1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2015 Joyent, Inc. 27 * Copyright 2017 Nexenta Systems, Inc. 28 */ 29 30 /* Portions Copyright 2007 Jeremy Teo */ 31 /* Portions Copyright 2010 Robert Milkowski */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/time.h> 36 #include <sys/systm.h> 37 #include <sys/sysmacros.h> 38 #include <sys/resource.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/stat.h> 44 #include <sys/kmem.h> 45 #include <sys/taskq.h> 46 #include <sys/uio.h> 47 #include <sys/vmsystm.h> 48 #include <sys/atomic.h> 49 #include <sys/vm.h> 50 #include <vm/seg_vn.h> 51 #include <vm/pvn.h> 52 #include <vm/as.h> 53 #include <vm/kpm.h> 54 #include <vm/seg_kpm.h> 55 #include <sys/mman.h> 56 #include <sys/pathname.h> 57 #include <sys/cmn_err.h> 58 #include <sys/errno.h> 59 #include <sys/unistd.h> 60 #include <sys/zfs_dir.h> 61 #include <sys/zfs_acl.h> 62 #include <sys/zfs_ioctl.h> 63 #include <sys/fs/zfs.h> 64 #include <sys/dmu.h> 65 #include <sys/dmu_objset.h> 66 #include <sys/spa.h> 67 #include <sys/txg.h> 68 #include <sys/dbuf.h> 69 #include <sys/zap.h> 70 #include <sys/sa.h> 71 #include <sys/dirent.h> 72 #include <sys/policy.h> 73 #include <sys/sunddi.h> 74 #include <sys/filio.h> 75 #include <sys/sid.h> 76 #include "fs/fs_subr.h" 77 #include <sys/zfs_ctldir.h> 78 #include <sys/zfs_fuid.h> 79 #include <sys/zfs_sa.h> 80 #include <sys/dnlc.h> 81 #include <sys/zfs_rlock.h> 82 #include <sys/extdirent.h> 83 #include <sys/kidmap.h> 84 #include <sys/cred.h> 85 #include <sys/attr.h> 86 #include <sys/zil.h> 87 88 /* 89 * Programming rules. 90 * 91 * Each vnode op performs some logical unit of work. To do this, the ZPL must 92 * properly lock its in-core state, create a DMU transaction, do the work, 93 * record this work in the intent log (ZIL), commit the DMU transaction, 94 * and wait for the intent log to commit if it is a synchronous operation. 95 * Moreover, the vnode ops must work in both normal and log replay context. 96 * The ordering of events is important to avoid deadlocks and references 97 * to freed memory. The example below illustrates the following Big Rules: 98 * 99 * (1) A check must be made in each zfs thread for a mounted file system. 100 * This is done avoiding races using ZFS_ENTER(zfsvfs). 101 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 102 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 103 * can return EIO from the calling function. 104 * 105 * (2) VN_RELE() should always be the last thing except for zil_commit() 106 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 107 * First, if it's the last reference, the vnode/znode 108 * can be freed, so the zp may point to freed memory. Second, the last 109 * reference will call zfs_zinactive(), which may induce a lot of work -- 110 * pushing cached pages (which acquires range locks) and syncing out 111 * cached atime changes. Third, zfs_zinactive() may require a new tx, 112 * which could deadlock the system if you were already holding one. 113 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 114 * 115 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 116 * as they can span dmu_tx_assign() calls. 117 * 118 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 119 * dmu_tx_assign(). This is critical because we don't want to block 120 * while holding locks. 121 * 122 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 123 * reduces lock contention and CPU usage when we must wait (note that if 124 * throughput is constrained by the storage, nearly every transaction 125 * must wait). 126 * 127 * Note, in particular, that if a lock is sometimes acquired before 128 * the tx assigns, and sometimes after (e.g. z_lock), then failing 129 * to use a non-blocking assign can deadlock the system. The scenario: 130 * 131 * Thread A has grabbed a lock before calling dmu_tx_assign(). 132 * Thread B is in an already-assigned tx, and blocks for this lock. 133 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 134 * forever, because the previous txg can't quiesce until B's tx commits. 135 * 136 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 137 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 138 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT, 139 * to indicate that this operation has already called dmu_tx_wait(). 140 * This will ensure that we don't retry forever, waiting a short bit 141 * each time. 142 * 143 * (5) If the operation succeeded, generate the intent log entry for it 144 * before dropping locks. This ensures that the ordering of events 145 * in the intent log matches the order in which they actually occurred. 