1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include "fs/fs_subr.h" 69 #include <sys/zfs_ctldir.h> 70 #include <sys/zfs_fuid.h> 71 #include <sys/dnlc.h> 72 #include <sys/zfs_rlock.h> 73 #include <sys/extdirent.h> 74 #include <sys/kidmap.h> 75 #include <sys/cred_impl.h> 76 #include <sys/attr.h> 77 78 /* 79 * Programming rules. 80 * 81 * Each vnode op performs some logical unit of work. To do this, the ZPL must 82 * properly lock its in-core state, create a DMU transaction, do the work, 83 * record this work in the intent log (ZIL), commit the DMU transaction, 84 * and wait for the intent log to commit if it is a synchronous operation. 85 * Moreover, the vnode ops must work in both normal and log replay context. 86 * The ordering of events is important to avoid deadlocks and references 87 * to freed memory. The example below illustrates the following Big Rules: 88 * 89 * (1) A check must be made in each zfs thread for a mounted file system. 90 * This is done avoiding races using ZFS_ENTER(zfsvfs). 91 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 92 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 93 * can return EIO from the calling function. 94 * 95 * (2) VN_RELE() should always be the last thing except for zil_commit() 96 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 97 * First, if it's the last reference, the vnode/znode 98 * can be freed, so the zp may point to freed memory. Second, the last 99 * reference will call zfs_zinactive(), which may induce a lot of work -- 100 * pushing cached pages (which acquires range locks) and syncing out 101 * cached atime changes. Third, zfs_zinactive() may require a new tx, 102 * which could deadlock the system if you were already holding one. 103 * 104 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 105 * as they can span dmu_tx_assign() calls. 106 * 107 * (4) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 108 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 109 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 110 * This is critical because we don't want to block while holding locks. 111 * Note, in particular, that if a lock is sometimes acquired before 112 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 113 * use a non-blocking assign can deadlock the system. The scenario: 114 * 115 * Thread A has grabbed a lock before calling dmu_tx_assign(). 116 * Thread B is in an already-assigned tx, and blocks for this lock. 117 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 118 * forever, because the previous txg can't quiesce until B's tx commits. 119 * 120 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 121 * then drop all locks, call dmu_tx_wait(), and try again. 122 * 123 * (5) If the operation succeeded, generate the intent log entry for it 124 * before dropping locks. This ensures that the ordering of events 125 * in the intent log matches the order in which they actually occurred. 126 * 127 * (6) At the end of each vnode op, the DMU tx must always commit, 128 * regardless of whether there were any errors. 129 * 130 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 131 * to ensure that synchronous semantics are provided when necessary. 132 * 133 * In general, this is how things should be ordered in each vnode op: 134 * 135 * ZFS_ENTER(zfsvfs); // exit if unmounted 136 * top: 137 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 138 * rw_enter(...); // grab any other locks you need 139 * tx = dmu_tx_create(...); // get DMU tx 140 * dmu_tx_hold_*(); // hold each object you might modify 141 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 142 * if (error) { 143 * rw_exit(...); // drop locks 144 * zfs_dirent_unlock(dl); // unlock directory entry 145 * VN_RELE(...); // release held vnodes 146 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 147 * dmu_tx_wait(tx); 148 * dmu_tx_abort(tx); 149 * goto top; 150 * } 151 * dmu_tx_abort(tx); // abort DMU tx 152 * ZFS_EXIT(zfsvfs); // finished in zfs 153 * return (error); // really out of space 154 * } 155 * error = do_real_work(); // do whatever this VOP does 156 * if (error == 0) 157 * zfs_log_*(...); // on success, make ZIL entry 158 * dmu_tx_commit(tx); // commit DMU tx -- error or not 159 * rw_exit(...); // drop locks 160 * zfs_dirent_unlock(dl); // unlock directory entry 161 * VN_RELE(...); // release held vnodes 162 * zil_commit(zilog, seq, foid); // synchronous when necessary 163 * ZFS_EXIT(zfsvfs); // finished in zfs 164 * return (error); // done, report error 165 */ 166 167 /* ARGSUSED */ 168 static int 169 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 170 { 171 znode_t *zp = VTOZ(*vpp); 172 173 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 174 ((flag & FAPPEND) == 0)) { 175 return (EPERM); 176 } 177 178 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 179 ZTOV(zp)->v_type == VREG && 180 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 181 zp->z_phys->zp_size > 0) 182 if (fs_vscan(*vpp, cr, 0) != 0) 183 return (EACCES); 184 185 /* Keep a count of the synchronous opens in the znode */ 186 if (flag & (FSYNC | FDSYNC)) 187 atomic_inc_32(&zp->z_sync_cnt); 188 189 return (0); 190 } 191 192 /* ARGSUSED */ 193 static int 194 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 195 caller_context_t *ct) 196 { 197 znode_t *zp = VTOZ(vp); 198 199 /* Decrement the synchronous opens in the znode */ 200 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 201 atomic_dec_32(&zp->z_sync_cnt); 202 203 /* 204 * Clean up any locks held by this process on the vp. 205 */ 206 cleanlocks(vp, ddi_get_pid(), 0); 207 cleanshares(vp, ddi_get_pid()); 208 209 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 210 ZTOV(zp)->v_type == VREG && 211 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 212 zp->z_phys->zp_size > 0) 213 VERIFY(fs_vscan(vp, cr, 1) == 0); 214 215 return (0); 216 } 217 218 /* 219 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 220 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 221 */ 222 static int 223 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 224 { 225 znode_t *zp = VTOZ(vp); 226 uint64_t noff = (uint64_t)*off; /* new offset */ 227 uint64_t file_sz; 228 int error; 229 boolean_t hole; 230 231 file_sz = zp->z_phys->zp_size; 232 if (noff >= file_sz) { 233 return (ENXIO); 234 } 235 236 if (cmd == _FIO_SEEK_HOLE) 237 hole = B_TRUE; 238 else 239 hole = B_FALSE; 240 241 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 242 243 /* end of file? */ 244 if ((error == ESRCH) || (noff > file_sz)) { 245 /* 246 * Handle the virtual hole at the end of file. 247 */ 248 if (hole) { 249 *off = file_sz; 250 return (0); 251 } 252 return (ENXIO); 253 } 254 255 if (noff < *off) 256 return (error); 257 *off = noff; 258 return (error); 259 } 260 261 /* ARGSUSED */ 262 static int 263 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 264 int *rvalp, caller_context_t *ct) 265 { 266 offset_t off; 267 int error; 268 zfsvfs_t *zfsvfs; 269 znode_t *zp; 270 271 switch (com) { 272 case _FIOFFS: 273 return (zfs_sync(vp->v_vfsp, 0, cred)); 274 275 /* 276 * The following two ioctls are used by bfu. Faking out, 277 * necessary to avoid bfu errors. 278 */ 279 case _FIOGDIO: 280 case _FIOSDIO: 281 return (0); 282 283 case _FIO_SEEK_DATA: 284 case _FIO_SEEK_HOLE: 285 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 286 return (EFAULT); 287 288 zp = VTOZ(vp); 289 zfsvfs = zp->z_zfsvfs; 290 ZFS_ENTER(zfsvfs); 291 ZFS_VERIFY_ZP(zp); 292 293 /* offset parameter is in/out */ 294 error = zfs_holey(vp, com, &off); 295 ZFS_EXIT(zfsvfs); 296 if (error) 297 return (error); 298 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 299 return (EFAULT); 300 return (0); 301 } 302 return (ENOTTY); 303 } 304 305 /* 306 * When a file is memory mapped, we must keep the IO data synchronized 307 * between the DMU cache and the memory mapped pages. What this means: 308 * 309 * On Write: If we find a memory mapped page, we write to *both* 310 * the page and the dmu buffer. 311 * 312 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 313 * the file is memory mapped. 314 */ 315 static int 316 mappedwrite(vnode_t *vp, int nbytes, uio_t *uio, dmu_tx_t *tx) 317 { 318 znode_t *zp = VTOZ(vp); 319 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 320 int64_t start, off; 321 int len = nbytes; 322 int error = 0; 323 324 start = uio->uio_loffset; 325 off = start & PAGEOFFSET; 326 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 327 page_t *pp; 328 uint64_t bytes = MIN(PAGESIZE - off, len); 329 uint64_t woff = uio->uio_loffset; 330 331 /* 332 * We don't want a new page to "appear" in the middle of 333 * the file update (because it may not get the write 334 * update data), so we grab a lock to block 335 * zfs_getpage(). 336 */ 337 rw_enter(&zp->z_map_lock, RW_WRITER); 338 if (pp = page_lookup(vp, start, SE_SHARED)) { 339 caddr_t va; 340 341 rw_exit(&zp->z_map_lock); 342 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 343 error = uiomove(va+off, bytes, UIO_WRITE, uio); 344 if (error == 0) { 345 dmu_write(zfsvfs->z_os, zp->z_id, 346 woff, bytes, va+off, tx); 347 } 348 ppmapout(va); 349 page_unlock(pp); 350 } else { 351 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 352 uio, bytes, tx); 353 rw_exit(&zp->z_map_lock); 354 } 355 len -= bytes; 356 off = 0; 357 if (error) 358 break; 359 } 360 return (error); 361 } 362 363 /* 364 * When a file is memory mapped, we must keep the IO data synchronized 365 * between the DMU cache and the memory mapped pages. What this means: 366 * 367 * On Read: We "read" preferentially from memory mapped pages, 368 * else we default from the dmu buffer. 369 * 370 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 371 * the file is memory mapped. 372 */ 373 static int 374 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 375 { 376 znode_t *zp = VTOZ(vp); 377 objset_t *os = zp->z_zfsvfs->z_os; 378 int64_t start, off; 379 int len = nbytes; 380 int error = 0; 381 382 start = uio->uio_loffset; 383 off = start & PAGEOFFSET; 384 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 385 page_t *pp; 386 uint64_t bytes = MIN(PAGESIZE - off, len); 387 388 if (pp = page_lookup(vp, start, SE_SHARED)) { 389 caddr_t va; 390 391 va = ppmapin(pp, PROT_READ, (caddr_t)-1L); 392 error = uiomove(va + off, bytes, UIO_READ, uio); 393 ppmapout(va); 394 page_unlock(pp); 395 } else { 396 error = dmu_read_uio(os, zp->z_id, uio, bytes); 397 } 398 len -= bytes; 399 off = 0; 400 if (error) 401 break; 402 } 403 return (error); 404 } 405 406 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 407 408 /* 409 * Read bytes from specified file into supplied buffer. 410 * 411 * IN: vp - vnode of file to be read from. 412 * uio - structure supplying read location, range info, 413 * and return buffer. 414 * ioflag - SYNC flags; used to provide FRSYNC semantics. 415 * cr - credentials of caller. 416 * ct - caller context 417 * 418 * OUT: uio - updated offset and range, buffer filled. 419 * 420 * RETURN: 0 if success 421 * error code if failure 422 * 423 * Side Effects: 424 * vp - atime updated if byte count > 0 425 */ 426 /* ARGSUSED */ 427 static int 428 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 429 { 430 znode_t *zp = VTOZ(vp); 431 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 432 objset_t *os; 433 ssize_t n, nbytes; 434 int error; 435 rl_t *rl; 436 437 ZFS_ENTER(zfsvfs); 438 ZFS_VERIFY_ZP(zp); 439 os = zfsvfs->z_os; 440 441 if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) { 442 ZFS_EXIT(zfsvfs); 443 return (EACCES); 444 } 445 446 /* 447 * Validate file offset 448 */ 449 if (uio->uio_loffset < (offset_t)0) { 450 ZFS_EXIT(zfsvfs); 451 return (EINVAL); 452 } 453 454 /* 455 * Fasttrack empty reads 456 */ 457 if (uio->uio_resid == 0) { 458 ZFS_EXIT(zfsvfs); 459 return (0); 460 } 461 462 /* 463 * Check for mandatory locks 464 */ 465 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 466 if (error = chklock(vp, FREAD, 467 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 468 ZFS_EXIT(zfsvfs); 469 return (error); 470 } 471 } 472 473 /* 474 * If we're in FRSYNC mode, sync out this znode before reading it. 475 */ 476 if (ioflag & FRSYNC) 477 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 478 479 /* 480 * Lock the range against changes. 481 */ 482 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 483 484 /* 485 * If we are reading past end-of-file we can skip 486 * to the end; but we might still need to set atime. 487 */ 488 if (uio->uio_loffset >= zp->z_phys->zp_size) { 489 error = 0; 490 goto out; 491 } 492 493 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 494 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 495 496 while (n > 0) { 497 nbytes = MIN(n, zfs_read_chunk_size - 498 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 499 500 if (vn_has_cached_data(vp)) 501 error = mappedread(vp, nbytes, uio); 502 else 503 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 504 if (error) 505 break; 506 507 n -= nbytes; 508 } 509 510 out: 511 zfs_range_unlock(rl); 512 513 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 514 ZFS_EXIT(zfsvfs); 515 return (error); 516 } 517 518 /* 519 * Fault in the pages of the first n bytes specified by the uio structure. 520 * 1 byte in each page is touched and the uio struct is unmodified. 521 * Any error will exit this routine as this is only a best 522 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 523 */ 524 static void 525 zfs_prefault_write(ssize_t n, struct uio *uio) 526 { 527 struct iovec *iov; 528 ulong_t cnt, incr; 529 caddr_t p; 530 uint8_t tmp; 531 532 iov = uio->uio_iov; 533 534 while (n) { 535 cnt = MIN(iov->iov_len, n); 536 if (cnt == 0) { 537 /* empty iov entry */ 538 iov++; 539 continue; 540 } 541 n -= cnt; 542 /* 543 * touch each page in this segment. 544 */ 545 p = iov->iov_base; 546 while (cnt) { 547 switch (uio->uio_segflg) { 548 case UIO_USERSPACE: 549 case UIO_USERISPACE: 550 if (fuword8(p, &tmp)) 551 return; 552 break; 553 case UIO_SYSSPACE: 554 if (kcopy(p, &tmp, 1)) 555 return; 556 break; 557 } 558 incr = MIN(cnt, PAGESIZE); 559 p += incr; 560 cnt -= incr; 561 } 562 /* 563 * touch the last byte in case it straddles a page. 564 */ 565 p--; 566 switch (uio->uio_segflg) { 567 case UIO_USERSPACE: 568 case UIO_USERISPACE: 569 if (fuword8(p, &tmp)) 570 return; 571 break; 572 case UIO_SYSSPACE: 573 if (kcopy(p, &tmp, 1)) 574 return; 575 break; 576 } 577 iov++; 578 } 579 } 580 581 /* 582 * Write the bytes to a file. 583 * 584 * IN: vp - vnode of file to be written to. 585 * uio - structure supplying write location, range info, 586 * and data buffer. 587 * ioflag - FAPPEND flag set if in append mode. 588 * cr - credentials of caller. 589 * ct - caller context (NFS/CIFS fem monitor only) 590 * 591 * OUT: uio - updated offset and range. 592 * 593 * RETURN: 0 if success 594 * error code if failure 595 * 596 * Timestamps: 597 * vp - ctime|mtime updated if byte count > 0 598 */ 599 /* ARGSUSED */ 600 static int 601 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 602 { 603 znode_t *zp = VTOZ(vp); 604 rlim64_t limit = uio->uio_llimit; 605 ssize_t start_resid = uio->uio_resid; 606 ssize_t tx_bytes; 607 uint64_t end_size; 608 dmu_tx_t *tx; 609 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 610 zilog_t *zilog; 611 offset_t woff; 612 ssize_t n, nbytes; 613 rl_t *rl; 614 int max_blksz = zfsvfs->z_max_blksz; 615 uint64_t pflags = zp->z_phys->zp_flags; 616 int error; 617 618 /* 619 * If immutable or not appending then return EPERM 620 */ 621 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 622 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 623 (uio->uio_loffset < zp->z_phys->zp_size))) 624 return (EPERM); 625 626 /* 627 * Fasttrack empty write 628 */ 629 n = start_resid; 630 if (n == 0) 631 return (0); 632 633 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 634 limit = MAXOFFSET_T; 635 636 ZFS_ENTER(zfsvfs); 637 ZFS_VERIFY_ZP(zp); 638 zilog = zfsvfs->z_log; 639 640 /* 641 * Pre-fault the pages to ensure slow (eg NFS) pages 642 * don't hold up txg. 643 */ 644 zfs_prefault_write(n, uio); 645 646 /* 647 * If in append mode, set the io offset pointer to eof. 648 */ 649 if (ioflag & FAPPEND) { 650 /* 651 * Range lock for a file append: 652 * The value for the start of range will be determined by 653 * zfs_range_lock() (to guarantee append semantics). 