUTION:
4980 		/* nanosecond timestamp resolution */
4981 		*valp = 1L;
4982 		return (0);
4983 
4984 	default:
4985 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4986 	}
4987 }
4988 
4989 /*ARGSUSED*/
4990 static int
4991 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4992     caller_context_t *ct)
4993 {
4994 	znode_t *zp = VTOZ(vp);
4995 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4996 	int error;
4997 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4998 
4999 	ZFS_ENTER(zfsvfs);
5000 	ZFS_VERIFY_ZP(zp);
5001 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5002 	ZFS_EXIT(zfsvfs);
5003 
5004 	return (error);
5005 }
5006 
5007 /*ARGSUSED*/
5008 static int
5009 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5010     caller_context_t *ct)
5011 {
5012 	znode_t *zp = VTOZ(vp);
5013 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5014 	int error;
5015 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5016 	zilog_t	*zilog = zfsvfs->z_log;
5017 
5018 	ZFS_ENTER(zfsvfs);
5019 	ZFS_VERIFY_ZP(zp);
5020 
5021 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5022 
5023 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5024 		zil_commit(zilog, 0);
5025 
5026 	ZFS_EXIT(zfsvfs);
5027 	return (error);
5028 }
5029 
5030 /*
5031  * The smallest read we may consider to loan out an arcbuf.
5032  * This must be a power of 2.
5033  */
5034 int zcr_blksz_min = (1 << 10);	/* 1K */
5035 /*
5036  * If set to less than the file block size, allow loaning out of an
5037  * arcbuf for a partial block read.  This must be a power of 2.
5038  */
5039 int zcr_blksz_max = (1 << 17);	/* 128K */
5040 
5041 /*ARGSUSED*/
5042 static int
5043 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5044     caller_context_t *ct)
5045 {
5046 	znode_t	*zp = VTOZ(vp);
5047 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5048 	int max_blksz = zfsvfs->z_max_blksz;
5049 	uio_t *uio = &xuio->xu_uio;
5050 	ssize_t size = uio->uio_resid;
5051 	offset_t offset = uio->uio_loffset;
5052 	int blksz;
5053 	int fullblk, i;
5054 	arc_buf_t *abuf;
5055 	ssize_t maxsize;
5056 	int preamble, postamble;
5057 
5058 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5059 		return (SET_ERROR(EINVAL));
5060 
5061 	ZFS_ENTER(zfsvfs);
5062 	ZFS_VERIFY_ZP(zp);
5063 	switch (ioflag) {
5064 	case UIO_WRITE:
5065 		/*
5066 		 * Loan out an arc_buf for write if write size is bigger than
5067 		 * max_blksz, and the file's block size is also max_blksz.
5068 		 */
5069 		blksz = max_blksz;
5070 		if (size < blksz || zp->z_blksz != blksz) {
5071 			ZFS_EXIT(zfsvfs);
5072 			return (SET_ERROR(EINVAL));
5073 		}
5074 		/*
5075 		 * Caller requests buffers for write before knowing where the
5076 		 * write offset might be (e.g. NFS TCP write).
5077 		 */
5078 		if (offset == -1) {
5079 			preamble = 0;
5080 		} else {
5081 			preamble = P2PHASE(offset, blksz);
5082 			if (preamble) {
5083 				preamble = blksz - preamble;
5084 				size -= preamble;
5085 			}
5086 		}
5087 
5088 		postamble = P2PHASE(size, blksz);
5089 		size -= postamble;
5090 
5091 		fullblk = size / blksz;
5092 		(void) dmu_xuio_init(xuio,
5093 		    (preamble != 0) + fullblk + (postamble != 0));
5094 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5095 		    int, postamble, int,
5096 		    (preamble != 0) + fullblk + (postamble != 0));
5097 
5098 		/*
5099 		 * Have to fix iov base/len for partial buffers.  They
5100 		 * currently represent full arc_buf's.
5101 		 */
5102 		if (preamble) {
5103 			/* data begins in the middle of the arc_buf */
5104 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5105 			    blksz);
5106 			ASSERT(abuf);
5107 			(void) dmu_xuio_add(xuio, abuf,
5108 			    blksz - preamble, preamble);
5109 		}
5110 
5111 		for (i = 0; i < fullblk; i++) {
5112 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5113 			    blksz);
5114 			ASSERT(abuf);
5115 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5116 		}
5117 
5118 		if (postamble) {
5119 			/* data ends in the middle of the arc_buf */
5120 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5121 			    blksz);
5122 			ASSERT(abuf);
5123 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5124 		}
5125 		break;
5126 	case UIO_READ:
5127 		/*
5128 		 * Loan out an arc_buf for read if the read size is larger than
5129 		 * the current file block size.  Block alignment is not
5130 		 * considered.  Partial arc_buf will be loaned out for read.