146 * During ZIL replay the zfs_log_* functions will update the sequence 147 * number to indicate the zil transaction has replayed. 148 * 149 * (6) At the end of each vnode op, the DMU tx must always commit, 150 * regardless of whether there were any errors. 151 * 152 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 153 * to ensure that synchronous semantics are provided when necessary. 154 * 155 * In general, this is how things should be ordered in each vnode op: 156 * 157 * ZFS_ENTER(zfsvfs); // exit if unmounted 158 * top: 159 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 160 * rw_enter(...); // grab any other locks you need 161 * tx = dmu_tx_create(...); // get DMU tx 162 * dmu_tx_hold_*(); // hold each object you might modify 163 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 164 * if (error) { 165 * rw_exit(...); // drop locks 166 * zfs_dirent_unlock(dl); // unlock directory entry 167 * VN_RELE(...); // release held vnodes 168 * if (error == ERESTART) { 169 * waited = B_TRUE; 170 * dmu_tx_wait(tx); 171 * dmu_tx_abort(tx); 172 * goto top; 173 * } 174 * dmu_tx_abort(tx); // abort DMU tx 175 * ZFS_EXIT(zfsvfs); // finished in zfs 176 * return (error); // really out of space 177 * } 178 * error = do_real_work(); // do whatever this VOP does 179 * if (error == 0) 180 * zfs_log_*(...); // on success, make ZIL entry 181 * dmu_tx_commit(tx); // commit DMU tx -- error or not 182 * rw_exit(...); // drop locks 183 * zfs_dirent_unlock(dl); // unlock directory entry 184 * VN_RELE(...); // release held vnodes 185 * zil_commit(zilog, foid); // synchronous when necessary 186 * ZFS_EXIT(zfsvfs); // finished in zfs 187 * return (error); // done, report error 188 */ 189 190 /* ARGSUSED */ 191 static int 192 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 193 { 194 znode_t *zp = VTOZ(*vpp); 195 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 196 197 ZFS_ENTER(zfsvfs); 198 ZFS_VERIFY_ZP(zp); 199 200 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 201 ((flag & FAPPEND) == 0)) { 202 ZFS_EXIT(zfsvfs); 203 return (SET_ERROR(EPERM)); 204 } 205 206 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 207 ZTOV(zp)->v_type == VREG && 208 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 209 if (fs_vscan(*vpp, cr, 0) != 0) { 210 ZFS_EXIT(zfsvfs); 211 return (SET_ERROR(EACCES)); 212 } 213 } 214 215 /* Keep a count of the synchronous opens in the znode */ 216 if (flag & (FSYNC | FDSYNC)) 217 atomic_inc_32(&zp->z_sync_cnt); 218 219 ZFS_EXIT(zfsvfs); 220 return (0); 221 } 222 223 /* ARGSUSED */ 224 static int 225 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 226 caller_context_t *ct) 227 { 228 znode_t *zp = VTOZ(vp); 229 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 230 231 /* 232 * Clean up any locks held by this process on the vp. 233 */ 234 cleanlocks(vp, ddi_get_pid(), 0); 235 cleanshares(vp, ddi_get_pid()); 236 237 ZFS_ENTER(zfsvfs); 238 ZFS_VERIFY_ZP(zp); 239 240 /* Decrement the synchronous opens in the znode */ 241 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 242 atomic_dec_32(&zp->z_sync_cnt); 243 244 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 245 ZTOV(zp)->v_type == VREG && 246 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 247 VERIFY(fs_vscan(vp, cr, 1) == 0); 248 249 ZFS_EXIT(zfsvfs); 250 return (0); 251 } 252 253 /* 254 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 255 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 256 */ 257 static int 258 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 259 { 260 znode_t *zp = VTOZ(vp); 261 uint64_t noff = (uint64_t)*off; /* new offset */ 262 uint64_t file_sz; 263 int error; 264 boolean_t hole; 265 266 file_sz = zp->z_size; 267 if (noff >= file_sz) { 268 return (SET_ERROR(ENXIO)); 269 } 270 271 if (cmd == _FIO_SEEK_HOLE) 272 hole = B_TRUE; 273 else 274 hole = B_FALSE; 275 276 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 277 278 if (error == ESRCH) 279 return (SET_ERROR(ENXIO)); 280 281 /* 282 * We could find a hole that begins after the logical end-of-file, 283 * because dmu_offset_next() only works on whole blocks. If the 284 * EOF falls mid-block, then indicate that the "virtual hole" 285 * at the end of the file begins at the logical EOF, rather than 286 * at the end of the last block. 