654 * If this write will cause the block size to increase, 655 * zfs_range_lock() will lock the entire file, so we must 656 * later reduce the range after we grow the block size. 657 */ 658 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 659 if (rl->r_len == UINT64_MAX) { 660 /* overlocked, zp_size can't change */ 661 woff = uio->uio_loffset = zp->z_phys->zp_size; 662 } else { 663 woff = uio->uio_loffset = rl->r_off; 664 } 665 } else { 666 woff = uio->uio_loffset; 667 /* 668 * Validate file offset 669 */ 670 if (woff < 0) { 671 ZFS_EXIT(zfsvfs); 672 return (EINVAL); 673 } 674 675 /* 676 * If we need to grow the block size then zfs_range_lock() 677 * will lock a wider range than we request here. 678 * Later after growing the block size we reduce the range. 679 */ 680 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 681 } 682 683 if (woff >= limit) { 684 zfs_range_unlock(rl); 685 ZFS_EXIT(zfsvfs); 686 return (EFBIG); 687 } 688 689 if ((woff + n) > limit || woff > (limit - n)) 690 n = limit - woff; 691 692 /* 693 * Check for mandatory locks 694 */ 695 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 696 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 697 zfs_range_unlock(rl); 698 ZFS_EXIT(zfsvfs); 699 return (error); 700 } 701 end_size = MAX(zp->z_phys->zp_size, woff + n); 702 703 /* 704 * Write the file in reasonable size chunks. Each chunk is written 705 * in a separate transaction; this keeps the intent log records small 706 * and allows us to do more fine-grained space accounting. 707 */ 708 while (n > 0) { 709 /* 710 * Start a transaction. 711 */ 712 woff = uio->uio_loffset; 713 tx = dmu_tx_create(zfsvfs->z_os); 714 dmu_tx_hold_bonus(tx, zp->z_id); 715 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 716 error = dmu_tx_assign(tx, zfsvfs->z_assign); 717 if (error) { 718 if (error == ERESTART && 719 zfsvfs->z_assign == TXG_NOWAIT) { 720 dmu_tx_wait(tx); 721 dmu_tx_abort(tx); 722 continue; 723 } 724 dmu_tx_abort(tx); 725 break; 726 } 727 728 /* 729 * If zfs_range_lock() over-locked we grow the blocksize 730 * and then reduce the lock range. This will only happen 731 * on the first iteration since zfs_range_reduce() will 732 * shrink down r_len to the appropriate size. 733 */ 734 if (rl->r_len == UINT64_MAX) { 735 uint64_t new_blksz; 736 737 if (zp->z_blksz > max_blksz) { 738 ASSERT(!ISP2(zp->z_blksz)); 739 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 740 } else { 741 new_blksz = MIN(end_size, max_blksz); 742 } 743 zfs_grow_blocksize(zp, new_blksz, tx); 744 zfs_range_reduce(rl, woff, n); 745 } 746 747 /* 748 * XXX - should we really limit each write to z_max_blksz? 749 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 750 */ 751 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 752 rw_enter(&zp->z_map_lock, RW_READER); 753 754 tx_bytes = uio->uio_resid; 755 if (vn_has_cached_data(vp)) { 756 rw_exit(&zp->z_map_lock); 757 error = mappedwrite(vp, nbytes, uio, tx); 758 } else { 759 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 760 uio, nbytes, tx); 761 rw_exit(&zp->z_map_lock); 762 } 763 tx_bytes -= uio->uio_resid; 764 765 /* 766 * If we made no progress, we're done. If we made even 767 * partial progress, update the znode and ZIL accordingly. 768 */ 769 if (tx_bytes == 0) { 770 dmu_tx_commit(tx); 771 ASSERT(error != 0); 772 break; 773 } 774 775 /* 776 * Clear Set-UID/Set-GID bits on successful write if not 777 * privileged and at least one of the excute bits is set. 778 * 779 * It would be nice to to this after all writes have 780 * been done, but that would still expose the ISUID/ISGID 781 * to another app after the partial write is committed. 782 * 783 * Note: we don't call zfs_fuid_map_id() here because 784 * user 0 is not an ephemeral uid. 785 */ 786 mutex_enter(&zp->z_acl_lock); 787 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 788 (S_IXUSR >> 6))) != 0 && 789 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 790 secpolicy_vnode_setid_retain(cr, 791 (zp->z_phys->zp_mode & S_ISUID) != 0 && 792 zp->z_phys->zp_uid == 0) != 0) { 793 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 794 } 795 mutex_exit(&zp->z_acl_lock); 796 797 /* 798 * Update time stamp. NOTE: This marks the bonus buffer as 799 * dirty, so we don't have to do it again for zp_size. 800 */ 801 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 802 803 /* 804 * Update the file size (zp_size) if it has changed; 805 * account for possible concurrent updates. 806 */ 807 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 808 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 809 uio->uio_loffset); 810 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 811 dmu_tx_commit(tx); 812 813 if (error != 0) 814 break; 815 ASSERT(tx_bytes == nbytes); 816 n -= nbytes; 817 } 818 819 zfs_range_unlock(rl); 820 821 /* 822 * If we're in replay mode, or we made no progress, return error. 823 * Otherwise, it's at least a partial write, so it's successful. 824 */ 825 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 826 ZFS_EXIT(zfsvfs); 827 return (error); 828 } 829 830 if (ioflag & (FSYNC | FDSYNC)) 831 zil_commit(zilog, zp->z_last_itx, zp->z_id); 832 833 ZFS_EXIT(zfsvfs); 834 return (0); 835 } 836 837 void 838 zfs_get_done(dmu_buf_t *db, void *vzgd) 839 { 840 zgd_t *zgd = (zgd_t *)vzgd; 841 rl_t *rl = zgd->zgd_rl; 842 vnode_t *vp = ZTOV(rl->r_zp); 843 844 dmu_buf_rele(db, vzgd); 845 zfs_range_unlock(rl); 846 VN_RELE(vp); 847 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 848 kmem_free(zgd, sizeof (zgd_t)); 849 } 850 851 /* 852 * Get data to generate a TX_WRITE intent log record. 853 */ 854 int 855 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 856 { 857 zfsvfs_t *zfsvfs = arg; 858 objset_t *os = zfsvfs->z_os; 859 znode_t *zp; 860 uint64_t off = lr->lr_offset; 861 dmu_buf_t *db; 862 rl_t *rl; 863 zgd_t *zgd; 864 int dlen = lr->lr_length; /* length of user data */ 865 int error = 0; 866 867 ASSERT(zio); 868 ASSERT(dlen != 0); 869 870 /* 871 * Nothing to do if the file has been removed 872 */ 873 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 874 return (ENOENT); 875 if (zp->z_unlinked) { 876 VN_RELE(ZTOV(zp)); 877 return (ENOENT); 878 } 879 880 /* 881 * Write records come in two flavors: immediate and indirect. 882 * For small writes it's cheaper to store the data with the 883 * log record (immediate); for large writes it's cheaper to 884 * sync the data and get a pointer to it (indirect) so that 885 * we don't have to write the data twice. 886 */ 887 if (buf != NULL) { /* immediate write */ 888 rl = zfs_range_lock(zp, off, dlen, RL_READER); 889 /* test for truncation needs to be done while range locked */ 890 if (off >= zp->z_phys->zp_size) { 891 error = ENOENT; 892 goto out; 893 } 894 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf)); 895 } else { /* indirect write */ 896 uint64_t boff; /* block starting offset */ 897 898 /* 899 * Have to lock the whole block to ensure when it's 900 * written out and it's checksum is being calculated 901 * that no one can change the data. We need to re-check 902 * blocksize after we get the lock in case it's changed! 903 */ 904 for (;;) { 905 if (ISP2(zp->z_blksz)) { 906 boff = P2ALIGN_TYPED(off, zp->z_blksz, 907 uint64_t); 908 } else { 909 boff = 0; 910 } 911 dlen = zp->z_blksz; 912 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 913 if (zp->z_blksz == dlen) 914 break; 915 zfs_range_unlock(rl); 916 } 917 /* test for truncation needs to be done while range locked */ 918 if (off >= zp->z_phys->zp_size) { 919 error = ENOENT; 920 goto out; 921 } 922 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 923 zgd->zgd_rl = rl; 924 zgd->zgd_zilog = zfsvfs->z_log; 925 zgd->zgd_bp = &lr->lr_blkptr; 926 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db)); 927 ASSERT(boff == db->db_offset); 928 lr->lr_blkoff = off - boff; 929 error = dmu_sync(zio, db, &lr->lr_blkptr, 930 lr->lr_common.lrc_txg, zfs_get_done, zgd); 931 ASSERT((error && error != EINPROGRESS) || 932 lr->lr_length <= zp->z_blksz); 933 if (error == 0) 934 zil_add_block(zfsvfs->z_log, &lr->lr_blkptr); 935 /* 936 * If we get EINPROGRESS, then we need to wait for a 937 * write IO initiated by dmu_sync() to complete before 938 * we can release this dbuf. We will finish everything 939 * up in the zfs_get_done() callback. 940 */ 941 if (error == EINPROGRESS) 942 return (0); 943 dmu_buf_rele(db, zgd); 944 kmem_free(zgd, sizeof (zgd_t)); 945 } 946 out: 947 zfs_range_unlock(rl); 948 VN_RELE(ZTOV(zp)); 949 return (error); 950 } 951 952 /*ARGSUSED*/ 953 static int 954 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 955 caller_context_t *ct) 956 { 957 znode_t *zp = VTOZ(vp); 958 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 959 int error; 960 961 ZFS_ENTER(zfsvfs); 962 ZFS_VERIFY_ZP(zp); 963 964 if (flag & V_ACE_MASK) 965 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 966 else 967 error = zfs_zaccess_rwx(zp, mode, flag, cr); 968 969 ZFS_EXIT(zfsvfs); 970 return (error); 971 } 972 973 /* 974 * Lookup an entry in a directory, or an extended attribute directory. 975 * If it exists, return a held vnode reference for it. 976 * 977 * IN: dvp - vnode of directory to search. 978 * nm - name of entry to lookup. 979 * pnp - full pathname to lookup [UNUSED]. 980 * flags - LOOKUP_XATTR set if looking for an attribute. 981 * rdir - root directory vnode [UNUSED]. 982 * cr - credentials of caller. 983 * ct - caller context 984 * direntflags - directory lookup flags 985 * realpnp - returned pathname. 986 * 987 * OUT: vpp - vnode of located entry, NULL if not found. 988 * 989 * RETURN: 0 if success 990 * error code if failure 991 * 992 * Timestamps: 993 * NA 994 */ 995 /* ARGSUSED */ 996 static int 997 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 998 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 999 int *direntflags, pathname_t *realpnp) 1000 { 1001 znode_t *zdp = VTOZ(dvp); 1002 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1003 int error; 1004 1005 ZFS_ENTER(zfsvfs); 1006 ZFS_VERIFY_ZP(zdp); 1007 1008 *vpp = NULL; 1009 1010 if (flags & LOOKUP_XATTR) { 1011 /* 1012 * If the xattr property is off, refuse the lookup request. 1013 */ 1014 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1015 ZFS_EXIT(zfsvfs); 1016 return (EINVAL); 1017 } 1018 1019 /* 1020 * We don't allow recursive attributes.. 1021 * Maybe someday we will. 1022 */ 1023 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1024 ZFS_EXIT(zfsvfs); 1025 return (EINVAL); 1026 } 1027 1028 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1029 ZFS_EXIT(zfsvfs); 1030 return (error); 1031 } 1032 1033 /* 1034 * Do we have permission to get into attribute directory? 1035 */ 1036 1037 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1038 B_FALSE, cr)) { 1039 VN_RELE(*vpp); 1040 *vpp = NULL; 1041 } 1042 1043 ZFS_EXIT(zfsvfs); 1044 return (error); 1045 } 1046 1047 if (dvp->v_type != VDIR) { 1048 ZFS_EXIT(zfsvfs); 1049 return (ENOTDIR); 1050 } 1051 1052 /* 1053 * Check accessibility of directory. 1054 */ 1055 1056 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1057 ZFS_EXIT(zfsvfs); 1058 return (error); 1059 } 1060 1061 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1062 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1063 ZFS_EXIT(zfsvfs); 1064 return (EILSEQ); 1065 } 1066 1067 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1068 if (error == 0) { 1069 /* 1070 * Convert device special files 1071 */ 1072 if (IS_DEVVP(*vpp)) { 1073 vnode_t *svp; 1074 1075 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1076 VN_RELE(*vpp); 1077 if (svp == NULL) 1078 error = ENOSYS; 1079 else 1080 *vpp = svp; 1081 } 1082 } 1083 1084 ZFS_EXIT(zfsvfs); 1085 return (error); 1086 } 1087 1088 /* 1089 * Attempt to create a new entry in a directory. If the entry 1090 * already exists, truncate the file if permissible, else return 1091 * an error. Return the vp of the created or trunc'd file. 1092 * 1093 * IN: dvp - vnode of directory to put new file entry in. 1094 * name - name of new file entry. 1095 * vap - attributes of new file. 1096 * excl - flag indicating exclusive or non-exclusive mode. 1097 * mode - mode to open file with. 1098 * cr - credentials of caller. 1099 * flag - large file flag [UNUSED]. 1100 * ct - caller context 1101 * vsecp - ACL to be set 1102 * 1103 * OUT: vpp - vnode of created or trunc'd entry. 1104 * 1105 * RETURN: 0 if success 1106 * error code if failure 1107 * 1108 * Timestamps: 1109 * dvp - ctime|mtime updated if new entry created 1110 * vp - ctime|mtime always, atime if new 1111 */ 1112 1113 /* ARGSUSED */ 1114 static int 1115 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1116 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1117 vsecattr_t *vsecp) 1118 { 1119 znode_t *zp, *dzp = VTOZ(dvp); 1120 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1121 zilog_t *zilog; 1122 objset_t *os; 1123 zfs_dirlock_t *dl; 1124 dmu_tx_t *tx; 1125 int error; 1126 zfs_acl_t *aclp = NULL; 1127 zfs_fuid_info_t *fuidp = NULL; 1128 1129 /* 1130 * If we have an ephemeral id, ACL, or XVATTR then 1131 * make sure file system is at proper version 1132 */ 1133 1134 if (zfsvfs->z_use_fuids == B_FALSE && 1135 (vsecp || (vap->va_mask & AT_XVATTR) || 1136 IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr)))) 1137 return (EINVAL); 1138 1139 ZFS_ENTER(zfsvfs); 1140 ZFS_VERIFY_ZP(dzp); 1141 os = zfsvfs->z_os; 1142 zilog = zfsvfs->z_log; 1143 1144 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1145 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1146 ZFS_EXIT(zfsvfs); 1147 return (EILSEQ); 1148 } 1149 1150 if (vap->va_mask & AT_XVATTR) { 1151 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1152 crgetuid(cr), cr, vap->va_type)) != 0) { 1153 ZFS_EXIT(zfsvfs); 1154 return (error); 1155 } 1156 } 1157 top: 1158 *vpp = NULL; 1159 1160 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1161 vap->va_mode &= ~VSVTX; 1162 1163 if (*name == '\0') { 1164 /* 1165 * Null component name refers to the directory itself. 1166 */ 1167 VN_HOLD(dvp); 1168 zp = dzp; 1169 dl = NULL; 1170 error = 0; 1171 } else { 1172 /* possible VN_HOLD(zp) */ 1173 int zflg = 0; 1174 1175 if (flag & FIGNORECASE) 1176 zflg |= ZCILOOK; 1177 1178 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1179 NULL, NULL); 1180 if (error) { 1181 if (strcmp(name, "..") == 0) 1182 error = EISDIR; 1183 ZFS_EXIT(zfsvfs); 1184 if (aclp) 1185 zfs_acl_free(aclp); 1186 return (error); 1187 } 1188 } 1189 if (vsecp && aclp == NULL) { 1190 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1191 if (error) { 1192 ZFS_EXIT(zfsvfs); 1193 if (dl) 1194 zfs_dirent_unlock(dl); 1195 return (error); 1196 } 1197 } 1198 1199 if (zp == NULL) { 1200 uint64_t txtype; 1201 1202 /* 1203 * Create a new file object and update the directory 1204 * to reference it. 1205 */ 1206 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1207 goto out; 1208 } 1209 1210 /* 1211 * We only support the creation of regular files in 1212 * extended attribute directories. 