1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/vfs.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <vm/seg_vn.h> 45 #include <vm/pvn.h> 46 #include <vm/as.h> 47 #include <sys/mman.h> 48 #include <sys/pathname.h> 49 #include <sys/cmn_err.h> 50 #include <sys/errno.h> 51 #include <sys/unistd.h> 52 #include <sys/zfs_vfsops.h> 53 #include <sys/zfs_dir.h> 54 #include <sys/zfs_acl.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/dmu.h> 58 #include <sys/spa.h> 59 #include <sys/txg.h> 60 #include <sys/refcount.h> /* temporary for debugging purposes */ 61 #include <sys/dbuf.h> 62 #include <sys/zap.h> 63 #include <sys/dirent.h> 64 #include <sys/policy.h> 65 #include <sys/sunddi.h> 66 #include <sys/filio.h> 67 #include "fs/fs_subr.h" 68 #include <sys/zfs_ctldir.h> 69 70 /* 71 * Programming rules. 72 * 73 * Each vnode op performs some logical unit of work. To do this, the ZPL must 74 * properly lock its in-core state, create a DMU transaction, do the work, 75 * record this work in the intent log (ZIL), commit the DMU transaction, 76 * and wait the the intent log to commit if it's is a synchronous operation. 77 * Morover, the vnode ops must work in both normal and log replay context. 78 * The ordering of events is important to avoid deadlocks and references 79 * to freed memory. The example below illustrates the following Big Rules: 80 * 81 * (1) A check must be made in each zfs thread for a mounted file system. 82 * This is done avoiding races using ZFS_ENTER(zfsvfs). 83 * A ZFS_EXIT(zfsvfs) is needed before all returns. 84 * 85 * (2) VN_RELE() should always be the last thing except for zil_commit() 86 * and ZFS_EXIT(). This is for 3 reasons: 87 * First, if it's the last reference, the vnode/znode 88 * can be freed, so the zp may point to freed memory. Second, the last 89 * reference will call zfs_zinactive(), which may induce a lot of work -- 90 * pushing cached pages (which requires z_grow_lock) and syncing out 91 * cached atime changes. Third, zfs_zinactive() may require a new tx, 92 * which could deadlock the system if you were already holding one. 93 * 94 * (3) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 95 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 96 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 97 * This is critical because we don't want to block while holding locks. 98 * Note, in particular, that if a lock is sometimes acquired before 99 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 100 * use a non-blocking assign can deadlock the system. The scenario: 101 * 102 * Thread A has grabbed a lock before calling dmu_tx_assign(). 103 * Thread B is in an already-assigned tx, and blocks for this lock. 104 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 105 * forever, because the previous txg can't quiesce until B's tx commits. 106 * 107 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 108 * then drop all locks, call txg_wait_open(), and try again. 109 * 110 * (4) If the operation succeeded, generate the intent log entry for it 111 * before dropping locks. This ensures that the ordering of events 112 * in the intent log matches the order in which they actually occurred. 113 * 114 * (5) At the end of each vnode op, the DMU tx must always commit, 115 * regardless of whether there were any errors. 116 * 117 * (6) After dropping all locks, invoke zil_commit(zilog, seq, ioflag) 118 * to ensure that synchronous semantics are provided when necessary. 119 * 120 * In general, this is how things should be ordered in each vnode op: 121 * 122 * ZFS_ENTER(zfsvfs); // exit if unmounted 123 * top: 124 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 125 * rw_enter(...); // grab any other locks you need 126 * tx = dmu_tx_create(...); // get DMU tx 127 * dmu_tx_hold_*(); // hold each object you might modify 128 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 129 * if (error) { 130 * dmu_tx_abort(tx); // abort DMU tx 131 * rw_exit(...); // drop locks 132 * zfs_dirent_unlock(dl); // unlock directory entry 133 * VN_RELE(...); // release held vnodes 134 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 135 * txg_wait_open(dmu_objset_pool(os), 0); 136 * goto top; 137 * } 138 * ZFS_EXIT(zfsvfs); // finished in zfs 139 * return (error); // really out of space 140 * } 141 * error = do_real_work(); // do whatever this VOP does 142 * if (error == 0) 143 * seq = zfs_log_*(...); // on success, make ZIL entry 144 * dmu_tx_commit(tx); // commit DMU tx -- error or not 145 * rw_exit(...); // drop locks 146 * zfs_dirent_unlock(dl); // unlock directory entry 147 * VN_RELE(...); // release held vnodes 148 * zil_commit(zilog, seq, ioflag); // synchronous when necessary 149 * ZFS_EXIT(zfsvfs); // finished in zfs 150 * return (error); // done, report error 151 */ 152 153 /* ARGSUSED */ 154 static int 155 zfs_open(vnode_t **vpp, int flag, cred_t *cr) 156 { 157 return (0); 158 } 159 160 /* ARGSUSED */ 161 static int 162 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 163 { 164 /* 165 * Clean up any locks held by this process on the vp. 166 */ 167 cleanlocks(vp, ddi_get_pid(), 0); 168 cleanshares(vp, ddi_get_pid()); 169 170 return (0); 171 } 172 173 /* 174 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 175 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 176 */ 177 static int 178 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 179 { 180 znode_t *zp = VTOZ(vp); 181 uint64_t noff = (uint64_t)*off; /* new offset */ 182 uint64_t file_sz; 183 int error; 184 boolean_t hole; 185 186 rw_enter(&zp->z_grow_lock, RW_READER); 187 file_sz = zp->z_phys->zp_size; 188 if (noff >= file_sz) { 189 rw_exit(&zp->z_grow_lock); 190 return (ENXIO); 191 } 192 193 if (cmd == _FIO_SEEK_HOLE) 194 hole = B_TRUE; 195 else 196 hole = B_FALSE; 197 198 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 199 rw_exit(&zp->z_grow_lock); 200 201 /* end of file? */ 202 if ((error == ESRCH) || (noff > file_sz)) { 203 /* 204 * Handle the virtual hole at the end of file. 205 */ 206 if (hole) { 207 *off = file_sz; 208 return (0); 209 } 210 return (ENXIO); 211 } 212 213 if (noff < *off) 214 return (error); 215 *off = noff; 216 return (error); 217 } 218 219 /* ARGSUSED */ 220 static int 221 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 222 int *rvalp) 223 { 224 offset_t off; 225 int error; 226 zfsvfs_t *zfsvfs; 227 228 switch (com) { 229 case _FIOFFS: 230 return (zfs_sync(vp->v_vfsp, 0, cred)); 231 232 case _FIO_SEEK_DATA: 233 case _FIO_SEEK_HOLE: 234 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 235 return (EFAULT); 236 237 zfsvfs = VTOZ(vp)->z_zfsvfs; 238 ZFS_ENTER(zfsvfs); 239 240 /* offset parameter is in/out */ 241 error = zfs_holey(vp, com, &off); 242 ZFS_EXIT(zfsvfs); 243 if (error) 244 return (error); 245 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 246 return (EFAULT); 247 return (0); 248 } 249 return (ENOTTY); 250 } 251 252 /* 253 * When a file is memory mapped, we must keep the IO data synchronized 254 * between the DMU cache and the memory mapped pages. What this means: 255 * 256 * On Write: If we find a memory mapped page, we write to *both* 257 * the page and the dmu buffer. 258 * 259 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 260 * the file is memory mapped. 261 */ 262 static int 263 mappedwrite(vnode_t *vp, uint64_t woff, int nbytes, uio_t *uio, dmu_tx_t *tx) 264 { 265 znode_t *zp = VTOZ(vp); 266 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 267 int64_t start, off; 268 int len = nbytes; 269 int error = 0; 270 271 start = uio->uio_loffset; 272 off = start & PAGEOFFSET; 273 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 274 page_t *pp; 275 uint64_t bytes = MIN(PAGESIZE - off, len); 276 277 /* 278 * We don't want a new page to "appear" in the middle of 279 * the file update (because it may not get the write 280 * update data), so we grab a lock to block 281 * zfs_getpage(). 282 */ 283 rw_enter(&zp->z_map_lock, RW_WRITER); 284 if (pp = page_lookup(vp, start, SE_SHARED)) { 285 caddr_t va; 286 287 rw_exit(&zp->z_map_lock); 288 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 289 error = uiomove(va+off, bytes, UIO_WRITE, uio); 290 if (error == 0) { 291 dmu_write(zfsvfs->z_os, zp->z_id, 292 woff, bytes, va+off, tx); 293 } 294 ppmapout(va); 295 page_unlock(pp); 296 } else { 297 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 298 woff, bytes, uio, tx); 299 rw_exit(&zp->z_map_lock); 300 } 301 len -= bytes; 302 woff += bytes; 303 off = 0; 304 if (error) 305 break; 306 } 307 return (error); 308 } 309 310 /* 311 * When a file is memory mapped, we must keep the IO data synchronized 312 * between the DMU cache and the memory mapped pages. What this means: 313 * 314 * On Read: We "read" preferentially from memory mapped pages, 315 * else we default from the dmu buffer. 316 * 317 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 318 * the file is memory mapped. 319 */ 320 static int 321 mappedread(vnode_t *vp, char *addr, int nbytes, uio_t *uio) 322 { 323 int64_t start, off, bytes; 324 int len = nbytes; 325 int error = 0; 326 327 start = uio->uio_loffset; 328 off = start & PAGEOFFSET; 329 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 330 page_t *pp; 331 332 bytes = MIN(PAGESIZE - off, len); 333 if (pp = page_lookup(vp, start, SE_SHARED)) { 334 caddr_t va; 335 336 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 337 error = uiomove(va + off, bytes, UIO_READ, uio); 338 ppmapout(va); 339 page_unlock(pp); 340 } else { 341 /* XXX use dmu_read here? */ 342 error = uiomove(addr, bytes, UIO_READ, uio); 343 } 344 len -= bytes; 345 addr += bytes; 346 off = 0; 347 if (error) 348 break; 349 } 350 return (error); 351 } 352 353 uint_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 354 355 /* 356 * Read bytes from specified file into supplied buffer. 357 * 358 * IN: vp - vnode of file to be read from. 359 * uio - structure supplying read location, range info, 360 * and return buffer. 361 * ioflag - SYNC flags; used to provide FRSYNC semantics. 362 * cr - credentials of caller. 363 * 364 * OUT: uio - updated offset and range, buffer filled. 365 * 366 * RETURN: 0 if success 367 * error code if failure 368 * 369 * Side Effects: 370 * vp - atime updated if byte count > 0 371 */ 372 /* ARGSUSED */ 373 static int 374 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 375 { 376 znode_t *zp = VTOZ(vp); 377 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 378 uint64_t delta; 379 ssize_t n, size, cnt, ndone; 380 int error, i, numbufs; 381 dmu_buf_t *dbp, **dbpp; 382 383 ZFS_ENTER(zfsvfs); 384 385 /* 386 * Validate file offset 387 */ 388 if (uio->uio_loffset < (offset_t)0) { 389 ZFS_EXIT(zfsvfs); 390 return (EINVAL); 391 } 392 393 /* 394 * Fasttrack empty reads 395 */ 396 if (uio->uio_resid == 0) { 397 ZFS_EXIT(zfsvfs); 398 return (0); 399 } 400 401 /* 402 * Check for region locks 403 */ 404 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 405 if (error = chklock(vp, FREAD, 406 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 407 ZFS_EXIT(zfsvfs); 408 return (error); 409 } 410 } 411 412 /* 413 * If we're in FRSYNC mode, sync out this znode before reading it. 414 */ 415 zil_commit(zfsvfs->z_log, zp->z_last_itx, ioflag & FRSYNC); 416 417 /* 418 * Make sure nobody restructures the file (changes block size) 419 * in the middle of the read. 420 */ 421 rw_enter(&zp->z_grow_lock, RW_READER); 422 /* 423 * If we are reading past end-of-file we can skip 424 * to the end; but we might still need to set atime. 425 */ 426 if (uio->uio_loffset >= zp->z_phys->zp_size) { 427 cnt = 0; 428 error = 0; 429 goto out; 430 } 431 432 cnt = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 433 434 for (ndone = 0; ndone < cnt; ndone += zfs_read_chunk_size) { 435 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 436 n = MIN(zfs_read_chunk_size, 437 zp->z_phys->zp_size - uio->uio_loffset); 438 n = MIN(n, cnt); 439 dbpp = dmu_buf_hold_array(zfsvfs->z_os, zp->z_id, 440 uio->uio_loffset, n, &numbufs); 441 if (error = dmu_buf_read_array_canfail(dbpp, numbufs)) { 442 dmu_buf_rele_array(dbpp, numbufs); 443 goto out; 444 } 445 /* 446 * Compute the adjustment to align the dmu buffers 447 * with the uio buffer. 