287 */ 288 if (noff > file_sz) { 289 ASSERT(hole); 290 noff = file_sz; 291 } 292 293 if (noff < *off) 294 return (error); 295 *off = noff; 296 return (error); 297 } 298 299 /* ARGSUSED */ 300 static int 301 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 302 int *rvalp, caller_context_t *ct) 303 { 304 offset_t off; 305 offset_t ndata; 306 dmu_object_info_t doi; 307 int error; 308 zfsvfs_t *zfsvfs; 309 znode_t *zp; 310 311 switch (com) { 312 case _FIOFFS: 313 { 314 return (zfs_sync(vp->v_vfsp, 0, cred)); 315 316 /* 317 * The following two ioctls are used by bfu. Faking out, 318 * necessary to avoid bfu errors. 319 */ 320 } 321 case _FIOGDIO: 322 case _FIOSDIO: 323 { 324 return (0); 325 } 326 327 case _FIO_SEEK_DATA: 328 case _FIO_SEEK_HOLE: 329 { 330 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 331 return (SET_ERROR(EFAULT)); 332 333 zp = VTOZ(vp); 334 zfsvfs = zp->z_zfsvfs; 335 ZFS_ENTER(zfsvfs); 336 ZFS_VERIFY_ZP(zp); 337 338 /* offset parameter is in/out */ 339 error = zfs_holey(vp, com, &off); 340 ZFS_EXIT(zfsvfs); 341 if (error) 342 return (error); 343 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 344 return (SET_ERROR(EFAULT)); 345 return (0); 346 } 347 case _FIO_COUNT_FILLED: 348 { 349 /* 350 * _FIO_COUNT_FILLED adds a new ioctl command which 351 * exposes the number of filled blocks in a 352 * ZFS object. 353 */ 354 zp = VTOZ(vp); 355 zfsvfs = zp->z_zfsvfs; 356 ZFS_ENTER(zfsvfs); 357 ZFS_VERIFY_ZP(zp); 358 359 /* 360 * Wait for all dirty blocks for this object 361 * to get synced out to disk, and the DMU info 362 * updated. 363 */ 364 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 365 if (error) { 366 ZFS_EXIT(zfsvfs); 367 return (error); 368 } 369 370 /* 371 * Retrieve fill count from DMU object. 372 */ 373 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 374 if (error) { 375 ZFS_EXIT(zfsvfs); 376 return (error); 377 } 378 379 ndata = doi.doi_fill_count; 380 381 ZFS_EXIT(zfsvfs); 382 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 383 return (SET_ERROR(EFAULT)); 384 return (0); 385 } 386 } 387 return (SET_ERROR(ENOTTY)); 388 } 389 390 /* 391 * Utility functions to map and unmap a single physical page. These 392 * are used to manage the mappable copies of ZFS file data, and therefore 393 * do not update ref/mod bits. 394 */ 395 caddr_t 396 zfs_map_page(page_t *pp, enum seg_rw rw) 397 { 398 if (kpm_enable) 399 return (hat_kpm_mapin(pp, 0)); 400 ASSERT(rw == S_READ || rw == S_WRITE); 401 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 402 (caddr_t)-1)); 403 } 404 405 void 406 zfs_unmap_page(page_t *pp, caddr_t addr) 407 { 408 if (kpm_enable) { 409 hat_kpm_mapout(pp, 0, addr); 410 } else { 411 ppmapout(addr); 412 } 413 } 414 415 /* 416 * When a file is memory mapped, we must keep the IO data synchronized 417 * between the DMU cache and the memory mapped pages. What this means: 418 * 419 * On Write: If we find a memory mapped page, we write to *both* 420 * the page and the dmu buffer. 421 */ 422 static void 423 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 424 { 425 int64_t off; 426 427 off = start & PAGEOFFSET; 428 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 429 page_t *pp; 430 uint64_t nbytes = MIN(PAGESIZE - off, len); 431 432 if (pp = page_lookup(vp, start, SE_SHARED)) { 433 caddr_t va; 434 435 va = zfs_map_page(pp, S_WRITE); 436 (void) dmu_read(os, oid, start+off, nbytes, va+off, 437 DMU_READ_PREFETCH); 438 zfs_unmap_page(pp, va); 439 page_unlock(pp); 440 } 441 len -= nbytes; 442 off = 0; 443 } 444 } 445 446 /* 447 * When a file is memory mapped, we must keep the IO data synchronized 448 * between the DMU cache and the memory mapped pages. What this means: 449 * 450 * On Read: We "read" preferentially from memory mapped pages, 451 * else we default from the dmu buffer. 452 * 453 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 454 * the file is memory mapped. 455 */ 456 static int 457 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 458 { 459 znode_t *zp = VTOZ(vp); 460 int64_t start, off; 461 int len = nbytes; 462 int error = 0; 463 464 start = uio->uio_loffset; 465 off = start & PAGEOFFSET; 466 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 467 page_t *pp; 468 uint64_t bytes = MIN(PAGESIZE - off, len); 469 470 if (pp = page_lookup(vp, start, SE_SHARED)) { 471 caddr_t va; 472 473 va = zfs_map_page(pp, S_READ); 474 error = uiomove(va + off, bytes, UIO_READ, uio); 475 zfs_unmap_page(pp, va); 476 page_unlock(pp); 477 } else { 478 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 479 uio, bytes); 480 } 481 len -= bytes; 482 off = 0; 483 if (error) 484 break; 485 } 486 return (error); 487 } 488 489 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 490 491 /* 492 * Read bytes from specified file into supplied buffer. 