1213 */ 1214 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1215 (vap->va_type != VREG)) { 1216 error = EINVAL; 1217 goto out; 1218 } 1219 1220 tx = dmu_tx_create(os); 1221 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1222 if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(crgetuid(cr)) || 1223 IS_EPHEMERAL(crgetgid(cr))) { 1224 if (zfsvfs->z_fuid_obj == 0) { 1225 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1226 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1227 FUID_SIZE_ESTIMATE(zfsvfs)); 1228 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 1229 FALSE, NULL); 1230 } else { 1231 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1232 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1233 FUID_SIZE_ESTIMATE(zfsvfs)); 1234 } 1235 } 1236 dmu_tx_hold_bonus(tx, dzp->z_id); 1237 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1238 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) { 1239 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1240 0, SPA_MAXBLOCKSIZE); 1241 } 1242 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1243 if (error) { 1244 zfs_dirent_unlock(dl); 1245 if (error == ERESTART && 1246 zfsvfs->z_assign == TXG_NOWAIT) { 1247 dmu_tx_wait(tx); 1248 dmu_tx_abort(tx); 1249 goto top; 1250 } 1251 dmu_tx_abort(tx); 1252 ZFS_EXIT(zfsvfs); 1253 if (aclp) 1254 zfs_acl_free(aclp); 1255 return (error); 1256 } 1257 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1258 (void) zfs_link_create(dl, zp, tx, ZNEW); 1259 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1260 if (flag & FIGNORECASE) 1261 txtype |= TX_CI; 1262 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1263 vsecp, fuidp, vap); 1264 if (fuidp) 1265 zfs_fuid_info_free(fuidp); 1266 dmu_tx_commit(tx); 1267 } else { 1268 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1269 1270 /* 1271 * A directory entry already exists for this name. 1272 */ 1273 /* 1274 * Can't truncate an existing file if in exclusive mode. 1275 */ 1276 if (excl == EXCL) { 1277 error = EEXIST; 1278 goto out; 1279 } 1280 /* 1281 * Can't open a directory for writing. 1282 */ 1283 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1284 error = EISDIR; 1285 goto out; 1286 } 1287 /* 1288 * Verify requested access to file. 1289 */ 1290 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1291 goto out; 1292 } 1293 1294 mutex_enter(&dzp->z_lock); 1295 dzp->z_seq++; 1296 mutex_exit(&dzp->z_lock); 1297 1298 /* 1299 * Truncate regular files if requested. 1300 */ 1301 if ((ZTOV(zp)->v_type == VREG) && 1302 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1303 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1304 if (error == ERESTART && 1305 zfsvfs->z_assign == TXG_NOWAIT) { 1306 /* NB: we already did dmu_tx_wait() */ 1307 zfs_dirent_unlock(dl); 1308 VN_RELE(ZTOV(zp)); 1309 goto top; 1310 } 1311 1312 if (error == 0) { 1313 vnevent_create(ZTOV(zp), ct); 1314 } 1315 } 1316 } 1317 out: 1318 1319 if (dl) 1320 zfs_dirent_unlock(dl); 1321 1322 if (error) { 1323 if (zp) 1324 VN_RELE(ZTOV(zp)); 1325 } else { 1326 *vpp = ZTOV(zp); 1327 /* 1328 * If vnode is for a device return a specfs vnode instead. 1329 */ 1330 if (IS_DEVVP(*vpp)) { 1331 struct vnode *svp; 1332 1333 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1334 VN_RELE(*vpp); 1335 if (svp == NULL) { 1336 error = ENOSYS; 1337 } 1338 *vpp = svp; 1339 } 1340 } 1341 if (aclp) 1342 zfs_acl_free(aclp); 1343 1344 ZFS_EXIT(zfsvfs); 1345 return (error); 1346 } 1347 1348 /* 1349 * Remove an entry from a directory. 1350 * 1351 * IN: dvp - vnode of directory to remove entry from. 1352 * name - name of entry to remove. 1353 * cr - credentials of caller. 1354 * ct - caller context 1355 * flags - case flags 1356 * 1357 * RETURN: 0 if success 1358 * error code if failure 1359 * 1360 * Timestamps: 1361 * dvp - ctime|mtime 1362 * vp - ctime (if nlink > 0) 1363 */ 1364 /*ARGSUSED*/ 1365 static int 1366 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1367 int flags) 1368 { 1369 znode_t *zp, *dzp = VTOZ(dvp); 1370 znode_t *xzp = NULL; 1371 vnode_t *vp; 1372 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1373 zilog_t *zilog; 1374 uint64_t acl_obj, xattr_obj; 1375 zfs_dirlock_t *dl; 1376 dmu_tx_t *tx; 1377 boolean_t may_delete_now, delete_now = FALSE; 1378 boolean_t unlinked; 1379 uint64_t txtype; 1380 pathname_t *realnmp = NULL; 1381 pathname_t realnm; 1382 int error; 1383 int zflg = ZEXISTS; 1384 1385 ZFS_ENTER(zfsvfs); 1386 ZFS_VERIFY_ZP(dzp); 1387 zilog = zfsvfs->z_log; 1388 1389 if (flags & FIGNORECASE) { 1390 zflg |= ZCILOOK; 1391 pn_alloc(&realnm); 1392 realnmp = &realnm; 1393 } 1394 1395 top: 1396 /* 1397 * Attempt to lock directory; fail if entry doesn't exist. 1398 */ 1399 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1400 NULL, realnmp)) { 1401 if (realnmp) 1402 pn_free(realnmp); 1403 ZFS_EXIT(zfsvfs); 1404 return (error); 1405 } 1406 1407 vp = ZTOV(zp); 1408 1409 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1410 goto out; 1411 } 1412 1413 /* 1414 * Need to use rmdir for removing directories. 1415 */ 1416 if (vp->v_type == VDIR) { 1417 error = EPERM; 1418 goto out; 1419 } 1420 1421 vnevent_remove(vp, dvp, name, ct); 1422 1423 if (realnmp) 1424 dnlc_remove(dvp, realnmp->pn_path); 1425 else 1426 dnlc_remove(dvp, name); 1427 1428 mutex_enter(&vp->v_lock); 1429 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1430 mutex_exit(&vp->v_lock); 1431 1432 /* 1433 * We may delete the znode now, or we may put it in the unlinked set; 1434 * it depends on whether we're the last link, and on whether there are 1435 * other holds on the vnode. So we dmu_tx_hold() the right things to 1436 * allow for either case. 1437 */ 1438 tx = dmu_tx_create(zfsvfs->z_os); 1439 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1440 dmu_tx_hold_bonus(tx, zp->z_id); 1441 if (may_delete_now) 1442 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1443 1444 /* are there any extended attributes? */ 1445 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1446 /* XXX - do we need this if we are deleting? */ 1447 dmu_tx_hold_bonus(tx, xattr_obj); 1448 } 1449 1450 /* are there any additional acls */ 1451 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1452 may_delete_now) 1453 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1454 1455 /* charge as an update -- would be nice not to charge at all */ 1456 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1457 1458 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1459 if (error) { 1460 zfs_dirent_unlock(dl); 1461 VN_RELE(vp); 1462 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1463 dmu_tx_wait(tx); 1464 dmu_tx_abort(tx); 1465 goto top; 1466 } 1467 if (realnmp) 1468 pn_free(realnmp); 1469 dmu_tx_abort(tx); 1470 ZFS_EXIT(zfsvfs); 1471 return (error); 1472 } 1473 1474 /* 1475 * Remove the directory entry. 1476 */ 1477 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1478 1479 if (error) { 1480 dmu_tx_commit(tx); 1481 goto out; 1482 } 1483 1484 if (unlinked) { 1485 mutex_enter(&vp->v_lock); 1486 delete_now = may_delete_now && 1487 vp->v_count == 1 && !vn_has_cached_data(vp) && 1488 zp->z_phys->zp_xattr == xattr_obj && 1489 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1490 mutex_exit(&vp->v_lock); 1491 } 1492 1493 if (delete_now) { 1494 if (zp->z_phys->zp_xattr) { 1495 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1496 ASSERT3U(error, ==, 0); 1497 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1498 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1499 mutex_enter(&xzp->z_lock); 1500 xzp->z_unlinked = 1; 1501 xzp->z_phys->zp_links = 0; 1502 mutex_exit(&xzp->z_lock); 1503 zfs_unlinked_add(xzp, tx); 1504 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1505 } 1506 mutex_enter(&zp->z_lock); 1507 mutex_enter(&vp->v_lock); 1508 vp->v_count--; 1509 ASSERT3U(vp->v_count, ==, 0); 1510 mutex_exit(&vp->v_lock); 1511 mutex_exit(&zp->z_lock); 1512 zfs_znode_delete(zp, tx); 1513 } else if (unlinked) { 1514 zfs_unlinked_add(zp, tx); 1515 } 1516 1517 txtype = TX_REMOVE; 1518 if (flags & FIGNORECASE) 1519 txtype |= TX_CI; 1520 zfs_log_remove(zilog, tx, txtype, dzp, name); 1521 1522 dmu_tx_commit(tx); 1523 out: 1524 if (realnmp) 1525 pn_free(realnmp); 1526 1527 zfs_dirent_unlock(dl); 1528 1529 if (!delete_now) { 1530 VN_RELE(vp); 1531 } else if (xzp) { 1532 /* this rele delayed to prevent nesting transactions */ 1533 VN_RELE(ZTOV(xzp)); 1534 } 1535 1536 ZFS_EXIT(zfsvfs); 1537 return (error); 1538 } 1539 1540 /* 1541 * Create a new directory and insert it into dvp using the name 1542 * provided. Return a pointer to the inserted directory. 1543 * 1544 * IN: dvp - vnode of directory to add subdir to. 1545 * dirname - name of new directory. 1546 * vap - attributes of new directory. 1547 * cr - credentials of caller. 1548 * ct - caller context 1549 * vsecp - ACL to be set 1550 * 1551 * OUT: vpp - vnode of created directory. 1552 * 1553 * RETURN: 0 if success 1554 * error code if failure 1555 * 1556 * Timestamps: 1557 * dvp - ctime|mtime updated 1558 * vp - ctime|mtime|atime updated 1559 */ 1560 /*ARGSUSED*/ 1561 static int 1562 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1563 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1564 { 1565 znode_t *zp, *dzp = VTOZ(dvp); 1566 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1567 zilog_t *zilog; 1568 zfs_dirlock_t *dl; 1569 uint64_t txtype; 1570 dmu_tx_t *tx; 1571 int error; 1572 zfs_acl_t *aclp = NULL; 1573 zfs_fuid_info_t *fuidp = NULL; 1574 int zf = ZNEW; 1575 1576 ASSERT(vap->va_type == VDIR); 1577 1578 /* 1579 * If we have an ephemeral id, ACL, or XVATTR then 1580 * make sure file system is at proper version 1581 */ 1582 1583 if (zfsvfs->z_use_fuids == B_FALSE && 1584 (vsecp || (vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(crgetuid(cr))|| 1585 IS_EPHEMERAL(crgetgid(cr)))) 1586 return (EINVAL); 1587 1588 ZFS_ENTER(zfsvfs); 1589 ZFS_VERIFY_ZP(dzp); 1590 zilog = zfsvfs->z_log; 1591 1592 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1593 ZFS_EXIT(zfsvfs); 1594 return (EINVAL); 1595 } 1596 1597 if (zfsvfs->z_utf8 && u8_validate(dirname, 1598 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1599 ZFS_EXIT(zfsvfs); 1600 return (EILSEQ); 1601 } 1602 if (flags & FIGNORECASE) 1603 zf |= ZCILOOK; 1604 1605 if (vap->va_mask & AT_XVATTR) 1606 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1607 crgetuid(cr), cr, vap->va_type)) != 0) { 1608 ZFS_EXIT(zfsvfs); 1609 return (error); 1610 } 1611 1612 /* 1613 * First make sure the new directory doesn't exist. 1614 */ 1615 top: 1616 *vpp = NULL; 1617 1618 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1619 NULL, NULL)) { 1620 ZFS_EXIT(zfsvfs); 1621 return (error); 1622 } 1623 1624 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1625 zfs_dirent_unlock(dl); 1626 ZFS_EXIT(zfsvfs); 1627 return (error); 1628 } 1629 1630 if (vsecp && aclp == NULL) { 1631 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1632 if (error) { 1633 zfs_dirent_unlock(dl); 1634 ZFS_EXIT(zfsvfs); 1635 return (error); 1636 } 1637 } 1638 /* 1639 * Add a new entry to the directory. 1640 */ 1641 tx = dmu_tx_create(zfsvfs->z_os); 1642 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1643 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1644 if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(crgetuid(cr)) || 1645 IS_EPHEMERAL(crgetgid(cr))) { 1646 if (zfsvfs->z_fuid_obj == 0) { 1647 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1648 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1649 FUID_SIZE_ESTIMATE(zfsvfs)); 1650 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 1651 } else { 1652 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1653 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1654 FUID_SIZE_ESTIMATE(zfsvfs)); 1655 } 1656 } 1657 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) 1658 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1659 0, SPA_MAXBLOCKSIZE); 1660 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1661 if (error) { 1662 zfs_dirent_unlock(dl); 1663 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1664 dmu_tx_wait(tx); 1665 dmu_tx_abort(tx); 1666 goto top; 1667 } 1668 dmu_tx_abort(tx); 1669 ZFS_EXIT(zfsvfs); 1670 if (aclp) 1671 zfs_acl_free(aclp); 1672 return (error); 1673 } 1674 1675 /* 1676 * Create new node. 1677 */ 1678 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1679 1680 if (aclp) 1681 zfs_acl_free(aclp); 1682 1683 /* 1684 * Now put new name in parent dir. 1685 */ 1686 (void) zfs_link_create(dl, zp, tx, ZNEW); 1687 1688 *vpp = ZTOV(zp); 1689 1690 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1691 if (flags & FIGNORECASE) 1692 txtype |= TX_CI; 1693 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, fuidp, vap); 1694 1695 if (fuidp) 1696 zfs_fuid_info_free(fuidp); 1697 dmu_tx_commit(tx); 1698 1699 zfs_dirent_unlock(dl); 1700 1701 ZFS_EXIT(zfsvfs); 1702 return (0); 1703 } 1704 1705 /* 1706 * Remove a directory subdir entry. If the current working 1707 * directory is the same as the subdir to be removed, the 1708 * remove will fail. 1709 * 1710 * IN: dvp - vnode of directory to remove from. 1711 * name - name of directory to be removed. 1712 * cwd - vnode of current working directory. 1713 * cr - credentials of caller. 1714 * ct - caller context 1715 * flags - case flags 1716 * 1717 * RETURN: 0 if success 1718 * error code if failure 1719 * 1720 * Timestamps: 1721 * dvp - ctime|mtime updated 1722 */ 1723 /*ARGSUSED*/ 1724 static int 1725 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1726 caller_context_t *ct, int flags) 1727 { 1728 znode_t *dzp = VTOZ(dvp); 1729 znode_t *zp; 1730 vnode_t *vp; 1731 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1732 zilog_t *zilog; 1733 zfs_dirlock_t *dl; 1734 dmu_tx_t *tx; 1735 int error; 1736 int zflg = ZEXISTS; 1737 1738 ZFS_ENTER(zfsvfs); 1739 ZFS_VERIFY_ZP(dzp); 1740 zilog = zfsvfs->z_log; 1741 1742 if (flags & FIGNORECASE) 1743 zflg |= ZCILOOK; 1744 top: 1745 zp = NULL; 1746 1747 /* 1748 * Attempt to lock directory; fail if entry doesn't exist. 1749 */ 1750 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1751 NULL, NULL)) { 1752 ZFS_EXIT(zfsvfs); 1753 return (error); 1754 } 1755 1756 vp = ZTOV(zp); 1757 1758 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1759 goto out; 1760 } 1761 1762 if (vp->v_type != VDIR) { 1763 error = ENOTDIR; 1764 goto out; 1765 } 1766 1767 if (vp == cwd) { 1768 error = EINVAL; 1769 goto out; 1770 } 1771 1772 vnevent_rmdir(vp, dvp, name, ct); 1773 1774 /* 1775 * Grab a lock on the directory to make sure that noone is 1776 * trying to add (or lookup) entries while we are removing it. 1777 */ 1778 rw_enter(&zp->z_name_lock, RW_WRITER); 1779 1780 /* 1781 * Grab a lock on the parent pointer to make sure we play well 1782 * with the treewalk and directory rename code. 1783 */ 1784 rw_enter(&zp->z_parent_lock, RW_WRITER); 1785 1786 tx = dmu_tx_create(zfsvfs->z_os); 1787 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1788 dmu_tx_hold_bonus(tx, zp->z_id); 1789 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1790 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1791 if (error) { 1792 rw_exit(&zp->z_parent_lock); 1793 rw_exit(&zp->z_name_lock); 1794 zfs_dirent_unlock(dl); 1795 VN_RELE(vp); 1796 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1797 dmu_tx_wait(tx); 1798 dmu_tx_abort(tx); 1799 goto top; 1800 } 1801 dmu_tx_abort(tx); 1802 ZFS_EXIT(zfsvfs); 1803 return (error); 1804 } 1805 1806 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1807 1808 if (error == 0) { 1809 uint64_t txtype = TX_RMDIR; 1810 if (flags & FIGNORECASE) 1811 txtype |= TX_CI; 1812 zfs_log_remove(zilog, tx, txtype, dzp, name); 1813 } 1814 1815 dmu_tx_commit(tx); 1816 1817 rw_exit(&zp->z_parent_lock); 1818 rw_exit(&zp->z_name_lock); 1819 out: 1820 zfs_dirent_unlock(dl); 1821 1822 VN_RELE(vp); 1823 1824 ZFS_EXIT(zfsvfs); 1825 return (error); 1826 } 1827 1828 /* 1829 * Read as many directory entries as will fit into the provided 1830 * buffer from the given directory cursor position (specified in 1831 * the uio structure. 