448 */ 449 delta = uio->uio_loffset - dbpp[0]->db_offset; 450 451 for (i = 0; i < numbufs; i++) { 452 if (n < 0) 453 break; 454 dbp = dbpp[i]; 455 size = dbp->db_size - delta; 456 /* 457 * XXX -- this is correct, but may be suboptimal. 458 * If the pages are all clean, we don't need to 459 * go through mappedread(). Maybe the VMODSORT 460 * stuff can help us here. 461 */ 462 if (vn_has_cached_data(vp)) { 463 error = mappedread(vp, (caddr_t)dbp->db_data + 464 delta, (n < size ? n : size), uio); 465 } else { 466 error = uiomove((caddr_t)dbp->db_data + delta, 467 (n < size ? n : size), UIO_READ, uio); 468 } 469 if (error) { 470 dmu_buf_rele_array(dbpp, numbufs); 471 goto out; 472 } 473 n -= dbp->db_size; 474 if (delta) { 475 n += delta; 476 delta = 0; 477 } 478 } 479 dmu_buf_rele_array(dbpp, numbufs); 480 } 481 out: 482 rw_exit(&zp->z_grow_lock); 483 484 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 485 ZFS_EXIT(zfsvfs); 486 return (error); 487 } 488 489 /* 490 * Fault in the pages of the first n bytes specified by the uio structure. 491 * 1 byte in each page is touched and the uio struct is unmodified. 492 * Any error will exit this routine as this is only a best 493 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 494 */ 495 static void 496 zfs_prefault_write(ssize_t n, struct uio *uio) 497 { 498 struct iovec *iov; 499 ulong_t cnt, incr; 500 caddr_t p; 501 uint8_t tmp; 502 503 iov = uio->uio_iov; 504 505 while (n) { 506 cnt = MIN(iov->iov_len, n); 507 if (cnt == 0) { 508 /* empty iov entry */ 509 iov++; 510 continue; 511 } 512 n -= cnt; 513 /* 514 * touch each page in this segment. 515 */ 516 p = iov->iov_base; 517 while (cnt) { 518 switch (uio->uio_segflg) { 519 case UIO_USERSPACE: 520 case UIO_USERISPACE: 521 if (fuword8(p, &tmp)) 522 return; 523 break; 524 case UIO_SYSSPACE: 525 if (kcopy(p, &tmp, 1)) 526 return; 527 break; 528 } 529 incr = MIN(cnt, PAGESIZE); 530 p += incr; 531 cnt -= incr; 532 } 533 /* 534 * touch the last byte in case it straddles a page. 535 */ 536 p--; 537 switch (uio->uio_segflg) { 538 case UIO_USERSPACE: 539 case UIO_USERISPACE: 540 if (fuword8(p, &tmp)) 541 return; 542 break; 543 case UIO_SYSSPACE: 544 if (kcopy(p, &tmp, 1)) 545 return; 546 break; 547 } 548 iov++; 549 } 550 } 551 552 /* 553 * Write the bytes to a file. 554 * 555 * IN: vp - vnode of file to be written to. 556 * uio - structure supplying write location, range info, 557 * and data buffer. 558 * ioflag - FAPPEND flag set if in append mode. 559 * cr - credentials of caller. 560 * 561 * OUT: uio - updated offset and range. 562 * 563 * RETURN: 0 if success 564 * error code if failure 565 * 566 * Timestamps: 567 * vp - ctime|mtime updated if byte count > 0 568 * 569 * Note: zfs_write() holds z_append_lock across calls to txg_wait_open(). 570 * It has to because of the semantics of FAPPEND. The implication is that 571 * we must never grab z_append_lock while in an assigned tx. 572 */ 573 /* ARGSUSED */ 574 static int 575 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 576 { 577 znode_t *zp = VTOZ(vp); 578 rlim64_t limit = uio->uio_llimit; 579 ssize_t start_resid = uio->uio_resid; 580 ssize_t tx_bytes; 581 uint64_t end_size; 582 dmu_tx_t *tx; 583 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 584 zilog_t *zilog = zfsvfs->z_log; 585 uint64_t seq = 0; 586 offset_t woff; 587 ssize_t n, nbytes; 588 int max_blksz = zfsvfs->z_max_blksz; 589 int need_append_lock, error; 590 krw_t grow_rw = RW_READER; 591 592 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 593 limit = MAXOFFSET_T; 594 595 n = start_resid; 596 597 /* 598 * Fasttrack empty write 599 */ 600 if (n == 0) 601 return (0); 602 603 ZFS_ENTER(zfsvfs); 604 605 /* 606 * Pre-fault the pages to ensure slow (eg NFS) pages don't hold up txg 607 */ 608 zfs_prefault_write(MIN(start_resid, SPA_MAXBLOCKSIZE), uio); 609 610 /* 611 * If in append mode, set the io offset pointer to eof. 612 */ 613 need_append_lock = ioflag & FAPPEND; 614 if (need_append_lock) { 615 rw_enter(&zp->z_append_lock, RW_WRITER); 616 woff = uio->uio_loffset = zp->z_phys->zp_size; 617 } else { 618 woff = uio->uio_loffset; 619 /* 620 * Validate file offset 621 */ 622 if (woff < 0) { 623 ZFS_EXIT(zfsvfs); 624 return (EINVAL); 625 } 626 627 /* 628 * If this write could change the file length, 629 * we need to synchronize with "appenders". 630 */ 631 if (woff < limit - n && woff + n > zp->z_phys->zp_size) { 632 need_append_lock = TRUE; 633 rw_enter(&zp->z_append_lock, RW_READER); 634 } 635 } 636 637 if (woff >= limit) { 638 error = EFBIG; 639 goto no_tx_done; 640 } 641 642 if ((woff + n) > limit || woff > (limit - n)) 643 n = limit - woff; 644 645 /* 646 * Check for region locks 647 */ 648 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 649 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) 650 goto no_tx_done; 651 top: 652 /* 653 * Make sure nobody restructures the file (changes block size) 654 * in the middle of the write. 655 */ 656 rw_enter(&zp->z_grow_lock, grow_rw); 657 658 end_size = MAX(zp->z_phys->zp_size, woff + n); 659 tx = dmu_tx_create(zfsvfs->z_os); 660 dmu_tx_hold_bonus(tx, zp->z_id); 661 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 662 error = dmu_tx_assign(tx, zfsvfs->z_assign); 663 if (error) { 664 dmu_tx_abort(tx); 665 rw_exit(&zp->z_grow_lock); 666 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 667 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 668 goto top; 669 } 670 goto no_tx_done; 671 } 672 673 if (end_size > zp->z_blksz && 674 (!ISP2(zp->z_blksz) || zp->z_blksz < max_blksz)) { 675 uint64_t new_blksz; 676 /* 677 * This write will increase the file size beyond 678 * the current block size so increase the block size. 679 */ 680 if (grow_rw == RW_READER && !rw_tryupgrade(&zp->z_grow_lock)) { 681 dmu_tx_commit(tx); 682 rw_exit(&zp->z_grow_lock); 683 grow_rw = RW_WRITER; 684 goto top; 685 } 686 if (zp->z_blksz > max_blksz) { 687 ASSERT(!ISP2(zp->z_blksz)); 688 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 689 } else { 690 new_blksz = MIN(end_size, max_blksz); 691 } 692 error = zfs_grow_blocksize(zp, new_blksz, tx); 693 if (error) { 694 tx_bytes = 0; 695 goto tx_done; 696 } 697 } 698 699 if (grow_rw == RW_WRITER) { 700 rw_downgrade(&zp->z_grow_lock); 701 grow_rw = RW_READER; 702 } 703 704 /* 705 * The file data does not fit in the znode "cache", so we 706 * will be writing to the file block data buffers. 707 * Each buffer will be written in a separate transaction; 708 * this keeps the intent log records small and allows us 709 * to do more fine-grained space accounting. 710 */ 711 while (n > 0) { 712 /* 713 * XXX - should we really limit each write to z_max_blksz? 714 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 715 */ 716 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 717 rw_enter(&zp->z_map_lock, RW_READER); 718 719 tx_bytes = uio->uio_resid; 720 if (vn_has_cached_data(vp)) { 721 rw_exit(&zp->z_map_lock); 722 error = mappedwrite(vp, woff, nbytes, uio, tx); 723 } else { 724 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 725 woff, nbytes, uio, tx); 726 rw_exit(&zp->z_map_lock); 727 } 728 tx_bytes -= uio->uio_resid; 729 730 if (error) { 731 /* XXX - do we need to "clean up" the dmu buffer? */ 732 break; 733 } 734 735 ASSERT(tx_bytes == nbytes); 736 737 n -= nbytes; 738 if (n <= 0) 739 break; 740 741 /* 742 * We have more work ahead of us, so wrap up this transaction 743 * and start another. Exact same logic as tx_done below. 744 */ 745 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 746 dmu_buf_will_dirty(zp->z_dbuf, tx); 747 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 748 uio->uio_loffset); 749 } 750 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 751 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 752 ioflag, uio); 753 dmu_tx_commit(tx); 754 755 /* Pre-fault the next set of pages */ 756 zfs_prefault_write(MIN(n, SPA_MAXBLOCKSIZE), uio); 757 758 /* 759 * Start another transaction. 760 */ 761 woff = uio->uio_loffset; 762 tx = dmu_tx_create(zfsvfs->z_os); 763 dmu_tx_hold_bonus(tx, zp->z_id); 764 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 765 error = dmu_tx_assign(tx, zfsvfs->z_assign); 766 if (error) { 767 dmu_tx_abort(tx); 768 rw_exit(&zp->z_grow_lock); 769 if (error == ERESTART && 770 zfsvfs->z_assign == TXG_NOWAIT) { 771 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 772 goto top; 773 } 774 goto no_tx_done; 775 } 776 } 777 778 tx_done: 779 780 if (tx_bytes != 0) { 781 /* 782 * Update the file size if it has changed; account 783 * for possible concurrent updates. 784 */ 785 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 786 dmu_buf_will_dirty(zp->z_dbuf, tx); 787 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 788 uio->uio_loffset); 789 } 790 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 791 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 792 ioflag, uio); 793 } 794 dmu_tx_commit(tx); 795 796 rw_exit(&zp->z_grow_lock); 797 798 no_tx_done: 799 800 if (need_append_lock) 801 rw_exit(&zp->z_append_lock); 802 803 /* 804 * If we're in replay mode, or we made no progress, return error. 805 * Otherwise, it's at least a partial write, so it's successful. 806 */ 807 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 808 ZFS_EXIT(zfsvfs); 809 return (error); 810 } 811 812 zil_commit(zilog, seq, ioflag & (FSYNC | FDSYNC)); 813 814 ZFS_EXIT(zfsvfs); 815 return (0); 816 } 817 818 /* 819 * Get data to generate a TX_WRITE intent log record. 820 */ 821 int 822 zfs_get_data(void *arg, lr_write_t *lr) 823 { 824 zfsvfs_t *zfsvfs = arg; 825 objset_t *os = zfsvfs->z_os; 826 znode_t *zp; 827 uint64_t off = lr->lr_offset; 828 int dlen = lr->lr_length; /* length of user data */ 829 int reclen = lr->lr_common.lrc_reclen; 830 int error = 0; 831 832 ASSERT(dlen != 0); 833 834 /* 835 * Nothing to do if the file has been removed or truncated. 836 */ 837 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 838 return (ENOENT); 839 if (off >= zp->z_phys->zp_size || zp->z_reap) { 840 VN_RELE(ZTOV(zp)); 841 return (ENOENT); 842 } 843 844 /* 845 * Write records come in two flavors: immediate and indirect. 846 * For small writes it's cheaper to store the data with the 847 * log record (immediate); for large writes it's cheaper to 848 * sync the data and get a pointer to it (indirect) so that 849 * we don't have to write the data twice. 850 */ 851 if (sizeof (lr_write_t) + dlen <= reclen) { /* immediate write */ 852 rw_enter(&zp->z_grow_lock, RW_READER); 853 dmu_buf_t *db = dmu_buf_hold(os, lr->lr_foid, off); 854 dmu_buf_read(db); 855 bcopy((char *)db->db_data + off - db->db_offset, lr + 1, dlen); 856 dmu_buf_rele(db); 857 rw_exit(&zp->z_grow_lock); 858 } else { 859 /* 860 * We have to grab z_grow_lock as RW_WRITER because 861 * dmu_sync() can't handle concurrent dbuf_dirty() (6313856). 862 * z_grow_lock will be replaced with a range lock soon, 863 * which will eliminate the concurrency hit, but dmu_sync() 864 * really needs more thought. It shouldn't have to rely on 865 * the caller to provide MT safety. 866 */ 867 rw_enter(&zp->z_grow_lock, RW_WRITER); 868 txg_suspend(dmu_objset_pool(os)); 869 error = dmu_sync(os, lr->lr_foid, off, &lr->lr_blkoff, 870 &lr->lr_blkptr, lr->lr_common.lrc_txg); 871 txg_resume(dmu_objset_pool(os)); 872 rw_exit(&zp->z_grow_lock); 873 } 874 VN_RELE(ZTOV(zp)); 875 return (error); 876 } 877 878 /*ARGSUSED*/ 879 static int 880 zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr) 881 { 882 znode_t *zp = VTOZ(vp); 883 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 884 int error; 885 886 ZFS_ENTER(zfsvfs); 887 error = zfs_zaccess_rwx(zp, mode, cr); 888 ZFS_EXIT(zfsvfs); 889 return (error); 890 } 891 892 /* 893 * Lookup an entry in a directory, or an extended attribute directory. 894 * If it exists, return a held vnode reference for it. 895 * 896 * IN: dvp - vnode of directory to search. 897 * nm - name of entry to lookup. 898 * pnp - full pathname to lookup [UNUSED]. 899 * flags - LOOKUP_XATTR set if looking for an attribute. 900 * rdir - root directory vnode [UNUSED]. 901 * cr - credentials of caller. 902 * 903 * OUT: vpp - vnode of located entry, NULL if not found. 