1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vnode.h> 36 #include <sys/file.h> 37 #include <sys/stat.h> 38 #include <sys/kmem.h> 39 #include <sys/taskq.h> 40 #include <sys/uio.h> 41 #include <sys/vmsystm.h> 42 #include <sys/atomic.h> 43 #include <vm/seg_vn.h> 44 #include <vm/pvn.h> 45 #include <vm/as.h> 46 #include <sys/mman.h> 47 #include <sys/pathname.h> 48 #include <sys/cmn_err.h> 49 #include <sys/errno.h> 50 #include <sys/unistd.h> 51 #include <sys/zfs_vfsops.h> 52 #include <sys/zfs_dir.h> 53 #include <sys/zfs_acl.h> 54 #include <sys/zfs_ioctl.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/dmu.h> 57 #include <sys/spa.h> 58 #include <sys/txg.h> 59 #include <sys/refcount.h> /* temporary for debugging purposes */ 60 #include <sys/dbuf.h> 61 #include <sys/zap.h> 62 #include <sys/dirent.h> 63 #include <sys/policy.h> 64 #include <sys/sunddi.h> 65 #include <sys/filio.h> 66 #include "fs/fs_subr.h" 67 #include <sys/zfs_ctldir.h> 68 69 /* 70 * Programming rules. 71 * 72 * Each vnode op performs some logical unit of work. To do this, the ZPL must 73 * properly lock its in-core state, create a DMU transaction, do the work, 74 * record this work in the intent log (ZIL), commit the DMU transaction, 75 * and wait the the intent log to commit if it's is a synchronous operation. 76 * Morover, the vnode ops must work in both normal and log replay context. 77 * The ordering of events is important to avoid deadlocks and references 78 * to freed memory. The example below illustrates the following Big Rules: 79 * 80 * (1) A check must be made in each zfs thread for a mounted file system. 81 * This is done avoiding races using ZFS_ENTER(zfsvfs). 82 * A ZFS_EXIT(zfsvfs) is needed before all returns. 83 * 84 * (2) VN_RELE() should always be the last thing except for zil_commit() 85 * and ZFS_EXIT(). This is for 3 reasons: 86 * First, if it's the last reference, the vnode/znode 87 * can be freed, so the zp may point to freed memory. Second, the last 88 * reference will call zfs_zinactive(), which may induce a lot of work -- 89 * pushing cached pages (which requires z_grow_lock) and syncing out 90 * cached atime changes. Third, zfs_zinactive() may require a new tx, 91 * which could deadlock the system if you were already holding one. 92 * 93 * (3) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 94 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 95 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 96 * This is critical because we don't want to block while holding locks. 97 * Note, in particular, that if a lock is sometimes acquired before 98 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 99 * use a non-blocking assign can deadlock the system. The scenario: 100 * 101 * Thread A has grabbed a lock before calling dmu_tx_assign(). 102 * Thread B is in an already-assigned tx, and blocks for this lock. 103 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 104 * forever, because the previous txg can't quiesce until B's tx commits. 105 * 106 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 107 * then drop all locks, call txg_wait_open(), and try again. 108 * 109 * (4) If the operation succeeded, generate the intent log entry for it 110 * before dropping locks. This ensures that the ordering of events 111 * in the intent log matches the order in which they actually occurred. 112 * 113 * (5) At the end of each vnode op, the DMU tx must always commit, 114 * regardless of whether there were any errors. 115 * 116 * (6) After dropping all locks, invoke zil_commit(zilog, seq, ioflag) 117 * to ensure that synchronous semantics are provided when necessary. 118 * 119 * In general, this is how things should be ordered in each vnode op: 120 * 121 * ZFS_ENTER(zfsvfs); // exit if unmounted 122 * top: 123 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 124 * rw_enter(...); // grab any other locks you need 125 * tx = dmu_tx_create(...); // get DMU tx 126 * dmu_tx_hold_*(); // hold each object you might modify 127 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 128 * if (error) { 129 * dmu_tx_abort(tx); // abort DMU tx 130 * rw_exit(...); // drop locks 131 * zfs_dirent_unlock(dl); // unlock directory entry 132 * VN_RELE(...); // release held vnodes 133 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 134 * txg_wait_open(dmu_objset_pool(os), 0); 135 * goto top; 136 * } 137 * ZFS_EXIT(zfsvfs); // finished in zfs 138 * return (error); // really out of space 139 * } 140 * error = do_real_work(); // do whatever this VOP does 141 * if (error == 0) 142 * seq = zfs_log_*(...); // on success, make ZIL entry 143 * dmu_tx_commit(tx); // commit DMU tx -- error or not 144 * rw_exit(...); // drop locks 145 * zfs_dirent_unlock(dl); // unlock directory entry 146 * VN_RELE(...); // release held vnodes 147 * zil_commit(zilog, seq, ioflag); // synchronous when necessary 148 * ZFS_EXIT(zfsvfs); // finished in zfs 149 * return (error); // done, report error 150 */ 151 152 /* ARGSUSED */ 153 static int 154 zfs_open(vnode_t **vpp, int flag, cred_t *cr) 155 { 156 return (0); 157 } 158 159 /* ARGSUSED */ 160 static int 161 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 162 { 163 /* 164 * Clean up any locks held by this process on the vp. 165 */ 166 cleanlocks(vp, ddi_get_pid(), 0); 167 cleanshares(vp, ddi_get_pid()); 168 169 return (0); 170 } 171 172 /* 173 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 174 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 175 */ 176 static int 177 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 178 { 179 znode_t *zp = VTOZ(vp); 180 uint64_t noff = (uint64_t)*off; /* new offset */ 181 uint64_t file_sz; 182 int error; 183 boolean_t hole; 184 185 rw_enter(&zp->z_grow_lock, RW_READER); 186 file_sz = zp->z_phys->zp_size; 187 if (noff >= file_sz) { 188 rw_exit(&zp->z_grow_lock); 189 return (ENXIO); 190 } 191 192 if (cmd == _FIO_SEEK_HOLE) 193 hole = B_TRUE; 194 else 195 hole = B_FALSE; 196 197 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 198 rw_exit(&zp->z_grow_lock); 199 200 /* end of file? */ 201 if ((error == ESRCH) || (noff > file_sz)) { 202 /* 203 * Handle the virtual hole at the end of file. 204 */ 205 if (hole) { 206 *off = file_sz; 207 return (0); 208 } 209 return (ENXIO); 210 } 211 212 if (noff < *off) 213 return (error); 214 *off = noff; 215 return (error); 216 } 217 218 /* ARGSUSED */ 219 static int 220 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 221 int *rvalp) 222 { 223 offset_t off; 224 int error; 225 zfsvfs_t *zfsvfs; 226 227 switch (com) { 228 case _FIOFFS: 229 return (zfs_sync(vp->v_vfsp, 0, cred)); 230 231 case _FIO_SEEK_DATA: 232 case _FIO_SEEK_HOLE: 233 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 234 return (EFAULT); 235 236 zfsvfs = VTOZ(vp)->z_zfsvfs; 237 ZFS_ENTER(zfsvfs); 238 239 /* offset parameter is in/out */ 240 error = zfs_holey(vp, com, &off); 241 ZFS_EXIT(zfsvfs); 242 if (error) 243 return (error); 244 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 245 return (EFAULT); 246 return (0); 247 } 248 return (ENOTTY); 249 } 250 251 /* 252 * When a file is memory mapped, we must keep the IO data synchronized 253 * between the DMU cache and the memory mapped pages. What this means: 254 * 255 * On Write: If we find a memory mapped page, we write to *both* 256 * the page and the dmu buffer. 257 * 258 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 259 * the file is memory mapped. 260 */ 261 static int 262 mappedwrite(vnode_t *vp, uint64_t woff, int nbytes, uio_t *uio, dmu_tx_t *tx) 263 { 264 znode_t *zp = VTOZ(vp); 265 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 266 int64_t start, off; 267 int len = nbytes; 268 int error = 0; 269 270 start = uio->uio_loffset; 271 off = start & PAGEOFFSET; 272 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 273 page_t *pp; 274 uint64_t bytes = MIN(PAGESIZE - off, len); 275 276 /* 277 * We don't want a new page to "appear" in the middle of 278 * the file update (because it may not get the write 279 * update data), so we grab a lock to block 280 * zfs_getpage(). 281 */ 282 rw_enter(&zp->z_map_lock, RW_WRITER); 283 if (pp = page_lookup(vp, start, SE_SHARED)) { 284 caddr_t va; 285 286 rw_exit(&zp->z_map_lock); 287 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 288 error = uiomove(va+off, bytes, UIO_WRITE, uio); 289 if (error == 0) { 290 dmu_write(zfsvfs->z_os, zp->z_id, 291 woff, bytes, va+off, tx); 292 } 293 ppmapout(va); 294 page_unlock(pp); 295 } else { 296 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 297 woff, bytes, uio, tx); 298 rw_exit(&zp->z_map_lock); 299 } 300 len -= bytes; 301 woff += bytes; 302 off = 0; 303 if (error) 304 break; 305 } 306 return (error); 307 } 308 309 /* 310 * When a file is memory mapped, we must keep the IO data synchronized 311 * between the DMU cache and the memory mapped pages. What this means: 312 * 313 * On Read: We "read" preferentially from memory mapped pages, 314 * else we default from the dmu buffer. 315 * 316 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 317 * the file is memory mapped. 318 */ 319 static int 320 mappedread(vnode_t *vp, char *addr, int nbytes, uio_t *uio) 321 { 322 int64_t start, off, bytes; 323 int len = nbytes; 324 int error = 0; 325 326 start = uio->uio_loffset; 327 off = start & PAGEOFFSET; 328 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 329 page_t *pp; 330 331 bytes = MIN(PAGESIZE - off, len); 332 if (pp = page_lookup(vp, start, SE_SHARED)) { 333 caddr_t va; 334 335 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 336 error = uiomove(va + off, bytes, UIO_READ, uio); 337 ppmapout(va); 338 page_unlock(pp); 339 } else { 340 /* XXX use dmu_read here? */ 341 error = uiomove(addr, bytes, UIO_READ, uio); 342 } 343 len -= bytes; 344 addr += bytes; 345 off = 0; 346 if (error) 347 break; 348 } 349 return (error); 350 } 351 352 uint_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 353 354 /* 355 * Read bytes from specified file into supplied buffer. 356 * 357 * IN: vp - vnode of file to be read from. 358 * uio - structure supplying read location, range info, 359 * and return buffer. 360 * ioflag - SYNC flags; used to provide FRSYNC semantics. 361 * cr - credentials of caller. 362 * 363 * OUT: uio - updated offset and range, buffer filled. 364 * 365 * RETURN: 0 if success 366 * error code if failure 367 * 368 * Side Effects: 369 * vp - atime updated if byte count > 0 370 */ 371 /* ARGSUSED */ 372 static int 373 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 374 { 375 znode_t *zp = VTOZ(vp); 376 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 377 uint64_t delta; 378 ssize_t n, size, cnt, ndone; 379 int error, i, numbufs; 380 dmu_buf_t *dbp, **dbpp; 381 382 ZFS_ENTER(zfsvfs); 383 384 /* 385 * Validate file offset 386 */ 387 if (uio->uio_loffset < (offset_t)0) { 388 ZFS_EXIT(zfsvfs); 389 return (EINVAL); 390 } 391 392 /* 393 * Fasttrack empty reads 394 */ 395 if (uio->uio_resid == 0) { 396 ZFS_EXIT(zfsvfs); 397 return (0); 398 } 399 400 /* 401 * Check for region locks 402 */ 403 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 404 if (error = chklock(vp, FREAD, 405 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 406 ZFS_EXIT(zfsvfs); 407 return (error); 408 } 409 } 410 411 /* 412 * If we're in FRSYNC mode, sync out this znode before reading it. 413 */ 414 zil_commit(zfsvfs->z_log, zp->z_last_itx, ioflag & FRSYNC); 415 416 /* 417 * Make sure nobody restructures the file (changes block size) 418 * in the middle of the read. 419 */ 420 rw_enter(&zp->z_grow_lock, RW_READER); 421 /* 422 * If we are reading past end-of-file we can skip 423 * to the end; but we might still need to set atime. 424 */ 425 if (uio->uio_loffset >= zp->z_phys->zp_size) { 426 cnt = 0; 427 error = 0; 428 goto out; 429 } 430 431 cnt = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 432 433 for (ndone = 0; ndone < cnt; ndone += zfs_read_chunk_size) { 434 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 435 n = MIN(zfs_read_chunk_size, 436 zp->z_phys->zp_size - uio->uio_loffset); 437 n = MIN(n, cnt); 438 dbpp = dmu_buf_hold_array(zfsvfs->z_os, zp->z_id, 439 uio->uio_loffset, n, &numbufs); 440 if (error = dmu_buf_read_array_canfail(dbpp, numbufs)) { 441 dmu_buf_rele_array(dbpp, numbufs); 442 goto out; 443 } 444 /* 445 * Compute the adjustment to align the dmu buffers 446 * with the uio buffer. 