1832 * 1833 * IN: vp - vnode of directory to read. 1834 * uio - structure supplying read location, range info, 1835 * and return buffer. 1836 * cr - credentials of caller. 1837 * ct - caller context 1838 * flags - case flags 1839 * 1840 * OUT: uio - updated offset and range, buffer filled. 1841 * eofp - set to true if end-of-file detected. 1842 * 1843 * RETURN: 0 if success 1844 * error code if failure 1845 * 1846 * Timestamps: 1847 * vp - atime updated 1848 * 1849 * Note that the low 4 bits of the cookie returned by zap is always zero. 1850 * This allows us to use the low range for "special" directory entries: 1851 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1852 * we use the offset 2 for the '.zfs' directory. 1853 */ 1854 /* ARGSUSED */ 1855 static int 1856 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1857 caller_context_t *ct, int flags) 1858 { 1859 znode_t *zp = VTOZ(vp); 1860 iovec_t *iovp; 1861 edirent_t *eodp; 1862 dirent64_t *odp; 1863 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1864 objset_t *os; 1865 caddr_t outbuf; 1866 size_t bufsize; 1867 zap_cursor_t zc; 1868 zap_attribute_t zap; 1869 uint_t bytes_wanted; 1870 uint64_t offset; /* must be unsigned; checks for < 1 */ 1871 int local_eof; 1872 int outcount; 1873 int error; 1874 uint8_t prefetch; 1875 boolean_t check_sysattrs; 1876 1877 ZFS_ENTER(zfsvfs); 1878 ZFS_VERIFY_ZP(zp); 1879 1880 /* 1881 * If we are not given an eof variable, 1882 * use a local one. 1883 */ 1884 if (eofp == NULL) 1885 eofp = &local_eof; 1886 1887 /* 1888 * Check for valid iov_len. 1889 */ 1890 if (uio->uio_iov->iov_len <= 0) { 1891 ZFS_EXIT(zfsvfs); 1892 return (EINVAL); 1893 } 1894 1895 /* 1896 * Quit if directory has been removed (posix) 1897 */ 1898 if ((*eofp = zp->z_unlinked) != 0) { 1899 ZFS_EXIT(zfsvfs); 1900 return (0); 1901 } 1902 1903 error = 0; 1904 os = zfsvfs->z_os; 1905 offset = uio->uio_loffset; 1906 prefetch = zp->z_zn_prefetch; 1907 1908 /* 1909 * Initialize the iterator cursor. 1910 */ 1911 if (offset <= 3) { 1912 /* 1913 * Start iteration from the beginning of the directory. 1914 */ 1915 zap_cursor_init(&zc, os, zp->z_id); 1916 } else { 1917 /* 1918 * The offset is a serialized cursor. 1919 */ 1920 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1921 } 1922 1923 /* 1924 * Get space to change directory entries into fs independent format. 1925 */ 1926 iovp = uio->uio_iov; 1927 bytes_wanted = iovp->iov_len; 1928 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1929 bufsize = bytes_wanted; 1930 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1931 odp = (struct dirent64 *)outbuf; 1932 } else { 1933 bufsize = bytes_wanted; 1934 odp = (struct dirent64 *)iovp->iov_base; 1935 } 1936 eodp = (struct edirent *)odp; 1937 1938 /* 1939 * If this VFS supports system attributes; and we're looking at an 1940 * extended attribute directory; and we care about normalization 1941 * conflicts on this vfs; then we must check for normalization 1942 * conflicts with the sysattr name space. 1943 */ 1944 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) && 1945 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 1946 (flags & V_RDDIR_ENTFLAGS); 1947 1948 /* 1949 * Transform to file-system independent format 1950 */ 1951 outcount = 0; 1952 while (outcount < bytes_wanted) { 1953 ino64_t objnum; 1954 ushort_t reclen; 1955 off64_t *next; 1956 1957 /* 1958 * Special case `.', `..', and `.zfs'. 1959 */ 1960 if (offset == 0) { 1961 (void) strcpy(zap.za_name, "."); 1962 zap.za_normalization_conflict = 0; 1963 objnum = zp->z_id; 1964 } else if (offset == 1) { 1965 (void) strcpy(zap.za_name, ".."); 1966 zap.za_normalization_conflict = 0; 1967 objnum = zp->z_phys->zp_parent; 1968 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1969 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1970 zap.za_normalization_conflict = 0; 1971 objnum = ZFSCTL_INO_ROOT; 1972 } else { 1973 /* 1974 * Grab next entry. 1975 */ 1976 if (error = zap_cursor_retrieve(&zc, &zap)) { 1977 if ((*eofp = (error == ENOENT)) != 0) 1978 break; 1979 else 1980 goto update; 1981 } 1982 1983 if (zap.za_integer_length != 8 || 1984 zap.za_num_integers != 1) { 1985 cmn_err(CE_WARN, "zap_readdir: bad directory " 1986 "entry, obj = %lld, offset = %lld\n", 1987 (u_longlong_t)zp->z_id, 1988 (u_longlong_t)offset); 1989 error = ENXIO; 1990 goto update; 1991 } 1992 1993 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 1994 /* 1995 * MacOS X can extract the object type here such as: 1996 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 1997 */ 1998 1999 if (check_sysattrs && !zap.za_normalization_conflict) { 2000 zap.za_normalization_conflict = 2001 xattr_sysattr_casechk(zap.za_name); 2002 } 2003 } 2004 2005 if (flags & V_RDDIR_ENTFLAGS) 2006 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2007 else 2008 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2009 2010 /* 2011 * Will this entry fit in the buffer? 2012 */ 2013 if (outcount + reclen > bufsize) { 2014 /* 2015 * Did we manage to fit anything in the buffer? 2016 */ 2017 if (!outcount) { 2018 error = EINVAL; 2019 goto update; 2020 } 2021 break; 2022 } 2023 if (flags & V_RDDIR_ENTFLAGS) { 2024 /* 2025 * Add extended flag entry: 2026 */ 2027 eodp->ed_ino = objnum; 2028 eodp->ed_reclen = reclen; 2029 /* NOTE: ed_off is the offset for the *next* entry */ 2030 next = &(eodp->ed_off); 2031 eodp->ed_eflags = zap.za_normalization_conflict ? 2032 ED_CASE_CONFLICT : 0; 2033 (void) strncpy(eodp->ed_name, zap.za_name, 2034 EDIRENT_NAMELEN(reclen)); 2035 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2036 } else { 2037 /* 2038 * Add normal entry: 2039 */ 2040 odp->d_ino = objnum; 2041 odp->d_reclen = reclen; 2042 /* NOTE: d_off is the offset for the *next* entry */ 2043 next = &(odp->d_off); 2044 (void) strncpy(odp->d_name, zap.za_name, 2045 DIRENT64_NAMELEN(reclen)); 2046 odp = (dirent64_t *)((intptr_t)odp + reclen); 2047 } 2048 outcount += reclen; 2049 2050 ASSERT(outcount <= bufsize); 2051 2052 /* Prefetch znode */ 2053 if (prefetch) 2054 dmu_prefetch(os, objnum, 0, 0); 2055 2056 /* 2057 * Move to the next entry, fill in the previous offset. 2058 */ 2059 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2060 zap_cursor_advance(&zc); 2061 offset = zap_cursor_serialize(&zc); 2062 } else { 2063 offset += 1; 2064 } 2065 *next = offset; 2066 } 2067 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2068 2069 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2070 iovp->iov_base += outcount; 2071 iovp->iov_len -= outcount; 2072 uio->uio_resid -= outcount; 2073 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2074 /* 2075 * Reset the pointer. 2076 */ 2077 offset = uio->uio_loffset; 2078 } 2079 2080 update: 2081 zap_cursor_fini(&zc); 2082 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2083 kmem_free(outbuf, bufsize); 2084 2085 if (error == ENOENT) 2086 error = 0; 2087 2088 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2089 2090 uio->uio_loffset = offset; 2091 ZFS_EXIT(zfsvfs); 2092 return (error); 2093 } 2094 2095 ulong_t zfs_fsync_sync_cnt = 4; 2096 2097 static int 2098 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2099 { 2100 znode_t *zp = VTOZ(vp); 2101 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2102 2103 /* 2104 * Regardless of whether this is required for standards conformance, 2105 * this is the logical behavior when fsync() is called on a file with 2106 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2107 * going to be pushed out as part of the zil_commit(). 2108 */ 2109 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2110 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2111 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2112 2113 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2114 2115 ZFS_ENTER(zfsvfs); 2116 ZFS_VERIFY_ZP(zp); 2117 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2118 ZFS_EXIT(zfsvfs); 2119 return (0); 2120 } 2121 2122 2123 /* 2124 * Get the requested file attributes and place them in the provided 2125 * vattr structure. 2126 * 2127 * IN: vp - vnode of file. 2128 * vap - va_mask identifies requested attributes. 2129 * If AT_XVATTR set, then optional attrs are requested 2130 * flags - ATTR_NOACLCHECK (CIFS server context) 2131 * cr - credentials of caller. 2132 * ct - caller context 2133 * 2134 * OUT: vap - attribute values. 2135 * 2136 * RETURN: 0 (always succeeds) 2137 */ 2138 /* ARGSUSED */ 2139 static int 2140 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2141 caller_context_t *ct) 2142 { 2143 znode_t *zp = VTOZ(vp); 2144 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2145 znode_phys_t *pzp; 2146 int error = 0; 2147 uint64_t links; 2148 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2149 xoptattr_t *xoap = NULL; 2150 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2151 2152 ZFS_ENTER(zfsvfs); 2153 ZFS_VERIFY_ZP(zp); 2154 pzp = zp->z_phys; 2155 2156 mutex_enter(&zp->z_lock); 2157 2158 /* 2159 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2160 * Also, if we are the owner don't bother, since owner should 2161 * always be allowed to read basic attributes of file. 2162 */ 2163 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2164 (pzp->zp_uid != crgetuid(cr))) { 2165 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2166 skipaclchk, cr)) { 2167 mutex_exit(&zp->z_lock); 2168 ZFS_EXIT(zfsvfs); 2169 return (error); 2170 } 2171 } 2172 2173 /* 2174 * Return all attributes. It's cheaper to provide the answer 2175 * than to determine whether we were asked the question. 2176 */ 2177 2178 vap->va_type = vp->v_type; 2179 vap->va_mode = pzp->zp_mode & MODEMASK; 2180 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2181 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2182 vap->va_nodeid = zp->z_id; 2183 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2184 links = pzp->zp_links + 1; 2185 else 2186 links = pzp->zp_links; 2187 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2188 vap->va_size = pzp->zp_size; 2189 vap->va_rdev = vp->v_rdev; 2190 vap->va_seq = zp->z_seq; 2191 2192 /* 2193 * Add in any requested optional attributes and the create time. 2194 * Also set the corresponding bits in the returned attribute bitmap. 2195 */ 2196 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2197 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2198 xoap->xoa_archive = 2199 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2200 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2201 } 2202 2203 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2204 xoap->xoa_readonly = 2205 ((pzp->zp_flags & ZFS_READONLY) != 0); 2206 XVA_SET_RTN(xvap, XAT_READONLY); 2207 } 2208 2209 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2210 xoap->xoa_system = 2211 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2212 XVA_SET_RTN(xvap, XAT_SYSTEM); 2213 } 2214 2215 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2216 xoap->xoa_hidden = 2217 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2218 XVA_SET_RTN(xvap, XAT_HIDDEN); 2219 } 2220 2221 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2222 xoap->xoa_nounlink = 2223 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2224 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2225 } 2226 2227 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2228 xoap->xoa_immutable = 2229 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2230 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2231 } 2232 2233 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2234 xoap->xoa_appendonly = 2235 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2236 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2237 } 2238 2239 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2240 xoap->xoa_nodump = 2241 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2242 XVA_SET_RTN(xvap, XAT_NODUMP); 2243 } 2244 2245 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2246 xoap->xoa_opaque = 2247 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2248 XVA_SET_RTN(xvap, XAT_OPAQUE); 2249 } 2250 2251 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2252 xoap->xoa_av_quarantined = 2253 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2254 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2255 } 2256 2257 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2258 xoap->xoa_av_modified = 2259 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2260 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2261 } 2262 2263 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2264 vp->v_type == VREG && 2265 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2266 size_t len; 2267 dmu_object_info_t doi; 2268 2269 /* 2270 * Only VREG files have anti-virus scanstamps, so we 2271 * won't conflict with symlinks in the bonus buffer. 2272 */ 2273 dmu_object_info_from_db(zp->z_dbuf, &doi); 2274 len = sizeof (xoap->xoa_av_scanstamp) + 2275 sizeof (znode_phys_t); 2276 if (len <= doi.doi_bonus_size) { 2277 /* 2278 * pzp points to the start of the 2279 * znode_phys_t. pzp + 1 points to the 2280 * first byte after the znode_phys_t. 2281 */ 2282 (void) memcpy(xoap->xoa_av_scanstamp, 2283 pzp + 1, 2284 sizeof (xoap->xoa_av_scanstamp)); 2285 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2286 } 2287 } 2288 2289 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2290 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2291 XVA_SET_RTN(xvap, XAT_CREATETIME); 2292 } 2293 } 2294 2295 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2296 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2297 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2298 2299 mutex_exit(&zp->z_lock); 2300 2301 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2302 2303 if (zp->z_blksz == 0) { 2304 /* 2305 * Block size hasn't been set; suggest maximal I/O transfers. 2306 */ 2307 vap->va_blksize = zfsvfs->z_max_blksz; 2308 } 2309 2310 ZFS_EXIT(zfsvfs); 2311 return (0); 2312 } 2313 2314 /* 2315 * Set the file attributes to the values contained in the 2316 * vattr structure. 2317 * 2318 * IN: vp - vnode of file to be modified. 2319 * vap - new attribute values. 2320 * If AT_XVATTR set, then optional attrs are being set 2321 * flags - ATTR_UTIME set if non-default time values provided. 2322 * - ATTR_NOACLCHECK (CIFS context only). 2323 * cr - credentials of caller. 2324 * ct - caller context 2325 * 2326 * RETURN: 0 if success 2327 * error code if failure 2328 * 2329 * Timestamps: 2330 * vp - ctime updated, mtime updated if size changed. 