493 * 494 * IN: vp - vnode of file to be read from. 495 * uio - structure supplying read location, range info, 496 * and return buffer. 497 * ioflag - SYNC flags; used to provide FRSYNC semantics. 498 * cr - credentials of caller. 499 * ct - caller context 500 * 501 * OUT: uio - updated offset and range, buffer filled. 502 * 503 * RETURN: 0 on success, error code on failure. 504 * 505 * Side Effects: 506 * vp - atime updated if byte count > 0 507 */ 508 /* ARGSUSED */ 509 static int 510 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 511 { 512 znode_t *zp = VTOZ(vp); 513 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 514 ssize_t n, nbytes; 515 int error = 0; 516 xuio_t *xuio = NULL; 517 518 ZFS_ENTER(zfsvfs); 519 ZFS_VERIFY_ZP(zp); 520 521 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 522 ZFS_EXIT(zfsvfs); 523 return (SET_ERROR(EACCES)); 524 } 525 526 /* 527 * Validate file offset 528 */ 529 if (uio->uio_loffset < (offset_t)0) { 530 ZFS_EXIT(zfsvfs); 531 return (SET_ERROR(EINVAL)); 532 } 533 534 /* 535 * Fasttrack empty reads 536 */ 537 if (uio->uio_resid == 0) { 538 ZFS_EXIT(zfsvfs); 539 return (0); 540 } 541 542 /* 543 * Check for mandatory locks 544 */ 545 if (MANDMODE(zp->z_mode)) { 546 if (error = chklock(vp, FREAD, 547 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 548 ZFS_EXIT(zfsvfs); 549 return (error); 550 } 551 } 552 553 /* 554 * If we're in FRSYNC mode, sync out this znode before reading it. 555 */ 556 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 557 zil_commit(zfsvfs->z_log, zp->z_id); 558 559 /* 560 * Lock the range against changes. 561 */ 562 locked_range_t *lr = rangelock_enter(&zp->z_rangelock, 563 uio->uio_loffset, uio->uio_resid, RL_READER); 564 565 /* 566 * If we are reading past end-of-file we can skip 567 * to the end; but we might still need to set atime. 568 */ 569 if (uio->uio_loffset >= zp->z_size) { 570 error = 0; 571 goto out; 572 } 573 574 ASSERT(uio->uio_loffset < zp->z_size); 575 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 576 577 if ((uio->uio_extflg == UIO_XUIO) && 578 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 579 int nblk; 580 int blksz = zp->z_blksz; 581 uint64_t offset = uio->uio_loffset; 582 583 xuio = (xuio_t *)uio; 584 if ((ISP2(blksz))) { 585 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 586 blksz)) / blksz; 587 } else { 588 ASSERT(offset + n <= blksz); 589 nblk = 1; 590 } 591 (void) dmu_xuio_init(xuio, nblk); 592 593 if (vn_has_cached_data(vp)) { 594 /* 595 * For simplicity, we always allocate a full buffer 596 * even if we only expect to read a portion of a block. 597 */ 598 while (--nblk >= 0) { 599 (void) dmu_xuio_add(xuio, 600 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 601 blksz), 0, blksz); 602 } 603 } 604 } 605 606 while (n > 0) { 607 nbytes = MIN(n, zfs_read_chunk_size - 608 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 609 610 if (vn_has_cached_data(vp)) { 611 error = mappedread(vp, nbytes, uio); 612 } else { 613 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 614 uio, nbytes); 615 } 616 if (error) { 617 /* convert checksum errors into IO errors */ 618 if (error == ECKSUM) 619 error = SET_ERROR(EIO); 620 break; 621 } 622 623 n -= nbytes; 624 } 625 out: 626 rangelock_exit(lr); 627 628 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 629 ZFS_EXIT(zfsvfs); 630 return (error); 631 } 632 633 /* 634 * Write the bytes to a file. 635 * 636 * IN: vp - vnode of file to be written to. 637 * uio - structure supplying write location, range info, 638 * and data buffer. 639 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 640 * set if in append mode. 641 * cr - credentials of caller. 642 * ct - caller context (NFS/CIFS fem monitor only) 643 * 644 * OUT: uio - updated offset and range. 645 * 646 * RETURN: 0 on success, error code on failure. 