447 */ 448 delta = uio->uio_loffset - dbpp[0]->db_offset; 449 450 for (i = 0; i < numbufs; i++) { 451 if (n < 0) 452 break; 453 dbp = dbpp[i]; 454 size = dbp->db_size - delta; 455 /* 456 * XXX -- this is correct, but may be suboptimal. 457 * If the pages are all clean, we don't need to 458 * go through mappedread(). Maybe the VMODSORT 459 * stuff can help us here. 460 */ 461 if (vn_has_cached_data(vp)) { 462 error = mappedread(vp, (caddr_t)dbp->db_data + 463 delta, (n < size ? n : size), uio); 464 } else { 465 error = uiomove((caddr_t)dbp->db_data + delta, 466 (n < size ? n : size), UIO_READ, uio); 467 } 468 if (error) { 469 dmu_buf_rele_array(dbpp, numbufs); 470 goto out; 471 } 472 n -= dbp->db_size; 473 if (delta) { 474 n += delta; 475 delta = 0; 476 } 477 } 478 dmu_buf_rele_array(dbpp, numbufs); 479 } 480 out: 481 rw_exit(&zp->z_grow_lock); 482 483 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 484 ZFS_EXIT(zfsvfs); 485 return (error); 486 } 487 488 /* 489 * Fault in the pages of the first n bytes specified by the uio structure. 490 * 1 byte in each page is touched and the uio struct is unmodified. 491 * Any error will exit this routine as this is only a best 492 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 493 */ 494 static void 495 zfs_prefault_write(ssize_t n, struct uio *uio) 496 { 497 struct iovec *iov; 498 ulong_t cnt, incr; 499 caddr_t p; 500 uint8_t tmp; 501 502 iov = uio->uio_iov; 503 504 while (n) { 505 cnt = MIN(iov->iov_len, n); 506 if (cnt == 0) { 507 /* empty iov entry */ 508 iov++; 509 continue; 510 } 511 n -= cnt; 512 /* 513 * touch each page in this segment. 514 */ 515 p = iov->iov_base; 516 while (cnt) { 517 switch (uio->uio_segflg) { 518 case UIO_USERSPACE: 519 case UIO_USERISPACE: 520 if (fuword8(p, &tmp)) 521 return; 522 break; 523 case UIO_SYSSPACE: 524 if (kcopy(p, &tmp, 1)) 525 return; 526 break; 527 } 528 incr = MIN(cnt, PAGESIZE); 529 p += incr; 530 cnt -= incr; 531 } 532 /* 533 * touch the last byte in case it straddles a page. 534 */ 535 p--; 536 switch (uio->uio_segflg) { 537 case UIO_USERSPACE: 538 case UIO_USERISPACE: 539 if (fuword8(p, &tmp)) 540 return; 541 break; 542 case UIO_SYSSPACE: 543 if (kcopy(p, &tmp, 1)) 544 return; 545 break; 546 } 547 iov++; 548 } 549 } 550 551 /* 552 * Write the bytes to a file. 553 * 554 * IN: vp - vnode of file to be written to. 555 * uio - structure supplying write location, range info, 556 * and data buffer. 557 * ioflag - FAPPEND flag set if in append mode. 558 * cr - credentials of caller. 559 * 560 * OUT: uio - updated offset and range. 561 * 562 * RETURN: 0 if success 563 * error code if failure 564 * 565 * Timestamps: 566 * vp - ctime|mtime updated if byte count > 0 567 * 568 * Note: zfs_write() holds z_append_lock across calls to txg_wait_open(). 569 * It has to because of the semantics of FAPPEND. The implication is that 570 * we must never grab z_append_lock while in an assigned tx. 571 */ 572 /* ARGSUSED */ 573 static int 574 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 575 { 576 znode_t *zp = VTOZ(vp); 577 rlim64_t limit = uio->uio_llimit; 578 ssize_t start_resid = uio->uio_resid; 579 ssize_t tx_bytes; 580 uint64_t end_size; 581 dmu_tx_t *tx; 582 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 583 zilog_t *zilog = zfsvfs->z_log; 584 uint64_t seq = 0; 585 offset_t woff; 586 ssize_t n, nbytes; 587 int max_blksz = zfsvfs->z_max_blksz; 588 int need_append_lock, error; 589 krw_t grow_rw = RW_READER; 590 591 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 592 limit = MAXOFFSET_T; 593 594 n = start_resid; 595 596 /* 597 * Fasttrack empty write 598 */ 599 if (n == 0) 600 return (0); 601 602 ZFS_ENTER(zfsvfs); 603 604 /* 605 * Pre-fault the pages to ensure slow (eg NFS) pages don't hold up txg 606 */ 607 zfs_prefault_write(MIN(start_resid, SPA_MAXBLOCKSIZE), uio); 608 609 /* 610 * If in append mode, set the io offset pointer to eof. 611 */ 612 need_append_lock = ioflag & FAPPEND; 613 if (need_append_lock) { 614 rw_enter(&zp->z_append_lock, RW_WRITER); 615 woff = uio->uio_loffset = zp->z_phys->zp_size; 616 } else { 617 woff = uio->uio_loffset; 618 /* 619 * Validate file offset 620 */ 621 if (woff < 0) { 622 ZFS_EXIT(zfsvfs); 623 return (EINVAL); 624 } 625 626 /* 627 * If this write could change the file length, 628 * we need to synchronize with "appenders". 629 */ 630 if (woff < limit - n && woff + n > zp->z_phys->zp_size) { 631 need_append_lock = TRUE; 632 rw_enter(&zp->z_append_lock, RW_READER); 633 } 634 } 635 636 if (woff >= limit) { 637 error = EFBIG; 638 goto no_tx_done; 639 } 640 641 if ((woff + n) > limit || woff > (limit - n)) 642 n = limit - woff; 643 644 /* 645 * Check for region locks 646 */ 647 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 648 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) 649 goto no_tx_done; 650 top: 651 /* 652 * Make sure nobody restructures the file (changes block size) 653 * in the middle of the write. 654 */ 655 rw_enter(&zp->z_grow_lock, grow_rw); 656 657 end_size = MAX(zp->z_phys->zp_size, woff + n); 658 tx = dmu_tx_create(zfsvfs->z_os); 659 dmu_tx_hold_bonus(tx, zp->z_id); 660 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 661 error = dmu_tx_assign(tx, zfsvfs->z_assign); 662 if (error) { 663 dmu_tx_abort(tx); 664 rw_exit(&zp->z_grow_lock); 665 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 666 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 667 goto top; 668 } 669 goto no_tx_done; 670 } 671 672 if (end_size > zp->z_blksz && 673 (!ISP2(zp->z_blksz) || zp->z_blksz < max_blksz)) { 674 uint64_t new_blksz; 675 /* 676 * This write will increase the file size beyond 677 * the current block size so increase the block size. 678 */ 679 if (grow_rw == RW_READER && !rw_tryupgrade(&zp->z_grow_lock)) { 680 dmu_tx_commit(tx); 681 rw_exit(&zp->z_grow_lock); 682 grow_rw = RW_WRITER; 683 goto top; 684 } 685 if (zp->z_blksz > max_blksz) { 686 ASSERT(!ISP2(zp->z_blksz)); 687 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 688 } else { 689 new_blksz = MIN(end_size, max_blksz); 690 } 691 error = zfs_grow_blocksize(zp, new_blksz, tx); 692 if (error) { 693 tx_bytes = 0; 694 goto tx_done; 695 } 696 } 697 698 if (grow_rw == RW_WRITER) { 699 rw_downgrade(&zp->z_grow_lock); 700 grow_rw = RW_READER; 701 } 702 703 /* 704 * The file data does not fit in the znode "cache", so we 705 * will be writing to the file block data buffers. 706 * Each buffer will be written in a separate transaction; 707 * this keeps the intent log records small and allows us 708 * to do more fine-grained space accounting. 709 */ 710 while (n > 0) { 711 /* 712 * XXX - should we really limit each write to z_max_blksz? 713 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 714 */ 715 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 716 rw_enter(&zp->z_map_lock, RW_READER); 717 718 tx_bytes = uio->uio_resid; 719 if (vn_has_cached_data(vp)) { 720 rw_exit(&zp->z_map_lock); 721 error = mappedwrite(vp, woff, nbytes, uio, tx); 722 } else { 723 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 724 woff, nbytes, uio, tx); 725 rw_exit(&zp->z_map_lock); 726 } 727 tx_bytes -= uio->uio_resid; 728 729 if (error) { 730 /* XXX - do we need to "clean up" the dmu buffer? */ 731 break; 732 } 733 734 ASSERT(tx_bytes == nbytes); 735 736 n -= nbytes; 737 if (n <= 0) 738 break; 739 740 /* 741 * We have more work ahead of us, so wrap up this transaction 742 * and start another. Exact same logic as tx_done below. 743 */ 744 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 745 dmu_buf_will_dirty(zp->z_dbuf, tx); 746 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 747 uio->uio_loffset); 748 } 749 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 750 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 751 ioflag, uio); 752 dmu_tx_commit(tx); 753 754 /* Pre-fault the next set of pages */ 755 zfs_prefault_write(MIN(n, SPA_MAXBLOCKSIZE), uio); 756 757 /* 758 * Start another transaction. 759 */ 760 woff = uio->uio_loffset; 761 tx = dmu_tx_create(zfsvfs->z_os); 762 dmu_tx_hold_bonus(tx, zp->z_id); 763 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 764 error = dmu_tx_assign(tx, zfsvfs->z_assign); 765 if (error) { 766 dmu_tx_abort(tx); 767 rw_exit(&zp->z_grow_lock); 768 if (error == ERESTART && 769 zfsvfs->z_assign == TXG_NOWAIT) { 770 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 771 goto top; 772 } 773 goto no_tx_done; 774 } 775 } 776 777 tx_done: 778 779 if (tx_bytes != 0) { 780 /* 781 * Update the file size if it has changed; account 782 * for possible concurrent updates. 783 */ 784 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 785 dmu_buf_will_dirty(zp->z_dbuf, tx); 786 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 787 uio->uio_loffset); 788 } 789 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 790 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 791 ioflag, uio); 792 } 793 dmu_tx_commit(tx); 794 795 rw_exit(&zp->z_grow_lock); 796 797 no_tx_done: 798 799 if (need_append_lock) 800 rw_exit(&zp->z_append_lock); 801 802 /* 803 * If we're in replay mode, or we made no progress, return error. 804 * Otherwise, it's at least a partial write, so it's successful. 805 */ 806 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 807 ZFS_EXIT(zfsvfs); 808 return (error); 809 } 810 811 zil_commit(zilog, seq, ioflag & (FSYNC | FDSYNC)); 812 813 ZFS_EXIT(zfsvfs); 814 return (0); 815 } 816 817 /* 818 * Get data to generate a TX_WRITE intent log record. 819 */ 820 int 821 zfs_get_data(void *arg, lr_write_t *lr) 822 { 823 zfsvfs_t *zfsvfs = arg; 824 objset_t *os = zfsvfs->z_os; 825 znode_t *zp; 826 uint64_t off = lr->lr_offset; 827 int dlen = lr->lr_length; /* length of user data */ 828 int reclen = lr->lr_common.lrc_reclen; 829 int error = 0; 830 831 ASSERT(dlen != 0); 832 833 /* 834 * Nothing to do if the file has been removed or truncated. 835 */ 836 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 837 return (ENOENT); 838 if (off >= zp->z_phys->zp_size || zp->z_reap) { 839 VN_RELE(ZTOV(zp)); 840 return (ENOENT); 841 } 842 843 /* 844 * Write records come in two flavors: immediate and indirect. 845 * For small writes it's cheaper to store the data with the 846 * log record (immediate); for large writes it's cheaper to 847 * sync the data and get a pointer to it (indirect) so that 848 * we don't have to write the data twice. 849 */ 850 if (sizeof (lr_write_t) + dlen <= reclen) { /* immediate write */ 851 rw_enter(&zp->z_grow_lock, RW_READER); 852 dmu_buf_t *db = dmu_buf_hold(os, lr->lr_foid, off); 853 dmu_buf_read(db); 854 bcopy((char *)db->db_data + off - db->db_offset, lr + 1, dlen); 855 dmu_buf_rele(db); 856 rw_exit(&zp->z_grow_lock); 857 } else { 858 /* 859 * We have to grab z_grow_lock as RW_WRITER because 860 * dmu_sync() can't handle concurrent dbuf_dirty() (6313856). 861 * z_grow_lock will be replaced with a range lock soon, 862 * which will eliminate the concurrency hit, but dmu_sync() 863 * really needs more thought. It shouldn't have to rely on 864 * the caller to provide MT safety. 865 */ 866 rw_enter(&zp->z_grow_lock, RW_WRITER); 867 txg_suspend(dmu_objset_pool(os)); 868 error = dmu_sync(os, lr->lr_foid, off, &lr->lr_blkoff, 869 &lr->lr_blkptr, lr->lr_common.lrc_txg); 870 txg_resume(dmu_objset_pool(os)); 871 rw_exit(&zp->z_grow_lock); 872 } 873 VN_RELE(ZTOV(zp)); 874 return (error); 875 } 876 877 /*ARGSUSED*/ 878 static int 879 zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr) 880 { 881 znode_t *zp = VTOZ(vp); 882 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 883 int error; 884 885 ZFS_ENTER(zfsvfs); 886 error = zfs_zaccess_rwx(zp, mode, cr); 887 ZFS_EXIT(zfsvfs); 888 return (error); 889 } 890 891 /* 892 * Lookup an entry in a directory, or an extended attribute directory. 893 * If it exists, return a held vnode reference for it. 894 * 895 * IN: dvp - vnode of directory to search. 896 * nm - name of entry to lookup. 897 * pnp - full pathname to lookup [UNUSED]. 898 * flags - LOOKUP_XATTR set if looking for an attribute. 899 * rdir - root directory vnode [UNUSED]. 900 * cr - credentials of caller. 901 * 902 * OUT: vpp - vnode of located entry, NULL if not found. 