2331 */ 2332 /* ARGSUSED */ 2333 static int 2334 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2335 caller_context_t *ct) 2336 { 2337 znode_t *zp = VTOZ(vp); 2338 znode_phys_t *pzp; 2339 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2340 zilog_t *zilog; 2341 dmu_tx_t *tx; 2342 vattr_t oldva; 2343 uint_t mask = vap->va_mask; 2344 uint_t saved_mask; 2345 int trim_mask = 0; 2346 uint64_t new_mode; 2347 znode_t *attrzp; 2348 int need_policy = FALSE; 2349 int err; 2350 zfs_fuid_info_t *fuidp = NULL; 2351 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2352 xoptattr_t *xoap; 2353 zfs_acl_t *aclp = NULL; 2354 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2355 2356 if (mask == 0) 2357 return (0); 2358 2359 if (mask & AT_NOSET) 2360 return (EINVAL); 2361 2362 ZFS_ENTER(zfsvfs); 2363 ZFS_VERIFY_ZP(zp); 2364 2365 pzp = zp->z_phys; 2366 zilog = zfsvfs->z_log; 2367 2368 /* 2369 * Make sure that if we have ephemeral uid/gid or xvattr specified 2370 * that file system is at proper version level 2371 */ 2372 2373 if (zfsvfs->z_use_fuids == B_FALSE && 2374 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2375 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2376 (mask & AT_XVATTR))) { 2377 ZFS_EXIT(zfsvfs); 2378 return (EINVAL); 2379 } 2380 2381 if (mask & AT_SIZE && vp->v_type == VDIR) { 2382 ZFS_EXIT(zfsvfs); 2383 return (EISDIR); 2384 } 2385 2386 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2387 ZFS_EXIT(zfsvfs); 2388 return (EINVAL); 2389 } 2390 2391 /* 2392 * If this is an xvattr_t, then get a pointer to the structure of 2393 * optional attributes. If this is NULL, then we have a vattr_t. 2394 */ 2395 xoap = xva_getxoptattr(xvap); 2396 2397 /* 2398 * Immutable files can only alter immutable bit and atime 2399 */ 2400 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2401 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2402 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2403 ZFS_EXIT(zfsvfs); 2404 return (EPERM); 2405 } 2406 2407 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2408 ZFS_EXIT(zfsvfs); 2409 return (EPERM); 2410 } 2411 2412 /* 2413 * Verify timestamps doesn't overflow 32 bits. 2414 * ZFS can handle large timestamps, but 32bit syscalls can't 2415 * handle times greater than 2039. This check should be removed 2416 * once large timestamps are fully supported. 2417 */ 2418 if (mask & (AT_ATIME | AT_MTIME)) { 2419 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2420 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2421 ZFS_EXIT(zfsvfs); 2422 return (EOVERFLOW); 2423 } 2424 } 2425 2426 top: 2427 attrzp = NULL; 2428 2429 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2430 ZFS_EXIT(zfsvfs); 2431 return (EROFS); 2432 } 2433 2434 /* 2435 * First validate permissions 2436 */ 2437 2438 if (mask & AT_SIZE) { 2439 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2440 if (err) { 2441 ZFS_EXIT(zfsvfs); 2442 return (err); 2443 } 2444 /* 2445 * XXX - Note, we are not providing any open 2446 * mode flags here (like FNDELAY), so we may 2447 * block if there are locks present... this 2448 * should be addressed in openat(). 2449 */ 2450 do { 2451 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2452 /* NB: we already did dmu_tx_wait() if necessary */ 2453 } while (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 2454 if (err) { 2455 ZFS_EXIT(zfsvfs); 2456 return (err); 2457 } 2458 } 2459 2460 if (mask & (AT_ATIME|AT_MTIME) || 2461 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2462 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2463 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2464 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2465 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2466 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2467 skipaclchk, cr); 2468 2469 if (mask & (AT_UID|AT_GID)) { 2470 int idmask = (mask & (AT_UID|AT_GID)); 2471 int take_owner; 2472 int take_group; 2473 2474 /* 2475 * NOTE: even if a new mode is being set, 2476 * we may clear S_ISUID/S_ISGID bits. 2477 */ 2478 2479 if (!(mask & AT_MODE)) 2480 vap->va_mode = pzp->zp_mode; 2481 2482 /* 2483 * Take ownership or chgrp to group we are a member of 2484 */ 2485 2486 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2487 take_group = (mask & AT_GID) && 2488 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2489 2490 /* 2491 * If both AT_UID and AT_GID are set then take_owner and 2492 * take_group must both be set in order to allow taking 2493 * ownership. 2494 * 2495 * Otherwise, send the check through secpolicy_vnode_setattr() 2496 * 2497 */ 2498 2499 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2500 ((idmask == AT_UID) && take_owner) || 2501 ((idmask == AT_GID) && take_group)) { 2502 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2503 skipaclchk, cr) == 0) { 2504 /* 2505 * Remove setuid/setgid for non-privileged users 2506 */ 2507 secpolicy_setid_clear(vap, cr); 2508 trim_mask = (mask & (AT_UID|AT_GID)); 2509 } else { 2510 need_policy = TRUE; 2511 } 2512 } else { 2513 need_policy = TRUE; 2514 } 2515 } 2516 2517 mutex_enter(&zp->z_lock); 2518 oldva.va_mode = pzp->zp_mode; 2519 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2520 if (mask & AT_XVATTR) { 2521 if ((need_policy == FALSE) && 2522 (XVA_ISSET_REQ(xvap, XAT_APPENDONLY) && 2523 xoap->xoa_appendonly != 2524 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) || 2525 (XVA_ISSET_REQ(xvap, XAT_NOUNLINK) && 2526 xoap->xoa_nounlink != 2527 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) || 2528 (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE) && 2529 xoap->xoa_immutable != 2530 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) || 2531 (XVA_ISSET_REQ(xvap, XAT_NODUMP) && 2532 xoap->xoa_nodump != 2533 ((pzp->zp_flags & ZFS_NODUMP) != 0)) || 2534 (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED) && 2535 xoap->xoa_av_modified != 2536 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) || 2537 ((XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED) && 2538 ((vp->v_type != VREG && xoap->xoa_av_quarantined) || 2539 xoap->xoa_av_quarantined != 2540 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)))) || 2541 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || 2542 (XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2543 need_policy = TRUE; 2544 } 2545 } 2546 2547 mutex_exit(&zp->z_lock); 2548 2549 if (mask & AT_MODE) { 2550 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2551 err = secpolicy_setid_setsticky_clear(vp, vap, 2552 &oldva, cr); 2553 if (err) { 2554 ZFS_EXIT(zfsvfs); 2555 return (err); 2556 } 2557 trim_mask |= AT_MODE; 2558 } else { 2559 need_policy = TRUE; 2560 } 2561 } 2562 2563 if (need_policy) { 2564 /* 2565 * If trim_mask is set then take ownership 2566 * has been granted or write_acl is present and user 2567 * has the ability to modify mode. In that case remove 2568 * UID|GID and or MODE from mask so that 2569 * secpolicy_vnode_setattr() doesn't revoke it. 2570 */ 2571 2572 if (trim_mask) { 2573 saved_mask = vap->va_mask; 2574 vap->va_mask &= ~trim_mask; 2575 } 2576 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2577 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2578 if (err) { 2579 ZFS_EXIT(zfsvfs); 2580 return (err); 2581 } 2582 2583 if (trim_mask) 2584 vap->va_mask |= saved_mask; 2585 } 2586 2587 /* 2588 * secpolicy_vnode_setattr, or take ownership may have 2589 * changed va_mask 2590 */ 2591 mask = vap->va_mask; 2592 2593 tx = dmu_tx_create(zfsvfs->z_os); 2594 dmu_tx_hold_bonus(tx, zp->z_id); 2595 if (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2596 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid))) { 2597 if (zfsvfs->z_fuid_obj == 0) { 2598 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2599 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2600 FUID_SIZE_ESTIMATE(zfsvfs)); 2601 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 2602 } else { 2603 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2604 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2605 FUID_SIZE_ESTIMATE(zfsvfs)); 2606 } 2607 } 2608 2609 if (mask & AT_MODE) { 2610 uint64_t pmode = pzp->zp_mode; 2611 2612 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2613 2614 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) { 2615 dmu_tx_abort(tx); 2616 ZFS_EXIT(zfsvfs); 2617 return (err); 2618 } 2619 if (pzp->zp_acl.z_acl_extern_obj) { 2620 /* Are we upgrading ACL from old V0 format to new V1 */ 2621 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2622 pzp->zp_acl.z_acl_version == 2623 ZFS_ACL_VERSION_INITIAL) { 2624 dmu_tx_hold_free(tx, 2625 pzp->zp_acl.z_acl_extern_obj, 0, 2626 DMU_OBJECT_END); 2627 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2628 0, aclp->z_acl_bytes); 2629 } else { 2630 dmu_tx_hold_write(tx, 2631 pzp->zp_acl.z_acl_extern_obj, 0, 2632 aclp->z_acl_bytes); 2633 } 2634 } else if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL)) { 2635 if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2636 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2637 0, aclp->z_acl_bytes); 2638 } 2639 } 2640 } 2641 2642 if ((mask & (AT_UID | AT_GID)) && pzp->zp_xattr != 0) { 2643 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2644 if (err) { 2645 dmu_tx_abort(tx); 2646 ZFS_EXIT(zfsvfs); 2647 if (aclp) 2648 zfs_acl_free(aclp); 2649 return (err); 2650 } 2651 dmu_tx_hold_bonus(tx, attrzp->z_id); 2652 } 2653 2654 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2655 if (err) { 2656 if (attrzp) 2657 VN_RELE(ZTOV(attrzp)); 2658 2659 if (aclp) { 2660 zfs_acl_free(aclp); 2661 aclp = NULL; 2662 } 2663 2664 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2665 dmu_tx_wait(tx); 2666 dmu_tx_abort(tx); 2667 goto top; 2668 } 2669 dmu_tx_abort(tx); 2670 ZFS_EXIT(zfsvfs); 2671 return (err); 2672 } 2673 2674 dmu_buf_will_dirty(zp->z_dbuf, tx); 2675 2676 /* 2677 * Set each attribute requested. 2678 * We group settings according to the locks they need to acquire. 2679 * 2680 * Note: you cannot set ctime directly, although it will be 2681 * updated as a side-effect of calling this function. 2682 */ 2683 2684 mutex_enter(&zp->z_lock); 2685 2686 if (mask & AT_MODE) { 2687 mutex_enter(&zp->z_acl_lock); 2688 zp->z_phys->zp_mode = new_mode; 2689 err = zfs_aclset_common(zp, aclp, cr, &fuidp, tx); 2690 ASSERT3U(err, ==, 0); 2691 mutex_exit(&zp->z_acl_lock); 2692 } 2693 2694 if (attrzp) 2695 mutex_enter(&attrzp->z_lock); 2696 2697 if (mask & AT_UID) { 2698 pzp->zp_uid = zfs_fuid_create(zfsvfs, 2699 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp); 2700 if (attrzp) { 2701 attrzp->z_phys->zp_uid = zfs_fuid_create(zfsvfs, 2702 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp); 2703 } 2704 } 2705 2706 if (mask & AT_GID) { 2707 pzp->zp_gid = zfs_fuid_create(zfsvfs, vap->va_gid, 2708 cr, ZFS_GROUP, tx, &fuidp); 2709 if (attrzp) 2710 attrzp->z_phys->zp_gid = zfs_fuid_create(zfsvfs, 2711 vap->va_gid, cr, ZFS_GROUP, tx, &fuidp); 2712 } 2713 2714 if (aclp) 2715 zfs_acl_free(aclp); 2716 2717 if (attrzp) 2718 mutex_exit(&attrzp->z_lock); 2719 2720 if (mask & AT_ATIME) 2721 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2722 2723 if (mask & AT_MTIME) 2724 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2725 2726 if (mask & AT_SIZE) 2727 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2728 else if (mask != 0) 2729 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2730 /* 2731 * Do this after setting timestamps to prevent timestamp 2732 * update from toggling bit 2733 */ 2734 2735 if (xoap && (mask & AT_XVATTR)) { 2736 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2737 size_t len; 2738 dmu_object_info_t doi; 2739 2740 ASSERT(vp->v_type == VREG); 2741 2742 /* Grow the bonus buffer if necessary. */ 2743 dmu_object_info_from_db(zp->z_dbuf, &doi); 2744 len = sizeof (xoap->xoa_av_scanstamp) + 2745 sizeof (znode_phys_t); 2746 if (len > doi.doi_bonus_size) 2747 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2748 } 2749 zfs_xvattr_set(zp, xvap); 2750 } 2751 2752 if (mask != 0) 2753 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2754 2755 if (fuidp) 2756 zfs_fuid_info_free(fuidp); 2757 mutex_exit(&zp->z_lock); 2758 2759 if (attrzp) 2760 VN_RELE(ZTOV(attrzp)); 2761 2762 dmu_tx_commit(tx); 2763 2764 ZFS_EXIT(zfsvfs); 2765 return (err); 2766 } 2767 2768 typedef struct zfs_zlock { 2769 krwlock_t *zl_rwlock; /* lock we acquired */ 2770 znode_t *zl_znode; /* znode we held */ 2771 struct zfs_zlock *zl_next; /* next in list */ 2772 } zfs_zlock_t; 2773 2774 /* 2775 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2776 */ 2777 static void 2778 zfs_rename_unlock(zfs_zlock_t **zlpp) 2779 { 2780 zfs_zlock_t *zl; 2781 2782 while ((zl = *zlpp) != NULL) { 2783 if (zl->zl_znode != NULL) 2784 VN_RELE(ZTOV(zl->zl_znode)); 2785 rw_exit(zl->zl_rwlock); 2786 *zlpp = zl->zl_next; 2787 kmem_free(zl, sizeof (*zl)); 2788 } 2789 } 2790 2791 /* 2792 * Search back through the directory tree, using the ".." entries. 2793 * Lock each directory in the chain to prevent concurrent renames. 2794 * Fail any attempt to move a directory into one of its own descendants. 2795 * XXX - z_parent_lock can overlap with map or grow locks 2796 */ 2797 static int 2798 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2799 { 2800 zfs_zlock_t *zl; 2801 znode_t *zp = tdzp; 2802 uint64_t rootid = zp->z_zfsvfs->z_root; 2803 uint64_t *oidp = &zp->z_id; 2804 krwlock_t *rwlp = &szp->z_parent_lock; 2805 krw_t rw = RW_WRITER; 2806 2807 /* 2808 * First pass write-locks szp and compares to zp->z_id. 2809 * Later passes read-lock zp and compare to zp->z_parent. 2810 */ 2811 do { 2812 if (!rw_tryenter(rwlp, rw)) { 2813 /* 2814 * Another thread is renaming in this path. 2815 * Note that if we are a WRITER, we don't have any 2816 * parent_locks held yet. 2817 */ 2818 if (rw == RW_READER && zp->z_id > szp->z_id) { 2819 /* 2820 * Drop our locks and restart 2821 */ 2822 zfs_rename_unlock(&zl); 2823 *zlpp = NULL; 2824 zp = tdzp; 2825 oidp = &zp->z_id; 2826 rwlp = &szp->z_parent_lock; 2827 rw = RW_WRITER; 2828 continue; 2829 } else { 2830 /* 2831 * Wait for other thread to drop its locks 2832 */ 2833 rw_enter(rwlp, rw); 2834 } 2835 } 2836 2837 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2838 zl->zl_rwlock = rwlp; 2839 zl->zl_znode = NULL; 2840 zl->zl_next = *zlpp; 2841 *zlpp = zl; 2842 2843 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2844 return (EINVAL); 2845 2846 if (*oidp == rootid) /* We've hit the top */ 2847 return (0); 2848 2849 if (rw == RW_READER) { /* i.e. not the first pass */ 2850 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2851 if (error) 2852 return (error); 2853 zl->zl_znode = zp; 2854 } 2855 oidp = &zp->z_phys->zp_parent; 2856 rwlp = &zp->z_parent_lock; 2857 rw = RW_READER; 2858 2859 } while (zp->z_id != sdzp->z_id); 2860 2861 return (0); 2862 } 2863 2864 /* 2865 * Move an entry from the provided source directory to the target 2866 * directory. Change the entry name as indicated. 2867 * 2868 * IN: sdvp - Source directory containing the "old entry". 2869 * snm - Old entry name. 2870 * tdvp - Target directory to contain the "new entry". 2871 * tnm - New entry name. 2872 * cr - credentials of caller. 2873 * ct - caller context 2874 * flags - case flags 2875 * 2876 * RETURN: 0 if success 2877 * error code if failure 2878 * 2879 * Timestamps: 2880 * sdvp,tdvp - ctime|mtime updated 2881 */ 2882 /*ARGSUSED*/ 2883 static int 2884 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 2885 caller_context_t *ct, int flags) 2886 { 2887 znode_t *tdzp, *szp, *tzp; 2888 znode_t *sdzp = VTOZ(sdvp); 2889 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2890 zilog_t *zilog; 2891 vnode_t *realvp; 2892 zfs_dirlock_t *sdl, *tdl; 2893 dmu_tx_t *tx; 2894 zfs_zlock_t *zl; 2895 int cmp, serr, terr; 2896 int error = 0; 2897 int zflg = 0; 2898 2899 ZFS_ENTER(zfsvfs); 2900 ZFS_VERIFY_ZP(sdzp); 2901 zilog = zfsvfs->z_log; 2902 2903 /* 2904 * Make sure we have the real vp for the target directory. 