904 * 905 * RETURN: 0 if success 906 * error code if failure 907 * 908 * Timestamps: 909 * NA 910 */ 911 /* ARGSUSED */ 912 static int 913 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 914 int flags, vnode_t *rdir, cred_t *cr) 915 { 916 917 znode_t *zdp = VTOZ(dvp); 918 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 919 int error; 920 921 ZFS_ENTER(zfsvfs); 922 923 *vpp = NULL; 924 925 if (flags & LOOKUP_XATTR) { 926 /* 927 * We don't allow recursive attributes.. 928 * Maybe someday we will. 929 */ 930 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 931 ZFS_EXIT(zfsvfs); 932 return (EINVAL); 933 } 934 935 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr)) { 936 ZFS_EXIT(zfsvfs); 937 return (error); 938 } 939 940 /* 941 * Do we have permission to get into attribute directory? 942 */ 943 944 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) { 945 VN_RELE(*vpp); 946 } 947 948 ZFS_EXIT(zfsvfs); 949 return (error); 950 } 951 952 /* 953 * Check accessibility of directory. 954 */ 955 956 if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) { 957 ZFS_EXIT(zfsvfs); 958 return (error); 959 } 960 961 if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) { 962 963 /* 964 * Convert device special files 965 */ 966 if (IS_DEVVP(*vpp)) { 967 vnode_t *svp; 968 969 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 970 VN_RELE(*vpp); 971 if (svp == NULL) 972 error = ENOSYS; 973 else 974 *vpp = svp; 975 } 976 } 977 978 ZFS_EXIT(zfsvfs); 979 return (error); 980 } 981 982 /* 983 * Attempt to create a new entry in a directory. If the entry 984 * already exists, truncate the file if permissible, else return 985 * an error. Return the vp of the created or trunc'd file. 986 * 987 * IN: dvp - vnode of directory to put new file entry in. 988 * name - name of new file entry. 989 * vap - attributes of new file. 990 * excl - flag indicating exclusive or non-exclusive mode. 991 * mode - mode to open file with. 992 * cr - credentials of caller. 993 * flag - large file flag [UNUSED]. 994 * 995 * OUT: vpp - vnode of created or trunc'd entry. 996 * 997 * RETURN: 0 if success 998 * error code if failure 999 * 1000 * Timestamps: 1001 * dvp - ctime|mtime updated if new entry created 1002 * vp - ctime|mtime always, atime if new 1003 */ 1004 /* ARGSUSED */ 1005 static int 1006 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1007 int mode, vnode_t **vpp, cred_t *cr, int flag) 1008 { 1009 znode_t *zp, *dzp = VTOZ(dvp); 1010 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1011 zilog_t *zilog = zfsvfs->z_log; 1012 uint64_t seq = 0; 1013 objset_t *os = zfsvfs->z_os; 1014 zfs_dirlock_t *dl; 1015 dmu_tx_t *tx; 1016 int error; 1017 uint64_t zoid; 1018 1019 ZFS_ENTER(zfsvfs); 1020 1021 top: 1022 *vpp = NULL; 1023 1024 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1025 vap->va_mode &= ~VSVTX; 1026 1027 if (*name == '\0') { 1028 /* 1029 * Null component name refers to the directory itself. 1030 */ 1031 VN_HOLD(dvp); 1032 zp = dzp; 1033 dl = NULL; 1034 error = 0; 1035 } else { 1036 /* possible VN_HOLD(zp) */ 1037 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) { 1038 if (strcmp(name, "..") == 0) 1039 error = EISDIR; 1040 ZFS_EXIT(zfsvfs); 1041 return (error); 1042 } 1043 } 1044 1045 zoid = zp ? zp->z_id : -1ULL; 1046 1047 if (zp == NULL) { 1048 /* 1049 * Create a new file object and update the directory 1050 * to reference it. 1051 */ 1052 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 1053 goto out; 1054 } 1055 1056 /* 1057 * We only support the creation of regular files in 1058 * extended attribute directories. 1059 */ 1060 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1061 (vap->va_type != VREG)) { 1062 error = EINVAL; 1063 goto out; 1064 } 1065 1066 tx = dmu_tx_create(os); 1067 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1068 dmu_tx_hold_bonus(tx, dzp->z_id); 1069 dmu_tx_hold_zap(tx, dzp->z_id, 1); 1070 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1071 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1072 0, SPA_MAXBLOCKSIZE); 1073 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1074 if (error) { 1075 dmu_tx_abort(tx); 1076 zfs_dirent_unlock(dl); 1077 if (error == ERESTART && 1078 zfsvfs->z_assign == TXG_NOWAIT) { 1079 txg_wait_open(dmu_objset_pool(os), 0); 1080 goto top; 1081 } 1082 ZFS_EXIT(zfsvfs); 1083 return (error); 1084 } 1085 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1086 ASSERT(zp->z_id == zoid); 1087 (void) zfs_link_create(dl, zp, tx, ZNEW); 1088 seq = zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name); 1089 dmu_tx_commit(tx); 1090 } else { 1091 /* 1092 * A directory entry already exists for this name. 1093 */ 1094 /* 1095 * Can't truncate an existing file if in exclusive mode. 1096 */ 1097 if (excl == EXCL) { 1098 error = EEXIST; 1099 goto out; 1100 } 1101 /* 1102 * Can't open a directory for writing. 1103 */ 1104 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1105 error = EISDIR; 1106 goto out; 1107 } 1108 /* 1109 * Verify requested access to file. 1110 */ 1111 if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) { 1112 goto out; 1113 } 1114 /* 1115 * Truncate regular files if requested. 1116 */ 1117 1118 /* 1119 * Need to update dzp->z_seq? 1120 */ 1121 1122 mutex_enter(&dzp->z_lock); 1123 dzp->z_seq++; 1124 mutex_exit(&dzp->z_lock); 1125 1126 if ((ZTOV(zp)->v_type == VREG) && (zp->z_phys->zp_size != 0) && 1127 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1128 /* 1129 * Truncate the file. 1130 */ 1131 tx = dmu_tx_create(os); 1132 dmu_tx_hold_bonus(tx, zoid); 1133 dmu_tx_hold_free(tx, zoid, 0, DMU_OBJECT_END); 1134 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1135 if (error) { 1136 dmu_tx_abort(tx); 1137 if (dl) 1138 zfs_dirent_unlock(dl); 1139 VN_RELE(ZTOV(zp)); 1140 if (error == ERESTART && 1141 zfsvfs->z_assign == TXG_NOWAIT) { 1142 txg_wait_open(dmu_objset_pool(os), 0); 1143 goto top; 1144 } 1145 ZFS_EXIT(zfsvfs); 1146 return (error); 1147 } 1148 /* 1149 * Grab the grow_lock to serialize this change with 1150 * respect to other file manipulations. 1151 */ 1152 rw_enter(&zp->z_grow_lock, RW_WRITER); 1153 error = zfs_freesp(zp, 0, 0, mode, tx, cr); 1154 if (error == 0) { 1155 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1156 seq = zfs_log_truncate(zilog, tx, 1157 TX_TRUNCATE, zp, 0, 0); 1158 } 1159 rw_exit(&zp->z_grow_lock); 1160 dmu_tx_commit(tx); 1161 } 1162 } 1163 out: 1164 1165 if (dl) 1166 zfs_dirent_unlock(dl); 1167 1168 if (error) { 1169 if (zp) 1170 VN_RELE(ZTOV(zp)); 1171 } else { 1172 *vpp = ZTOV(zp); 1173 /* 1174 * If vnode is for a device return a specfs vnode instead. 1175 */ 1176 if (IS_DEVVP(*vpp)) { 1177 struct vnode *svp; 1178 1179 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1180 VN_RELE(*vpp); 1181 if (svp == NULL) { 1182 error = ENOSYS; 1183 } 1184 *vpp = svp; 1185 } 1186 } 1187 1188 zil_commit(zilog, seq, 0); 1189 1190 ZFS_EXIT(zfsvfs); 1191 return (error); 1192 } 1193 1194 /* 1195 * Remove an entry from a directory. 1196 * 1197 * IN: dvp - vnode of directory to remove entry from. 1198 * name - name of entry to remove. 1199 * cr - credentials of caller. 1200 * 1201 * RETURN: 0 if success 1202 * error code if failure 1203 * 1204 * Timestamps: 1205 * dvp - ctime|mtime 1206 * vp - ctime (if nlink > 0) 1207 */ 1208 static int 1209 zfs_remove(vnode_t *dvp, char *name, cred_t *cr) 1210 { 1211 znode_t *zp, *dzp = VTOZ(dvp); 1212 znode_t *xzp = NULL; 1213 vnode_t *vp; 1214 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1215 zilog_t *zilog = zfsvfs->z_log; 1216 uint64_t seq = 0; 1217 uint64_t acl_obj, xattr_obj; 1218 zfs_dirlock_t *dl; 1219 dmu_tx_t *tx; 1220 int may_delete_now, delete_now = FALSE; 1221 int reaped; 1222 int error; 1223 1224 ZFS_ENTER(zfsvfs); 1225 1226 top: 1227 /* 1228 * Attempt to lock directory; fail if entry doesn't exist. 1229 */ 1230 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1231 ZFS_EXIT(zfsvfs); 1232 return (error); 1233 } 1234 1235 vp = ZTOV(zp); 1236 1237 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1238 goto out; 1239 } 1240 1241 /* 1242 * Check the restrictions that apply on sticky directories. 1243 */ 1244 if (error = zfs_sticky_remove_access(dzp, zp, cr)) 1245 goto out; 1246 1247 /* 1248 * Need to use rmdir for removing directories. 1249 */ 1250 if (vp->v_type == VDIR) { 1251 error = EPERM; 1252 goto out; 1253 } 1254 1255 vnevent_remove(vp); 1256 1257 mutex_enter(&vp->v_lock); 1258 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1259 mutex_exit(&vp->v_lock); 1260 1261 /* 1262 * We may delete the znode now, or we may put it on the delete queue; 1263 * it depends on whether we're the last link, and on whether there are 1264 * other holds on the vnode. So we dmu_tx_hold() the right things to 1265 * allow for either case. 1266 */ 1267 tx = dmu_tx_create(zfsvfs->z_os); 1268 dmu_tx_hold_zap(tx, dzp->z_id, -1); 1269 dmu_tx_hold_bonus(tx, zp->z_id); 1270 if (may_delete_now) 1271 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1272 1273 /* are there any extended attributes? */ 1274 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1275 /* 1276 * XXX - There is a possibility that the delete 1277 * of the parent file could succeed, but then we get 1278 * an ENOSPC when we try to delete the xattrs... 1279 * so we would need to re-try the deletes periodically 1280 */ 1281 /* XXX - do we need this if we are deleting? */ 1282 dmu_tx_hold_bonus(tx, xattr_obj); 1283 } 1284 1285 /* are there any additional acls */ 1286 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1287 may_delete_now) 1288 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1289 1290 /* charge as an update -- would be nice not to charge at all */ 1291 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, -1); 1292 1293 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1294 if (error) { 1295 dmu_tx_abort(tx); 1296 zfs_dirent_unlock(dl); 1297 VN_RELE(vp); 1298 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1299 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1300 goto top; 1301 } 1302 ZFS_EXIT(zfsvfs); 1303 return (error); 1304 } 1305 1306 /* 1307 * Remove the directory entry. 1308 */ 1309 error = zfs_link_destroy(dl, zp, tx, 0, &reaped); 1310 1311 if (error) { 1312 dmu_tx_commit(tx); 1313 goto out; 1314 } 1315 1316 if (reaped) { 1317 mutex_enter(&vp->v_lock); 1318 delete_now = may_delete_now && 1319 vp->v_count == 1 && !vn_has_cached_data(vp) && 1320 zp->z_phys->zp_xattr == xattr_obj && 1321 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1322 mutex_exit(&vp->v_lock); 1323 } 1324 1325 if (delete_now) { 1326 if (zp->z_phys->zp_xattr) { 1327 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1328 ASSERT3U(error, ==, 0); 1329 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1330 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1331 mutex_enter(&xzp->z_lock); 1332 xzp->z_reap = 1; 1333 xzp->z_phys->zp_links = 0; 1334 mutex_exit(&xzp->z_lock); 1335 zfs_dq_add(xzp, tx); 1336 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1337 } 1338 mutex_enter(&zp->z_lock); 1339 mutex_enter(&vp->v_lock); 1340 vp->v_count--; 1341 ASSERT3U(vp->v_count, ==, 0); 1342 mutex_exit(&vp->v_lock); 1343 zp->z_active = 0; 1344 mutex_exit(&zp->z_lock); 1345 zfs_znode_delete(zp, tx); 1346 VFS_RELE(zfsvfs->z_vfs); 1347 } else if (reaped) { 1348 zfs_dq_add(zp, tx); 1349 } 1350 1351 seq = zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name); 1352 1353 dmu_tx_commit(tx); 1354 out: 1355 zfs_dirent_unlock(dl); 1356 1357 if (!delete_now) { 1358 VN_RELE(vp); 1359 } else if (xzp) { 1360 /* this rele delayed to prevent nesting transactions */ 1361 VN_RELE(ZTOV(xzp)); 1362 } 1363 1364 zil_commit(zilog, seq, 0); 1365 1366 ZFS_EXIT(zfsvfs); 1367 return (error); 1368 } 1369 1370 /* 1371 * Create a new directory and insert it into dvp using the name 1372 * provided. Return a pointer to the inserted directory. 1373 * 1374 * IN: dvp - vnode of directory to add subdir to. 1375 * dirname - name of new directory. 1376 * vap - attributes of new directory. 1377 * cr - credentials of caller. 1378 * 1379 * OUT: vpp - vnode of created directory. 