903 * 904 * RETURN: 0 if success 905 * error code if failure 906 * 907 * Timestamps: 908 * NA 909 */ 910 /* ARGSUSED */ 911 static int 912 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 913 int flags, vnode_t *rdir, cred_t *cr) 914 { 915 916 znode_t *zdp = VTOZ(dvp); 917 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 918 int error; 919 920 ZFS_ENTER(zfsvfs); 921 922 *vpp = NULL; 923 924 if (flags & LOOKUP_XATTR) { 925 /* 926 * We don't allow recursive attributes.. 927 * Maybe someday we will. 928 */ 929 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 930 ZFS_EXIT(zfsvfs); 931 return (EINVAL); 932 } 933 934 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr)) { 935 ZFS_EXIT(zfsvfs); 936 return (error); 937 } 938 939 /* 940 * Do we have permission to get into attribute directory? 941 */ 942 943 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) { 944 VN_RELE(*vpp); 945 } 946 947 ZFS_EXIT(zfsvfs); 948 return (error); 949 } 950 951 if (dvp->v_type != VDIR) 952 return (ENOTDIR); 953 954 /* 955 * Check accessibility of directory. 956 */ 957 958 if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) { 959 ZFS_EXIT(zfsvfs); 960 return (error); 961 } 962 963 if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) { 964 965 /* 966 * Convert device special files 967 */ 968 if (IS_DEVVP(*vpp)) { 969 vnode_t *svp; 970 971 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 972 VN_RELE(*vpp); 973 if (svp == NULL) 974 error = ENOSYS; 975 else 976 *vpp = svp; 977 } 978 } 979 980 ZFS_EXIT(zfsvfs); 981 return (error); 982 } 983 984 /* 985 * Attempt to create a new entry in a directory. If the entry 986 * already exists, truncate the file if permissible, else return 987 * an error. Return the vp of the created or trunc'd file. 988 * 989 * IN: dvp - vnode of directory to put new file entry in. 990 * name - name of new file entry. 991 * vap - attributes of new file. 992 * excl - flag indicating exclusive or non-exclusive mode. 993 * mode - mode to open file with. 994 * cr - credentials of caller. 995 * flag - large file flag [UNUSED]. 996 * 997 * OUT: vpp - vnode of created or trunc'd entry. 998 * 999 * RETURN: 0 if success 1000 * error code if failure 1001 * 1002 * Timestamps: 1003 * dvp - ctime|mtime updated if new entry created 1004 * vp - ctime|mtime always, atime if new 1005 */ 1006 /* ARGSUSED */ 1007 static int 1008 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1009 int mode, vnode_t **vpp, cred_t *cr, int flag) 1010 { 1011 znode_t *zp, *dzp = VTOZ(dvp); 1012 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1013 zilog_t *zilog = zfsvfs->z_log; 1014 uint64_t seq = 0; 1015 objset_t *os = zfsvfs->z_os; 1016 zfs_dirlock_t *dl; 1017 dmu_tx_t *tx; 1018 int error; 1019 uint64_t zoid; 1020 1021 ZFS_ENTER(zfsvfs); 1022 1023 top: 1024 *vpp = NULL; 1025 1026 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1027 vap->va_mode &= ~VSVTX; 1028 1029 if (*name == '\0') { 1030 /* 1031 * Null component name refers to the directory itself. 1032 */ 1033 VN_HOLD(dvp); 1034 zp = dzp; 1035 dl = NULL; 1036 error = 0; 1037 } else { 1038 /* possible VN_HOLD(zp) */ 1039 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) { 1040 if (strcmp(name, "..") == 0) 1041 error = EISDIR; 1042 ZFS_EXIT(zfsvfs); 1043 return (error); 1044 } 1045 } 1046 1047 zoid = zp ? zp->z_id : -1ULL; 1048 1049 if (zp == NULL) { 1050 /* 1051 * Create a new file object and update the directory 1052 * to reference it. 1053 */ 1054 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 1055 goto out; 1056 } 1057 1058 /* 1059 * We only support the creation of regular files in 1060 * extended attribute directories. 1061 */ 1062 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1063 (vap->va_type != VREG)) { 1064 error = EINVAL; 1065 goto out; 1066 } 1067 1068 tx = dmu_tx_create(os); 1069 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1070 dmu_tx_hold_bonus(tx, dzp->z_id); 1071 dmu_tx_hold_zap(tx, dzp->z_id, 1); 1072 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1073 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1074 0, SPA_MAXBLOCKSIZE); 1075 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1076 if (error) { 1077 dmu_tx_abort(tx); 1078 zfs_dirent_unlock(dl); 1079 if (error == ERESTART && 1080 zfsvfs->z_assign == TXG_NOWAIT) { 1081 txg_wait_open(dmu_objset_pool(os), 0); 1082 goto top; 1083 } 1084 ZFS_EXIT(zfsvfs); 1085 return (error); 1086 } 1087 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1088 ASSERT(zp->z_id == zoid); 1089 (void) zfs_link_create(dl, zp, tx, ZNEW); 1090 seq = zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name); 1091 dmu_tx_commit(tx); 1092 } else { 1093 /* 1094 * A directory entry already exists for this name. 1095 */ 1096 /* 1097 * Can't truncate an existing file if in exclusive mode. 1098 */ 1099 if (excl == EXCL) { 1100 error = EEXIST; 1101 goto out; 1102 } 1103 /* 1104 * Can't open a directory for writing. 1105 */ 1106 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1107 error = EISDIR; 1108 goto out; 1109 } 1110 /* 1111 * Verify requested access to file. 1112 */ 1113 if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) { 1114 goto out; 1115 } 1116 /* 1117 * Truncate regular files if requested. 1118 */ 1119 1120 /* 1121 * Need to update dzp->z_seq? 1122 */ 1123 1124 mutex_enter(&dzp->z_lock); 1125 dzp->z_seq++; 1126 mutex_exit(&dzp->z_lock); 1127 1128 if ((ZTOV(zp)->v_type == VREG) && (zp->z_phys->zp_size != 0) && 1129 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1130 /* 1131 * Truncate the file. 1132 */ 1133 tx = dmu_tx_create(os); 1134 dmu_tx_hold_bonus(tx, zoid); 1135 dmu_tx_hold_free(tx, zoid, 0, DMU_OBJECT_END); 1136 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1137 if (error) { 1138 dmu_tx_abort(tx); 1139 if (dl) 1140 zfs_dirent_unlock(dl); 1141 VN_RELE(ZTOV(zp)); 1142 if (error == ERESTART && 1143 zfsvfs->z_assign == TXG_NOWAIT) { 1144 txg_wait_open(dmu_objset_pool(os), 0); 1145 goto top; 1146 } 1147 ZFS_EXIT(zfsvfs); 1148 return (error); 1149 } 1150 /* 1151 * Grab the grow_lock to serialize this change with 1152 * respect to other file manipulations. 1153 */ 1154 rw_enter(&zp->z_grow_lock, RW_WRITER); 1155 error = zfs_freesp(zp, 0, 0, mode, tx, cr); 1156 if (error == 0) { 1157 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1158 seq = zfs_log_truncate(zilog, tx, 1159 TX_TRUNCATE, zp, 0, 0); 1160 } 1161 rw_exit(&zp->z_grow_lock); 1162 dmu_tx_commit(tx); 1163 } 1164 } 1165 out: 1166 1167 if (dl) 1168 zfs_dirent_unlock(dl); 1169 1170 if (error) { 1171 if (zp) 1172 VN_RELE(ZTOV(zp)); 1173 } else { 1174 *vpp = ZTOV(zp); 1175 /* 1176 * If vnode is for a device return a specfs vnode instead. 1177 */ 1178 if (IS_DEVVP(*vpp)) { 1179 struct vnode *svp; 1180 1181 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1182 VN_RELE(*vpp); 1183 if (svp == NULL) { 1184 error = ENOSYS; 1185 } 1186 *vpp = svp; 1187 } 1188 } 1189 1190 zil_commit(zilog, seq, 0); 1191 1192 ZFS_EXIT(zfsvfs); 1193 return (error); 1194 } 1195 1196 /* 1197 * Remove an entry from a directory. 1198 * 1199 * IN: dvp - vnode of directory to remove entry from. 1200 * name - name of entry to remove. 1201 * cr - credentials of caller. 1202 * 1203 * RETURN: 0 if success 1204 * error code if failure 1205 * 1206 * Timestamps: 1207 * dvp - ctime|mtime 1208 * vp - ctime (if nlink > 0) 1209 */ 1210 static int 1211 zfs_remove(vnode_t *dvp, char *name, cred_t *cr) 1212 { 1213 znode_t *zp, *dzp = VTOZ(dvp); 1214 znode_t *xzp = NULL; 1215 vnode_t *vp; 1216 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1217 zilog_t *zilog = zfsvfs->z_log; 1218 uint64_t seq = 0; 1219 uint64_t acl_obj, xattr_obj; 1220 zfs_dirlock_t *dl; 1221 dmu_tx_t *tx; 1222 int may_delete_now, delete_now = FALSE; 1223 int reaped; 1224 int error; 1225 1226 ZFS_ENTER(zfsvfs); 1227 1228 top: 1229 /* 1230 * Attempt to lock directory; fail if entry doesn't exist. 1231 */ 1232 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1233 ZFS_EXIT(zfsvfs); 1234 return (error); 1235 } 1236 1237 vp = ZTOV(zp); 1238 1239 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1240 goto out; 1241 } 1242 1243 /* 1244 * Need to use rmdir for removing directories. 1245 */ 1246 if (vp->v_type == VDIR) { 1247 error = EPERM; 1248 goto out; 1249 } 1250 1251 vnevent_remove(vp); 1252 1253 mutex_enter(&vp->v_lock); 1254 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1255 mutex_exit(&vp->v_lock); 1256 1257 /* 1258 * We may delete the znode now, or we may put it on the delete queue; 1259 * it depends on whether we're the last link, and on whether there are 1260 * other holds on the vnode. So we dmu_tx_hold() the right things to 1261 * allow for either case. 1262 */ 1263 tx = dmu_tx_create(zfsvfs->z_os); 1264 dmu_tx_hold_zap(tx, dzp->z_id, -1); 1265 dmu_tx_hold_bonus(tx, zp->z_id); 1266 if (may_delete_now) 1267 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1268 1269 /* are there any extended attributes? */ 1270 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1271 /* 1272 * XXX - There is a possibility that the delete 1273 * of the parent file could succeed, but then we get 1274 * an ENOSPC when we try to delete the xattrs... 1275 * so we would need to re-try the deletes periodically 1276 */ 1277 /* XXX - do we need this if we are deleting? */ 1278 dmu_tx_hold_bonus(tx, xattr_obj); 1279 } 1280 1281 /* are there any additional acls */ 1282 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1283 may_delete_now) 1284 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1285 1286 /* charge as an update -- would be nice not to charge at all */ 1287 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, -1); 1288 1289 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1290 if (error) { 1291 dmu_tx_abort(tx); 1292 zfs_dirent_unlock(dl); 1293 VN_RELE(vp); 1294 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1295 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1296 goto top; 1297 } 1298 ZFS_EXIT(zfsvfs); 1299 return (error); 1300 } 1301 1302 /* 1303 * Remove the directory entry. 1304 */ 1305 error = zfs_link_destroy(dl, zp, tx, 0, &reaped); 1306 1307 if (error) { 1308 dmu_tx_commit(tx); 1309 goto out; 1310 } 1311 1312 if (reaped) { 1313 mutex_enter(&vp->v_lock); 1314 delete_now = may_delete_now && 1315 vp->v_count == 1 && !vn_has_cached_data(vp) && 1316 zp->z_phys->zp_xattr == xattr_obj && 1317 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1318 mutex_exit(&vp->v_lock); 1319 } 1320 1321 if (delete_now) { 1322 if (zp->z_phys->zp_xattr) { 1323 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1324 ASSERT3U(error, ==, 0); 1325 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1326 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1327 mutex_enter(&xzp->z_lock); 1328 xzp->z_reap = 1; 1329 xzp->z_phys->zp_links = 0; 1330 mutex_exit(&xzp->z_lock); 1331 zfs_dq_add(xzp, tx); 1332 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1333 } 1334 mutex_enter(&zp->z_lock); 1335 mutex_enter(&vp->v_lock); 1336 vp->v_count--; 1337 ASSERT3U(vp->v_count, ==, 0); 1338 mutex_exit(&vp->v_lock); 1339 zp->z_active = 0; 1340 mutex_exit(&zp->z_lock); 1341 zfs_znode_delete(zp, tx); 1342 VFS_RELE(zfsvfs->z_vfs); 1343 } else if (reaped) { 1344 zfs_dq_add(zp, tx); 1345 } 1346 1347 seq = zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name); 1348 1349 dmu_tx_commit(tx); 1350 out: 1351 zfs_dirent_unlock(dl); 1352 1353 if (!delete_now) { 1354 VN_RELE(vp); 1355 } else if (xzp) { 1356 /* this rele delayed to prevent nesting transactions */ 1357 VN_RELE(ZTOV(xzp)); 1358 } 1359 1360 zil_commit(zilog, seq, 0); 1361 1362 ZFS_EXIT(zfsvfs); 1363 return (error); 1364 } 1365 1366 /* 1367 * Create a new directory and insert it into dvp using the name 1368 * provided. Return a pointer to the inserted directory. 1369 * 1370 * IN: dvp - vnode of directory to add subdir to. 1371 * dirname - name of new directory. 1372 * vap - attributes of new directory. 1373 * cr - credentials of caller. 1374 * 1375 * OUT: vpp - vnode of created directory. 1376 * 1377 * RETURN: 0 if success 1378 * error code if failure 1379 * 1380 * Timestamps: 1381 * dvp - ctime|mtime updated 1382 * vp - ctime|mtime|atime updated 1383 */ 1384 static int 1385 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr) 1386 { 1387 znode_t *zp, *dzp = VTOZ(dvp); 1388 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1389 zilog_t *zilog = zfsvfs->z_log; 1390 uint64_t seq = 0; 1391 zfs_dirlock_t *dl; 1392 uint64_t zoid = 0; 1393 dmu_tx_t *tx; 1394 int error; 1395 1396 ASSERT(vap->va_type == VDIR); 1397 1398 ZFS_ENTER(zfsvfs); 1399 1400 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1401 ZFS_EXIT(zfsvfs); 1402 return (EINVAL); 1403 } 1404 top: 1405 *vpp = NULL; 1406 1407 /* 1408 * First make sure the new directory doesn't exist. 