2905 */ 2906 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 2907 tdvp = realvp; 2908 2909 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2910 ZFS_EXIT(zfsvfs); 2911 return (EXDEV); 2912 } 2913 2914 tdzp = VTOZ(tdvp); 2915 ZFS_VERIFY_ZP(tdzp); 2916 if (zfsvfs->z_utf8 && u8_validate(tnm, 2917 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2918 ZFS_EXIT(zfsvfs); 2919 return (EILSEQ); 2920 } 2921 2922 if (flags & FIGNORECASE) 2923 zflg |= ZCILOOK; 2924 2925 top: 2926 szp = NULL; 2927 tzp = NULL; 2928 zl = NULL; 2929 2930 /* 2931 * This is to prevent the creation of links into attribute space 2932 * by renaming a linked file into/outof an attribute directory. 2933 * See the comment in zfs_link() for why this is considered bad. 2934 */ 2935 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2936 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2937 ZFS_EXIT(zfsvfs); 2938 return (EINVAL); 2939 } 2940 2941 /* 2942 * Lock source and target directory entries. To prevent deadlock, 2943 * a lock ordering must be defined. We lock the directory with 2944 * the smallest object id first, or if it's a tie, the one with 2945 * the lexically first name. 2946 */ 2947 if (sdzp->z_id < tdzp->z_id) { 2948 cmp = -1; 2949 } else if (sdzp->z_id > tdzp->z_id) { 2950 cmp = 1; 2951 } else { 2952 /* 2953 * First compare the two name arguments without 2954 * considering any case folding. 2955 */ 2956 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 2957 2958 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 2959 ASSERT(error == 0 || !zfsvfs->z_utf8); 2960 if (cmp == 0) { 2961 /* 2962 * POSIX: "If the old argument and the new argument 2963 * both refer to links to the same existing file, 2964 * the rename() function shall return successfully 2965 * and perform no other action." 2966 */ 2967 ZFS_EXIT(zfsvfs); 2968 return (0); 2969 } 2970 /* 2971 * If the file system is case-folding, then we may 2972 * have some more checking to do. A case-folding file 2973 * system is either supporting mixed case sensitivity 2974 * access or is completely case-insensitive. Note 2975 * that the file system is always case preserving. 2976 * 2977 * In mixed sensitivity mode case sensitive behavior 2978 * is the default. FIGNORECASE must be used to 2979 * explicitly request case insensitive behavior. 2980 * 2981 * If the source and target names provided differ only 2982 * by case (e.g., a request to rename 'tim' to 'Tim'), 2983 * we will treat this as a special case in the 2984 * case-insensitive mode: as long as the source name 2985 * is an exact match, we will allow this to proceed as 2986 * a name-change request. 2987 */ 2988 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 2989 (zfsvfs->z_case == ZFS_CASE_MIXED && 2990 flags & FIGNORECASE)) && 2991 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 2992 &error) == 0) { 2993 /* 2994 * case preserving rename request, require exact 2995 * name matches 2996 */ 2997 zflg |= ZCIEXACT; 2998 zflg &= ~ZCILOOK; 2999 } 3000 } 3001 3002 if (cmp < 0) { 3003 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3004 ZEXISTS | zflg, NULL, NULL); 3005 terr = zfs_dirent_lock(&tdl, 3006 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3007 } else { 3008 terr = zfs_dirent_lock(&tdl, 3009 tdzp, tnm, &tzp, zflg, NULL, NULL); 3010 serr = zfs_dirent_lock(&sdl, 3011 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3012 NULL, NULL); 3013 } 3014 3015 if (serr) { 3016 /* 3017 * Source entry invalid or not there. 3018 */ 3019 if (!terr) { 3020 zfs_dirent_unlock(tdl); 3021 if (tzp) 3022 VN_RELE(ZTOV(tzp)); 3023 } 3024 if (strcmp(snm, "..") == 0) 3025 serr = EINVAL; 3026 ZFS_EXIT(zfsvfs); 3027 return (serr); 3028 } 3029 if (terr) { 3030 zfs_dirent_unlock(sdl); 3031 VN_RELE(ZTOV(szp)); 3032 if (strcmp(tnm, "..") == 0) 3033 terr = EINVAL; 3034 ZFS_EXIT(zfsvfs); 3035 return (terr); 3036 } 3037 3038 /* 3039 * Must have write access at the source to remove the old entry 3040 * and write access at the target to create the new entry. 3041 * Note that if target and source are the same, this can be 3042 * done in a single check. 3043 */ 3044 3045 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3046 goto out; 3047 3048 if (ZTOV(szp)->v_type == VDIR) { 3049 /* 3050 * Check to make sure rename is valid. 3051 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3052 */ 3053 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3054 goto out; 3055 } 3056 3057 /* 3058 * Does target exist? 3059 */ 3060 if (tzp) { 3061 /* 3062 * Source and target must be the same type. 3063 */ 3064 if (ZTOV(szp)->v_type == VDIR) { 3065 if (ZTOV(tzp)->v_type != VDIR) { 3066 error = ENOTDIR; 3067 goto out; 3068 } 3069 } else { 3070 if (ZTOV(tzp)->v_type == VDIR) { 3071 error = EISDIR; 3072 goto out; 3073 } 3074 } 3075 /* 3076 * POSIX dictates that when the source and target 3077 * entries refer to the same file object, rename 3078 * must do nothing and exit without error. 3079 */ 3080 if (szp->z_id == tzp->z_id) { 3081 error = 0; 3082 goto out; 3083 } 3084 } 3085 3086 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3087 if (tzp) 3088 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3089 3090 /* 3091 * notify the target directory if it is not the same 3092 * as source directory. 3093 */ 3094 if (tdvp != sdvp) { 3095 vnevent_rename_dest_dir(tdvp, ct); 3096 } 3097 3098 tx = dmu_tx_create(zfsvfs->z_os); 3099 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3100 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3101 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3102 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3103 if (sdzp != tdzp) 3104 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3105 if (tzp) 3106 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3107 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3108 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3109 if (error) { 3110 if (zl != NULL) 3111 zfs_rename_unlock(&zl); 3112 zfs_dirent_unlock(sdl); 3113 zfs_dirent_unlock(tdl); 3114 VN_RELE(ZTOV(szp)); 3115 if (tzp) 3116 VN_RELE(ZTOV(tzp)); 3117 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3118 dmu_tx_wait(tx); 3119 dmu_tx_abort(tx); 3120 goto top; 3121 } 3122 dmu_tx_abort(tx); 3123 ZFS_EXIT(zfsvfs); 3124 return (error); 3125 } 3126 3127 if (tzp) /* Attempt to remove the existing target */ 3128 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3129 3130 if (error == 0) { 3131 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3132 if (error == 0) { 3133 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3134 3135 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3136 ASSERT(error == 0); 3137 3138 zfs_log_rename(zilog, tx, 3139 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3140 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3141 } 3142 } 3143 3144 dmu_tx_commit(tx); 3145 out: 3146 if (zl != NULL) 3147 zfs_rename_unlock(&zl); 3148 3149 zfs_dirent_unlock(sdl); 3150 zfs_dirent_unlock(tdl); 3151 3152 VN_RELE(ZTOV(szp)); 3153 if (tzp) 3154 VN_RELE(ZTOV(tzp)); 3155 3156 ZFS_EXIT(zfsvfs); 3157 return (error); 3158 } 3159 3160 /* 3161 * Insert the indicated symbolic reference entry into the directory. 3162 * 3163 * IN: dvp - Directory to contain new symbolic link. 3164 * link - Name for new symlink entry. 3165 * vap - Attributes of new entry. 3166 * target - Target path of new symlink. 3167 * cr - credentials of caller. 3168 * ct - caller context 3169 * flags - case flags 3170 * 3171 * RETURN: 0 if success 3172 * error code if failure 3173 * 3174 * Timestamps: 3175 * dvp - ctime|mtime updated 3176 */ 3177 /*ARGSUSED*/ 3178 static int 3179 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3180 caller_context_t *ct, int flags) 3181 { 3182 znode_t *zp, *dzp = VTOZ(dvp); 3183 zfs_dirlock_t *dl; 3184 dmu_tx_t *tx; 3185 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3186 zilog_t *zilog; 3187 int len = strlen(link); 3188 int error; 3189 int zflg = ZNEW; 3190 zfs_fuid_info_t *fuidp = NULL; 3191 3192 ASSERT(vap->va_type == VLNK); 3193 3194 ZFS_ENTER(zfsvfs); 3195 ZFS_VERIFY_ZP(dzp); 3196 zilog = zfsvfs->z_log; 3197 3198 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3199 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3200 ZFS_EXIT(zfsvfs); 3201 return (EILSEQ); 3202 } 3203 if (flags & FIGNORECASE) 3204 zflg |= ZCILOOK; 3205 top: 3206 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3207 ZFS_EXIT(zfsvfs); 3208 return (error); 3209 } 3210 3211 if (len > MAXPATHLEN) { 3212 ZFS_EXIT(zfsvfs); 3213 return (ENAMETOOLONG); 3214 } 3215 3216 /* 3217 * Attempt to lock directory; fail if entry already exists. 3218 */ 3219 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3220 if (error) { 3221 ZFS_EXIT(zfsvfs); 3222 return (error); 3223 } 3224 3225 tx = dmu_tx_create(zfsvfs->z_os); 3226 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3227 dmu_tx_hold_bonus(tx, dzp->z_id); 3228 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3229 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 3230 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3231 if (IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))) { 3232 if (zfsvfs->z_fuid_obj == 0) { 3233 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 3234 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3235 FUID_SIZE_ESTIMATE(zfsvfs)); 3236 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 3237 } else { 3238 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 3239 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 3240 FUID_SIZE_ESTIMATE(zfsvfs)); 3241 } 3242 } 3243 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3244 if (error) { 3245 zfs_dirent_unlock(dl); 3246 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3247 dmu_tx_wait(tx); 3248 dmu_tx_abort(tx); 3249 goto top; 3250 } 3251 dmu_tx_abort(tx); 3252 ZFS_EXIT(zfsvfs); 3253 return (error); 3254 } 3255 3256 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3257 3258 /* 3259 * Create a new object for the symlink. 3260 * Put the link content into bonus buffer if it will fit; 3261 * otherwise, store it just like any other file data. 3262 */ 3263 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3264 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, NULL, &fuidp); 3265 if (len != 0) 3266 bcopy(link, zp->z_phys + 1, len); 3267 } else { 3268 dmu_buf_t *dbp; 3269 3270 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, NULL, &fuidp); 3271 /* 3272 * Nothing can access the znode yet so no locking needed 3273 * for growing the znode's blocksize. 3274 */ 3275 zfs_grow_blocksize(zp, len, tx); 3276 3277 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3278 zp->z_id, 0, FTAG, &dbp)); 3279 dmu_buf_will_dirty(dbp, tx); 3280 3281 ASSERT3U(len, <=, dbp->db_size); 3282 bcopy(link, dbp->db_data, len); 3283 dmu_buf_rele(dbp, FTAG); 3284 } 3285 zp->z_phys->zp_size = len; 3286 3287 /* 3288 * Insert the new object into the directory. 3289 */ 3290 (void) zfs_link_create(dl, zp, tx, ZNEW); 3291 out: 3292 if (error == 0) { 3293 uint64_t txtype = TX_SYMLINK; 3294 if (flags & FIGNORECASE) 3295 txtype |= TX_CI; 3296 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3297 } 3298 if (fuidp) 3299 zfs_fuid_info_free(fuidp); 3300 3301 dmu_tx_commit(tx); 3302 3303 zfs_dirent_unlock(dl); 3304 3305 VN_RELE(ZTOV(zp)); 3306 3307 ZFS_EXIT(zfsvfs); 3308 return (error); 3309 } 3310 3311 /* 3312 * Return, in the buffer contained in the provided uio structure, 3313 * the symbolic path referred to by vp. 3314 * 3315 * IN: vp - vnode of symbolic link. 3316 * uoip - structure to contain the link path. 3317 * cr - credentials of caller. 3318 * ct - caller context 3319 * 3320 * OUT: uio - structure to contain the link path. 3321 * 3322 * RETURN: 0 if success 3323 * error code if failure 3324 * 3325 * Timestamps: 3326 * vp - atime updated 3327 */ 3328 /* ARGSUSED */ 3329 static int 3330 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3331 { 3332 znode_t *zp = VTOZ(vp); 3333 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3334 size_t bufsz; 3335 int error; 3336 3337 ZFS_ENTER(zfsvfs); 3338 ZFS_VERIFY_ZP(zp); 3339 3340 bufsz = (size_t)zp->z_phys->zp_size; 3341 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3342 error = uiomove(zp->z_phys + 1, 3343 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3344 } else { 3345 dmu_buf_t *dbp; 3346 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3347 if (error) { 3348 ZFS_EXIT(zfsvfs); 3349 return (error); 3350 } 3351 error = uiomove(dbp->db_data, 3352 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3353 dmu_buf_rele(dbp, FTAG); 3354 } 3355 3356 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3357 ZFS_EXIT(zfsvfs); 3358 return (error); 3359 } 3360 3361 /* 3362 * Insert a new entry into directory tdvp referencing svp. 3363 * 3364 * IN: tdvp - Directory to contain new entry. 3365 * svp - vnode of new entry. 3366 * name - name of new entry. 3367 * cr - credentials of caller. 3368 * ct - caller context 3369 * 3370 * RETURN: 0 if success 3371 * error code if failure 3372 * 3373 * Timestamps: 3374 * tdvp - ctime|mtime updated 3375 * svp - ctime updated 3376 */ 3377 /* ARGSUSED */ 3378 static int 3379 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3380 caller_context_t *ct, int flags) 3381 { 3382 znode_t *dzp = VTOZ(tdvp); 3383 znode_t *tzp, *szp; 3384 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3385 zilog_t *zilog; 3386 zfs_dirlock_t *dl; 3387 dmu_tx_t *tx; 3388 vnode_t *realvp; 3389 int error; 3390 int zf = ZNEW; 3391 uid_t owner; 3392 3393 ASSERT(tdvp->v_type == VDIR); 3394 3395 ZFS_ENTER(zfsvfs); 3396 ZFS_VERIFY_ZP(dzp); 3397 zilog = zfsvfs->z_log; 3398 3399 if (VOP_REALVP(svp, &realvp, ct) == 0) 3400 svp = realvp; 3401 3402 if (svp->v_vfsp != tdvp->v_vfsp) { 3403 ZFS_EXIT(zfsvfs); 3404 return (EXDEV); 3405 } 3406 szp = VTOZ(svp); 3407 ZFS_VERIFY_ZP(szp); 3408 3409 if (zfsvfs->z_utf8 && u8_validate(name, 3410 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3411 ZFS_EXIT(zfsvfs); 3412 return (EILSEQ); 3413 } 3414 if (flags & FIGNORECASE) 3415 zf |= ZCILOOK; 3416 3417 top: 3418 /* 3419 * We do not support links between attributes and non-attributes 3420 * because of the potential security risk of creating links 3421 * into "normal" file space in order to circumvent restrictions 3422 * imposed in attribute space. 3423 */ 3424 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3425 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3426 ZFS_EXIT(zfsvfs); 3427 return (EINVAL); 3428 } 3429 3430 /* 3431 * POSIX dictates that we return EPERM here. 3432 * Better choices include ENOTSUP or EISDIR. 3433 */ 3434 if (svp->v_type == VDIR) { 3435 ZFS_EXIT(zfsvfs); 3436 return (EPERM); 3437 } 3438 3439 owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER); 3440 if (owner != crgetuid(cr) && 3441 secpolicy_basic_link(cr) != 0) { 3442 ZFS_EXIT(zfsvfs); 3443 return (EPERM); 3444 } 3445 3446 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3447 ZFS_EXIT(zfsvfs); 3448 return (error); 3449 } 3450 3451 /* 3452 * Attempt to lock directory; fail if entry already exists. 3453 */ 3454 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3455 if (error) { 3456 ZFS_EXIT(zfsvfs); 3457 return (error); 3458 } 3459 3460 tx = dmu_tx_create(zfsvfs->z_os); 3461 dmu_tx_hold_bonus(tx, szp->z_id); 3462 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3463 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3464 if (error) { 3465 zfs_dirent_unlock(dl); 3466 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3467 dmu_tx_wait(tx); 3468 dmu_tx_abort(tx); 3469 goto top; 3470 } 3471 dmu_tx_abort(tx); 3472 ZFS_EXIT(zfsvfs); 3473 return (error); 3474 } 3475 3476 error = zfs_link_create(dl, szp, tx, 0); 3477 3478 if (error == 0) { 3479 uint64_t txtype = TX_LINK; 3480 if (flags & FIGNORECASE) 3481 txtype |= TX_CI; 3482 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3483 } 3484 3485 dmu_tx_commit(tx); 3486 3487 zfs_dirent_unlock(dl); 3488 3489 if (error == 0) { 3490 vnevent_link(svp, ct); 3491 } 3492 3493 ZFS_EXIT(zfsvfs); 3494 return (error); 3495 } 3496 3497 /* 3498 * zfs_null_putapage() is used when the file system has been force 3499 * unmounted. It just drops the pages. 