647 * 648 * Timestamps: 649 * vp - ctime|mtime updated if byte count > 0 650 */ 651 652 /* ARGSUSED */ 653 static int 654 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 655 { 656 znode_t *zp = VTOZ(vp); 657 rlim64_t limit = uio->uio_llimit; 658 ssize_t start_resid = uio->uio_resid; 659 ssize_t tx_bytes; 660 uint64_t end_size; 661 dmu_tx_t *tx; 662 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 663 zilog_t *zilog; 664 offset_t woff; 665 ssize_t n, nbytes; 666 int max_blksz = zfsvfs->z_max_blksz; 667 int error = 0; 668 arc_buf_t *abuf; 669 iovec_t *aiov = NULL; 670 xuio_t *xuio = NULL; 671 int i_iov = 0; 672 int iovcnt = uio->uio_iovcnt; 673 iovec_t *iovp = uio->uio_iov; 674 int write_eof; 675 int count = 0; 676 sa_bulk_attr_t bulk[4]; 677 uint64_t mtime[2], ctime[2]; 678 679 /* 680 * Fasttrack empty write 681 */ 682 n = start_resid; 683 if (n == 0) 684 return (0); 685 686 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 687 limit = MAXOFFSET_T; 688 689 ZFS_ENTER(zfsvfs); 690 ZFS_VERIFY_ZP(zp); 691 692 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 694 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 695 &zp->z_size, 8); 696 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 697 &zp->z_pflags, 8); 698 699 /* 700 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 701 * callers might not be able to detect properly that we are read-only, 702 * so check it explicitly here. 703 */ 704 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 705 ZFS_EXIT(zfsvfs); 706 return (SET_ERROR(EROFS)); 707 } 708 709 /* 710 * If immutable or not appending then return EPERM. 711 * Intentionally allow ZFS_READONLY through here. 712 * See zfs_zaccess_common() 713 */ 714 if ((zp->z_pflags & ZFS_IMMUTABLE) || 715 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 716 (uio->uio_loffset < zp->z_size))) { 717 ZFS_EXIT(zfsvfs); 718 return (SET_ERROR(EPERM)); 719 } 720 721 zilog = zfsvfs->z_log; 722 723 /* 724 * Validate file offset 725 */ 726 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 727 if (woff < 0) { 728 ZFS_EXIT(zfsvfs); 729 return (SET_ERROR(EINVAL)); 730 } 731 732 /* 733 * Check for mandatory locks before calling rangelock_enter() 734 * in order to prevent a deadlock with locks set via fcntl(). 735 */ 736 if (MANDMODE((mode_t)zp->z_mode) && 737 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 738 ZFS_EXIT(zfsvfs); 739 return (error); 740 } 741 742 /* 743 * Pre-fault the pages to ensure slow (eg NFS) pages 744 * don't hold up txg. 745 * Skip this if uio contains loaned arc_buf. 746 */ 747 if ((uio->uio_extflg == UIO_XUIO) && 748 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 749 xuio = (xuio_t *)uio; 750 else 751 uio_prefaultpages(MIN(n, max_blksz), uio); 752 753 /* 754 * If in append mode, set the io offset pointer to eof. 755 */ 756 locked_range_t *lr; 757 if (ioflag & FAPPEND) { 758 /* 759 * Obtain an appending range lock to guarantee file append 760 * semantics. We reset the write offset once we have the lock. 761 */ 762 lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); 763 woff = lr->lr_offset; 764 if (lr->lr_length == UINT64_MAX) { 765 /* 766 * We overlocked the file because this write will cause 767 * the file block size to increase. 768 * Note that zp_size cannot change with this lock held. 769 */ 770 woff = zp->z_size; 771 } 772 uio->uio_loffset = woff; 773 } else { 774 /* 775 * Note that if the file block size will change as a result of 776 * this write, then this range lock will lock the entire file 777 * so that we can re-write the block safely. 778 */ 779 lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); 780 } 781 782 if (woff >= limit) { 783 rangelock_exit(lr); 784 ZFS_EXIT(zfsvfs); 785 return (SET_ERROR(EFBIG)); 786 } 787 788 if ((woff + n) > limit || woff > (limit - n)) 789 n = limit - woff; 790 791 /* Will this write extend the file length? */ 792 write_eof = (woff + n > zp->z_size); 793 794 end_size = MAX(zp->z_size, woff + n); 795 796 /* 797 * Write the file in reasonable size chunks. Each chunk is written 798 * in a separate transaction; this keeps the intent log records small 799 * and allows us to do more fine-grained space accounting. 800 */ 801 while (n > 0) { 802 abuf = NULL; 803 woff = uio->uio_loffset; 804 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 805 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 806 if (abuf != NULL) 807 dmu_return_arcbuf(abuf); 808 error = SET_ERROR(EDQUOT); 809 break; 810 } 811 812 if (xuio && abuf == NULL) { 813 ASSERT(i_iov < iovcnt); 814 aiov = &iovp[i_iov]; 815 abuf = dmu_xuio_arcbuf(xuio, i_iov); 816 dmu_xuio_clear(xuio, i_iov); 817 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 818 iovec_t *, aiov, arc_buf_t *, abuf); 819 ASSERT((aiov->iov_base == abuf->b_data) || 820 ((char *)aiov->iov_base - (char *)abuf->b_data + 821 aiov->iov_len == arc_buf_size(abuf))); 822 i_iov++; 823 } else if (abuf == NULL && n >= max_blksz && 824 woff >= zp->z_size && 825 P2PHASE(woff, max_blksz) == 0 && 826 zp->z_blksz == max_blksz) { 827 /* 828 * This write covers a full block. "Borrow" a buffer 829 * from the dmu so that we can fill it before we enter 830 * a transaction. This avoids the possibility of 831 * holding up the transaction if the data copy hangs 832 * up on a pagefault (e.g., from an NFS server mapping). 