1409 */ 1410 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) { 1411 ZFS_EXIT(zfsvfs); 1412 return (error); 1413 } 1414 1415 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) { 1416 zfs_dirent_unlock(dl); 1417 ZFS_EXIT(zfsvfs); 1418 return (error); 1419 } 1420 1421 /* 1422 * Add a new entry to the directory. 1423 */ 1424 tx = dmu_tx_create(zfsvfs->z_os); 1425 dmu_tx_hold_zap(tx, dzp->z_id, 1); 1426 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 0); 1427 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1428 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1429 0, SPA_MAXBLOCKSIZE); 1430 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1431 if (error) { 1432 dmu_tx_abort(tx); 1433 zfs_dirent_unlock(dl); 1434 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1435 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1436 goto top; 1437 } 1438 ZFS_EXIT(zfsvfs); 1439 return (error); 1440 } 1441 1442 /* 1443 * Create new node. 1444 */ 1445 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1446 1447 /* 1448 * Now put new name in parent dir. 1449 */ 1450 (void) zfs_link_create(dl, zp, tx, ZNEW); 1451 1452 *vpp = ZTOV(zp); 1453 1454 seq = zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname); 1455 dmu_tx_commit(tx); 1456 1457 zfs_dirent_unlock(dl); 1458 1459 zil_commit(zilog, seq, 0); 1460 1461 ZFS_EXIT(zfsvfs); 1462 return (0); 1463 } 1464 1465 /* 1466 * Remove a directory subdir entry. If the current working 1467 * directory is the same as the subdir to be removed, the 1468 * remove will fail. 1469 * 1470 * IN: dvp - vnode of directory to remove from. 1471 * name - name of directory to be removed. 1472 * cwd - vnode of current working directory. 1473 * cr - credentials of caller. 1474 * 1475 * RETURN: 0 if success 1476 * error code if failure 1477 * 1478 * Timestamps: 1479 * dvp - ctime|mtime updated 1480 */ 1481 static int 1482 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 1483 { 1484 znode_t *dzp = VTOZ(dvp); 1485 znode_t *zp; 1486 vnode_t *vp; 1487 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1488 zilog_t *zilog = zfsvfs->z_log; 1489 uint64_t seq = 0; 1490 zfs_dirlock_t *dl; 1491 dmu_tx_t *tx; 1492 int error; 1493 1494 ZFS_ENTER(zfsvfs); 1495 1496 top: 1497 zp = NULL; 1498 1499 /* 1500 * Attempt to lock directory; fail if entry doesn't exist. 1501 */ 1502 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1503 ZFS_EXIT(zfsvfs); 1504 return (error); 1505 } 1506 1507 vp = ZTOV(zp); 1508 1509 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1510 goto out; 1511 } 1512 1513 if (vp->v_type != VDIR) { 1514 error = ENOTDIR; 1515 goto out; 1516 } 1517 1518 if (vp == cwd) { 1519 error = EINVAL; 1520 goto out; 1521 } 1522 1523 vnevent_rmdir(vp); 1524 1525 /* 1526 * Grab a lock on the parent pointer make sure we play well 1527 * with the treewalk and directory rename code. 1528 */ 1529 rw_enter(&zp->z_parent_lock, RW_WRITER); 1530 1531 tx = dmu_tx_create(zfsvfs->z_os); 1532 dmu_tx_hold_zap(tx, dzp->z_id, 1); 1533 dmu_tx_hold_bonus(tx, zp->z_id); 1534 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, 1); 1535 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1536 if (error) { 1537 dmu_tx_abort(tx); 1538 rw_exit(&zp->z_parent_lock); 1539 zfs_dirent_unlock(dl); 1540 VN_RELE(vp); 1541 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1542 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1543 goto top; 1544 } 1545 ZFS_EXIT(zfsvfs); 1546 return (error); 1547 } 1548 1549 error = zfs_link_destroy(dl, zp, tx, 0, NULL); 1550 1551 if (error == 0) 1552 seq = zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name); 1553 1554 dmu_tx_commit(tx); 1555 1556 rw_exit(&zp->z_parent_lock); 1557 out: 1558 zfs_dirent_unlock(dl); 1559 1560 VN_RELE(vp); 1561 1562 zil_commit(zilog, seq, 0); 1563 1564 ZFS_EXIT(zfsvfs); 1565 return (error); 1566 } 1567 1568 /* 1569 * Read as many directory entries as will fit into the provided 1570 * buffer from the given directory cursor position (specified in 1571 * the uio structure. 1572 * 1573 * IN: vp - vnode of directory to read. 1574 * uio - structure supplying read location, range info, 1575 * and return buffer. 1576 * cr - credentials of caller. 1577 * 1578 * OUT: uio - updated offset and range, buffer filled. 1579 * eofp - set to true if end-of-file detected. 1580 * 1581 * RETURN: 0 if success 1582 * error code if failure 1583 * 1584 * Timestamps: 1585 * vp - atime updated 1586 * 1587 * Note that the low 4 bits of the cookie returned by zap is always zero. 1588 * This allows us to use the low range for "special" directory entries: 1589 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1590 * we use the offset 2 for the '.zfs' directory. 1591 */ 1592 /* ARGSUSED */ 1593 static int 1594 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp) 1595 { 1596 znode_t *zp = VTOZ(vp); 1597 iovec_t *iovp; 1598 dirent64_t *odp; 1599 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1600 objset_t *os; 1601 caddr_t outbuf; 1602 size_t bufsize; 1603 zap_cursor_t zc; 1604 zap_attribute_t zap; 1605 uint_t bytes_wanted; 1606 ushort_t this_reclen; 1607 uint64_t offset; /* must be unsigned; checks for < 1 */ 1608 off64_t *next; 1609 int local_eof; 1610 int outcount; 1611 int error; 1612 uint8_t prefetch; 1613 1614 ZFS_ENTER(zfsvfs); 1615 1616 /* 1617 * If we are not given an eof variable, 1618 * use a local one. 1619 */ 1620 if (eofp == NULL) 1621 eofp = &local_eof; 1622 1623 /* 1624 * Check for valid iov_len. 1625 */ 1626 if (uio->uio_iov->iov_len <= 0) { 1627 ZFS_EXIT(zfsvfs); 1628 return (EINVAL); 1629 } 1630 1631 /* 1632 * Quit if directory has been removed (posix) 1633 */ 1634 if ((*eofp = zp->z_reap) != 0) { 1635 ZFS_EXIT(zfsvfs); 1636 return (0); 1637 } 1638 1639 error = 0; 1640 os = zfsvfs->z_os; 1641 offset = uio->uio_loffset; 1642 prefetch = zp->z_zn_prefetch; 1643 1644 /* 1645 * Initialize the iterator cursor. 1646 */ 1647 if (offset <= 3) { 1648 /* 1649 * Start iteration from the beginning of the directory. 1650 */ 1651 zap_cursor_init(&zc, os, zp->z_id); 1652 } else { 1653 /* 1654 * The offset is a serialized cursor. 1655 */ 1656 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1657 } 1658 1659 /* 1660 * Get space to change directory entries into fs independent format. 1661 */ 1662 iovp = uio->uio_iov; 1663 bytes_wanted = iovp->iov_len; 1664 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1665 bufsize = bytes_wanted; 1666 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1667 odp = (struct dirent64 *)outbuf; 1668 } else { 1669 bufsize = bytes_wanted; 1670 odp = (struct dirent64 *)iovp->iov_base; 1671 } 1672 1673 /* 1674 * Transform to file-system independent format 1675 */ 1676 outcount = 0; 1677 while (outcount < bytes_wanted) { 1678 /* 1679 * Special case `.', `..', and `.zfs'. 1680 */ 1681 if (offset == 0) { 1682 (void) strcpy(zap.za_name, "."); 1683 zap.za_first_integer = zp->z_id; 1684 this_reclen = DIRENT64_RECLEN(1); 1685 } else if (offset == 1) { 1686 (void) strcpy(zap.za_name, ".."); 1687 zap.za_first_integer = zp->z_phys->zp_parent; 1688 this_reclen = DIRENT64_RECLEN(2); 1689 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1690 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1691 zap.za_first_integer = ZFSCTL_INO_ROOT; 1692 this_reclen = 1693 DIRENT64_RECLEN(sizeof (ZFS_CTLDIR_NAME) - 1); 1694 } else { 1695 /* 1696 * Grab next entry. 1697 */ 1698 if (error = zap_cursor_retrieve(&zc, &zap)) { 1699 if ((*eofp = (error == ENOENT)) != 0) 1700 break; 1701 else 1702 goto update; 1703 } 1704 1705 if (zap.za_integer_length != 8 || 1706 zap.za_num_integers != 1) { 1707 cmn_err(CE_WARN, "zap_readdir: bad directory " 1708 "entry, obj = %lld, offset = %lld\n", 1709 (u_longlong_t)zp->z_id, 1710 (u_longlong_t)offset); 1711 error = ENXIO; 1712 goto update; 1713 } 1714 this_reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1715 } 1716 1717 /* 1718 * Will this entry fit in the buffer? 1719 */ 1720 if (outcount + this_reclen > bufsize) { 1721 /* 1722 * Did we manage to fit anything in the buffer? 1723 */ 1724 if (!outcount) { 1725 error = EINVAL; 1726 goto update; 1727 } 1728 break; 1729 } 1730 /* 1731 * Add this entry: 1732 */ 1733 odp->d_ino = (ino64_t)zap.za_first_integer; 1734 odp->d_reclen = (ushort_t)this_reclen; 1735 /* NOTE: d_off is the offset for the *next* entry */ 1736 next = &(odp->d_off); 1737 (void) strncpy(odp->d_name, zap.za_name, 1738 DIRENT64_NAMELEN(this_reclen)); 1739 outcount += this_reclen; 1740 odp = (dirent64_t *)((intptr_t)odp + this_reclen); 1741 1742 ASSERT(outcount <= bufsize); 1743 1744 /* Prefetch znode */ 1745 if (prefetch) 1746 dmu_prefetch(os, zap.za_first_integer, 0, 0); 1747 1748 /* 1749 * Move to the next entry, fill in the previous offset. 1750 */ 1751 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 1752 zap_cursor_advance(&zc); 1753 offset = zap_cursor_serialize(&zc); 1754 } else { 1755 offset += 1; 1756 } 1757 *next = offset; 1758 } 1759 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 1760 1761 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 1762 iovp->iov_base += outcount; 1763 iovp->iov_len -= outcount; 1764 uio->uio_resid -= outcount; 1765 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 1766 /* 1767 * Reset the pointer. 1768 */ 1769 offset = uio->uio_loffset; 1770 } 1771 1772 update: 1773 zap_cursor_fini(&zc); 1774 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 1775 kmem_free(outbuf, bufsize); 1776 1777 if (error == ENOENT) 1778 error = 0; 1779 1780 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 1781 1782 uio->uio_loffset = offset; 1783 ZFS_EXIT(zfsvfs); 1784 return (error); 1785 } 1786 1787 /* ARGSUSED */ 1788 static int 1789 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1790 { 1791 znode_t *zp = VTOZ(vp); 1792 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1793 1794 ZFS_ENTER(zfsvfs); 1795 zil_commit(zfsvfs->z_log, zp->z_last_itx, FSYNC); 1796 ZFS_EXIT(zfsvfs); 1797 return (0); 1798 } 1799 1800 /* 1801 * Get the requested file attributes and place them in the provided 1802 * vattr structure. 1803 * 1804 * IN: vp - vnode of file. 1805 * vap - va_mask identifies requested attributes. 1806 * flags - [UNUSED] 1807 * cr - credentials of caller. 1808 * 1809 * OUT: vap - attribute values. 1810 * 1811 * RETURN: 0 (always succeeds) 1812 */ 1813 /* ARGSUSED */ 1814 static int 1815 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 1816 { 1817 znode_t *zp = VTOZ(vp); 1818 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1819 znode_phys_t *pzp = zp->z_phys; 1820 int error; 1821 1822 ZFS_ENTER(zfsvfs); 1823 1824 /* 1825 * Return all attributes. It's cheaper to provide the answer 1826 * than to determine whether we were asked the question. 1827 */ 1828 mutex_enter(&zp->z_lock); 1829 1830 vap->va_type = vp->v_type; 1831 vap->va_mode = pzp->zp_mode & MODEMASK; 1832 vap->va_uid = zp->z_phys->zp_uid; 1833 vap->va_gid = zp->z_phys->zp_gid; 1834 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 1835 vap->va_nodeid = zp->z_id; 1836 vap->va_nlink = MIN(pzp->zp_links, UINT32_MAX); /* nlink_t limit! */ 1837 vap->va_size = pzp->zp_size; 1838 vap->va_rdev = pzp->zp_rdev; 1839 vap->va_seq = zp->z_seq; 1840 1841 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 1842 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 1843 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 1844 1845 /* 1846 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 1847 * Also, if we are the owner don't bother, since owner should 1848 * always be allowed to read basic attributes of file. 1849 */ 1850 if (!(zp->z_phys->zp_flags & ZFS_ACL_TRIVIAL) && 1851 (zp->z_phys->zp_uid != crgetuid(cr))) { 1852 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) { 1853 mutex_exit(&zp->z_lock); 1854 ZFS_EXIT(zfsvfs); 1855 return (error); 1856 } 1857 } 1858 1859 mutex_exit(&zp->z_lock); 1860 1861 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 1862 1863 if (zp->z_blksz == 0) { 1864 /* 1865 * Block size hasn't been set; suggest maximal I/O transfers. 1866 */ 1867 vap->va_blksize = zfsvfs->z_max_blksz; 1868 } 1869 1870 ZFS_EXIT(zfsvfs); 1871 return (0); 1872 } 1873 1874 /* 1875 * Set the file attributes to the values contained in the 1876 * vattr structure. 