3500 */ 3501 /* ARGSUSED */ 3502 static int 3503 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3504 size_t *lenp, int flags, cred_t *cr) 3505 { 3506 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3507 return (0); 3508 } 3509 3510 /* 3511 * Push a page out to disk, klustering if possible. 3512 * 3513 * IN: vp - file to push page to. 3514 * pp - page to push. 3515 * flags - additional flags. 3516 * cr - credentials of caller. 3517 * 3518 * OUT: offp - start of range pushed. 3519 * lenp - len of range pushed. 3520 * 3521 * RETURN: 0 if success 3522 * error code if failure 3523 * 3524 * NOTE: callers must have locked the page to be pushed. On 3525 * exit, the page (and all other pages in the kluster) must be 3526 * unlocked. 3527 */ 3528 /* ARGSUSED */ 3529 static int 3530 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3531 size_t *lenp, int flags, cred_t *cr) 3532 { 3533 znode_t *zp = VTOZ(vp); 3534 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3535 zilog_t *zilog = zfsvfs->z_log; 3536 dmu_tx_t *tx; 3537 rl_t *rl; 3538 u_offset_t off, koff; 3539 size_t len, klen; 3540 uint64_t filesz; 3541 int err; 3542 3543 filesz = zp->z_phys->zp_size; 3544 off = pp->p_offset; 3545 len = PAGESIZE; 3546 /* 3547 * If our blocksize is bigger than the page size, try to kluster 3548 * muiltiple pages so that we write a full block (thus avoiding 3549 * a read-modify-write). 3550 */ 3551 if (off < filesz && zp->z_blksz > PAGESIZE) { 3552 if (!ISP2(zp->z_blksz)) { 3553 /* Only one block in the file. */ 3554 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3555 koff = 0; 3556 } else { 3557 klen = zp->z_blksz; 3558 koff = P2ALIGN(off, (u_offset_t)klen); 3559 } 3560 ASSERT(koff <= filesz); 3561 if (koff + klen > filesz) 3562 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3563 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3564 } 3565 ASSERT3U(btop(len), ==, btopr(len)); 3566 top: 3567 rl = zfs_range_lock(zp, off, len, RL_WRITER); 3568 /* 3569 * Can't push pages past end-of-file. 3570 */ 3571 filesz = zp->z_phys->zp_size; 3572 if (off >= filesz) { 3573 /* ignore all pages */ 3574 err = 0; 3575 goto out; 3576 } else if (off + len > filesz) { 3577 int npages = btopr(filesz - off); 3578 page_t *trunc; 3579 3580 page_list_break(&pp, &trunc, npages); 3581 /* ignore pages past end of file */ 3582 if (trunc) 3583 pvn_write_done(trunc, flags); 3584 len = filesz - off; 3585 } 3586 3587 tx = dmu_tx_create(zfsvfs->z_os); 3588 dmu_tx_hold_write(tx, zp->z_id, off, len); 3589 dmu_tx_hold_bonus(tx, zp->z_id); 3590 err = dmu_tx_assign(tx, zfsvfs->z_assign); 3591 if (err != 0) { 3592 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3593 zfs_range_unlock(rl); 3594 dmu_tx_wait(tx); 3595 dmu_tx_abort(tx); 3596 err = 0; 3597 goto top; 3598 } 3599 dmu_tx_abort(tx); 3600 goto out; 3601 } 3602 3603 if (zp->z_blksz <= PAGESIZE) { 3604 caddr_t va = ppmapin(pp, PROT_READ, (caddr_t)-1); 3605 ASSERT3U(len, <=, PAGESIZE); 3606 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3607 ppmapout(va); 3608 } else { 3609 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3610 } 3611 3612 if (err == 0) { 3613 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3614 zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0); 3615 dmu_tx_commit(tx); 3616 } 3617 3618 out: 3619 zfs_range_unlock(rl); 3620 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3621 if (offp) 3622 *offp = off; 3623 if (lenp) 3624 *lenp = len; 3625 3626 return (err); 3627 } 3628 3629 /* 3630 * Copy the portion of the file indicated from pages into the file. 3631 * The pages are stored in a page list attached to the files vnode. 3632 * 3633 * IN: vp - vnode of file to push page data to. 3634 * off - position in file to put data. 3635 * len - amount of data to write. 3636 * flags - flags to control the operation. 3637 * cr - credentials of caller. 3638 * ct - caller context. 3639 * 3640 * RETURN: 0 if success 3641 * error code if failure 3642 * 3643 * Timestamps: 3644 * vp - ctime|mtime updated 3645 */ 3646 /*ARGSUSED*/ 3647 static int 3648 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3649 caller_context_t *ct) 3650 { 3651 znode_t *zp = VTOZ(vp); 3652 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3653 page_t *pp; 3654 size_t io_len; 3655 u_offset_t io_off; 3656 uint64_t filesz; 3657 int error = 0; 3658 3659 ZFS_ENTER(zfsvfs); 3660 ZFS_VERIFY_ZP(zp); 3661 3662 if (len == 0) { 3663 /* 3664 * Search the entire vp list for pages >= off. 3665 */ 3666 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 3667 flags, cr); 3668 goto out; 3669 } 3670 3671 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3672 if (off > filesz) { 3673 /* past end of file */ 3674 ZFS_EXIT(zfsvfs); 3675 return (0); 3676 } 3677 3678 len = MIN(len, filesz - off); 3679 3680 for (io_off = off; io_off < off + len; io_off += io_len) { 3681 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3682 pp = page_lookup(vp, io_off, 3683 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3684 } else { 3685 pp = page_lookup_nowait(vp, io_off, 3686 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3687 } 3688 3689 if (pp != NULL && pvn_getdirty(pp, flags)) { 3690 int err; 3691 3692 /* 3693 * Found a dirty page to push 3694 */ 3695 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3696 if (err) 3697 error = err; 3698 } else { 3699 io_len = PAGESIZE; 3700 } 3701 } 3702 out: 3703 if ((flags & B_ASYNC) == 0) 3704 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3705 ZFS_EXIT(zfsvfs); 3706 return (error); 3707 } 3708 3709 /*ARGSUSED*/ 3710 void 3711 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3712 { 3713 znode_t *zp = VTOZ(vp); 3714 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3715 int error; 3716 3717 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3718 if (zp->z_dbuf == NULL) { 3719 /* 3720 * The fs has been unmounted, or we did a 3721 * suspend/resume and this file no longer exists. 3722 */ 3723 if (vn_has_cached_data(vp)) { 3724 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3725 B_INVAL, cr); 3726 } 3727 3728 mutex_enter(&zp->z_lock); 3729 vp->v_count = 0; /* count arrives as 1 */ 3730 mutex_exit(&zp->z_lock); 3731 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3732 zfs_znode_free(zp); 3733 return; 3734 } 3735 3736 /* 3737 * Attempt to push any data in the page cache. If this fails 3738 * we will get kicked out later in zfs_zinactive(). 3739 */ 3740 if (vn_has_cached_data(vp)) { 3741 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3742 cr); 3743 } 3744 3745 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3746 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3747 3748 dmu_tx_hold_bonus(tx, zp->z_id); 3749 error = dmu_tx_assign(tx, TXG_WAIT); 3750 if (error) { 3751 dmu_tx_abort(tx); 3752 } else { 3753 dmu_buf_will_dirty(zp->z_dbuf, tx); 3754 mutex_enter(&zp->z_lock); 3755 zp->z_atime_dirty = 0; 3756 mutex_exit(&zp->z_lock); 3757 dmu_tx_commit(tx); 3758 } 3759 } 3760 3761 zfs_zinactive(zp); 3762 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3763 } 3764 3765 /* 3766 * Bounds-check the seek operation. 3767 * 3768 * IN: vp - vnode seeking within 3769 * ooff - old file offset 3770 * noffp - pointer to new file offset 3771 * ct - caller context 3772 * 3773 * RETURN: 0 if success 3774 * EINVAL if new offset invalid 3775 */ 3776 /* ARGSUSED */ 3777 static int 3778 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 3779 caller_context_t *ct) 3780 { 3781 if (vp->v_type == VDIR) 3782 return (0); 3783 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3784 } 3785 3786 /* 3787 * Pre-filter the generic locking function to trap attempts to place 3788 * a mandatory lock on a memory mapped file. 3789 */ 3790 static int 3791 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3792 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 3793 { 3794 znode_t *zp = VTOZ(vp); 3795 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3796 int error; 3797 3798 ZFS_ENTER(zfsvfs); 3799 ZFS_VERIFY_ZP(zp); 3800 3801 /* 3802 * We are following the UFS semantics with respect to mapcnt 3803 * here: If we see that the file is mapped already, then we will 3804 * return an error, but we don't worry about races between this 3805 * function and zfs_map(). 3806 */ 3807 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3808 ZFS_EXIT(zfsvfs); 3809 return (EAGAIN); 3810 } 3811 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3812 ZFS_EXIT(zfsvfs); 3813 return (error); 3814 } 3815 3816 /* 3817 * If we can't find a page in the cache, we will create a new page 3818 * and fill it with file data. For efficiency, we may try to fill 3819 * multiple pages at once (klustering). 3820 */ 3821 static int 3822 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3823 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3824 { 3825 znode_t *zp = VTOZ(vp); 3826 page_t *pp, *cur_pp; 3827 objset_t *os = zp->z_zfsvfs->z_os; 3828 caddr_t va; 3829 u_offset_t io_off, total; 3830 uint64_t oid = zp->z_id; 3831 size_t io_len; 3832 uint64_t filesz; 3833 int err; 3834 3835 /* 3836 * If we are only asking for a single page don't bother klustering. 3837 */ 3838 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3839 if (off >= filesz) 3840 return (EFAULT); 3841 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 3842 io_off = off; 3843 io_len = PAGESIZE; 3844 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3845 } else { 3846 /* 3847 * Try to fill a kluster of pages (a blocks worth). 3848 */ 3849 size_t klen; 3850 u_offset_t koff; 3851 3852 if (!ISP2(zp->z_blksz)) { 3853 /* Only one block in the file. */ 3854 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3855 koff = 0; 3856 } else { 3857 /* 3858 * It would be ideal to align our offset to the 3859 * blocksize but doing so has resulted in some 3860 * strange application crashes. For now, we 3861 * leave the offset as is and only adjust the 3862 * length if we are off the end of the file. 3863 */ 3864 koff = off; 3865 klen = plsz; 3866 } 3867 ASSERT(koff <= filesz); 3868 if (koff + klen > filesz) 3869 klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff; 3870 ASSERT3U(off, >=, koff); 3871 ASSERT3U(off, <, koff + klen); 3872 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3873 &io_len, koff, klen, 0); 3874 } 3875 if (pp == NULL) { 3876 /* 3877 * Some other thread entered the page before us. 3878 * Return to zfs_getpage to retry the lookup. 3879 */ 3880 *pl = NULL; 3881 return (0); 3882 } 3883 3884 /* 3885 * Fill the pages in the kluster. 3886 */ 3887 cur_pp = pp; 3888 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3889 ASSERT3U(io_off, ==, cur_pp->p_offset); 3890 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3891 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3892 ppmapout(va); 3893 if (err) { 3894 /* On error, toss the entire kluster */ 3895 pvn_read_done(pp, B_ERROR); 3896 return (err); 3897 } 3898 cur_pp = cur_pp->p_next; 3899 } 3900 out: 3901 /* 3902 * Fill in the page list array from the kluster. If 3903 * there are too many pages in the kluster, return 3904 * as many pages as possible starting from the desired 3905 * offset `off'. 3906 * NOTE: the page list will always be null terminated. 3907 */ 3908 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3909 3910 return (0); 3911 } 3912 3913 /* 3914 * Return pointers to the pages for the file region [off, off + len] 3915 * in the pl array. If plsz is greater than len, this function may 3916 * also return page pointers from before or after the specified 3917 * region (i.e. some region [off', off' + plsz]). These additional 3918 * pages are only returned if they are already in the cache, or were 3919 * created as part of a klustered read. 3920 * 3921 * IN: vp - vnode of file to get data from. 3922 * off - position in file to get data from. 3923 * len - amount of data to retrieve. 3924 * plsz - length of provided page list. 3925 * seg - segment to obtain pages for. 3926 * addr - virtual address of fault. 3927 * rw - mode of created pages. 3928 * cr - credentials of caller. 3929 * ct - caller context. 3930 * 3931 * OUT: protp - protection mode of created pages. 3932 * pl - list of pages created. 3933 * 3934 * RETURN: 0 if success 3935 * error code if failure 3936 * 3937 * Timestamps: 3938 * vp - atime updated 3939 */ 3940 /* ARGSUSED */ 3941 static int 3942 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3943 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3944 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3945 { 3946 znode_t *zp = VTOZ(vp); 3947 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3948 page_t *pp, **pl0 = pl; 3949 int need_unlock = 0, err = 0; 3950 offset_t orig_off; 3951 3952 ZFS_ENTER(zfsvfs); 3953 ZFS_VERIFY_ZP(zp); 3954 3955 if (protp) 3956 *protp = PROT_ALL; 3957 3958 /* no faultahead (for now) */ 3959 if (pl == NULL) { 3960 ZFS_EXIT(zfsvfs); 3961 return (0); 3962 } 3963 3964 /* can't fault past EOF */ 3965 if (off >= zp->z_phys->zp_size) { 3966 ZFS_EXIT(zfsvfs); 3967 return (EFAULT); 3968 } 3969 orig_off = off; 3970 3971 /* 3972 * If we already own the lock, then we must be page faulting 3973 * in the middle of a write to this file (i.e., we are writing 3974 * to this file using data from a mapped region of the file). 3975 */ 3976 if (rw_owner(&zp->z_map_lock) != curthread) { 3977 rw_enter(&zp->z_map_lock, RW_WRITER); 3978 need_unlock = TRUE; 3979 } 3980 3981 /* 3982 * Loop through the requested range [off, off + len] looking 3983 * for pages. If we don't find a page, we will need to create 3984 * a new page and fill it with data from the file. 3985 */ 3986 while (len > 0) { 3987 if (plsz < PAGESIZE) 3988 break; 3989 if (pp = page_lookup(vp, off, SE_SHARED)) { 3990 *pl++ = pp; 3991 off += PAGESIZE; 3992 addr += PAGESIZE; 3993 len -= PAGESIZE; 3994 plsz -= PAGESIZE; 3995 } else { 3996 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3997 if (err) 3998 goto out; 3999 /* 4000 * klustering may have changed our region 4001 * to be block aligned. 4002 */ 4003 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 4004 int delta = off - pp->p_offset; 4005 len += delta; 4006 off -= delta; 4007 addr -= delta; 4008 } 4009 while (*pl) { 4010 pl++; 4011 off += PAGESIZE; 4012 addr += PAGESIZE; 4013 plsz -= PAGESIZE; 4014 if (len > PAGESIZE) 4015 len -= PAGESIZE; 4016 else 4017 len = 0; 4018 } 4019 } 4020 } 4021 4022 /* 4023 * Fill out the page array with any pages already in the cache. 4024 */ 4025 while (plsz > 0) { 4026 pp = page_lookup_nowait(vp, off, SE_SHARED); 4027 if (pp == NULL) 4028 break; 4029 *pl++ = pp; 4030 off += PAGESIZE; 4031 plsz -= PAGESIZE; 4032 } 4033 4034 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4035 out: 4036 /* 4037 * We can't grab the range lock for the page as reader which would 4038 * stop truncation as this leads to deadlock. So we need to recheck 4039 * the file size. 4040 */ 4041 if (orig_off >= zp->z_phys->zp_size) 4042 err = EFAULT; 4043 if (err) { 4044 /* 4045 * Release any pages we have previously locked. 