5131 		 */
5132 		blksz = zp->z_blksz;
5133 		if (blksz < zcr_blksz_min)
5134 			blksz = zcr_blksz_min;
5135 		if (blksz > zcr_blksz_max)
5136 			blksz = zcr_blksz_max;
5137 		/* avoid potential complexity of dealing with it */
5138 		if (blksz > max_blksz) {
5139 			ZFS_EXIT(zfsvfs);
5140 			return (SET_ERROR(EINVAL));
5141 		}
5142 
5143 		maxsize = zp->z_size - uio->uio_loffset;
5144 		if (size > maxsize)
5145 			size = maxsize;
5146 
5147 		if (size < blksz || vn_has_cached_data(vp)) {
5148 			ZFS_EXIT(zfsvfs);
5149 			return (SET_ERROR(EINVAL));
5150 		}
5151 		break;
5152 	default:
5153 		ZFS_EXIT(zfsvfs);
5154 		return (SET_ERROR(EINVAL));
5155 	}
5156 
5157 	uio->uio_extflg = UIO_XUIO;
5158 	XUIO_XUZC_RW(xuio) = ioflag;
5159 	ZFS_EXIT(zfsvfs);
5160 	return (0);
5161 }
5162 
5163 /*ARGSUSED*/
5164 static int
5165 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5166 {
5167 	int i;
5168 	arc_buf_t *abuf;
5169 	int ioflag = XUIO_XUZC_RW(xuio);
5170 
5171 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5172 
5173 	i = dmu_xuio_cnt(xuio);
5174 	while (i-- > 0) {
5175 		abuf = dmu_xuio_arcbuf(xuio, i);
5176 		/*
5177 		 * if abuf == NULL, it must be a write buffer
5178 		 * that has been returned in zfs_write().
5179 		 */
5180 		if (abuf)
5181 			dmu_return_arcbuf(abuf);
5182 		ASSERT(abuf || ioflag == UIO_WRITE);
5183 	}
5184 
5185 	dmu_xuio_fini(xuio);
5186 	return (0);
5187 }
5188 
5189 /*
5190  * Predeclare these here so that the compiler assumes that
5191  * this is an "old style" function declaration that does
5192  * not include arguments => we won't get type mismatch errors
5193  * in the initializations that follow.
5194  */
5195 static int zfs_inval();
5196 static int zfs_isdir();
5197 
5198 static int
5199 zfs_inval()
5200 {
5201 	return (SET_ERROR(EINVAL));
5202 }
5203 
5204 static int
5205 zfs_isdir()
5206 {
5207 	return (SET_ERROR(EISDIR));
5208 }
5209 /*
5210  * Directory vnode operations template
5211  */
5212 vnodeops_t *zfs_dvnodeops;
5213 const fs_operation_def_t zfs_dvnodeops_template[] = {
5214 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5215 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5216 	VOPNAME_READ,		{ .error = zfs_isdir },
5217 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5218 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5219 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5220 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5221 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5222 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5223 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5224 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5225 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5226 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5227 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5228 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5229 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5230 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5231 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5232 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5233 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5234 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5235 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5236 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5237 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5238 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5239 	NULL,			NULL
5240 };
5241 
5242 /*
5243  * Regular file vnode operations template
5244  */
5245 vnodeops_t *zfs_fvnodeops;
5246 const fs_operation_def_t zfs_fvnodeops_template[] = {
5247 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5248 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5249 	VOPNAME_READ,		{ .vop_read = zfs_read },
5250 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5251 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5252 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5253 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5254 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5255 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5256 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5257 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5258 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5259 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5260 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5261 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5262 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5263 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5264 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5265 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5266 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5267 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5268 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5269 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5270 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5271 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5272 	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5273 	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5274 	NULL,			NULL
5275 };
5276 
5277 /*
5278  * Symbolic link vnode operations template
5279  */
5280 vnodeops_t *zfs_symvnodeops;
5281 const fs_operation_def_t zfs_symvnodeops_template[] = {
5282 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5283 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5284 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5285 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5286 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5287 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5288 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5289 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5290 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5291 	NULL,			NULL
5292 };
5293 
5294 /*
5295  * special share hidden files vnode operations template
5296  */
5297 vnodeops_t *zfs_sharevnodeops;
5298 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5299 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5300 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5301 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5302 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5303 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5304 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5305 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5306 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5307 	NULL,			NULL
5308 };
5309 
5310 /*
5311  * Extended attribute directory vnode operations template
5312  *
5313  * This template is identical to the directory vnodes
5314  * operation template except for restricted operations:
5315  *	VOP_MKDIR()
5316  *	VOP_SYMLINK()
5317  *
5318  * Note that there are other restrictions embedded in:
5319  *	zfs_create()	- restrict type to VREG
5320  *	zfs_link()	- no links into/out of attribute space
5321  *	zfs_rename()	- no moves into/out of attribute space
5322  */
5323 vnodeops_t *zfs_xdvnodeops;
5324 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5325 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5326 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5327 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5328 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5329 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5330 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5331 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5332 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5333 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5334 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5335 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5336 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5337 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5338 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5339 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5340 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5341 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5342 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5343 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5344 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5345 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5346 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5347 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5348 	NULL,			NULL
5349 };
5350 
5351 /*
5352  * Error vnode operations template
5353  */
5354 vnodeops_t *zfs_evnodeops;
5355 const fs_operation_def_t zfs_evnodeops_template[] = {
5356 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5357 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5358 	NULL,			NULL
5359 };
5360