833 */ 834 size_t cbytes; 835 836 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 837 max_blksz); 838 ASSERT(abuf != NULL); 839 ASSERT(arc_buf_size(abuf) == max_blksz); 840 if (error = uiocopy(abuf->b_data, max_blksz, 841 UIO_WRITE, uio, &cbytes)) { 842 dmu_return_arcbuf(abuf); 843 break; 844 } 845 ASSERT(cbytes == max_blksz); 846 } 847 848 /* 849 * Start a transaction. 850 */ 851 tx = dmu_tx_create(zfsvfs->z_os); 852 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 853 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 854 zfs_sa_upgrade_txholds(tx, zp); 855 error = dmu_tx_assign(tx, TXG_WAIT); 856 if (error) { 857 dmu_tx_abort(tx); 858 if (abuf != NULL) 859 dmu_return_arcbuf(abuf); 860 break; 861 } 862 863 /* 864 * If rangelock_enter() over-locked we grow the blocksize 865 * and then reduce the lock range. This will only happen 866 * on the first iteration since rangelock_reduce() will 867 * shrink down lr_length to the appropriate size. 868 */ 869 if (lr->lr_length == UINT64_MAX) { 870 uint64_t new_blksz; 871 872 if (zp->z_blksz > max_blksz) { 873 /* 874 * File's blocksize is already larger than the 875 * "recordsize" property. Only let it grow to 876 * the next power of 2. 877 */ 878 ASSERT(!ISP2(zp->z_blksz)); 879 new_blksz = MIN(end_size, 880 1 << highbit64(zp->z_blksz)); 881 } else { 882 new_blksz = MIN(end_size, max_blksz); 883 } 884 zfs_grow_blocksize(zp, new_blksz, tx); 885 rangelock_reduce(lr, woff, n); 886 } 887 888 /* 889 * XXX - should we really limit each write to z_max_blksz? 890 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 891 */ 892 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 893 894 if (abuf == NULL) { 895 tx_bytes = uio->uio_resid; 896 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 897 uio, nbytes, tx); 898 tx_bytes -= uio->uio_resid; 899 } else { 900 tx_bytes = nbytes; 901 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 902 /* 903 * If this is not a full block write, but we are 904 * extending the file past EOF and this data starts 905 * block-aligned, use assign_arcbuf(). Otherwise, 906 * write via dmu_write(). 907 */ 908 if (tx_bytes < max_blksz && (!write_eof || 909 aiov->iov_base != abuf->b_data)) { 910 ASSERT(xuio); 911 dmu_write(zfsvfs->z_os, zp->z_id, woff, 912 aiov->iov_len, aiov->iov_base, tx); 913 dmu_return_arcbuf(abuf); 914 xuio_stat_wbuf_copied(); 915 } else { 916 ASSERT(xuio || tx_bytes == max_blksz); 917 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 918 woff, abuf, tx); 919 } 920 ASSERT(tx_bytes <= uio->uio_resid); 921 uioskip(uio, tx_bytes); 922 } 923 if (tx_bytes && vn_has_cached_data(vp)) { 924 update_pages(vp, woff, 925 tx_bytes, zfsvfs->z_os, zp->z_id); 926 } 927 928 /* 929 * If we made no progress, we're done. If we made even 930 * partial progress, update the znode and ZIL accordingly. 931 */ 932 if (tx_bytes == 0) { 933 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 934 (void *)&zp->z_size, sizeof (uint64_t), tx); 935 dmu_tx_commit(tx); 936 ASSERT(error != 0); 937 break; 938 } 939 940 /* 941 * Clear Set-UID/Set-GID bits on successful write if not 942 * privileged and at least one of the excute bits is set. 943 * 944 * It would be nice to to this after all writes have 945 * been done, but that would still expose the ISUID/ISGID 946 * to another app after the partial write is committed. 947 * 948 * Note: we don't call zfs_fuid_map_id() here because 949 * user 0 is not an ephemeral uid. 950 */ 951 mutex_enter(&zp->z_acl_lock); 952 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 953 (S_IXUSR >> 6))) != 0 && 954 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 955 secpolicy_vnode_setid_retain(cr, 956 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 957 uint64_t newmode; 958 zp->z_mode &= ~(S_ISUID | S_ISGID); 959 newmode = zp->z_mode; 960 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 961 (void *)&newmode, sizeof (uint64_t), tx); 962 } 963 mutex_exit(&zp->z_acl_lock); 964 965 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 966 B_TRUE); 967 968 /* 969 * Update the file size (zp_size) if it has changed; 970 * account for possible concurrent updates. 