1877 * 1878 * IN: vp - vnode of file to be modified. 1879 * vap - new attribute values. 1880 * flags - ATTR_UTIME set if non-default time values provided. 1881 * cr - credentials of caller. 1882 * 1883 * RETURN: 0 if success 1884 * error code if failure 1885 * 1886 * Timestamps: 1887 * vp - ctime updated, mtime updated if size changed. 1888 */ 1889 /* ARGSUSED */ 1890 static int 1891 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1892 caller_context_t *ct) 1893 { 1894 struct znode *zp = VTOZ(vp); 1895 znode_phys_t *pzp = zp->z_phys; 1896 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1897 zilog_t *zilog = zfsvfs->z_log; 1898 uint64_t seq = 0; 1899 dmu_tx_t *tx; 1900 uint_t mask = vap->va_mask; 1901 uint_t mask_applied = 0; 1902 vattr_t oldva; 1903 int trim_mask = FALSE; 1904 int saved_mask; 1905 uint64_t new_mode; 1906 znode_t *attrzp; 1907 int have_grow_lock; 1908 int need_policy = FALSE; 1909 int err; 1910 1911 if (mask == 0) 1912 return (0); 1913 1914 if (mask & AT_NOSET) 1915 return (EINVAL); 1916 1917 if (mask & AT_SIZE && vp->v_type == VDIR) 1918 return (EISDIR); 1919 1920 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) 1921 return (EINVAL); 1922 1923 ZFS_ENTER(zfsvfs); 1924 1925 top: 1926 have_grow_lock = FALSE; 1927 attrzp = NULL; 1928 1929 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 1930 ZFS_EXIT(zfsvfs); 1931 return (EROFS); 1932 } 1933 1934 /* 1935 * First validate permissions 1936 */ 1937 1938 if (mask & AT_SIZE) { 1939 err = zfs_zaccess(zp, ACE_WRITE_DATA, cr); 1940 if (err) { 1941 ZFS_EXIT(zfsvfs); 1942 return (err); 1943 } 1944 } 1945 1946 if (mask & (AT_ATIME|AT_MTIME)) 1947 need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr); 1948 1949 if (mask & (AT_UID|AT_GID)) { 1950 int idmask = (mask & (AT_UID|AT_GID)); 1951 int take_owner; 1952 int take_group; 1953 1954 /* 1955 * NOTE: even if a new mode is being set, 1956 * we may clear S_ISUID/S_ISGID bits. 1957 */ 1958 1959 if (!(mask & AT_MODE)) 1960 vap->va_mode = pzp->zp_mode; 1961 1962 /* 1963 * Take ownership or chgrp to group we are a member of 1964 */ 1965 1966 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 1967 take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr); 1968 1969 /* 1970 * If both AT_UID and AT_GID are set then take_owner and 1971 * take_group must both be set in order to allow taking 1972 * ownership. 1973 * 1974 * Otherwise, send the check through secpolicy_vnode_setattr() 1975 * 1976 */ 1977 1978 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 1979 ((idmask == AT_UID) && take_owner) || 1980 ((idmask == AT_GID) && take_group)) { 1981 if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) { 1982 /* 1983 * Remove setuid/setgid for non-privileged users 1984 */ 1985 secpolicy_setid_clear(vap, cr); 1986 trim_mask = TRUE; 1987 saved_mask = vap->va_mask; 1988 } else { 1989 need_policy = TRUE; 1990 } 1991 } else { 1992 need_policy = TRUE; 1993 } 1994 } 1995 1996 if (mask & AT_MODE) 1997 need_policy = TRUE; 1998 1999 if (need_policy) { 2000 mutex_enter(&zp->z_lock); 2001 oldva.va_mode = pzp->zp_mode; 2002 oldva.va_uid = zp->z_phys->zp_uid; 2003 oldva.va_gid = zp->z_phys->zp_gid; 2004 mutex_exit(&zp->z_lock); 2005 2006 /* 2007 * If trim_mask is set then take ownership 2008 * has been granted. In that case remove 2009 * UID|GID from mask so that 2010 * secpolicy_vnode_setattr() doesn't revoke it. 2011 */ 2012 if (trim_mask) 2013 vap->va_mask &= ~(AT_UID|AT_GID); 2014 2015 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2016 (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp); 2017 if (err) { 2018 ZFS_EXIT(zfsvfs); 2019 return (err); 2020 } 2021 2022 if (trim_mask) 2023 vap->va_mask |= (saved_mask & (AT_UID|AT_GID)); 2024 } 2025 2026 /* 2027 * secpolicy_vnode_setattr, or take ownership may have 2028 * changed va_mask 2029 */ 2030 mask = vap->va_mask; 2031 2032 tx = dmu_tx_create(zfsvfs->z_os); 2033 dmu_tx_hold_bonus(tx, zp->z_id); 2034 2035 if (mask & AT_MODE) { 2036 2037 new_mode = (pzp->zp_mode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2038 2039 if (zp->z_phys->zp_acl.z_acl_extern_obj) 2040 dmu_tx_hold_write(tx, 2041 pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE); 2042 else 2043 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2044 0, ZFS_ACL_SIZE(MAX_ACL_SIZE)); 2045 } 2046 2047 if (mask & AT_SIZE) { 2048 uint64_t off = vap->va_size; 2049 /* 2050 * Grab the grow_lock to serialize this change with 2051 * respect to other file manipulations. 2052 */ 2053 rw_enter(&zp->z_grow_lock, RW_WRITER); 2054 have_grow_lock = TRUE; 2055 if (off < zp->z_phys->zp_size) 2056 dmu_tx_hold_free(tx, zp->z_id, off, DMU_OBJECT_END); 2057 else if (zp->z_phys->zp_size && 2058 zp->z_blksz < zfsvfs->z_max_blksz && off > zp->z_blksz) 2059 /* we will rewrite this block if we grow */ 2060 dmu_tx_hold_write(tx, zp->z_id, 0, zp->z_phys->zp_size); 2061 } 2062 2063 if ((mask & (AT_UID | AT_GID)) && zp->z_phys->zp_xattr != 0) { 2064 err = zfs_zget(zp->z_zfsvfs, zp->z_phys->zp_xattr, &attrzp); 2065 if (err) { 2066 dmu_tx_abort(tx); 2067 if (have_grow_lock) 2068 rw_exit(&zp->z_grow_lock); 2069 ZFS_EXIT(zfsvfs); 2070 return (err); 2071 } 2072 dmu_tx_hold_bonus(tx, attrzp->z_id); 2073 } 2074 2075 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2076 if (err) { 2077 if (attrzp) 2078 VN_RELE(ZTOV(attrzp)); 2079 dmu_tx_abort(tx); 2080 if (have_grow_lock) 2081 rw_exit(&zp->z_grow_lock); 2082 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2083 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2084 goto top; 2085 } 2086 ZFS_EXIT(zfsvfs); 2087 return (err); 2088 } 2089 2090 dmu_buf_will_dirty(zp->z_dbuf, tx); 2091 2092 /* 2093 * Set each attribute requested. 2094 * We group settings according to the locks they need to acquire. 2095 * 2096 * Note: you cannot set ctime directly, although it will be 2097 * updated as a side-effect of calling this function. 2098 */ 2099 if (mask & AT_SIZE) { 2100 /* 2101 * XXX - Note, we are not providing any open 2102 * mode flags here (like FNDELAY), so we may 2103 * block if there are locks present... this 2104 * should be addressed in openat(). 2105 */ 2106 err = zfs_freesp(zp, vap->va_size, 0, 0, tx, cr); 2107 if (err) { 2108 mutex_enter(&zp->z_lock); 2109 goto out; 2110 } 2111 mask_applied |= AT_SIZE; 2112 } 2113 2114 mask_applied = mask; /* no errors after this point */ 2115 2116 mutex_enter(&zp->z_lock); 2117 2118 if (mask & AT_MODE) { 2119 err = zfs_acl_chmod_setattr(zp, new_mode, tx); 2120 ASSERT3U(err, ==, 0); 2121 } 2122 2123 if (attrzp) 2124 mutex_enter(&attrzp->z_lock); 2125 2126 if (mask & AT_UID) { 2127 zp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2128 if (attrzp) { 2129 attrzp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2130 } 2131 } 2132 2133 if (mask & AT_GID) { 2134 zp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2135 if (attrzp) 2136 attrzp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2137 } 2138 2139 if (attrzp) 2140 mutex_exit(&attrzp->z_lock); 2141 2142 if (mask & AT_ATIME) 2143 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2144 2145 if (mask & AT_MTIME) 2146 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2147 2148 if (mask_applied & AT_SIZE) 2149 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2150 else if (mask_applied != 0) 2151 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2152 2153 out: 2154 2155 if (mask_applied != 0) 2156 seq = zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, 2157 mask_applied); 2158 2159 mutex_exit(&zp->z_lock); 2160 2161 if (attrzp) 2162 VN_RELE(ZTOV(attrzp)); 2163 2164 if (have_grow_lock) 2165 rw_exit(&zp->z_grow_lock); 2166 2167 dmu_tx_commit(tx); 2168 2169 zil_commit(zilog, seq, 0); 2170 2171 ZFS_EXIT(zfsvfs); 2172 return (err); 2173 } 2174 2175 /* 2176 * Search back through the directory tree, using the ".." entries. 2177 * Lock each directory in the chain to prevent concurrent renames. 2178 * Fail any attempt to move a directory into one of its own descendants. 2179 * XXX - z_parent_lock can overlap with map or grow locks 2180 */ 2181 typedef struct zfs_zlock { 2182 krwlock_t *zl_rwlock; /* lock we acquired */ 2183 znode_t *zl_znode; /* znode we held */ 2184 struct zfs_zlock *zl_next; /* next in list */ 2185 } zfs_zlock_t; 2186 2187 static int 2188 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2189 { 2190 zfs_zlock_t *zl; 2191 znode_t *zp = tdzp; 2192 uint64_t rootid = zp->z_zfsvfs->z_root; 2193 uint64_t *oidp = &zp->z_id; 2194 krwlock_t *rwlp = &szp->z_parent_lock; 2195 krw_t rw = RW_WRITER; 2196 2197 /* 2198 * First pass write-locks szp and compares to zp->z_id. 2199 * Later passes read-lock zp and compare to zp->z_parent. 2200 */ 2201 do { 2202 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2203 zl->zl_rwlock = rwlp; 2204 zl->zl_znode = NULL; 2205 zl->zl_next = *zlpp; 2206 *zlpp = zl; 2207 2208 rw_enter(rwlp, rw); 2209 2210 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2211 return (EINVAL); 2212 2213 if (*oidp == rootid) /* We've hit the top */ 2214 return (0); 2215 2216 if (rw == RW_READER) { /* i.e. not the first pass */ 2217 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2218 if (error) 2219 return (error); 2220 zl->zl_znode = zp; 2221 } 2222 oidp = &zp->z_phys->zp_parent; 2223 rwlp = &zp->z_parent_lock; 2224 rw = RW_READER; 2225 2226 } while (zp->z_id != sdzp->z_id); 2227 2228 return (0); 2229 } 2230 2231 /* 2232 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2233 */ 2234 static void 2235 zfs_rename_unlock(zfs_zlock_t **zlpp) 2236 { 2237 zfs_zlock_t *zl; 2238 2239 while ((zl = *zlpp) != NULL) { 2240 if (zl->zl_znode != NULL) 2241 VN_RELE(ZTOV(zl->zl_znode)); 2242 rw_exit(zl->zl_rwlock); 2243 *zlpp = zl->zl_next; 2244 kmem_free(zl, sizeof (*zl)); 2245 } 2246 } 2247 2248 /* 2249 * Move an entry from the provided source directory to the target 2250 * directory. Change the entry name as indicated. 2251 * 2252 * IN: sdvp - Source directory containing the "old entry". 2253 * snm - Old entry name. 2254 * tdvp - Target directory to contain the "new entry". 2255 * tnm - New entry name. 2256 * cr - credentials of caller. 2257 * 2258 * RETURN: 0 if success 2259 * error code if failure 2260 * 2261 * Timestamps: 2262 * sdvp,tdvp - ctime|mtime updated 2263 */ 2264 static int 2265 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr) 2266 { 2267 znode_t *tdzp, *szp, *tzp; 2268 znode_t *sdzp = VTOZ(sdvp); 2269 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2270 zilog_t *zilog = zfsvfs->z_log; 2271 uint64_t seq = 0; 2272 vnode_t *realvp; 2273 zfs_dirlock_t *sdl, *tdl; 2274 dmu_tx_t *tx; 2275 zfs_zlock_t *zl; 2276 int cmp, serr, terr, error; 2277 2278 ZFS_ENTER(zfsvfs); 2279 2280 /* 2281 * Make sure we have the real vp for the target directory. 2282 */ 2283 if (VOP_REALVP(tdvp, &realvp) == 0) 2284 tdvp = realvp; 2285 2286 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2287 ZFS_EXIT(zfsvfs); 2288 return (EXDEV); 2289 } 2290 2291 tdzp = VTOZ(tdvp); 2292 top: 2293 szp = NULL; 2294 tzp = NULL; 2295 zl = NULL; 2296 2297 /* 2298 * This is to prevent the creation of links into attribute space 2299 * by renaming a linked file into/outof an attribute directory. 2300 * See the comment in zfs_link() for why this is considered bad. 2301 */ 2302 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2303 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2304 ZFS_EXIT(zfsvfs); 2305 return (EINVAL); 2306 } 2307 2308 /* 2309 * Lock source and target directory entries. To prevent deadlock, 2310 * a lock ordering must be defined. We lock the directory with 2311 * the smallest object id first, or if it's a tie, the one with 2312 * the lexically first name. 2313 */ 2314 if (sdzp->z_id < tdzp->z_id) { 2315 cmp = -1; 2316 } else if (sdzp->z_id > tdzp->z_id) { 2317 cmp = 1; 2318 } else { 2319 cmp = strcmp(snm, tnm); 2320 if (cmp == 0) { 2321 /* 2322 * POSIX: "If the old argument and the new argument 2323 * both refer to links to the same existing file, 2324 * the rename() function shall return successfully 2325 * and perform no other action." 2326 */ 2327 ZFS_EXIT(zfsvfs); 2328 return (0); 2329 } 2330 } 2331 if (cmp < 0) { 2332 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2333 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2334 } else { 2335 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2336 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2337 } 2338 2339 if (serr) { 2340 /* 2341 * Source entry invalid or not there. 