1380 * 1381 * RETURN: 0 if success 1382 * error code if failure 1383 * 1384 * Timestamps: 1385 * dvp - ctime|mtime updated 1386 * vp - ctime|mtime|atime updated 1387 */ 1388 static int 1389 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr) 1390 { 1391 znode_t *zp, *dzp = VTOZ(dvp); 1392 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1393 zilog_t *zilog = zfsvfs->z_log; 1394 uint64_t seq = 0; 1395 zfs_dirlock_t *dl; 1396 uint64_t zoid = 0; 1397 dmu_tx_t *tx; 1398 int error; 1399 1400 ASSERT(vap->va_type == VDIR); 1401 1402 ZFS_ENTER(zfsvfs); 1403 1404 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1405 ZFS_EXIT(zfsvfs); 1406 return (EINVAL); 1407 } 1408 top: 1409 *vpp = NULL; 1410 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) { 1411 ZFS_EXIT(zfsvfs); 1412 return (error); 1413 } 1414 1415 /* 1416 * First make sure the new directory doesn't exist. 1417 */ 1418 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) { 1419 ZFS_EXIT(zfsvfs); 1420 return (error); 1421 } 1422 1423 /* 1424 * Add a new entry to the directory. 1425 */ 1426 tx = dmu_tx_create(zfsvfs->z_os); 1427 dmu_tx_hold_zap(tx, dzp->z_id, 1); 1428 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 0); 1429 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1430 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1431 0, SPA_MAXBLOCKSIZE); 1432 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1433 if (error) { 1434 dmu_tx_abort(tx); 1435 zfs_dirent_unlock(dl); 1436 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1437 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1438 goto top; 1439 } 1440 ZFS_EXIT(zfsvfs); 1441 return (error); 1442 } 1443 1444 /* 1445 * Create new node. 1446 */ 1447 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1448 1449 /* 1450 * Now put new name in parent dir. 1451 */ 1452 (void) zfs_link_create(dl, zp, tx, ZNEW); 1453 1454 *vpp = ZTOV(zp); 1455 1456 seq = zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname); 1457 dmu_tx_commit(tx); 1458 1459 zfs_dirent_unlock(dl); 1460 1461 zil_commit(zilog, seq, 0); 1462 1463 ZFS_EXIT(zfsvfs); 1464 return (0); 1465 } 1466 1467 /* 1468 * Remove a directory subdir entry. If the current working 1469 * directory is the same as the subdir to be removed, the 1470 * remove will fail. 1471 * 1472 * IN: dvp - vnode of directory to remove from. 1473 * name - name of directory to be removed. 1474 * cwd - vnode of current working directory. 1475 * cr - credentials of caller. 1476 * 1477 * RETURN: 0 if success 1478 * error code if failure 1479 * 1480 * Timestamps: 1481 * dvp - ctime|mtime updated 1482 */ 1483 static int 1484 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 1485 { 1486 znode_t *dzp = VTOZ(dvp); 1487 znode_t *zp; 1488 vnode_t *vp; 1489 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1490 zilog_t *zilog = zfsvfs->z_log; 1491 uint64_t seq = 0; 1492 zfs_dirlock_t *dl; 1493 dmu_tx_t *tx; 1494 int error; 1495 1496 ZFS_ENTER(zfsvfs); 1497 1498 top: 1499 zp = NULL; 1500 1501 /* 1502 * Attempt to lock directory; fail if entry doesn't exist. 1503 */ 1504 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1505 ZFS_EXIT(zfsvfs); 1506 return (error); 1507 } 1508 1509 vp = ZTOV(zp); 1510 1511 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1512 goto out; 1513 } 1514 1515 /* 1516 * Check the restrictions that apply on sticky directories. 1517 */ 1518 if (error = zfs_sticky_remove_access(dzp, zp, cr)) 1519 goto out; 1520 1521 if (vp->v_type != VDIR) { 1522 error = ENOTDIR; 1523 goto out; 1524 } 1525 1526 if (vp == cwd) { 1527 error = EINVAL; 1528 goto out; 1529 } 1530 1531 vnevent_rmdir(vp); 1532 1533 /* 1534 * Grab a lock on the parent pointer make sure we play well 1535 * with the treewalk and directory rename code. 1536 */ 1537 rw_enter(&zp->z_parent_lock, RW_WRITER); 1538 1539 tx = dmu_tx_create(zfsvfs->z_os); 1540 dmu_tx_hold_zap(tx, dzp->z_id, 1); 1541 dmu_tx_hold_bonus(tx, zp->z_id); 1542 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, 1); 1543 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1544 if (error) { 1545 dmu_tx_abort(tx); 1546 rw_exit(&zp->z_parent_lock); 1547 zfs_dirent_unlock(dl); 1548 VN_RELE(vp); 1549 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1550 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1551 goto top; 1552 } 1553 ZFS_EXIT(zfsvfs); 1554 return (error); 1555 } 1556 1557 error = zfs_link_destroy(dl, zp, tx, 0, NULL); 1558 1559 if (error == 0) 1560 seq = zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name); 1561 1562 dmu_tx_commit(tx); 1563 1564 rw_exit(&zp->z_parent_lock); 1565 out: 1566 zfs_dirent_unlock(dl); 1567 1568 VN_RELE(vp); 1569 1570 zil_commit(zilog, seq, 0); 1571 1572 ZFS_EXIT(zfsvfs); 1573 return (error); 1574 } 1575 1576 /* 1577 * Read as many directory entries as will fit into the provided 1578 * buffer from the given directory cursor position (specified in 1579 * the uio structure. 1580 * 1581 * IN: vp - vnode of directory to read. 1582 * uio - structure supplying read location, range info, 1583 * and return buffer. 1584 * cr - credentials of caller. 1585 * 1586 * OUT: uio - updated offset and range, buffer filled. 1587 * eofp - set to true if end-of-file detected. 1588 * 1589 * RETURN: 0 if success 1590 * error code if failure 1591 * 1592 * Timestamps: 1593 * vp - atime updated 1594 * 1595 * Note that the low 4 bits of the cookie returned by zap is always zero. 1596 * This allows us to use the low range for "special" directory entries: 1597 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1598 * we use the offset 2 for the '.zfs' directory. 1599 */ 1600 /* ARGSUSED */ 1601 static int 1602 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp) 1603 { 1604 znode_t *zp = VTOZ(vp); 1605 iovec_t *iovp; 1606 dirent64_t *odp; 1607 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1608 objset_t *os; 1609 caddr_t outbuf; 1610 size_t bufsize; 1611 zap_cursor_t zc; 1612 zap_attribute_t zap; 1613 uint_t bytes_wanted; 1614 ushort_t this_reclen; 1615 uint64_t offset; /* must be unsigned; checks for < 1 */ 1616 off64_t *next; 1617 int local_eof; 1618 int outcount; 1619 int error; 1620 uint8_t prefetch; 1621 1622 ZFS_ENTER(zfsvfs); 1623 1624 /* 1625 * If we are not given an eof variable, 1626 * use a local one. 1627 */ 1628 if (eofp == NULL) 1629 eofp = &local_eof; 1630 1631 /* 1632 * Check for valid iov_len. 1633 */ 1634 if (uio->uio_iov->iov_len <= 0) { 1635 ZFS_EXIT(zfsvfs); 1636 return (EINVAL); 1637 } 1638 1639 /* 1640 * Quit if directory has been removed (posix) 1641 */ 1642 if ((*eofp = zp->z_reap) != 0) { 1643 ZFS_EXIT(zfsvfs); 1644 return (0); 1645 } 1646 1647 error = 0; 1648 os = zfsvfs->z_os; 1649 offset = uio->uio_loffset; 1650 prefetch = zp->z_zn_prefetch; 1651 1652 /* 1653 * Initialize the iterator cursor. 1654 */ 1655 if (offset <= 3) { 1656 /* 1657 * Start iteration from the beginning of the directory. 1658 */ 1659 zap_cursor_init(&zc, os, zp->z_id); 1660 } else { 1661 /* 1662 * The offset is a serialized cursor. 1663 */ 1664 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1665 } 1666 1667 /* 1668 * Get space to change directory entries into fs independent format. 1669 */ 1670 iovp = uio->uio_iov; 1671 bytes_wanted = iovp->iov_len; 1672 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1673 bufsize = bytes_wanted; 1674 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1675 odp = (struct dirent64 *)outbuf; 1676 } else { 1677 bufsize = bytes_wanted; 1678 odp = (struct dirent64 *)iovp->iov_base; 1679 } 1680 1681 /* 1682 * Transform to file-system independent format 1683 */ 1684 outcount = 0; 1685 while (outcount < bytes_wanted) { 1686 /* 1687 * Special case `.', `..', and `.zfs'. 1688 */ 1689 if (offset == 0) { 1690 (void) strcpy(zap.za_name, "."); 1691 zap.za_first_integer = zp->z_id; 1692 this_reclen = DIRENT64_RECLEN(1); 1693 } else if (offset == 1) { 1694 (void) strcpy(zap.za_name, ".."); 1695 zap.za_first_integer = zp->z_phys->zp_parent; 1696 this_reclen = DIRENT64_RECLEN(2); 1697 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1698 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1699 zap.za_first_integer = ZFSCTL_INO_ROOT; 1700 this_reclen = 1701 DIRENT64_RECLEN(sizeof (ZFS_CTLDIR_NAME) - 1); 1702 } else { 1703 /* 1704 * Grab next entry. 1705 */ 1706 if (error = zap_cursor_retrieve(&zc, &zap)) { 1707 if ((*eofp = (error == ENOENT)) != 0) 1708 break; 1709 else 1710 goto update; 1711 } 1712 1713 if (zap.za_integer_length != 8 || 1714 zap.za_num_integers != 1) { 1715 cmn_err(CE_WARN, "zap_readdir: bad directory " 1716 "entry, obj = %lld, offset = %lld\n", 1717 (u_longlong_t)zp->z_id, 1718 (u_longlong_t)offset); 1719 error = ENXIO; 1720 goto update; 1721 } 1722 this_reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1723 } 1724 1725 /* 1726 * Will this entry fit in the buffer? 1727 */ 1728 if (outcount + this_reclen > bufsize) { 1729 /* 1730 * Did we manage to fit anything in the buffer? 1731 */ 1732 if (!outcount) { 1733 error = EINVAL; 1734 goto update; 1735 } 1736 break; 1737 } 1738 /* 1739 * Add this entry: 1740 */ 1741 odp->d_ino = (ino64_t)zap.za_first_integer; 1742 odp->d_reclen = (ushort_t)this_reclen; 1743 /* NOTE: d_off is the offset for the *next* entry */ 1744 next = &(odp->d_off); 1745 (void) strncpy(odp->d_name, zap.za_name, 1746 DIRENT64_NAMELEN(this_reclen)); 1747 outcount += this_reclen; 1748 odp = (dirent64_t *)((intptr_t)odp + this_reclen); 1749 1750 ASSERT(outcount <= bufsize); 1751 1752 /* Prefetch znode */ 1753 if (prefetch) 1754 dmu_prefetch(os, zap.za_first_integer, 0, 0); 1755 1756 /* 1757 * Move to the next entry, fill in the previous offset. 1758 */ 1759 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 1760 zap_cursor_advance(&zc); 1761 offset = zap_cursor_serialize(&zc); 1762 } else { 1763 offset += 1; 1764 } 1765 *next = offset; 1766 } 1767 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 1768 1769 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 1770 iovp->iov_base += outcount; 1771 iovp->iov_len -= outcount; 1772 uio->uio_resid -= outcount; 1773 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 1774 /* 1775 * Reset the pointer. 1776 */ 1777 offset = uio->uio_loffset; 1778 } 1779 1780 update: 1781 zap_cursor_fini(&zc); 1782 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 1783 kmem_free(outbuf, bufsize); 1784 1785 if (error == ENOENT) 1786 error = 0; 1787 1788 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 1789 1790 uio->uio_loffset = offset; 1791 ZFS_EXIT(zfsvfs); 1792 return (error); 1793 } 1794 1795 /* ARGSUSED */ 1796 static int 1797 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1798 { 1799 znode_t *zp = VTOZ(vp); 1800 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1801 1802 ZFS_ENTER(zfsvfs); 1803 zil_commit(zfsvfs->z_log, zp->z_last_itx, FSYNC); 1804 ZFS_EXIT(zfsvfs); 1805 return (0); 1806 } 1807 1808 /* 1809 * Get the requested file attributes and place them in the provided 1810 * vattr structure. 1811 * 1812 * IN: vp - vnode of file. 1813 * vap - va_mask identifies requested attributes. 1814 * flags - [UNUSED] 1815 * cr - credentials of caller. 1816 * 1817 * OUT: vap - attribute values. 1818 * 1819 * RETURN: 0 (always succeeds) 1820 */ 1821 /* ARGSUSED */ 1822 static int 1823 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 1824 { 1825 znode_t *zp = VTOZ(vp); 1826 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1827 znode_phys_t *pzp = zp->z_phys; 1828 int error; 1829 1830 ZFS_ENTER(zfsvfs); 1831 1832 /* 1833 * Return all attributes. It's cheaper to provide the answer 1834 * than to determine whether we were asked the question. 1835 */ 1836 mutex_enter(&zp->z_lock); 1837 1838 vap->va_type = vp->v_type; 1839 vap->va_mode = pzp->zp_mode & MODEMASK; 1840 vap->va_uid = zp->z_phys->zp_uid; 1841 vap->va_gid = zp->z_phys->zp_gid; 1842 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 1843 vap->va_nodeid = zp->z_id; 1844 vap->va_nlink = MIN(pzp->zp_links, UINT32_MAX); /* nlink_t limit! */ 1845 vap->va_size = pzp->zp_size; 1846 vap->va_rdev = pzp->zp_rdev; 1847 vap->va_seq = zp->z_seq; 1848 1849 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 1850 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 1851 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 1852 1853 /* 1854 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 1855 * Also, if we are the owner don't bother, since owner should 1856 * always be allowed to read basic attributes of file. 1857 */ 1858 if (!