971 */ 972 while ((end_size = zp->z_size) < uio->uio_loffset) { 973 (void) atomic_cas_64(&zp->z_size, end_size, 974 uio->uio_loffset); 975 ASSERT(error == 0); 976 } 977 /* 978 * If we are replaying and eof is non zero then force 979 * the file size to the specified eof. Note, there's no 980 * concurrency during replay. 981 */ 982 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 983 zp->z_size = zfsvfs->z_replay_eof; 984 985 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 986 987 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 988 dmu_tx_commit(tx); 989 990 if (error != 0) 991 break; 992 ASSERT(tx_bytes == nbytes); 993 n -= nbytes; 994 995 if (!xuio && n > 0) 996 uio_prefaultpages(MIN(n, max_blksz), uio); 997 } 998 999 rangelock_exit(lr); 1000 1001 /* 1002 * If we're in replay mode, or we made no progress, return error. 1003 * Otherwise, it's at least a partial write, so it's successful. 1004 */ 1005 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1006 ZFS_EXIT(zfsvfs); 1007 return (error); 1008 } 1009 1010 if (ioflag & (FSYNC | FDSYNC) || 1011 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1012 zil_commit(zilog, zp->z_id); 1013 1014 ZFS_EXIT(zfsvfs); 1015 return (0); 1016 } 1017 1018 /* ARGSUSED */ 1019 void 1020 zfs_get_done(zgd_t *zgd, int error) 1021 { 1022 znode_t *zp = zgd->zgd_private; 1023 objset_t *os = zp->z_zfsvfs->z_os; 1024 1025 if (zgd->zgd_db) 1026 dmu_buf_rele(zgd->zgd_db, zgd); 1027 1028 rangelock_exit(zgd->zgd_lr); 1029 1030 /* 1031 * Release the vnode asynchronously as we currently have the 1032 * txg stopped from syncing. 1033 */ 1034 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1035 1036 kmem_free(zgd, sizeof (zgd_t)); 1037 } 1038 1039 #ifdef DEBUG 1040 static int zil_fault_io = 0; 1041 #endif 1042 1043 /* 1044 * Get data to generate a TX_WRITE intent log record. 1045 */ 1046 int 1047 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) 1048 { 1049 zfsvfs_t *zfsvfs = arg; 1050 objset_t *os = zfsvfs->z_os; 1051 znode_t *zp; 1052 uint64_t object = lr->lr_foid; 1053 uint64_t offset = lr->lr_offset; 1054 uint64_t size = lr->lr_length; 1055 dmu_buf_t *db; 1056 zgd_t *zgd; 1057 int error = 0; 1058 1059 ASSERT3P(lwb, !=, NULL); 1060 ASSERT3P(zio, !=, NULL); 1061 ASSERT3U(size, !=, 0); 1062 1063 /* 1064 * Nothing to do if the file has been removed 1065 */ 1066 if (zfs_zget(zfsvfs, object, &zp) != 0) 1067 return (SET_ERROR(ENOENT)); 1068 if (zp->z_unlinked) { 1069 /* 1070 * Release the vnode asynchronously as we currently have the 1071 * txg stopped from syncing. 1072 */ 1073 VN_RELE_ASYNC(ZTOV(zp), 1074 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1075 return (SET_ERROR(ENOENT)); 1076 } 1077 1078 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1079 zgd->zgd_lwb = lwb; 1080 zgd->zgd_private = zp; 1081 1082 /* 1083 * Write records come in two flavors: immediate and indirect. 1084 * For small writes it's cheaper to store the data with the 1085 * log record (immediate); for large writes it's cheaper to 1086 * sync the data and get a pointer to it (indirect) so that 1087 * we don't have to write the data twice. 1088 */ 1089 if (buf != NULL) { /* immediate write */ 1090 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock, 1091 offset, size, RL_READER); 1092 /* test for truncation needs to be done while range locked */ 1093 if (offset >= zp->z_size) { 1094 error = SET_ERROR(ENOENT); 1095 } else { 1096 error = dmu_read(os, object, offset, size, buf, 1097 DMU_READ_NO_PREFETCH); 1098 } 1099 ASSERT(error == 0 || error == ENOENT); 1100 } else { /* indirect write */ 1101 /* 1102 * Have to lock the whole block to ensure when it's 1103 * written out and its checksum is being calculated 1104 * that no one can change the data. We need to re-check 1105 * blocksize after we get the lock in case it's changed! 