2342 */ 2343 if (!terr) { 2344 zfs_dirent_unlock(tdl); 2345 if (tzp) 2346 VN_RELE(ZTOV(tzp)); 2347 } 2348 if (strcmp(snm, "..") == 0) 2349 serr = EINVAL; 2350 ZFS_EXIT(zfsvfs); 2351 return (serr); 2352 } 2353 if (terr) { 2354 zfs_dirent_unlock(sdl); 2355 VN_RELE(ZTOV(szp)); 2356 if (strcmp(tnm, "..") == 0) 2357 terr = EINVAL; 2358 ZFS_EXIT(zfsvfs); 2359 return (terr); 2360 } 2361 2362 /* 2363 * Must have write access at the source to remove the old entry 2364 * and write access at the target to create the new entry. 2365 * Note that if target and source are the same, this can be 2366 * done in a single check. 2367 */ 2368 2369 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 2370 goto out; 2371 2372 if (ZTOV(szp)->v_type == VDIR) { 2373 /* 2374 * Check to make sure rename is valid. 2375 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 2376 */ 2377 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 2378 goto out; 2379 } 2380 2381 /* 2382 * Does target exist? 2383 */ 2384 if (tzp) { 2385 /* 2386 * Source and target must be the same type. 2387 */ 2388 if (ZTOV(szp)->v_type == VDIR) { 2389 if (ZTOV(tzp)->v_type != VDIR) { 2390 error = ENOTDIR; 2391 goto out; 2392 } 2393 } else { 2394 if (ZTOV(tzp)->v_type == VDIR) { 2395 error = EISDIR; 2396 goto out; 2397 } 2398 } 2399 /* 2400 * POSIX dictates that when the source and target 2401 * entries refer to the same file object, rename 2402 * must do nothing and exit without error. 2403 */ 2404 if (szp->z_id == tzp->z_id) { 2405 error = 0; 2406 goto out; 2407 } 2408 } 2409 2410 vnevent_rename_src(ZTOV(szp)); 2411 if (tzp) 2412 vnevent_rename_dest(ZTOV(tzp)); 2413 2414 tx = dmu_tx_create(zfsvfs->z_os); 2415 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 2416 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 2417 if (sdzp != tdzp) { 2418 dmu_tx_hold_zap(tx, sdzp->z_id, 1); 2419 dmu_tx_hold_zap(tx, tdzp->z_id, 1); 2420 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 2421 } else { 2422 dmu_tx_hold_zap(tx, sdzp->z_id, 2); 2423 } 2424 if (tzp) { 2425 dmu_tx_hold_bonus(tx, tzp->z_id); /* nlink changes */ 2426 } 2427 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, 1); 2428 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2429 if (error) { 2430 dmu_tx_abort(tx); 2431 if (zl != NULL) 2432 zfs_rename_unlock(&zl); 2433 zfs_dirent_unlock(sdl); 2434 zfs_dirent_unlock(tdl); 2435 VN_RELE(ZTOV(szp)); 2436 if (tzp) 2437 VN_RELE(ZTOV(tzp)); 2438 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2439 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2440 goto top; 2441 } 2442 ZFS_EXIT(zfsvfs); 2443 return (error); 2444 } 2445 2446 if (tzp) /* Attempt to remove the existing target */ 2447 error = zfs_link_destroy(tdl, tzp, tx, 0, NULL); 2448 2449 if (error == 0) { 2450 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 2451 if (error == 0) { 2452 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 2453 ASSERT(error == 0); 2454 seq = zfs_log_rename(zilog, tx, TX_RENAME, 2455 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 2456 } 2457 } 2458 2459 dmu_tx_commit(tx); 2460 out: 2461 if (zl != NULL) 2462 zfs_rename_unlock(&zl); 2463 2464 zfs_dirent_unlock(sdl); 2465 zfs_dirent_unlock(tdl); 2466 2467 VN_RELE(ZTOV(szp)); 2468 if (tzp) 2469 VN_RELE(ZTOV(tzp)); 2470 2471 zil_commit(zilog, seq, 0); 2472 2473 ZFS_EXIT(zfsvfs); 2474 return (error); 2475 } 2476 2477 /* 2478 * Insert the indicated symbolic reference entry into the directory. 2479 * 2480 * IN: dvp - Directory to contain new symbolic link. 2481 * link - Name for new symlink entry. 2482 * vap - Attributes of new entry. 2483 * target - Target path of new symlink. 2484 * cr - credentials of caller. 2485 * 2486 * RETURN: 0 if success 2487 * error code if failure 2488 * 2489 * Timestamps: 2490 * dvp - ctime|mtime updated 2491 */ 2492 static int 2493 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr) 2494 { 2495 znode_t *zp, *dzp = VTOZ(dvp); 2496 zfs_dirlock_t *dl; 2497 dmu_tx_t *tx; 2498 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2499 zilog_t *zilog = zfsvfs->z_log; 2500 uint64_t seq = 0; 2501 uint64_t zoid; 2502 int len = strlen(link); 2503 int error; 2504 2505 ASSERT(vap->va_type == VLNK); 2506 2507 ZFS_ENTER(zfsvfs); 2508 top: 2509 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2510 ZFS_EXIT(zfsvfs); 2511 return (error); 2512 } 2513 2514 if (len > MAXPATHLEN) { 2515 ZFS_EXIT(zfsvfs); 2516 return (ENAMETOOLONG); 2517 } 2518 2519 /* 2520 * Attempt to lock directory; fail if entry already exists. 2521 */ 2522 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) { 2523 ZFS_EXIT(zfsvfs); 2524 return (error); 2525 } 2526 2527 tx = dmu_tx_create(zfsvfs->z_os); 2528 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 2529 dmu_tx_hold_bonus(tx, dzp->z_id); 2530 dmu_tx_hold_zap(tx, dzp->z_id, 1); 2531 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 2532 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 2533 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2534 if (error) { 2535 dmu_tx_abort(tx); 2536 zfs_dirent_unlock(dl); 2537 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2538 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2539 goto top; 2540 } 2541 ZFS_EXIT(zfsvfs); 2542 return (error); 2543 } 2544 2545 dmu_buf_will_dirty(dzp->z_dbuf, tx); 2546 2547 /* 2548 * Create a new object for the symlink. 2549 * Put the link content into bonus buffer if it will fit; 2550 * otherwise, store it just like any other file data. 2551 */ 2552 zoid = 0; 2553 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 2554 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len); 2555 if (len != 0) 2556 bcopy(link, zp->z_phys + 1, len); 2557 } else { 2558 dmu_buf_t *dbp; 2559 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 2560 2561 rw_enter(&zp->z_grow_lock, RW_WRITER); 2562 error = zfs_grow_blocksize(zp, len, tx); 2563 rw_exit(&zp->z_grow_lock); 2564 if (error) 2565 goto out; 2566 2567 dbp = dmu_buf_hold(zfsvfs->z_os, zoid, 0); 2568 dmu_buf_will_dirty(dbp, tx); 2569 2570 ASSERT3U(len, <=, dbp->db_size); 2571 bcopy(link, dbp->db_data, len); 2572 dmu_buf_rele(dbp); 2573 } 2574 zp->z_phys->zp_size = len; 2575 2576 /* 2577 * Insert the new object into the directory. 2578 */ 2579 (void) zfs_link_create(dl, zp, tx, ZNEW); 2580 out: 2581 if (error == 0) 2582 seq = zfs_log_symlink(zilog, tx, TX_SYMLINK, 2583 dzp, zp, name, link); 2584 2585 dmu_tx_commit(tx); 2586 2587 zfs_dirent_unlock(dl); 2588 2589 VN_RELE(ZTOV(zp)); 2590 2591 zil_commit(zilog, seq, 0); 2592 2593 ZFS_EXIT(zfsvfs); 2594 return (error); 2595 } 2596 2597 /* 2598 * Return, in the buffer contained in the provided uio structure, 2599 * the symbolic path referred to by vp. 2600 * 2601 * IN: vp - vnode of symbolic link. 2602 * uoip - structure to contain the link path. 2603 * cr - credentials of caller. 2604 * 2605 * OUT: uio - structure to contain the link path. 2606 * 2607 * RETURN: 0 if success 2608 * error code if failure 2609 * 2610 * Timestamps: 2611 * vp - atime updated 2612 */ 2613 /* ARGSUSED */ 2614 static int 2615 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr) 2616 { 2617 znode_t *zp = VTOZ(vp); 2618 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2619 size_t bufsz; 2620 int error; 2621 2622 ZFS_ENTER(zfsvfs); 2623 2624 bufsz = (size_t)zp->z_phys->zp_size; 2625 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 2626 error = uiomove(zp->z_phys + 1, 2627 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2628 } else { 2629 dmu_buf_t *dbp = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0); 2630 if ((error = dmu_buf_read_canfail(dbp)) != 0) { 2631 dmu_buf_rele(dbp); 2632 ZFS_EXIT(zfsvfs); 2633 return (error); 2634 } 2635 error = uiomove(dbp->db_data, 2636 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2637 dmu_buf_rele(dbp); 2638 } 2639 2640 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2641 ZFS_EXIT(zfsvfs); 2642 return (error); 2643 } 2644 2645 /* 2646 * Insert a new entry into directory tdvp referencing svp. 2647 * 2648 * IN: tdvp - Directory to contain new entry. 2649 * svp - vnode of new entry. 2650 * name - name of new entry. 2651 * cr - credentials of caller. 2652 * 2653 * RETURN: 0 if success 2654 * error code if failure 2655 * 2656 * Timestamps: 2657 * tdvp - ctime|mtime updated 2658 * svp - ctime updated 2659 */ 2660 /* ARGSUSED */ 2661 static int 2662 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr) 2663 { 2664 znode_t *dzp = VTOZ(tdvp); 2665 znode_t *tzp, *szp; 2666 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2667 zilog_t *zilog = zfsvfs->z_log; 2668 uint64_t seq = 0; 2669 zfs_dirlock_t *dl; 2670 dmu_tx_t *tx; 2671 vnode_t *realvp; 2672 int error; 2673 2674 ASSERT(tdvp->v_type == VDIR); 2675 2676 ZFS_ENTER(zfsvfs); 2677 2678 if (VOP_REALVP(svp, &realvp) == 0) 2679 svp = realvp; 2680 2681 if (svp->v_vfsp != tdvp->v_vfsp) { 2682 ZFS_EXIT(zfsvfs); 2683 return (EXDEV); 2684 } 2685 2686 szp = VTOZ(svp); 2687 top: 2688 /* 2689 * We do not support links between attributes and non-attributes 2690 * because of the potential security risk of creating links 2691 * into "normal" file space in order to circumvent restrictions 2692 * imposed in attribute space. 2693 */ 2694 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 2695 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 2696 ZFS_EXIT(zfsvfs); 2697 return (EINVAL); 2698 } 2699 2700 /* 2701 * POSIX dictates that we return EPERM here. 2702 * Better choices include ENOTSUP or EISDIR. 2703 */ 2704 if (svp->v_type == VDIR) { 2705 ZFS_EXIT(zfsvfs); 2706 return (EPERM); 2707 } 2708 2709 if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) && 2710 secpolicy_basic_link(cr) != 0) { 2711 ZFS_EXIT(zfsvfs); 2712 return (EPERM); 2713 } 2714 2715 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2716 ZFS_EXIT(zfsvfs); 2717 return (error); 2718 } 2719 2720 /* 2721 * Attempt to lock directory; fail if entry already exists. 2722 */ 2723 if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) { 2724 ZFS_EXIT(zfsvfs); 2725 return (error); 2726 } 2727 2728 tx = dmu_tx_create(zfsvfs->z_os); 2729 dmu_tx_hold_bonus(tx, szp->z_id); 2730 dmu_tx_hold_zap(tx, dzp->z_id, 1); 2731 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2732 if (error) { 2733 dmu_tx_abort(tx); 2734 zfs_dirent_unlock(dl); 2735 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2736 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2737 goto top; 2738 } 2739 ZFS_EXIT(zfsvfs); 2740 return (error); 2741 } 2742 2743 error = zfs_link_create(dl, szp, tx, 0); 2744 2745 if (error == 0) 2746 seq = zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name); 2747 2748 dmu_tx_commit(tx); 2749 2750 zfs_dirent_unlock(dl); 2751 2752 zil_commit(zilog, seq, 0); 2753 2754 ZFS_EXIT(zfsvfs); 2755 return (error); 2756 } 2757 2758 /* 2759 * zfs_null_putapage() is used when the file system has been force 2760 * unmounted. It just drops the pages. 2761 */ 2762 /* ARGSUSED */ 2763 static int 2764 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2765 size_t *lenp, int flags, cred_t *cr) 2766 { 2767 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 2768 return (0); 2769 } 2770 2771 /* ARGSUSED */ 2772 static int 2773 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2774 size_t *lenp, int flags, cred_t *cr) 2775 { 2776 znode_t *zp = VTOZ(vp); 2777 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2778 zilog_t *zilog = zfsvfs->z_log; 2779 uint64_t seq = 0; 2780 dmu_tx_t *tx; 2781 u_offset_t off; 2782 ssize_t len; 2783 caddr_t va; 2784 int err; 2785 2786 top: 2787 rw_enter(&zp->z_grow_lock, RW_READER); 2788 2789 off = pp->p_offset; 2790 len = MIN(PAGESIZE, zp->z_phys->zp_size - off); 2791 2792 tx = dmu_tx_create(zfsvfs->z_os); 2793 dmu_tx_hold_write(tx, zp->z_id, off, len); 2794 dmu_tx_hold_bonus(tx, zp->z_id); 2795 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2796 if (err != 0) { 2797 dmu_tx_abort(tx); 2798 rw_exit(&zp->z_grow_lock); 2799 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2800 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2801 goto top; 2802 } 2803 goto out; 2804 } 2805 2806 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 2807 2808 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 2809 2810 ppmapout(va); 2811 2812 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 2813 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0, NULL); 2814 dmu_tx_commit(tx); 2815 2816 rw_exit(&zp->z_grow_lock); 2817 2818 pvn_write_done(pp, B_WRITE | flags); 2819 if (offp) 2820 *offp = off; 2821 if (lenp) 2822 *lenp = len; 2823 2824 zil_commit(zilog, seq, (flags & B_ASYNC) ? 