(zp->z_phys->zp_flags & ZFS_ACL_TRIVIAL) && 1859 (zp->z_phys->zp_uid != crgetuid(cr))) { 1860 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) { 1861 mutex_exit(&zp->z_lock); 1862 ZFS_EXIT(zfsvfs); 1863 return (error); 1864 } 1865 } 1866 1867 mutex_exit(&zp->z_lock); 1868 1869 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 1870 1871 if (zp->z_blksz == 0) { 1872 /* 1873 * Block size hasn't been set; suggest maximal I/O transfers. 1874 */ 1875 vap->va_blksize = zfsvfs->z_max_blksz; 1876 } 1877 1878 ZFS_EXIT(zfsvfs); 1879 return (0); 1880 } 1881 1882 /* 1883 * Set the file attributes to the values contained in the 1884 * vattr structure. 1885 * 1886 * IN: vp - vnode of file to be modified. 1887 * vap - new attribute values. 1888 * flags - ATTR_UTIME set if non-default time values provided. 1889 * cr - credentials of caller. 1890 * 1891 * RETURN: 0 if success 1892 * error code if failure 1893 * 1894 * Timestamps: 1895 * vp - ctime updated, mtime updated if size changed. 1896 */ 1897 /* ARGSUSED */ 1898 static int 1899 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1900 caller_context_t *ct) 1901 { 1902 struct znode *zp = VTOZ(vp); 1903 znode_phys_t *pzp = zp->z_phys; 1904 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1905 zilog_t *zilog = zfsvfs->z_log; 1906 uint64_t seq = 0; 1907 dmu_tx_t *tx; 1908 uint_t mask = vap->va_mask; 1909 uint_t mask_applied = 0; 1910 vattr_t oldva; 1911 int trim_mask = FALSE; 1912 int saved_mask; 1913 uint64_t new_mode; 1914 int have_grow_lock; 1915 int need_policy = FALSE; 1916 int err; 1917 1918 if (mask == 0) 1919 return (0); 1920 1921 if (mask & AT_NOSET) 1922 return (EINVAL); 1923 1924 if (mask & AT_SIZE && vp->v_type == VDIR) 1925 return (EISDIR); 1926 1927 ZFS_ENTER(zfsvfs); 1928 1929 top: 1930 have_grow_lock = FALSE; 1931 1932 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 1933 ZFS_EXIT(zfsvfs); 1934 return (EROFS); 1935 } 1936 1937 /* 1938 * First validate permissions 1939 */ 1940 1941 if (mask & AT_SIZE) { 1942 err = zfs_zaccess(zp, ACE_WRITE_DATA, cr); 1943 if (err) { 1944 ZFS_EXIT(zfsvfs); 1945 return (err); 1946 } 1947 } 1948 1949 if (mask & (AT_ATIME|AT_MTIME)) 1950 need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr); 1951 1952 if (mask & (AT_UID|AT_GID)) { 1953 int idmask = (mask & (AT_UID|AT_GID)); 1954 int take_owner; 1955 int take_group; 1956 1957 /* 1958 * NOTE: even if a new mode is being set, 1959 * we may clear S_ISUID/S_ISGID bits. 1960 */ 1961 1962 if (!(mask & AT_MODE)) 1963 vap->va_mode = pzp->zp_mode; 1964 1965 /* 1966 * Take ownership or chgrp to group we are a member of 1967 */ 1968 1969 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 1970 take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr); 1971 1972 /* 1973 * If both AT_UID and AT_GID are set then take_owner and 1974 * take_group must both be set in order to allow taking 1975 * ownership. 1976 * 1977 * Otherwise, send the check through secpolicy_vnode_setattr() 1978 * 1979 */ 1980 1981 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 1982 ((idmask == AT_UID) && take_owner) || 1983 ((idmask == AT_GID) && take_group)) { 1984 if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) { 1985 /* 1986 * Remove setuid/setgid for non-privileged users 1987 */ 1988 secpolicy_setid_clear(vap, cr); 1989 trim_mask = TRUE; 1990 saved_mask = vap->va_mask; 1991 } else { 1992 need_policy = TRUE; 1993 } 1994 } else { 1995 need_policy = TRUE; 1996 } 1997 } 1998 1999 if (mask & AT_MODE) 2000 need_policy = TRUE; 2001 2002 if (need_policy) { 2003 mutex_enter(&zp->z_lock); 2004 oldva.va_mode = pzp->zp_mode; 2005 oldva.va_uid = zp->z_phys->zp_uid; 2006 oldva.va_gid = zp->z_phys->zp_gid; 2007 mutex_exit(&zp->z_lock); 2008 2009 /* 2010 * If trim_mask is set then take ownership 2011 * has been granted. In that case remove 2012 * UID|GID from mask so that 2013 * secpolicy_vnode_setattr() doesn't revoke it. 2014 */ 2015 if (trim_mask) 2016 vap->va_mask &= ~(AT_UID|AT_GID); 2017 2018 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2019 (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp); 2020 if (err) { 2021 ZFS_EXIT(zfsvfs); 2022 return (err); 2023 } 2024 2025 if (trim_mask) 2026 vap->va_mask |= (saved_mask & (AT_UID|AT_GID)); 2027 } 2028 2029 /* 2030 * secpolicy_vnode_setattr, or take ownership may have 2031 * changed va_mask 2032 */ 2033 mask = vap->va_mask; 2034 2035 tx = dmu_tx_create(zfsvfs->z_os); 2036 dmu_tx_hold_bonus(tx, zp->z_id); 2037 2038 if (mask & AT_MODE) { 2039 2040 new_mode = (pzp->zp_mode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2041 2042 if (zp->z_phys->zp_acl.z_acl_extern_obj) 2043 dmu_tx_hold_write(tx, 2044 pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE); 2045 else 2046 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2047 0, ZFS_ACL_SIZE(MAX_ACL_SIZE)); 2048 } 2049 2050 if (mask & AT_SIZE) { 2051 uint64_t off = vap->va_size; 2052 /* 2053 * Grab the grow_lock to serialize this change with 2054 * respect to other file manipulations. 2055 */ 2056 rw_enter(&zp->z_grow_lock, RW_WRITER); 2057 have_grow_lock = TRUE; 2058 if (off < zp->z_phys->zp_size) 2059 dmu_tx_hold_free(tx, zp->z_id, off, DMU_OBJECT_END); 2060 else if (zp->z_phys->zp_size && 2061 zp->z_blksz < zfsvfs->z_max_blksz && off > zp->z_blksz) 2062 /* we will rewrite this block if we grow */ 2063 dmu_tx_hold_write(tx, zp->z_id, 0, zp->z_phys->zp_size); 2064 } 2065 2066 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2067 if (err) { 2068 dmu_tx_abort(tx); 2069 if (have_grow_lock) 2070 rw_exit(&zp->z_grow_lock); 2071 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2072 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2073 goto top; 2074 } 2075 ZFS_EXIT(zfsvfs); 2076 return (err); 2077 } 2078 2079 dmu_buf_will_dirty(zp->z_dbuf, tx); 2080 2081 /* 2082 * Set each attribute requested. 2083 * We group settings according to the locks they need to acquire. 2084 * 2085 * Note: you cannot set ctime directly, although it will be 2086 * updated as a side-effect of calling this function. 2087 */ 2088 if (mask & AT_SIZE) { 2089 /* 2090 * XXX - Note, we are not providing any open 2091 * mode flags here (like FNDELAY), so we may 2092 * block if there are locks present... this 2093 * should be addressed in openat(). 2094 */ 2095 err = zfs_freesp(zp, vap->va_size, 0, 0, tx, cr); 2096 if (err) { 2097 mutex_enter(&zp->z_lock); 2098 goto out; 2099 } 2100 mask_applied |= AT_SIZE; 2101 } 2102 2103 mask_applied = mask; /* no errors after this point */ 2104 2105 mutex_enter(&zp->z_lock); 2106 2107 if (mask & AT_MODE) { 2108 err = zfs_acl_chmod_setattr(zp, new_mode, tx); 2109 ASSERT3U(err, ==, 0); 2110 } 2111 2112 if (mask & AT_UID) 2113 zp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2114 2115 if (mask & AT_GID) 2116 zp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2117 2118 if (mask & AT_ATIME) 2119 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2120 2121 if (mask & AT_MTIME) 2122 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2123 2124 if (mask_applied & AT_SIZE) 2125 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2126 else if (mask_applied != 0) 2127 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2128 2129 out: 2130 if (mask_applied != 0) 2131 seq = zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, 2132 mask_applied); 2133 2134 mutex_exit(&zp->z_lock); 2135 2136 if (have_grow_lock) 2137 rw_exit(&zp->z_grow_lock); 2138 2139 dmu_tx_commit(tx); 2140 2141 zil_commit(zilog, seq, 0); 2142 2143 ZFS_EXIT(zfsvfs); 2144 return (err); 2145 } 2146 2147 /* 2148 * Search back through the directory tree, using the ".." entries. 2149 * Lock each directory in the chain to prevent concurrent renames. 2150 * Fail any attempt to move a directory into one of its own descendants. 2151 * XXX - z_parent_lock can overlap with map or grow locks 2152 */ 2153 typedef struct zfs_zlock { 2154 krwlock_t *zl_rwlock; /* lock we acquired */ 2155 znode_t *zl_znode; /* znode we held */ 2156 struct zfs_zlock *zl_next; /* next in list */ 2157 } zfs_zlock_t; 2158 2159 static int 2160 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2161 { 2162 zfs_zlock_t *zl; 2163 znode_t *zp = tdzp; 2164 uint64_t rootid = zp->z_zfsvfs->z_root; 2165 uint64_t *oidp = &zp->z_id; 2166 krwlock_t *rwlp = &szp->z_parent_lock; 2167 krw_t rw = RW_WRITER; 2168 2169 /* 2170 * First pass write-locks szp and compares to zp->z_id. 2171 * Later passes read-lock zp and compare to zp->z_parent. 2172 */ 2173 do { 2174 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2175 zl->zl_rwlock = rwlp; 2176 zl->zl_znode = NULL; 2177 zl->zl_next = *zlpp; 2178 *zlpp = zl; 2179 2180 rw_enter(rwlp, rw); 2181 2182 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2183 return (EINVAL); 2184 2185 if (*oidp == rootid) /* We've hit the top */ 2186 return (0); 2187 2188 if (rw == RW_READER) { /* i.e. not the first pass */ 2189 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2190 if (error) 2191 return (error); 2192 zl->zl_znode = zp; 2193 } 2194 oidp = &zp->z_phys->zp_parent; 2195 rwlp = &zp->z_parent_lock; 2196 rw = RW_READER; 2197 2198 } while (zp->z_id != sdzp->z_id); 2199 2200 return (0); 2201 } 2202 2203 /* 2204 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2205 */ 2206 static void 2207 zfs_rename_unlock(zfs_zlock_t **zlpp) 2208 { 2209 zfs_zlock_t *zl; 2210 2211 while ((zl = *zlpp) != NULL) { 2212 if (zl->zl_znode != NULL) 2213 VN_RELE(ZTOV(zl->zl_znode)); 2214 rw_exit(zl->zl_rwlock); 2215 *zlpp = zl->zl_next; 2216 kmem_free(zl, sizeof (*zl)); 2217 } 2218 } 2219 2220 /* 2221 * Move an entry from the provided source directory to the target 2222 * directory. Change the entry name as indicated. 2223 * 2224 * IN: sdvp - Source directory containing the "old entry". 2225 * snm - Old entry name. 2226 * tdvp - Target directory to contain the "new entry". 2227 * tnm - New entry name. 2228 * cr - credentials of caller. 2229 * 2230 * RETURN: 0 if success 2231 * error code if failure 2232 * 2233 * Timestamps: 2234 * sdvp,tdvp - ctime|mtime updated 2235 */ 2236 static int 2237 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr) 2238 { 2239 znode_t *tdzp, *szp, *tzp; 2240 znode_t *sdzp = VTOZ(sdvp); 2241 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2242 zilog_t *zilog = zfsvfs->z_log; 2243 uint64_t seq = 0; 2244 vnode_t *realvp; 2245 zfs_dirlock_t *sdl, *tdl; 2246 dmu_tx_t *tx; 2247 zfs_zlock_t *zl; 2248 int cmp, serr, terr, error; 2249 2250 ZFS_ENTER(zfsvfs); 2251 2252 /* 2253 * Make sure we have the real vp for the target directory. 2254 */ 2255 if (VOP_REALVP(tdvp, &realvp) == 0) 2256 tdvp = realvp; 2257 2258 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2259 ZFS_EXIT(zfsvfs); 2260 return (EXDEV); 2261 } 2262 2263 tdzp = VTOZ(tdvp); 2264 top: 2265 szp = NULL; 2266 tzp = NULL; 2267 zl = NULL; 2268 2269 /* 2270 * This is to prevent the creation of links into attribute space 2271 * by renaming a linked file into/outof an attribute directory. 2272 * See the comment in zfs_link() for why this is considered bad. 2273 */ 2274 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2275 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2276 ZFS_EXIT(zfsvfs); 2277 return (EINVAL); 2278 } 2279 2280 /* 2281 * Lock source and target directory entries. To prevent deadlock, 2282 * a lock ordering must be defined. We lock the directory with 2283 * the smallest object id first, or if it's a tie, the one with 2284 * the lexically first name. 2285 */ 2286 if (sdzp->z_id < tdzp->z_id) { 2287 cmp = -1; 2288 } else if (sdzp->z_id > tdzp->z_id) { 2289 cmp = 1; 2290 } else { 2291 cmp = strcmp(snm, tnm); 2292 if (cmp == 0) { 2293 /* 2294 * POSIX: "If the old argument and the new argument 2295 * both refer to links to the same existing file, 2296 * the rename() function shall return successfully 2297 * and perform no other action." 2298 */ 2299 ZFS_EXIT(zfsvfs); 2300 return (0); 2301 } 2302 } 2303 if (cmp < 0) { 2304 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2305 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2306 } else { 2307 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2308 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2309 } 2310 2311 if (serr) { 2312 /* 2313 * Source entry invalid or not there. 