4046 */ 4047 while (pl > pl0) 4048 page_unlock(*--pl); 4049 } 4050 4051 *pl = NULL; 4052 4053 if (need_unlock) 4054 rw_exit(&zp->z_map_lock); 4055 4056 ZFS_EXIT(zfsvfs); 4057 return (err); 4058 } 4059 4060 /* 4061 * Request a memory map for a section of a file. This code interacts 4062 * with common code and the VM system as follows: 4063 * 4064 * common code calls mmap(), which ends up in smmap_common() 4065 * 4066 * this calls VOP_MAP(), which takes you into (say) zfs 4067 * 4068 * zfs_map() calls as_map(), passing segvn_create() as the callback 4069 * 4070 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4071 * 4072 * zfs_addmap() updates z_mapcnt 4073 */ 4074 /*ARGSUSED*/ 4075 static int 4076 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4077 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4078 caller_context_t *ct) 4079 { 4080 znode_t *zp = VTOZ(vp); 4081 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4082 segvn_crargs_t vn_a; 4083 int error; 4084 4085 ZFS_ENTER(zfsvfs); 4086 ZFS_VERIFY_ZP(zp); 4087 4088 if ((prot & PROT_WRITE) && 4089 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4090 ZFS_APPENDONLY))) { 4091 ZFS_EXIT(zfsvfs); 4092 return (EPERM); 4093 } 4094 4095 if ((prot & (PROT_READ | PROT_EXEC)) && 4096 (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) { 4097 ZFS_EXIT(zfsvfs); 4098 return (EACCES); 4099 } 4100 4101 if (vp->v_flag & VNOMAP) { 4102 ZFS_EXIT(zfsvfs); 4103 return (ENOSYS); 4104 } 4105 4106 if (off < 0 || len > MAXOFFSET_T - off) { 4107 ZFS_EXIT(zfsvfs); 4108 return (ENXIO); 4109 } 4110 4111 if (vp->v_type != VREG) { 4112 ZFS_EXIT(zfsvfs); 4113 return (ENODEV); 4114 } 4115 4116 /* 4117 * If file is locked, disallow mapping. 4118 */ 4119 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4120 ZFS_EXIT(zfsvfs); 4121 return (EAGAIN); 4122 } 4123 4124 as_rangelock(as); 4125 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4126 if (error != 0) { 4127 as_rangeunlock(as); 4128 ZFS_EXIT(zfsvfs); 4129 return (error); 4130 } 4131 4132 vn_a.vp = vp; 4133 vn_a.offset = (u_offset_t)off; 4134 vn_a.type = flags & MAP_TYPE; 4135 vn_a.prot = prot; 4136 vn_a.maxprot = maxprot; 4137 vn_a.cred = cr; 4138 vn_a.amp = NULL; 4139 vn_a.flags = flags & ~MAP_TYPE; 4140 vn_a.szc = 0; 4141 vn_a.lgrp_mem_policy_flags = 0; 4142 4143 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4144 4145 as_rangeunlock(as); 4146 ZFS_EXIT(zfsvfs); 4147 return (error); 4148 } 4149 4150 /* ARGSUSED */ 4151 static int 4152 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4153 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4154 caller_context_t *ct) 4155 { 4156 uint64_t pages = btopr(len); 4157 4158 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4159 return (0); 4160 } 4161 4162 /* 4163 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4164 * more accurate mtime for the associated file. Since we don't have a way of 4165 * detecting when the data was actually modified, we have to resort to 4166 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4167 * last page is pushed. The problem occurs when the msync() call is omitted, 4168 * which by far the most common case: 4169 * 4170 * open() 4171 * mmap() 4172 * <modify memory> 4173 * munmap() 4174 * close() 4175 * <time lapse> 4176 * putpage() via fsflush 4177 * 4178 * If we wait until fsflush to come along, we can have a modification time that 4179 * is some arbitrary point in the future. In order to prevent this in the 4180 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4181 * torn down. 4182 */ 4183 /* ARGSUSED */ 4184 static int 4185 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4186 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4187 caller_context_t *ct) 4188 { 4189 uint64_t pages = btopr(len); 4190 4191 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4192 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4193 4194 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4195 vn_has_cached_data(vp)) 4196 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4197 4198 return (0); 4199 } 4200 4201 /* 4202 * Free or allocate space in a file. Currently, this function only 4203 * supports the `F_FREESP' command. However, this command is somewhat 4204 * misnamed, as its functionality includes the ability to allocate as 4205 * well as free space. 4206 * 4207 * IN: vp - vnode of file to free data in. 4208 * cmd - action to take (only F_FREESP supported). 4209 * bfp - section of file to free/alloc. 4210 * flag - current file open mode flags. 4211 * offset - current file offset. 4212 * cr - credentials of caller [UNUSED]. 4213 * ct - caller context. 4214 * 4215 * RETURN: 0 if success 4216 * error code if failure 4217 * 4218 * Timestamps: 4219 * vp - ctime|mtime updated 4220 */ 4221 /* ARGSUSED */ 4222 static int 4223 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4224 offset_t offset, cred_t *cr, caller_context_t *ct) 4225 { 4226 znode_t *zp = VTOZ(vp); 4227 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4228 uint64_t off, len; 4229 int error; 4230 4231 ZFS_ENTER(zfsvfs); 4232 ZFS_VERIFY_ZP(zp); 4233 4234 top: 4235 if (cmd != F_FREESP) { 4236 ZFS_EXIT(zfsvfs); 4237 return (EINVAL); 4238 } 4239 4240 if (error = convoff(vp, bfp, 0, offset)) { 4241 ZFS_EXIT(zfsvfs); 4242 return (error); 4243 } 4244 4245 if (bfp->l_len < 0) { 4246 ZFS_EXIT(zfsvfs); 4247 return (EINVAL); 4248 } 4249 4250 off = bfp->l_start; 4251 len = bfp->l_len; /* 0 means from off to end of file */ 4252 4253 do { 4254 error = zfs_freesp(zp, off, len, flag, TRUE); 4255 /* NB: we already did dmu_tx_wait() if necessary */ 4256 } while (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 4257 4258 ZFS_EXIT(zfsvfs); 4259 return (error); 4260 } 4261 4262 /*ARGSUSED*/ 4263 static int 4264 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4265 { 4266 znode_t *zp = VTOZ(vp); 4267 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4268 uint32_t gen; 4269 uint64_t object = zp->z_id; 4270 zfid_short_t *zfid; 4271 int size, i; 4272 4273 ZFS_ENTER(zfsvfs); 4274 ZFS_VERIFY_ZP(zp); 4275 gen = (uint32_t)zp->z_gen; 4276 4277 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4278 if (fidp->fid_len < size) { 4279 fidp->fid_len = size; 4280 ZFS_EXIT(zfsvfs); 4281 return (ENOSPC); 4282 } 4283 4284 zfid = (zfid_short_t *)fidp; 4285 4286 zfid->zf_len = size; 4287 4288 for (i = 0; i < sizeof (zfid->zf_object); i++) 4289 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4290 4291 /* Must have a non-zero generation number to distinguish from .zfs */ 4292 if (gen == 0) 4293 gen = 1; 4294 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4295 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4296 4297 if (size == LONG_FID_LEN) { 4298 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4299 zfid_long_t *zlfid; 4300 4301 zlfid = (zfid_long_t *)fidp; 4302 4303 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4304 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4305 4306 /* XXX - this should be the generation number for the objset */ 4307 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4308 zlfid->zf_setgen[i] = 0; 4309 } 4310 4311 ZFS_EXIT(zfsvfs); 4312 return (0); 4313 } 4314 4315 static int 4316 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4317 caller_context_t *ct) 4318 { 4319 znode_t *zp, *xzp; 4320 zfsvfs_t *zfsvfs; 4321 zfs_dirlock_t *dl; 4322 int error; 4323 4324 switch (cmd) { 4325 case _PC_LINK_MAX: 4326 *valp = ULONG_MAX; 4327 return (0); 4328 4329 case _PC_FILESIZEBITS: 4330 *valp = 64; 4331 return (0); 4332 4333 case _PC_XATTR_EXISTS: 4334 zp = VTOZ(vp); 4335 zfsvfs = zp->z_zfsvfs; 4336 ZFS_ENTER(zfsvfs); 4337 ZFS_VERIFY_ZP(zp); 4338 *valp = 0; 4339 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4340 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4341 if (error == 0) { 4342 zfs_dirent_unlock(dl); 4343 if (!zfs_dirempty(xzp)) 4344 *valp = 1; 4345 VN_RELE(ZTOV(xzp)); 4346 } else if (error == ENOENT) { 4347 /* 4348 * If there aren't extended attributes, it's the 4349 * same as having zero of them. 4350 */ 4351 error = 0; 4352 } 4353 ZFS_EXIT(zfsvfs); 4354 return (error); 4355 4356 case _PC_SATTR_ENABLED: 4357 case _PC_SATTR_EXISTS: 4358 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) && 4359 (vp->v_type == VREG || vp->v_type == VDIR); 4360 return (0); 4361 4362 case _PC_ACL_ENABLED: 4363 *valp = _ACL_ACE_ENABLED; 4364 return (0); 4365 4366 case _PC_MIN_HOLE_SIZE: 4367 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4368 return (0); 4369 4370 default: 4371 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4372 } 4373 } 4374 4375 /*ARGSUSED*/ 4376 static int 4377 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4378 caller_context_t *ct) 4379 { 4380 znode_t *zp = VTOZ(vp); 4381 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4382 int error; 4383 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4384 4385 ZFS_ENTER(zfsvfs); 4386 ZFS_VERIFY_ZP(zp); 4387 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4388 ZFS_EXIT(zfsvfs); 4389 4390 return (error); 4391 } 4392 4393 /*ARGSUSED*/ 4394 static int 4395 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4396 caller_context_t *ct) 4397 { 4398 znode_t *zp = VTOZ(vp); 4399 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4400 int error; 4401 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4402 4403 ZFS_ENTER(zfsvfs); 4404 ZFS_VERIFY_ZP(zp); 4405 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4406 ZFS_EXIT(zfsvfs); 4407 return (error); 4408 } 4409 4410 /* 4411 * Predeclare these here so that the compiler assumes that 4412 * this is an "old style" function declaration that does 4413 * not include arguments => we won't get type mismatch errors 4414 * in the initializations that follow. 4415 */ 4416 static int zfs_inval(); 4417 static int zfs_isdir(); 4418 4419 static int 4420 zfs_inval() 4421 { 4422 return (EINVAL); 4423 } 4424 4425 static int 4426 zfs_isdir() 4427 { 4428 return (EISDIR); 4429 } 4430 /* 4431 * Directory vnode operations template 4432 */ 4433 vnodeops_t *zfs_dvnodeops; 4434 const fs_operation_def_t zfs_dvnodeops_template[] = { 4435 VOPNAME_OPEN, { .vop_open = zfs_open }, 4436 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4437 VOPNAME_READ, { .error = zfs_isdir }, 4438 VOPNAME_WRITE, { .error = zfs_isdir }, 4439 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4440 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4441 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4442 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4443 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4444 VOPNAME_CREATE, { .vop_create = zfs_create }, 4445 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4446 VOPNAME_LINK, { .vop_link = zfs_link }, 4447 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4448 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4449 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4450 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4451 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4452 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4453 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4454 VOPNAME_FID, { .vop_fid = zfs_fid }, 4455 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4456 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4457 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4458 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4459 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4460 NULL, NULL 4461 }; 4462 4463 /* 4464 * Regular file vnode operations template 4465 */ 4466 vnodeops_t *zfs_fvnodeops; 4467 const fs_operation_def_t zfs_fvnodeops_template[] = { 4468 VOPNAME_OPEN, { .vop_open = zfs_open }, 4469 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4470 VOPNAME_READ, { .vop_read = zfs_read }, 4471 VOPNAME_WRITE, { .vop_write = zfs_write }, 4472 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4473 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4474 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4475 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4476 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4477 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4478 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4479 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4480 VOPNAME_FID, { .vop_fid = zfs_fid }, 4481 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4482 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4483 VOPNAME_SPACE, { .vop_space = zfs_space }, 4484 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4485 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4486 VOPNAME_MAP, { .vop_map = zfs_map }, 4487 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4488 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4489 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4490 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4491 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4492 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4493 NULL, NULL 4494 }; 4495 4496 /* 4497 * Symbolic link vnode operations template 4498 */ 4499 vnodeops_t *zfs_symvnodeops; 4500 const fs_operation_def_t zfs_symvnodeops_template[] = { 4501 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4502 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4503 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4504 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4505 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4506 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4507 VOPNAME_FID, { .vop_fid = zfs_fid }, 4508 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4509 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4510 NULL, NULL 4511 }; 4512 4513 /* 4514 * Extended attribute directory vnode operations template 4515 * This template is identical to the directory vnodes 4516 * operation template except for restricted operations: 4517 * VOP_MKDIR() 4518 * VOP_SYMLINK() 4519 * Note that there are other restrictions embedded in: 4520 * zfs_create() - restrict type to VREG 4521 * zfs_link() - no links into/out of attribute space 4522 * zfs_rename() - no moves into/out of attribute space 4523 */ 4524 vnodeops_t *zfs_xdvnodeops; 4525 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4526 VOPNAME_OPEN, { .vop_open = zfs_open }, 4527 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4528 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4529 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4530 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4531 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4532 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4533 VOPNAME_CREATE, { .vop_create = zfs_create }, 4534 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4535 VOPNAME_LINK, { .vop_link = zfs_link }, 4536 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4537 VOPNAME_MKDIR, { .error = zfs_inval }, 4538 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4539 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4540 VOPNAME_SYMLINK, { .error = zfs_inval }, 4541 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4542 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4543 VOPNAME_FID, { .vop_fid = zfs_fid }, 4544 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4545 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4546 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4547 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4548 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4549 NULL, NULL 4550 }; 4551 4552 /* 4553 * Error vnode operations template 4554 */ 4555 vnodeops_t *zfs_evnodeops; 4556 const fs_operation_def_t zfs_evnodeops_template[] = { 4557 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4558 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4559 NULL, NULL 4560 }; 4561