0 : FDSYNC); 2825 out: 2826 return (err); 2827 } 2828 2829 /* 2830 * Copy the portion of the file indicated from pages into the file. 2831 * The pages are stored in a page list attached to the files vnode. 2832 * 2833 * IN: vp - vnode of file to push page data to. 2834 * off - position in file to put data. 2835 * len - amount of data to write. 2836 * flags - flags to control the operation. 2837 * cr - credentials of caller. 2838 * 2839 * RETURN: 0 if success 2840 * error code if failure 2841 * 2842 * Timestamps: 2843 * vp - ctime|mtime updated 2844 */ 2845 static int 2846 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 2847 { 2848 znode_t *zp = VTOZ(vp); 2849 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2850 page_t *pp; 2851 size_t io_len; 2852 u_offset_t io_off; 2853 int error = 0; 2854 2855 ZFS_ENTER(zfsvfs); 2856 2857 ASSERT(zp->z_dbuf_held && zp->z_phys); 2858 2859 if (len == 0) { 2860 /* 2861 * Search the entire vp list for pages >= off. 2862 */ 2863 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 2864 flags, cr); 2865 ZFS_EXIT(zfsvfs); 2866 return (error); 2867 } 2868 2869 if (off > zp->z_phys->zp_size) { 2870 /* past end of file */ 2871 ZFS_EXIT(zfsvfs); 2872 return (0); 2873 } 2874 2875 len = MIN(len, zp->z_phys->zp_size - off); 2876 2877 io_off = off; 2878 while (io_off < off + len) { 2879 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2880 pp = page_lookup(vp, io_off, 2881 (flags & (B_INVAL | B_FREE)) ? 2882 SE_EXCL : SE_SHARED); 2883 } else { 2884 pp = page_lookup_nowait(vp, io_off, 2885 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2886 } 2887 2888 if (pp != NULL && pvn_getdirty(pp, flags)) { 2889 int err; 2890 2891 /* 2892 * Found a dirty page to push 2893 */ 2894 if (err = 2895 zfs_putapage(vp, pp, &io_off, &io_len, flags, cr)) 2896 error = err; 2897 } else { 2898 io_len = PAGESIZE; 2899 } 2900 io_off += io_len; 2901 } 2902 ZFS_EXIT(zfsvfs); 2903 return (error); 2904 } 2905 2906 void 2907 zfs_inactive(vnode_t *vp, cred_t *cr) 2908 { 2909 znode_t *zp = VTOZ(vp); 2910 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2911 int error; 2912 2913 rw_enter(&zfsvfs->z_um_lock, RW_READER); 2914 if (zfsvfs->z_unmounted2) { 2915 ASSERT(zp->z_dbuf_held == 0); 2916 2917 if (vn_has_cached_data(vp)) { 2918 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 2919 B_INVAL, cr); 2920 } 2921 2922 vp->v_count = 0; /* count arrives as 1 */ 2923 zfs_znode_free(zp); 2924 rw_exit(&zfsvfs->z_um_lock); 2925 VFS_RELE(zfsvfs->z_vfs); 2926 return; 2927 } 2928 2929 /* 2930 * Attempt to push any data in the page cache. If this fails 2931 * we will get kicked out later in zfs_zinactive(). 2932 */ 2933 if (vn_has_cached_data(vp)) { 2934 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 2935 cr); 2936 } 2937 2938 if (zp->z_atime_dirty && zp->z_reap == 0) { 2939 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 2940 2941 dmu_tx_hold_bonus(tx, zp->z_id); 2942 error = dmu_tx_assign(tx, TXG_WAIT); 2943 if (error) { 2944 dmu_tx_abort(tx); 2945 } else { 2946 dmu_buf_will_dirty(zp->z_dbuf, tx); 2947 mutex_enter(&zp->z_lock); 2948 zp->z_atime_dirty = 0; 2949 mutex_exit(&zp->z_lock); 2950 dmu_tx_commit(tx); 2951 } 2952 } 2953 2954 zfs_zinactive(zp); 2955 rw_exit(&zfsvfs->z_um_lock); 2956 } 2957 2958 /* 2959 * Bounds-check the seek operation. 2960 * 2961 * IN: vp - vnode seeking within 2962 * ooff - old file offset 2963 * noffp - pointer to new file offset 2964 * 2965 * RETURN: 0 if success 2966 * EINVAL if new offset invalid 2967 */ 2968 /* ARGSUSED */ 2969 static int 2970 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 2971 { 2972 if (vp->v_type == VDIR) 2973 return (0); 2974 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 2975 } 2976 2977 /* 2978 * Pre-filter the generic locking function to trap attempts to place 2979 * a mandatory lock on a memory mapped file. 2980 */ 2981 static int 2982 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 2983 flk_callback_t *flk_cbp, cred_t *cr) 2984 { 2985 znode_t *zp = VTOZ(vp); 2986 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2987 uint_t cnt = 1; 2988 int error; 2989 2990 ZFS_ENTER(zfsvfs); 2991 2992 /* 2993 * If file is being mapped, disallow frlock. We set the mapcnt to 2994 * -1 here to signal that we are in the process of setting a lock. 2995 * This prevents a race with zfs_map(). 2996 * XXX - well, sort of; since zfs_map() does not change z_mapcnt, 2997 * we could be in the middle of zfs_map() and still call fs_frlock(). 2998 * Also, we are doing no checking in zfs_addmap() (where z_mapcnt 2999 * *is* manipulated). 3000 */ 3001 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 3002 (int)(cnt = atomic_cas_32(&zp->z_mapcnt, 0, -1)) > 0) { 3003 ZFS_EXIT(zfsvfs); 3004 return (EAGAIN); 3005 } 3006 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr); 3007 ASSERT((cnt != 0) || ((int)atomic_cas_32(&zp->z_mapcnt, -1, 0) == -1)); 3008 ZFS_EXIT(zfsvfs); 3009 return (error); 3010 } 3011 3012 /* 3013 * If we can't find a page in the cache, we will create a new page 3014 * and fill it with file data. For efficiency, we may try to fill 3015 * multiple pages as once (klustering). 3016 */ 3017 static int 3018 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3019 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3020 { 3021 znode_t *zp = VTOZ(vp); 3022 page_t *pp, *cur_pp; 3023 objset_t *os = zp->z_zfsvfs->z_os; 3024 caddr_t va; 3025 u_offset_t io_off, total; 3026 uint64_t oid = zp->z_id; 3027 size_t io_len; 3028 int err; 3029 3030 /* 3031 * If we are only asking for a single page don't bother klustering. 3032 */ 3033 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE || 3034 off > zp->z_phys->zp_size) { 3035 io_off = off; 3036 io_len = PAGESIZE; 3037 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3038 } else { 3039 /* 3040 * Try to fill a kluster of pages (a blocks worth). 3041 */ 3042 size_t klen; 3043 u_offset_t koff; 3044 3045 if (!ISP2(zp->z_blksz)) { 3046 /* Only one block in the file. */ 3047 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3048 koff = 0; 3049 } else { 3050 klen = plsz; 3051 koff = P2ALIGN(off, (u_offset_t)klen); 3052 } 3053 if (klen > zp->z_phys->zp_size) 3054 klen = P2ROUNDUP(zp->z_phys->zp_size, 3055 (uint64_t)PAGESIZE); 3056 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3057 &io_len, koff, klen, 0); 3058 } 3059 if (pp == NULL) { 3060 /* 3061 * Some other thread entered the page before us. 3062 * Return to zfs_getpage to retry the lookup. 3063 */ 3064 *pl = NULL; 3065 return (0); 3066 } 3067 3068 /* 3069 * Fill the pages in the kluster. 3070 */ 3071 cur_pp = pp; 3072 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3073 ASSERT(io_off == cur_pp->p_offset); 3074 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3075 err = dmu_read_canfail(os, oid, io_off, PAGESIZE, va); 3076 ppmapout(va); 3077 if (err) { 3078 /* On error, toss the entire kluster */ 3079 pvn_read_done(pp, B_ERROR); 3080 return (err); 3081 } 3082 cur_pp = cur_pp->p_next; 3083 } 3084 out: 3085 /* 3086 * Fill in the page list array from the kluster. If 3087 * there are too many pages in the kluster, return 3088 * as many pages as possible starting from the desired 3089 * offset `off'. 3090 * NOTE: the page list will always be null terminated. 3091 */ 3092 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3093 3094 return (0); 3095 } 3096 3097 /* 3098 * Return pointers to the pages for the file region [off, off + len] 3099 * in the pl array. If plsz is greater than len, this function may 3100 * also return page pointers from before or after the specified 3101 * region (i.e. some region [off', off' + plsz]). These additional 3102 * pages are only returned if they are already in the cache, or were 3103 * created as part of a klustered read. 3104 * 3105 * IN: vp - vnode of file to get data from. 3106 * off - position in file to get data from. 3107 * len - amount of data to retrieve. 3108 * plsz - length of provided page list. 3109 * seg - segment to obtain pages for. 3110 * addr - virtual address of fault. 3111 * rw - mode of created pages. 3112 * cr - credentials of caller. 3113 * 3114 * OUT: protp - protection mode of created pages. 3115 * pl - list of pages created. 3116 * 3117 * RETURN: 0 if success 3118 * error code if failure 3119 * 3120 * Timestamps: 3121 * vp - atime updated 3122 */ 3123 /* ARGSUSED */ 3124 static int 3125 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3126 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3127 enum seg_rw rw, cred_t *cr) 3128 { 3129 znode_t *zp = VTOZ(vp); 3130 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3131 page_t *pp, **pl0 = pl; 3132 int cnt = 0, need_unlock = 0, err = 0; 3133 3134 ZFS_ENTER(zfsvfs); 3135 3136 if (protp) 3137 *protp = PROT_ALL; 3138 3139 ASSERT(zp->z_dbuf_held && zp->z_phys); 3140 3141 /* no faultahead (for now) */ 3142 if (pl == NULL) { 3143 ZFS_EXIT(zfsvfs); 3144 return (0); 3145 } 3146 3147 /* can't fault past EOF */ 3148 if (off >= zp->z_phys->zp_size) { 3149 ZFS_EXIT(zfsvfs); 3150 return (EFAULT); 3151 } 3152 3153 /* 3154 * Make sure nobody restructures the file (changes block size) 3155 * in the middle of the getpage. 3156 */ 3157 rw_enter(&zp->z_grow_lock, RW_READER); 3158 3159 /* 3160 * If we already own the lock, then we must be page faulting 3161 * in the middle of a write to this file (i.e., we are writing 3162 * to this file using data from a mapped region of the file). 3163 */ 3164 if (!rw_owner(&zp->z_map_lock)) { 3165 rw_enter(&zp->z_map_lock, RW_WRITER); 3166 need_unlock = TRUE; 3167 } 3168 3169 /* 3170 * Loop through the requested range [off, off + len] looking 3171 * for pages. If we don't find a page, we will need to create 3172 * a new page and fill it with data from the file. 3173 */ 3174 while (len > 0) { 3175 if (plsz < PAGESIZE) 3176 break; 3177 if (pp = page_lookup(vp, off, SE_SHARED)) { 3178 *pl++ = pp; 3179 off += PAGESIZE; 3180 addr += PAGESIZE; 3181 len -= PAGESIZE; 3182 plsz -= PAGESIZE; 3183 } else { 3184 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3185 /* 3186 * klustering may have changed our region 3187 * to be block aligned. 3188 */ 3189 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3190 int delta = off - pp->p_offset; 3191 len += delta; 3192 off -= delta; 3193 addr -= delta; 3194 } 3195 while (*pl) { 3196 pl++; 3197 cnt++; 3198 off += PAGESIZE; 3199 addr += PAGESIZE; 3200 plsz -= PAGESIZE; 3201 if (len > PAGESIZE) 3202 len -= PAGESIZE; 3203 else 3204 len = 0; 3205 } 3206 } 3207 if (err) 3208 goto out; 3209 } 3210 3211 /* 3212 * Fill out the page array with any pages already in the cache. 3213 */ 3214 while (plsz > 0) { 3215 pp = page_lookup_nowait(vp, off, SE_SHARED); 3216 if (pp == NULL) 3217 break; 3218 *pl++ = pp; 3219 off += PAGESIZE; 3220 plsz -= PAGESIZE; 3221 } 3222 3223 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3224 out: 3225 if (err) { 3226 /* 3227 * Release any pages we have locked. 3228 */ 3229 while (pl > pl0) 3230 page_unlock(*--pl); 3231 } 3232 *pl = NULL; 3233 3234 if (need_unlock) 3235 rw_exit(&zp->z_map_lock); 3236 rw_exit(&zp->z_grow_lock); 3237 3238 ZFS_EXIT(zfsvfs); 3239 return (err); 3240 } 3241 3242 static int 3243 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 3244 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3245 { 3246 znode_t *zp = VTOZ(vp); 3247 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3248 segvn_crargs_t vn_a; 3249 int error; 3250 3251 ZFS_ENTER(zfsvfs); 3252 3253 if (vp->v_flag & VNOMAP) { 3254 ZFS_EXIT(zfsvfs); 3255 return (ENOSYS); 3256 } 3257 3258 if (off < 0 || len > MAXOFFSET_T - off) { 3259 ZFS_EXIT(zfsvfs); 3260 return (ENXIO); 3261 } 3262 3263 if (vp->v_type != VREG) { 3264 ZFS_EXIT(zfsvfs); 3265 return (ENODEV); 3266 } 3267 3268 /* 3269 * If file is locked, disallow mapping. 3270 * XXX - since we don't modify z_mapcnt here, there is nothing 3271 * to stop a file lock being placed immediately after we complete 3272 * this check. 