2314 */ 2315 if (!terr) { 2316 zfs_dirent_unlock(tdl); 2317 if (tzp) 2318 VN_RELE(ZTOV(tzp)); 2319 } 2320 if (strcmp(snm, "..") == 0) 2321 serr = EINVAL; 2322 ZFS_EXIT(zfsvfs); 2323 return (serr); 2324 } 2325 if (terr) { 2326 zfs_dirent_unlock(sdl); 2327 VN_RELE(ZTOV(szp)); 2328 if (strcmp(tnm, "..") == 0) 2329 terr = EINVAL; 2330 ZFS_EXIT(zfsvfs); 2331 return (terr); 2332 } 2333 2334 /* 2335 * Must have write access at the source to remove the old entry 2336 * and write access at the target to create the new entry. 2337 * Note that if target and source are the same, this can be 2338 * done in a single check. 2339 */ 2340 2341 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 2342 goto out; 2343 2344 if (ZTOV(szp)->v_type == VDIR) { 2345 /* 2346 * Check to make sure rename is valid. 2347 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 2348 */ 2349 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 2350 goto out; 2351 } 2352 2353 /* 2354 * Does target exist? 2355 */ 2356 if (tzp) { 2357 /* 2358 * Source and target must be the same type. 2359 */ 2360 if (ZTOV(szp)->v_type == VDIR) { 2361 if (ZTOV(tzp)->v_type != VDIR) { 2362 error = ENOTDIR; 2363 goto out; 2364 } 2365 } else { 2366 if (ZTOV(tzp)->v_type == VDIR) { 2367 error = EISDIR; 2368 goto out; 2369 } 2370 } 2371 /* 2372 * POSIX dictates that when the source and target 2373 * entries refer to the same file object, rename 2374 * must do nothing and exit without error. 2375 */ 2376 if (szp->z_id == tzp->z_id) { 2377 error = 0; 2378 goto out; 2379 } 2380 } 2381 2382 vnevent_rename_src(ZTOV(szp)); 2383 if (tzp) 2384 vnevent_rename_dest(ZTOV(tzp)); 2385 2386 tx = dmu_tx_create(zfsvfs->z_os); 2387 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 2388 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 2389 if (sdzp != tdzp) { 2390 dmu_tx_hold_zap(tx, sdzp->z_id, 1); 2391 dmu_tx_hold_zap(tx, tdzp->z_id, 1); 2392 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 2393 } else { 2394 dmu_tx_hold_zap(tx, sdzp->z_id, 2); 2395 } 2396 if (tzp) { 2397 dmu_tx_hold_bonus(tx, tzp->z_id); /* nlink changes */ 2398 } 2399 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, 1); 2400 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2401 if (error) { 2402 dmu_tx_abort(tx); 2403 if (zl != NULL) 2404 zfs_rename_unlock(&zl); 2405 zfs_dirent_unlock(sdl); 2406 zfs_dirent_unlock(tdl); 2407 VN_RELE(ZTOV(szp)); 2408 if (tzp) 2409 VN_RELE(ZTOV(tzp)); 2410 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2411 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2412 goto top; 2413 } 2414 ZFS_EXIT(zfsvfs); 2415 return (error); 2416 } 2417 2418 if (tzp) /* Attempt to remove the existing target */ 2419 error = zfs_link_destroy(tdl, tzp, tx, 0, NULL); 2420 2421 if (error == 0) { 2422 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 2423 if (error == 0) { 2424 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 2425 ASSERT(error == 0); 2426 seq = zfs_log_rename(zilog, tx, TX_RENAME, 2427 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 2428 } 2429 } 2430 2431 dmu_tx_commit(tx); 2432 out: 2433 if (zl != NULL) 2434 zfs_rename_unlock(&zl); 2435 2436 zfs_dirent_unlock(sdl); 2437 zfs_dirent_unlock(tdl); 2438 2439 VN_RELE(ZTOV(szp)); 2440 if (tzp) 2441 VN_RELE(ZTOV(tzp)); 2442 2443 zil_commit(zilog, seq, 0); 2444 2445 ZFS_EXIT(zfsvfs); 2446 return (error); 2447 } 2448 2449 /* 2450 * Insert the indicated symbolic reference entry into the directory. 2451 * 2452 * IN: dvp - Directory to contain new symbolic link. 2453 * link - Name for new symlink entry. 2454 * vap - Attributes of new entry. 2455 * target - Target path of new symlink. 2456 * cr - credentials of caller. 2457 * 2458 * RETURN: 0 if success 2459 * error code if failure 2460 * 2461 * Timestamps: 2462 * dvp - ctime|mtime updated 2463 */ 2464 static int 2465 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr) 2466 { 2467 znode_t *zp, *dzp = VTOZ(dvp); 2468 zfs_dirlock_t *dl; 2469 dmu_tx_t *tx; 2470 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2471 zilog_t *zilog = zfsvfs->z_log; 2472 uint64_t seq = 0; 2473 uint64_t zoid; 2474 int len = strlen(link); 2475 int error; 2476 2477 ASSERT(vap->va_type == VLNK); 2478 2479 ZFS_ENTER(zfsvfs); 2480 top: 2481 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2482 ZFS_EXIT(zfsvfs); 2483 return (error); 2484 } 2485 2486 if (len > MAXPATHLEN) { 2487 ZFS_EXIT(zfsvfs); 2488 return (ENAMETOOLONG); 2489 } 2490 2491 /* 2492 * Attempt to lock directory; fail if entry already exists. 2493 */ 2494 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) { 2495 ZFS_EXIT(zfsvfs); 2496 return (error); 2497 } 2498 2499 tx = dmu_tx_create(zfsvfs->z_os); 2500 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 2501 dmu_tx_hold_bonus(tx, dzp->z_id); 2502 dmu_tx_hold_zap(tx, dzp->z_id, 1); 2503 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 2504 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 2505 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2506 if (error) { 2507 dmu_tx_abort(tx); 2508 zfs_dirent_unlock(dl); 2509 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2510 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2511 goto top; 2512 } 2513 ZFS_EXIT(zfsvfs); 2514 return (error); 2515 } 2516 2517 dmu_buf_will_dirty(dzp->z_dbuf, tx); 2518 2519 /* 2520 * Create a new object for the symlink. 2521 * Put the link content into bonus buffer if it will fit; 2522 * otherwise, store it just like any other file data. 2523 */ 2524 zoid = 0; 2525 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 2526 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len); 2527 if (len != 0) 2528 bcopy(link, zp->z_phys + 1, len); 2529 } else { 2530 dmu_buf_t *dbp; 2531 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 2532 2533 rw_enter(&zp->z_grow_lock, RW_WRITER); 2534 error = zfs_grow_blocksize(zp, len, tx); 2535 rw_exit(&zp->z_grow_lock); 2536 if (error) 2537 goto out; 2538 2539 dbp = dmu_buf_hold(zfsvfs->z_os, zoid, 0); 2540 dmu_buf_will_dirty(dbp, tx); 2541 2542 ASSERT3U(len, <=, dbp->db_size); 2543 bcopy(link, dbp->db_data, len); 2544 dmu_buf_rele(dbp); 2545 } 2546 zp->z_phys->zp_size = len; 2547 2548 /* 2549 * Insert the new object into the directory. 2550 */ 2551 (void) zfs_link_create(dl, zp, tx, ZNEW); 2552 out: 2553 if (error == 0) 2554 seq = zfs_log_symlink(zilog, tx, TX_SYMLINK, 2555 dzp, zp, name, link); 2556 2557 dmu_tx_commit(tx); 2558 2559 zfs_dirent_unlock(dl); 2560 2561 VN_RELE(ZTOV(zp)); 2562 2563 zil_commit(zilog, seq, 0); 2564 2565 ZFS_EXIT(zfsvfs); 2566 return (error); 2567 } 2568 2569 /* 2570 * Return, in the buffer contained in the provided uio structure, 2571 * the symbolic path referred to by vp. 2572 * 2573 * IN: vp - vnode of symbolic link. 2574 * uoip - structure to contain the link path. 2575 * cr - credentials of caller. 2576 * 2577 * OUT: uio - structure to contain the link path. 2578 * 2579 * RETURN: 0 if success 2580 * error code if failure 2581 * 2582 * Timestamps: 2583 * vp - atime updated 2584 */ 2585 /* ARGSUSED */ 2586 static int 2587 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr) 2588 { 2589 znode_t *zp = VTOZ(vp); 2590 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2591 size_t bufsz; 2592 int error; 2593 2594 ZFS_ENTER(zfsvfs); 2595 2596 bufsz = (size_t)zp->z_phys->zp_size; 2597 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 2598 error = uiomove(zp->z_phys + 1, 2599 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2600 } else { 2601 dmu_buf_t *dbp = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0); 2602 if ((error = dmu_buf_read_canfail(dbp)) != 0) { 2603 dmu_buf_rele(dbp); 2604 ZFS_EXIT(zfsvfs); 2605 return (error); 2606 } 2607 error = uiomove(dbp->db_data, 2608 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2609 dmu_buf_rele(dbp); 2610 } 2611 2612 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2613 ZFS_EXIT(zfsvfs); 2614 return (error); 2615 } 2616 2617 /* 2618 * Insert a new entry into directory tdvp referencing svp. 2619 * 2620 * IN: tdvp - Directory to contain new entry. 2621 * svp - vnode of new entry. 2622 * name - name of new entry. 2623 * cr - credentials of caller. 2624 * 2625 * RETURN: 0 if success 2626 * error code if failure 2627 * 2628 * Timestamps: 2629 * tdvp - ctime|mtime updated 2630 * svp - ctime updated 2631 */ 2632 /* ARGSUSED */ 2633 static int 2634 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr) 2635 { 2636 znode_t *dzp = VTOZ(tdvp); 2637 znode_t *tzp, *szp; 2638 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2639 zilog_t *zilog = zfsvfs->z_log; 2640 uint64_t seq = 0; 2641 zfs_dirlock_t *dl; 2642 dmu_tx_t *tx; 2643 vnode_t *realvp; 2644 int error; 2645 2646 ASSERT(tdvp->v_type == VDIR); 2647 2648 ZFS_ENTER(zfsvfs); 2649 2650 if (VOP_REALVP(svp, &realvp) == 0) 2651 svp = realvp; 2652 2653 if (svp->v_vfsp != tdvp->v_vfsp) { 2654 ZFS_EXIT(zfsvfs); 2655 return (EXDEV); 2656 } 2657 2658 szp = VTOZ(svp); 2659 top: 2660 /* 2661 * We do not support links between attributes and non-attributes 2662 * because of the potential security risk of creating links 2663 * into "normal" file space in order to circumvent restrictions 2664 * imposed in attribute space. 2665 */ 2666 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 2667 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 2668 ZFS_EXIT(zfsvfs); 2669 return (EINVAL); 2670 } 2671 2672 /* 2673 * POSIX dictates that we return EPERM here. 2674 * Better choices include ENOTSUP or EISDIR. 2675 */ 2676 if (svp->v_type == VDIR) { 2677 ZFS_EXIT(zfsvfs); 2678 return (EPERM); 2679 } 2680 2681 if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) && 2682 secpolicy_basic_link(cr) != 0) { 2683 ZFS_EXIT(zfsvfs); 2684 return (EPERM); 2685 } 2686 2687 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2688 ZFS_EXIT(zfsvfs); 2689 return (error); 2690 } 2691 2692 /* 2693 * Attempt to lock directory; fail if entry already exists. 2694 */ 2695 if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) { 2696 ZFS_EXIT(zfsvfs); 2697 return (error); 2698 } 2699 2700 tx = dmu_tx_create(zfsvfs->z_os); 2701 dmu_tx_hold_bonus(tx, szp->z_id); 2702 dmu_tx_hold_zap(tx, dzp->z_id, 1); 2703 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2704 if (error) { 2705 dmu_tx_abort(tx); 2706 zfs_dirent_unlock(dl); 2707 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2708 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2709 goto top; 2710 } 2711 ZFS_EXIT(zfsvfs); 2712 return (error); 2713 } 2714 2715 error = zfs_link_create(dl, szp, tx, 0); 2716 2717 if (error == 0) 2718 seq = zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name); 2719 2720 dmu_tx_commit(tx); 2721 2722 zfs_dirent_unlock(dl); 2723 2724 zil_commit(zilog, seq, 0); 2725 2726 ZFS_EXIT(zfsvfs); 2727 return (error); 2728 } 2729 2730 /* 2731 * zfs_null_putapage() is used when the file system has been force 2732 * unmounted. It just drops the pages. 2733 */ 2734 /* ARGSUSED */ 2735 static int 2736 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2737 size_t *lenp, int flags, cred_t *cr) 2738 { 2739 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 2740 return (0); 2741 } 2742 2743 /* ARGSUSED */ 2744 static int 2745 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2746 size_t *lenp, int flags, cred_t *cr) 2747 { 2748 znode_t *zp = VTOZ(vp); 2749 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2750 zilog_t *zilog = zfsvfs->z_log; 2751 uint64_t seq = 0; 2752 dmu_tx_t *tx; 2753 u_offset_t off; 2754 ssize_t len; 2755 caddr_t va; 2756 int err; 2757 2758 top: 2759 rw_enter(&zp->z_grow_lock, RW_READER); 2760 2761 off = pp->p_offset; 2762 len = MIN(PAGESIZE, zp->z_phys->zp_size - off); 2763 2764 tx = dmu_tx_create(zfsvfs->z_os); 2765 dmu_tx_hold_write(tx, zp->z_id, off, len); 2766 dmu_tx_hold_bonus(tx, zp->z_id); 2767 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2768 if (err != 0) { 2769 dmu_tx_abort(tx); 2770 rw_exit(&zp->z_grow_lock); 2771 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2772 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2773 goto top; 2774 } 2775 goto out; 2776 } 2777 2778 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 2779 2780 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 2781 2782 ppmapout(va); 2783 2784 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 2785 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0, NULL); 2786 dmu_tx_commit(tx); 2787 2788 rw_exit(&zp->z_grow_lock); 2789 2790 pvn_write_done(pp, B_WRITE | flags); 2791 if (offp) 2792 *offp = off; 2793 if (lenp) 2794 *lenp = len; 2795 2796 zil_commit(zilog, seq, (flags & B_ASYNC) ? 0 : FDSYNC); 2797 out: 2798 return (err); 2799 } 2800 2801 /* 2802 * Copy the portion of the file indicated from pages into the file. 2803 * The pages are stored in a page list attached to the files vnode. 2804 * 2805 * IN: vp - vnode of file to push page data to. 2806 * off - position in file to put data. 2807 * len - amount of data to write. 2808 * flags - flags to control the operation. 2809 * cr - credentials of caller. 2810 * 2811 * RETURN: 0 if success 2812 * error code if failure 2813 * 2814 * Timestamps: 2815 * vp - ctime|mtime updated 2816 */ 2817 static int 2818 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 2819 { 2820 znode_t *zp = VTOZ(vp); 2821 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2822 page_t *pp; 2823 size_t io_len; 2824 u_offset_t io_off; 2825 int error = 0; 2826 2827 ZFS_ENTER(zfsvfs); 2828 2829 ASSERT(zp->z_dbuf_held && zp->z_phys); 2830 2831 if (len == 0) { 2832 /* 2833 * Search the entire vp list for pages >= off. 2834 */ 2835 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 2836 flags, cr); 2837 ZFS_EXIT(zfsvfs); 2838 return (error); 2839 } 2840 2841 if (off > zp->z_phys->zp_size) { 2842 /* past end of file */ 2843 ZFS_EXIT(zfsvfs); 2844 return (0); 2845 } 2846 2847 len = MIN(len, zp->z_phys->zp_size - off); 2848 2849 io_off = off; 2850 while (io_off < off + len) { 2851 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2852 pp = page_lookup(vp, io_off, 2853 (flags & (B_INVAL | B_FREE)) ? 2854 SE_EXCL : SE_SHARED); 2855 } else { 2856 pp = page_lookup_nowait(vp, io_off, 2857 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2858 } 2859 2860 if (pp != NULL && pvn_getdirty(pp, flags)) { 2861 int err; 2862 2863 /* 2864 * Found a dirty page to push 2865 */ 2866 if (err = 2867 zfs_putapage(vp, pp, &io_off, &io_len, flags, cr)) 2868 error = err; 2869 } else { 2870 io_len = PAGESIZE; 2871 } 2872 io_off += io_len; 2873 } 2874 ZFS_EXIT(zfsvfs); 2875 return (error); 2876 } 2877 2878 void 2879 zfs_inactive(vnode_t *vp, cred_t *cr) 2880 { 2881 znode_t *zp = VTOZ(vp); 2882 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2883 int error; 2884 2885 rw_enter(&zfsvfs->z_um_lock, RW_READER); 2886 if (zfsvfs->z_unmounted2) { 2887 ASSERT(zp->z_dbuf_held == 0); 2888 2889 if (vn_has_cached_data(vp)) { 2890 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 2891 B_INVAL, cr); 2892 } 2893 2894 vp->v_count = 0; /* count arrives as 1 */ 2895 zfs_znode_free(zp); 2896 rw_exit(&zfsvfs->z_um_lock); 2897 VFS_RELE(zfsvfs->z_vfs); 2898 return; 2899 } 2900 2901 /* 2902 * Attempt to push any data in the page cache. If this fails 2903 * we will get kicked out later in zfs_zinactive(). 2904 */ 2905 if (vn_has_cached_data(vp)) 2906 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL, cr); 2907 2908 if (zp->z_atime_dirty && zp->z_reap == 0) { 2909 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 2910 2911 dmu_tx_hold_bonus(tx, zp->z_id); 2912 error = dmu_tx_assign(tx, TXG_WAIT); 2913 if (error) { 2914 dmu_tx_abort(tx); 2915 } else { 2916 dmu_buf_will_dirty(zp->z_dbuf, tx); 2917 mutex_enter(&zp->z_lock); 2918 zp->z_atime_dirty = 0; 2919 mutex_exit(&zp->z_lock); 2920 dmu_tx_commit(tx); 2921 } 2922 } 2923 2924 zfs_zinactive(zp); 2925 rw_exit(&zfsvfs->z_um_lock); 2926 } 2927 2928 /* 2929 * Bounds-check the seek operation. 2930 * 2931 * IN: vp - vnode seeking within 2932 * ooff - old file offset 2933 * noffp - pointer to new file offset 2934 * 2935 * RETURN: 0 if success 2936 * EINVAL if new offset invalid 2937 */ 2938 /* ARGSUSED */ 2939 static int 2940 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 2941 { 2942 if (vp->v_type == VDIR) 2943 return (0); 2944 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 2945 } 2946 2947 /* 2948 * Pre-filter the generic locking function to trap attempts to place 2949 * a mandatory lock on a memory mapped file. 2950 */ 2951 static int 2952 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 2953 flk_callback_t *flk_cbp, cred_t *cr) 2954 { 2955 znode_t *zp = VTOZ(vp); 2956 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2957 uint_t cnt = 1; 2958 int error; 2959 2960 ZFS_ENTER(zfsvfs); 2961 2962 /* 2963 * If file is being mapped, disallow frlock. We set the mapcnt to 2964 * -1 here to signal that we are in the process of setting a lock. 2965 * This prevents a race with zfs_map(). 2966 * XXX - well, sort of; since zfs_map() does not change z_mapcnt, 2967 * we could be in the middle of zfs_map() and still call fs_frlock(). 2968 * Also, we are doing no checking in zfs_addmap() (where z_mapcnt 2969 * *is* manipulated). 2970 */ 2971 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 2972 (int)(cnt = atomic_cas_32(&zp->z_mapcnt, 0, -1)) > 0) { 2973 ZFS_EXIT(zfsvfs); 2974 return (EAGAIN); 2975 } 2976 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr); 2977 ASSERT((cnt != 0) || ((int)atomic_cas_32(&zp->z_mapcnt, -1, 0) == -1)); 2978 ZFS_EXIT(zfsvfs); 2979 return (error); 2980 } 2981 2982 /* 2983 * If we can't find a page in the cache, we will create a new page 2984 * and fill it with file data. For efficiency, we may try to fill 2985 * multiple pages as once (klustering). 2986 */ 2987 static int 2988 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 2989 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 2990 { 2991 znode_t *zp = VTOZ(vp); 2992 page_t *pp, *cur_pp; 2993 objset_t *os = zp->z_zfsvfs->z_os; 2994 caddr_t va; 2995 u_offset_t io_off, total; 2996 uint64_t oid = zp->z_id; 2997 size_t io_len; 2998 int err; 2999 3000 /* 3001 * If we are only asking for a single page don't bother klustering. 3002 */ 3003 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE || 3004 off > zp->z_phys->zp_size) { 3005 io_off = off; 3006 io_len = PAGESIZE; 3007 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3008 } else { 3009 /* 3010 * Try to fill a kluster of pages (a blocks worth). 3011 */ 3012 size_t klen; 3013 u_offset_t koff; 3014 3015 if (!ISP2(zp->z_blksz)) { 3016 /* Only one block in the file. */ 3017 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3018 koff = 0; 3019 } else { 3020 klen = plsz; 3021 koff = P2ALIGN(off, (u_offset_t)klen); 3022 } 3023 if (klen > zp->z_phys->zp_size) 3024 klen = P2ROUNDUP(zp->z_phys->zp_size, 3025 (uint64_t)PAGESIZE); 3026 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3027 &io_len, koff, klen, 0); 3028 } 3029 if (pp == NULL) { 3030 /* 3031 * Some other thread entered the page before us. 3032 * Return to zfs_getpage to retry the lookup. 3033 */ 3034 *pl = NULL; 3035 return (0); 3036 } 3037 3038 /* 3039 * Fill the pages in the kluster. 3040 */ 3041 cur_pp = pp; 3042 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3043 ASSERT(io_off == cur_pp->p_offset); 3044 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3045 err = dmu_read_canfail(os, oid, io_off, PAGESIZE, va); 3046 ppmapout(va); 3047 if (err) { 3048 /* On error, toss the entire kluster */ 3049 pvn_read_done(pp, B_ERROR); 3050 return (err); 3051 } 3052 cur_pp = cur_pp->p_next; 3053 } 3054 out: 3055 /* 3056 * Fill in the page list array from the kluster. If 3057 * there are too many pages in the kluster, return 3058 * as many pages as possible starting from the desired 3059 * offset `off'. 3060 * NOTE: the page list will always be null terminated. 3061 */ 3062 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3063 3064 return (0); 3065 } 3066 3067 /* 3068 * Return pointers to the pages for the file region [off, off + len] 3069 * in the pl array. If plsz is greater than len, this function may 3070 * also return page pointers from before or after the specified 3071 * region (i.e. some region [off', off' + plsz]). These additional 3072 * pages are only returned if they are already in the cache, or were 3073 * created as part of a klustered read. 3074 * 3075 * IN: vp - vnode of file to get data from. 3076 * off - position in file to get data from. 3077 * len - amount of data to retrieve. 3078 * plsz - length of provided page list. 3079 * seg - segment to obtain pages for. 3080 * addr - virtual address of fault. 3081 * rw - mode of created pages. 3082 * cr - credentials of caller. 3083 * 3084 * OUT: protp - protection mode of created pages. 3085 * pl - list of pages created. 3086 * 3087 * RETURN: 0 if success 3088 * error code if failure 3089 * 3090 * Timestamps: 3091 * vp - atime updated 3092 */ 3093 /* ARGSUSED */ 3094 static int 3095 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3096 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3097 enum seg_rw rw, cred_t *cr) 3098 { 3099 znode_t *zp = VTOZ(vp); 3100 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3101 page_t *pp, **pl0 = pl; 3102 int cnt = 0, need_unlock = 0, err = 0; 3103 3104 ZFS_ENTER(zfsvfs); 3105 3106 if (protp) 3107 *protp = PROT_ALL; 3108 3109 ASSERT(zp->z_dbuf_held && zp->z_phys); 3110 3111 /* no faultahead (for now) */ 3112 if (pl == NULL) { 3113 ZFS_EXIT(zfsvfs); 3114 return (0); 3115 } 3116 3117 /* can't fault past EOF */ 3118 if (off >= zp->z_phys->zp_size) { 3119 ZFS_EXIT(zfsvfs); 3120 return (EFAULT); 3121 } 3122 3123 /* 3124 * Make sure nobody restructures the file (changes block size) 3125 * in the middle of the getpage. 3126 */ 3127 rw_enter(&zp->z_grow_lock, RW_READER); 3128 3129 /* 3130 * If we already own the lock, then we must be page faulting 3131 * in the middle of a write to this file (i.e., we are writing 3132 * to this file using data from a mapped region of the file). 3133 */ 3134 if (!rw_owner(&zp->z_map_lock)) { 3135 rw_enter(&zp->z_map_lock, RW_WRITER); 3136 need_unlock = TRUE; 3137 } 3138 3139 /* 3140 * Loop through the requested range [off, off + len] looking 3141 * for pages. If we don't find a page, we will need to create 3142 * a new page and fill it with data from the file. 3143 */ 3144 while (len > 0) { 3145 if (plsz < PAGESIZE) 3146 break; 3147 if (pp = page_lookup(vp, off, SE_SHARED)) { 3148 *pl++ = pp; 3149 off += PAGESIZE; 3150 addr += PAGESIZE; 3151 len -= PAGESIZE; 3152 plsz -= PAGESIZE; 3153 } else { 3154 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3155 /* 3156 * klustering may have changed our region 3157 * to be block aligned. 3158 */ 3159 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3160 int delta = off - pp->p_offset; 3161 len += delta; 3162 off -= delta; 3163 addr -= delta; 3164 } 3165 while (*pl) { 3166 pl++; 3167 cnt++; 3168 off += PAGESIZE; 3169 addr += PAGESIZE; 3170 plsz -= PAGESIZE; 3171 if (len > PAGESIZE) 3172 len -= PAGESIZE; 3173 else 3174 len = 0; 3175 } 3176 } 3177 if (err) 3178 goto out; 3179 } 3180 3181 /* 3182 * Fill out the page array with any pages already in the cache. 3183 */ 3184 while (plsz > 0) { 3185 pp = page_lookup_nowait(vp, off, SE_SHARED); 3186 if (pp == NULL) 3187 break; 3188 *pl++ = pp; 3189 off += PAGESIZE; 3190 plsz -= PAGESIZE; 3191 } 3192 3193 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3194 out: 3195 if (err) { 3196 /* 3197 * Release any pages we have locked. 3198 */ 3199 while (pl > pl0) 3200 page_unlock(*--pl); 3201 } 3202 *pl = NULL; 3203 3204 if (need_unlock) 3205 rw_exit(&zp->z_map_lock); 3206 rw_exit(&zp->z_grow_lock); 3207 3208 ZFS_EXIT(zfsvfs); 3209 return (err); 3210 } 3211 3212 static int 3213 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 3214 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3215 { 3216 znode_t *zp = VTOZ(vp); 3217 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3218 segvn_crargs_t vn_a; 3219 int error; 3220 3221 ZFS_ENTER(zfsvfs); 3222 3223 if (vp->v_flag & VNOMAP) { 3224 ZFS_EXIT(zfsvfs); 3225 return (ENOSYS); 3226 } 3227 3228 if (off < 0 || len > MAXOFFSET_T - off) { 3229 ZFS_EXIT(zfsvfs); 3230 return (ENXIO); 3231 } 3232 3233 if (vp->v_type != VREG) { 3234 ZFS_EXIT(zfsvfs); 3235 return (ENODEV); 3236 } 3237 3238 /* 3239 * If file is locked, disallow mapping. 3240 * XXX - since we don't modify z_mapcnt here, there is nothing 3241 * to stop a file lock being placed immediately after we complete 3242 * this check. 