3273 */ 3274 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3275 if (vn_has_flocks(vp) || zp->z_mapcnt == -1) { 3276 ZFS_EXIT(zfsvfs); 3277 return (EAGAIN); 3278 } 3279 } 3280 3281 as_rangelock(as); 3282 if ((flags & MAP_FIXED) == 0) { 3283 map_addr(addrp, len, off, 1, flags); 3284 if (*addrp == NULL) { 3285 as_rangeunlock(as); 3286 ZFS_EXIT(zfsvfs); 3287 return (ENOMEM); 3288 } 3289 } else { 3290 /* 3291 * User specified address - blow away any previous mappings 3292 */ 3293 (void) as_unmap(as, *addrp, len); 3294 } 3295 3296 vn_a.vp = vp; 3297 vn_a.offset = (u_offset_t)off; 3298 vn_a.type = flags & MAP_TYPE; 3299 vn_a.prot = prot; 3300 vn_a.maxprot = maxprot; 3301 vn_a.cred = cr; 3302 vn_a.amp = NULL; 3303 vn_a.flags = flags & ~MAP_TYPE; 3304 vn_a.szc = 0; 3305 vn_a.lgrp_mem_policy_flags = 0; 3306 3307 error = as_map(as, *addrp, len, segvn_create, &vn_a); 3308 3309 as_rangeunlock(as); 3310 ZFS_EXIT(zfsvfs); 3311 return (error); 3312 } 3313 3314 /* ARGSUSED */ 3315 static int 3316 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3317 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3318 { 3319 /* 3320 * XXX - shouldn't we be checking for file locks here? 3321 */ 3322 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, 0); 3323 atomic_add_32(&VTOZ(vp)->z_mapcnt, btopr(len)); 3324 return (0); 3325 } 3326 3327 /* ARGSUSED */ 3328 static int 3329 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3330 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 3331 { 3332 atomic_add_32(&VTOZ(vp)->z_mapcnt, -btopr(len)); 3333 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, 0); 3334 return (0); 3335 } 3336 3337 /* 3338 * Free or allocate space in a file. Currently, this function only 3339 * supports the `F_FREESP' command. However, this command is somewhat 3340 * misnamed, as its functionality includes the ability to allocate as 3341 * well as free space. 3342 * 3343 * IN: vp - vnode of file to free data in. 3344 * cmd - action to take (only F_FREESP supported). 3345 * bfp - section of file to free/alloc. 3346 * flag - current file open mode flags. 3347 * offset - current file offset. 3348 * cr - credentials of caller [UNUSED]. 3349 * 3350 * RETURN: 0 if success 3351 * error code if failure 3352 * 3353 * Timestamps: 3354 * vp - ctime|mtime updated 3355 * 3356 * NOTE: This function is limited in that it will only permit space to 3357 * be freed at the end of a file. In essence, this function simply 3358 * allows one to set the file size. 3359 */ 3360 /* ARGSUSED */ 3361 static int 3362 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 3363 offset_t offset, cred_t *cr, caller_context_t *ct) 3364 { 3365 dmu_tx_t *tx; 3366 znode_t *zp = VTOZ(vp); 3367 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3368 zilog_t *zilog = zfsvfs->z_log; 3369 uint64_t seq = 0; 3370 uint64_t off, len; 3371 int error; 3372 3373 ZFS_ENTER(zfsvfs); 3374 3375 top: 3376 if (cmd != F_FREESP) { 3377 ZFS_EXIT(zfsvfs); 3378 return (EINVAL); 3379 } 3380 3381 if (error = convoff(vp, bfp, 0, offset)) { 3382 ZFS_EXIT(zfsvfs); 3383 return (error); 3384 } 3385 3386 if (bfp->l_len < 0) { 3387 ZFS_EXIT(zfsvfs); 3388 return (EINVAL); 3389 } 3390 3391 off = bfp->l_start; 3392 len = bfp->l_len; 3393 tx = dmu_tx_create(zfsvfs->z_os); 3394 /* 3395 * Grab the grow_lock to serialize this change with 3396 * respect to other file size changes. 3397 */ 3398 dmu_tx_hold_bonus(tx, zp->z_id); 3399 rw_enter(&zp->z_grow_lock, RW_WRITER); 3400 if (off + len > zp->z_blksz && zp->z_blksz < zfsvfs->z_max_blksz && 3401 off >= zp->z_phys->zp_size) { 3402 /* 3403 * We are increasing the length of the file, 3404 * and this may mean a block size increase. 3405 */ 3406 dmu_tx_hold_write(tx, zp->z_id, 0, 3407 MIN(off + len, zfsvfs->z_max_blksz)); 3408 } else if (off < zp->z_phys->zp_size) { 3409 /* 3410 * If len == 0, we are truncating the file. 3411 */ 3412 dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END); 3413 } 3414 3415 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3416 if (error) { 3417 dmu_tx_abort(tx); 3418 rw_exit(&zp->z_grow_lock); 3419 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3420 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 3421 goto top; 3422 } 3423 ZFS_EXIT(zfsvfs); 3424 return (error); 3425 } 3426 3427 error = zfs_freesp(zp, off, len, flag, tx, cr); 3428 3429 if (error == 0) { 3430 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3431 seq = zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 3432 } 3433 3434 rw_exit(&zp->z_grow_lock); 3435 3436 dmu_tx_commit(tx); 3437 3438 zil_commit(zilog, seq, 0); 3439 3440 ZFS_EXIT(zfsvfs); 3441 return (error); 3442 } 3443 3444 static int 3445 zfs_fid(vnode_t *vp, fid_t *fidp) 3446 { 3447 znode_t *zp = VTOZ(vp); 3448 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3449 uint32_t gen = (uint32_t)zp->z_phys->zp_gen; 3450 uint64_t object = zp->z_id; 3451 zfid_short_t *zfid; 3452 int size, i; 3453 3454 ZFS_ENTER(zfsvfs); 3455 3456 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 3457 if (fidp->fid_len < size) { 3458 fidp->fid_len = size; 3459 return (ENOSPC); 3460 } 3461 3462 zfid = (zfid_short_t *)fidp; 3463 3464 zfid->zf_len = size; 3465 3466 for (i = 0; i < sizeof (zfid->zf_object); i++) 3467 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 3468 3469 /* Must have a non-zero generation number to distinguish from .zfs */ 3470 if (gen == 0) 3471 gen = 1; 3472 for (i = 0; i < sizeof (zfid->zf_gen); i++) 3473 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 3474 3475 if (size == LONG_FID_LEN) { 3476 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 3477 zfid_long_t *zlfid; 3478 3479 zlfid = (zfid_long_t *)fidp; 3480 3481 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 3482 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 3483 3484 /* XXX - this should be the generation number for the objset */ 3485 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 3486 zlfid->zf_setgen[i] = 0; 3487 } 3488 3489 ZFS_EXIT(zfsvfs); 3490 return (0); 3491 } 3492 3493 static int 3494 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 3495 { 3496 znode_t *zp, *xzp; 3497 zfsvfs_t *zfsvfs; 3498 zfs_dirlock_t *dl; 3499 int error; 3500 3501 switch (cmd) { 3502 case _PC_LINK_MAX: 3503 *valp = ULONG_MAX; 3504 return (0); 3505 3506 case _PC_FILESIZEBITS: 3507 *valp = 64; 3508 return (0); 3509 3510 case _PC_XATTR_EXISTS: 3511 zp = VTOZ(vp); 3512 zfsvfs = zp->z_zfsvfs; 3513 ZFS_ENTER(zfsvfs); 3514 *valp = 0; 3515 error = zfs_dirent_lock(&dl, zp, "", &xzp, 3516 ZXATTR | ZEXISTS | ZSHARED); 3517 if (error == 0) { 3518 zfs_dirent_unlock(dl); 3519 if (!zfs_dirempty(xzp)) 3520 *valp = 1; 3521 VN_RELE(ZTOV(xzp)); 3522 } else if (error == ENOENT) { 3523 /* 3524 * If there aren't extended attributes, it's the 3525 * same as having zero of them. 3526 */ 3527 error = 0; 3528 } 3529 ZFS_EXIT(zfsvfs); 3530 return (error); 3531 3532 case _PC_ACL_ENABLED: 3533 *valp = _ACL_ACE_ENABLED; 3534 return (0); 3535 3536 case _PC_MIN_HOLE_SIZE: 3537 *valp = (ulong_t)SPA_MINBLOCKSIZE; 3538 return (0); 3539 3540 default: 3541 return (fs_pathconf(vp, cmd, valp, cr)); 3542 } 3543 } 3544 3545 /*ARGSUSED*/ 3546 static int 3547 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3548 { 3549 znode_t *zp = VTOZ(vp); 3550 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3551 int error; 3552 3553 ZFS_ENTER(zfsvfs); 3554 error = zfs_getacl(zp, vsecp, cr); 3555 ZFS_EXIT(zfsvfs); 3556 3557 return (error); 3558 } 3559 3560 /*ARGSUSED*/ 3561 static int 3562 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3563 { 3564 znode_t *zp = VTOZ(vp); 3565 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3566 int error; 3567 3568 ZFS_ENTER(zfsvfs); 3569 error = zfs_setacl(zp, vsecp, cr); 3570 ZFS_EXIT(zfsvfs); 3571 return (error); 3572 } 3573 3574 /* 3575 * Predeclare these here so that the compiler assumes that 3576 * this is an "old style" function declaration that does 3577 * not include arguments => we won't get type mismatch errors 3578 * in the initializations that follow. 3579 */ 3580 static int zfs_inval(); 3581 static int zfs_isdir(); 3582 3583 static int 3584 zfs_inval() 3585 { 3586 return (EINVAL); 3587 } 3588 3589 static int 3590 zfs_isdir() 3591 { 3592 return (EISDIR); 3593 } 3594 /* 3595 * Directory vnode operations template 3596 */ 3597 vnodeops_t *zfs_dvnodeops; 3598 const fs_operation_def_t zfs_dvnodeops_template[] = { 3599 VOPNAME_OPEN, zfs_open, 3600 VOPNAME_CLOSE, zfs_close, 3601 VOPNAME_READ, zfs_isdir, 3602 VOPNAME_WRITE, zfs_isdir, 3603 VOPNAME_IOCTL, zfs_ioctl, 3604 VOPNAME_GETATTR, zfs_getattr, 3605 VOPNAME_SETATTR, zfs_setattr, 3606 VOPNAME_ACCESS, zfs_access, 3607 VOPNAME_LOOKUP, zfs_lookup, 3608 VOPNAME_CREATE, zfs_create, 3609 VOPNAME_REMOVE, zfs_remove, 3610 VOPNAME_LINK, zfs_link, 3611 VOPNAME_RENAME, zfs_rename, 3612 VOPNAME_MKDIR, zfs_mkdir, 3613 VOPNAME_RMDIR, zfs_rmdir, 3614 VOPNAME_READDIR, zfs_readdir, 3615 VOPNAME_SYMLINK, zfs_symlink, 3616 VOPNAME_FSYNC, zfs_fsync, 3617 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3618 VOPNAME_FID, zfs_fid, 3619 VOPNAME_SEEK, zfs_seek, 3620 VOPNAME_PATHCONF, zfs_pathconf, 3621 VOPNAME_GETSECATTR, zfs_getsecattr, 3622 VOPNAME_SETSECATTR, zfs_setsecattr, 3623 NULL, NULL 3624 }; 3625 3626 /* 3627 * Regular file vnode operations template 3628 */ 3629 vnodeops_t *zfs_fvnodeops; 3630 const fs_operation_def_t zfs_fvnodeops_template[] = { 3631 VOPNAME_OPEN, zfs_open, 3632 VOPNAME_CLOSE, zfs_close, 3633 VOPNAME_READ, zfs_read, 3634 VOPNAME_WRITE, zfs_write, 3635 VOPNAME_IOCTL, zfs_ioctl, 3636 VOPNAME_GETATTR, zfs_getattr, 3637 VOPNAME_SETATTR, zfs_setattr, 3638 VOPNAME_ACCESS, zfs_access, 3639 VOPNAME_LOOKUP, zfs_lookup, 3640 VOPNAME_RENAME, zfs_rename, 3641 VOPNAME_FSYNC, zfs_fsync, 3642 VOPNAME_INACTIVE, (fs_generic_func_p)zfs_inactive, 3643 VOPNAME_FID, zfs_fid, 3644 VOPNAME_SEEK, zfs_seek, 3645 VOPNAME_FRLOCK, zfs_frlock, 3646 VOPNAME_SPACE, zfs_space, 3647 VOPNAME_GETPAGE, zfs_getpage, 3648 VOPNAME_PUTPAGE, zfs_putpage, 3649 VOPNAME_MAP, (fs_generic_func_p) zfs_map, 3650 VOPNAME_ADDMAP, (fs_generic_func_p) zfs_addmap, 3651 VOPNAME_DELMAP, zfs_delmap, 3652 VOPNAME_PATHCONF, zfs_pathconf, 3653 VOPNAME_GETSECATTR, zfs_getsecattr, 3654 VOPNAME_SETSECATTR, zfs_setsecattr, 3655 VOPNAME_VNEVENT, fs_vnevent_support, 3656 NULL, NULL 3657 }; 3658 3659 /* 3660 * Symbolic link vnode operations template 3661 */ 3662 vnodeops_t *zfs_symvnodeops; 3663 const fs_operation_def_t zfs_symvnodeops_template[] = { 3664 VOPNAME_GETATTR, zfs_getattr, 3665 VOPNAME_SETATTR, zfs_setattr, 3666 VOPNAME_ACCESS, zfs_access, 3667 VOPNAME_RENAME, zfs_rename, 3668 VOPNAME_READLINK, zfs_readlink, 3669 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3670 VOPNAME_FID, zfs_fid, 3671 VOPNAME_PATHCONF, zfs_pathconf, 3672 VOPNAME_VNEVENT, fs_vnevent_support, 3673 NULL, NULL 3674 }; 3675 3676 /* 3677 * Extended attribute directory vnode operations template 3678 * This template is identical to the directory vnodes 3679 * operation template except for restricted operations: 3680 * VOP_MKDIR() 3681 * VOP_SYMLINK() 3682 * Note that there are other restrictions embedded in: 3683 * zfs_create() - restrict type to VREG 3684 * zfs_link() - no links into/out of attribute space 3685 * zfs_rename() - no moves into/out of attribute space 3686 */ 3687 vnodeops_t *zfs_xdvnodeops; 3688 const fs_operation_def_t zfs_xdvnodeops_template[] = { 3689 VOPNAME_OPEN, zfs_open, 3690 VOPNAME_CLOSE, zfs_close, 3691 VOPNAME_IOCTL, zfs_ioctl, 3692 VOPNAME_GETATTR, zfs_getattr, 3693 VOPNAME_SETATTR, zfs_setattr, 3694 VOPNAME_ACCESS, zfs_access, 3695 VOPNAME_LOOKUP, zfs_lookup, 3696 VOPNAME_CREATE, zfs_create, 3697 VOPNAME_REMOVE, zfs_remove, 3698 VOPNAME_LINK, zfs_link, 3699 VOPNAME_RENAME, zfs_rename, 3700 VOPNAME_MKDIR, zfs_inval, 3701 VOPNAME_RMDIR, zfs_rmdir, 3702 VOPNAME_READDIR, zfs_readdir, 3703 VOPNAME_SYMLINK, zfs_inval, 3704 VOPNAME_FSYNC, zfs_fsync, 3705 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3706 VOPNAME_FID, zfs_fid, 3707 VOPNAME_SEEK, zfs_seek, 3708 VOPNAME_PATHCONF, zfs_pathconf, 3709 VOPNAME_GETSECATTR, zfs_getsecattr, 3710 VOPNAME_SETSECATTR, zfs_setsecattr, 3711 VOPNAME_VNEVENT, fs_vnevent_support, 3712 NULL, NULL 3713 }; 3714 3715 /* 3716 * Error vnode operations template 3717 */ 3718 vnodeops_t *zfs_evnodeops; 3719 const fs_operation_def_t zfs_evnodeops_template[] = { 3720 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3721 VOPNAME_PATHCONF, zfs_pathconf, 3722 NULL, NULL 3723 }; 3724