3243 */ 3244 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3245 if (vn_has_flocks(vp) || zp->z_mapcnt == -1) { 3246 ZFS_EXIT(zfsvfs); 3247 return (EAGAIN); 3248 } 3249 } 3250 3251 as_rangelock(as); 3252 if ((flags & MAP_FIXED) == 0) { 3253 map_addr(addrp, len, off, 1, flags); 3254 if (*addrp == NULL) { 3255 as_rangeunlock(as); 3256 ZFS_EXIT(zfsvfs); 3257 return (ENOMEM); 3258 } 3259 } else { 3260 /* 3261 * User specified address - blow away any previous mappings 3262 */ 3263 (void) as_unmap(as, *addrp, len); 3264 } 3265 3266 vn_a.vp = vp; 3267 vn_a.offset = (u_offset_t)off; 3268 vn_a.type = flags & MAP_TYPE; 3269 vn_a.prot = prot; 3270 vn_a.maxprot = maxprot; 3271 vn_a.cred = cr; 3272 vn_a.amp = NULL; 3273 vn_a.flags = flags & ~MAP_TYPE; 3274 3275 error = as_map(as, *addrp, len, segvn_create, &vn_a); 3276 3277 as_rangeunlock(as); 3278 ZFS_EXIT(zfsvfs); 3279 return (error); 3280 } 3281 3282 /* ARGSUSED */ 3283 static int 3284 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3285 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3286 { 3287 /* 3288 * XXX - shouldn't we be checking for file locks here? 3289 */ 3290 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, 0); 3291 atomic_add_32(&VTOZ(vp)->z_mapcnt, btopr(len)); 3292 return (0); 3293 } 3294 3295 /* ARGSUSED */ 3296 static int 3297 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3298 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 3299 { 3300 atomic_add_32(&VTOZ(vp)->z_mapcnt, -btopr(len)); 3301 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, 0); 3302 return (0); 3303 } 3304 3305 /* 3306 * Free or allocate space in a file. Currently, this function only 3307 * supports the `F_FREESP' command. However, this command is somewhat 3308 * misnamed, as its functionality includes the ability to allocate as 3309 * well as free space. 3310 * 3311 * IN: vp - vnode of file to free data in. 3312 * cmd - action to take (only F_FREESP supported). 3313 * bfp - section of file to free/alloc. 3314 * flag - current file open mode flags. 3315 * offset - current file offset. 3316 * cr - credentials of caller [UNUSED]. 3317 * 3318 * RETURN: 0 if success 3319 * error code if failure 3320 * 3321 * Timestamps: 3322 * vp - ctime|mtime updated 3323 * 3324 * NOTE: This function is limited in that it will only permit space to 3325 * be freed at the end of a file. In essence, this function simply 3326 * allows one to set the file size. 3327 */ 3328 /* ARGSUSED */ 3329 static int 3330 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 3331 offset_t offset, cred_t *cr, caller_context_t *ct) 3332 { 3333 dmu_tx_t *tx; 3334 znode_t *zp = VTOZ(vp); 3335 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3336 zilog_t *zilog = zfsvfs->z_log; 3337 uint64_t seq = 0; 3338 uint64_t off, len; 3339 int error; 3340 3341 ZFS_ENTER(zfsvfs); 3342 3343 top: 3344 if (cmd != F_FREESP) { 3345 ZFS_EXIT(zfsvfs); 3346 return (EINVAL); 3347 } 3348 3349 if (error = convoff(vp, bfp, 0, offset)) { 3350 ZFS_EXIT(zfsvfs); 3351 return (error); 3352 } 3353 3354 if (bfp->l_len < 0) { 3355 ZFS_EXIT(zfsvfs); 3356 return (EINVAL); 3357 } 3358 3359 off = bfp->l_start; 3360 len = bfp->l_len; 3361 tx = dmu_tx_create(zfsvfs->z_os); 3362 /* 3363 * Grab the grow_lock to serialize this change with 3364 * respect to other file size changes. 3365 */ 3366 dmu_tx_hold_bonus(tx, zp->z_id); 3367 rw_enter(&zp->z_grow_lock, RW_WRITER); 3368 if (off + len > zp->z_blksz && zp->z_blksz < zfsvfs->z_max_blksz && 3369 off >= zp->z_phys->zp_size) { 3370 /* 3371 * We are increasing the length of the file, 3372 * and this may mean a block size increase. 3373 */ 3374 dmu_tx_hold_write(tx, zp->z_id, 0, 3375 MIN(off + len, zfsvfs->z_max_blksz)); 3376 } else if (off < zp->z_phys->zp_size) { 3377 /* 3378 * If len == 0, we are truncating the file. 3379 */ 3380 dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END); 3381 } 3382 3383 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3384 if (error) { 3385 dmu_tx_abort(tx); 3386 rw_exit(&zp->z_grow_lock); 3387 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3388 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 3389 goto top; 3390 } 3391 ZFS_EXIT(zfsvfs); 3392 return (error); 3393 } 3394 3395 error = zfs_freesp(zp, off, len, flag, tx, cr); 3396 3397 if (error == 0) { 3398 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3399 seq = zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 3400 } 3401 3402 rw_exit(&zp->z_grow_lock); 3403 3404 dmu_tx_commit(tx); 3405 3406 zil_commit(zilog, seq, 0); 3407 3408 ZFS_EXIT(zfsvfs); 3409 return (error); 3410 } 3411 3412 static int 3413 zfs_fid(vnode_t *vp, fid_t *fidp) 3414 { 3415 znode_t *zp = VTOZ(vp); 3416 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3417 uint32_t gen = (uint32_t)zp->z_phys->zp_gen; 3418 uint64_t object = zp->z_id; 3419 zfid_short_t *zfid; 3420 int size, i; 3421 3422 ZFS_ENTER(zfsvfs); 3423 3424 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 3425 if (fidp->fid_len < size) { 3426 fidp->fid_len = size; 3427 return (ENOSPC); 3428 } 3429 3430 zfid = (zfid_short_t *)fidp; 3431 3432 zfid->zf_len = size; 3433 3434 for (i = 0; i < sizeof (zfid->zf_object); i++) 3435 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 3436 3437 /* Must have a non-zero generation number to distinguish from .zfs */ 3438 if (gen == 0) 3439 gen = 1; 3440 for (i = 0; i < sizeof (zfid->zf_gen); i++) 3441 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 3442 3443 if (size == LONG_FID_LEN) { 3444 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 3445 zfid_long_t *zlfid; 3446 3447 zlfid = (zfid_long_t *)fidp; 3448 3449 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 3450 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 3451 3452 /* XXX - this should be the generation number for the objset */ 3453 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 3454 zlfid->zf_setgen[i] = 0; 3455 } 3456 3457 ZFS_EXIT(zfsvfs); 3458 return (0); 3459 } 3460 3461 static int 3462 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 3463 { 3464 znode_t *zp, *xzp; 3465 zfsvfs_t *zfsvfs; 3466 zfs_dirlock_t *dl; 3467 int error; 3468 3469 switch (cmd) { 3470 case _PC_LINK_MAX: 3471 *valp = ULONG_MAX; 3472 return (0); 3473 3474 case _PC_FILESIZEBITS: 3475 *valp = 64; 3476 return (0); 3477 3478 case _PC_XATTR_EXISTS: 3479 zp = VTOZ(vp); 3480 zfsvfs = zp->z_zfsvfs; 3481 ZFS_ENTER(zfsvfs); 3482 *valp = 0; 3483 error = zfs_dirent_lock(&dl, zp, "", &xzp, 3484 ZXATTR | ZEXISTS | ZSHARED); 3485 if (error == 0) { 3486 zfs_dirent_unlock(dl); 3487 if (!zfs_dirempty(xzp)) 3488 *valp = 1; 3489 VN_RELE(ZTOV(xzp)); 3490 } else if (error == ENOENT) { 3491 /* 3492 * If there aren't extended attributes, it's the 3493 * same as having zero of them. 3494 */ 3495 error = 0; 3496 } 3497 ZFS_EXIT(zfsvfs); 3498 return (error); 3499 3500 case _PC_ACL_ENABLED: 3501 *valp = _ACL_ACE_ENABLED; 3502 return (0); 3503 3504 case _PC_MIN_HOLE_SIZE: 3505 *valp = (ulong_t)SPA_MINBLOCKSIZE; 3506 return (0); 3507 3508 default: 3509 return (fs_pathconf(vp, cmd, valp, cr)); 3510 } 3511 } 3512 3513 /*ARGSUSED*/ 3514 static int 3515 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3516 { 3517 znode_t *zp = VTOZ(vp); 3518 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3519 int error; 3520 3521 ZFS_ENTER(zfsvfs); 3522 error = zfs_getacl(zp, vsecp, cr); 3523 ZFS_EXIT(zfsvfs); 3524 3525 return (error); 3526 } 3527 3528 /*ARGSUSED*/ 3529 static int 3530 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3531 { 3532 znode_t *zp = VTOZ(vp); 3533 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3534 int error; 3535 3536 ZFS_ENTER(zfsvfs); 3537 error = zfs_setacl(zp, vsecp, cr); 3538 ZFS_EXIT(zfsvfs); 3539 return (error); 3540 } 3541 3542 /* 3543 * Predeclare these here so that the compiler assumes that 3544 * this is an "old style" function declaration that does 3545 * not include arguments => we won't get type mismatch errors 3546 * in the initializations that follow. 3547 */ 3548 static int zfs_inval(); 3549 static int zfs_isdir(); 3550 3551 static int 3552 zfs_inval() 3553 { 3554 return (EINVAL); 3555 } 3556 3557 static int 3558 zfs_isdir() 3559 { 3560 return (EISDIR); 3561 } 3562 /* 3563 * Directory vnode operations template 3564 */ 3565 vnodeops_t *zfs_dvnodeops; 3566 const fs_operation_def_t zfs_dvnodeops_template[] = { 3567 VOPNAME_OPEN, zfs_open, 3568 VOPNAME_CLOSE, zfs_close, 3569 VOPNAME_READ, zfs_isdir, 3570 VOPNAME_WRITE, zfs_isdir, 3571 VOPNAME_IOCTL, zfs_ioctl, 3572 VOPNAME_GETATTR, zfs_getattr, 3573 VOPNAME_SETATTR, zfs_setattr, 3574 VOPNAME_ACCESS, zfs_access, 3575 VOPNAME_LOOKUP, zfs_lookup, 3576 VOPNAME_CREATE, zfs_create, 3577 VOPNAME_REMOVE, zfs_remove, 3578 VOPNAME_LINK, zfs_link, 3579 VOPNAME_RENAME, zfs_rename, 3580 VOPNAME_MKDIR, zfs_mkdir, 3581 VOPNAME_RMDIR, zfs_rmdir, 3582 VOPNAME_READDIR, zfs_readdir, 3583 VOPNAME_SYMLINK, zfs_symlink, 3584 VOPNAME_FSYNC, zfs_fsync, 3585 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3586 VOPNAME_FID, zfs_fid, 3587 VOPNAME_SEEK, zfs_seek, 3588 VOPNAME_PATHCONF, zfs_pathconf, 3589 VOPNAME_GETSECATTR, zfs_getsecattr, 3590 VOPNAME_SETSECATTR, zfs_setsecattr, 3591 NULL, NULL 3592 }; 3593 3594 /* 3595 * Regular file vnode operations template 3596 */ 3597 vnodeops_t *zfs_fvnodeops; 3598 const fs_operation_def_t zfs_fvnodeops_template[] = { 3599 VOPNAME_OPEN, zfs_open, 3600 VOPNAME_CLOSE, zfs_close, 3601 VOPNAME_READ, zfs_read, 3602 VOPNAME_WRITE, zfs_write, 3603 VOPNAME_IOCTL, zfs_ioctl, 3604 VOPNAME_GETATTR, zfs_getattr, 3605 VOPNAME_SETATTR, zfs_setattr, 3606 VOPNAME_ACCESS, zfs_access, 3607 VOPNAME_LOOKUP, zfs_lookup, 3608 VOPNAME_RENAME, zfs_rename, 3609 VOPNAME_FSYNC, zfs_fsync, 3610 VOPNAME_INACTIVE, (fs_generic_func_p)zfs_inactive, 3611 VOPNAME_FID, zfs_fid, 3612 VOPNAME_SEEK, zfs_seek, 3613 VOPNAME_FRLOCK, zfs_frlock, 3614 VOPNAME_SPACE, zfs_space, 3615 VOPNAME_GETPAGE, zfs_getpage, 3616 VOPNAME_PUTPAGE, zfs_putpage, 3617 VOPNAME_MAP, (fs_generic_func_p) zfs_map, 3618 VOPNAME_ADDMAP, (fs_generic_func_p) zfs_addmap, 3619 VOPNAME_DELMAP, zfs_delmap, 3620 VOPNAME_PATHCONF, zfs_pathconf, 3621 VOPNAME_GETSECATTR, zfs_getsecattr, 3622 VOPNAME_SETSECATTR, zfs_setsecattr, 3623 VOPNAME_VNEVENT, fs_vnevent_support, 3624 NULL, NULL 3625 }; 3626 3627 /* 3628 * Symbolic link vnode operations template 3629 */ 3630 vnodeops_t *zfs_symvnodeops; 3631 const fs_operation_def_t zfs_symvnodeops_template[] = { 3632 VOPNAME_GETATTR, zfs_getattr, 3633 VOPNAME_SETATTR, zfs_setattr, 3634 VOPNAME_ACCESS, zfs_access, 3635 VOPNAME_RENAME, zfs_rename, 3636 VOPNAME_READLINK, zfs_readlink, 3637 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3638 VOPNAME_FID, zfs_fid, 3639 VOPNAME_PATHCONF, zfs_pathconf, 3640 VOPNAME_VNEVENT, fs_vnevent_support, 3641 NULL, NULL 3642 }; 3643 3644 /* 3645 * Extended attribute directory vnode operations template 3646 * This template is identical to the directory vnodes 3647 * operation template except for restricted operations: 3648 * VOP_MKDIR() 3649 * VOP_SYMLINK() 3650 * Note that there are other restrictions embedded in: 3651 * zfs_create() - restrict type to VREG 3652 * zfs_link() - no links into/out of attribute space 3653 * zfs_rename() - no moves into/out of attribute space 3654 */ 3655 vnodeops_t *zfs_xdvnodeops; 3656 const fs_operation_def_t zfs_xdvnodeops_template[] = { 3657 VOPNAME_OPEN, zfs_open, 3658 VOPNAME_CLOSE, zfs_close, 3659 VOPNAME_IOCTL, zfs_ioctl, 3660 VOPNAME_GETATTR, zfs_getattr, 3661 VOPNAME_SETATTR, zfs_setattr, 3662 VOPNAME_ACCESS, zfs_access, 3663 VOPNAME_LOOKUP, zfs_lookup, 3664 VOPNAME_CREATE, zfs_create, 3665 VOPNAME_REMOVE, zfs_remove, 3666 VOPNAME_LINK, zfs_link, 3667 VOPNAME_RENAME, zfs_rename, 3668 VOPNAME_MKDIR, zfs_inval, 3669 VOPNAME_RMDIR, zfs_rmdir, 3670 VOPNAME_READDIR, zfs_readdir, 3671 VOPNAME_SYMLINK, zfs_inval, 3672 VOPNAME_FSYNC, zfs_fsync, 3673 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3674 VOPNAME_FID, zfs_fid, 3675 VOPNAME_SEEK, zfs_seek, 3676 VOPNAME_PATHCONF, zfs_pathconf, 3677 VOPNAME_GETSECATTR, zfs_getsecattr, 3678 VOPNAME_SETSECATTR, zfs_setsecattr, 3679 VOPNAME_VNEVENT, fs_vnevent_support, 3680 NULL, NULL 3681 }; 3682 3683 /* 3684 * Error vnode operations template 3685 */ 3686 vnodeops_t *zfs_evnodeops; 3687 const fs_operation_def_t zfs_evnodeops_template[] = { 3688 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3689 VOPNAME_PATHCONF, zfs_pathconf, 3690 NULL, NULL 3691 }; 3692