1106 */ 1107 for (;;) { 1108 uint64_t blkoff; 1109 size = zp->z_blksz; 1110 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1111 offset -= blkoff; 1112 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock, 1113 offset, size, RL_READER); 1114 if (zp->z_blksz == size) 1115 break; 1116 offset += blkoff; 1117 rangelock_exit(zgd->zgd_lr); 1118 } 1119 /* test for truncation needs to be done while range locked */ 1120 if (lr->lr_offset >= zp->z_size) 1121 error = SET_ERROR(ENOENT); 1122 #ifdef DEBUG 1123 if (zil_fault_io) { 1124 error = SET_ERROR(EIO); 1125 zil_fault_io = 0; 1126 } 1127 #endif 1128 if (error == 0) 1129 error = dmu_buf_hold(os, object, offset, zgd, &db, 1130 DMU_READ_NO_PREFETCH); 1131 1132 if (error == 0) { 1133 blkptr_t *bp = &lr->lr_blkptr; 1134 1135 zgd->zgd_db = db; 1136 zgd->zgd_bp = bp; 1137 1138 ASSERT(db->db_offset == offset); 1139 ASSERT(db->db_size == size); 1140 1141 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1142 zfs_get_done, zgd); 1143 ASSERT(error || lr->lr_length <= size); 1144 1145 /* 1146 * On success, we need to wait for the write I/O 1147 * initiated by dmu_sync() to complete before we can 1148 * release this dbuf. We will finish everything up 1149 * in the zfs_get_done() callback. 1150 */ 1151 if (error == 0) 1152 return (0); 1153 1154 if (error == EALREADY) { 1155 lr->lr_common.lrc_txtype = TX_WRITE2; 1156 /* 1157 * TX_WRITE2 relies on the data previously 1158 * written by the TX_WRITE that caused 1159 * EALREADY. We zero out the BP because 1160 * it is the old, currently-on-disk BP. 1161 */ 1162 zgd->zgd_bp = NULL; 1163 BP_ZERO(bp); 1164 error = 0; 1165 } 1166 } 1167 } 1168 1169 zfs_get_done(zgd, error); 1170 1171 return (error); 1172 } 1173 1174 /*ARGSUSED*/ 1175 static int 1176 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1177 caller_context_t *ct) 1178 { 1179 znode_t *zp = VTOZ(vp); 1180 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1181 int error; 1182 1183 ZFS_ENTER(zfsvfs); 1184 ZFS_VERIFY_ZP(zp); 1185 1186 if (flag & V_ACE_MASK) 1187 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1188 else 1189 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1190 1191 ZFS_EXIT(zfsvfs); 1192 return (error); 1193 } 1194 1195 /* 1196 * If vnode is for a device return a specfs vnode instead. 1197 */ 1198 static int 1199 specvp_check(vnode_t **vpp, cred_t *cr) 1200 { 1201 int error = 0; 1202 1203 if (IS_DEVVP(*vpp)) { 1204 struct vnode *svp; 1205 1206 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1207 VN_RELE(*vpp); 1208 if (svp == NULL) 1209 error = SET_ERROR(ENOSYS); 1210 *vpp = svp; 1211 } 1212 return (error); 1213 } 1214 1215 1216 /* 1217 * Lookup an entry in a directory, or an extended attribute directory. 1218 * If it exists, return a held vnode reference for it. 1219 * 1220 * IN: dvp - vnode of directory to search. 1221 * nm - name of entry to lookup. 1222 * pnp - full pathname to lookup [UNUSED]. 1223 * flags - LOOKUP_XATTR set if looking for an attribute. 1224 * rdir - root directory vnode [UNUSED]. 1225 * cr - credentials of caller. 1226 * ct - caller context 1227 * direntflags - directory lookup flags 1228 * realpnp - returned pathname. 1229 * 1230 * OUT: vpp - vnode of located entry, NULL if not found. 1231 * 1232 * RETURN: 0 on success, error code on failure. 1233 * 1234 * Timestamps: 1235 * NA 1236 */ 1237 /* ARGSUSED */ 1238 static int 1239 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1240 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1241 int *direntflags, pathname_t *realpnp) 1242 { 1243 znode_t *zdp = VTOZ(dvp); 1244 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1245 int error = 0; 1246 1247 /* 1248 * Fast path lookup, however we must skip DNLC lookup 1249 * for case folding or normalizing lookups because the 1250 * DNLC code only stores the passed in name. This means 1251 * creating 'a' and removing 'A' on a case insensitive 1252 * file system would work, but DNLC still thinks 'a' 1253 * exists and won't let you create it again on the next 1254 * pass through fast path. 1255 */ 1256 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1257 1258 if (dvp->v_type != VDIR) { 1259 return (SET_ERROR(ENOTDIR)); 1260 } else if (zdp->z_sa_hdl == NULL) { 1261 return (SET_ERROR(EIO)); 1262 } 1263 1264 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1265 error = zfs_fastaccesschk_execute(zdp, cr); 1266 if (!error) { 1267 *vpp = dvp; 1268 VN_HOLD(*vpp); 1269 return (0); 1270 } 1271 return (error); 1272 } else if (!zdp->z_zfsvfs->z_norm && 1273 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) { 1274 1275 vnode_t *tvp = dnlc_lookup(dvp, nm); 1276 1277 if (tvp) { 1278 error = zfs_fastaccesschk_execute(zdp, cr); 1279 if (error) { 1280 VN_RELE(tvp); 1281 return (error); 1282 } 1283 if (tvp == DNLC_NO_VNODE) { 1284 VN_RELE(tvp); 1285 return (SET_ERROR(ENOENT)); 1286 } else { 1287 *vpp = tvp; 1288 return (specvp_check(vpp, cr)); 1289 } 1290 } 1291 } 1292 } 1293 1294 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1295 1296 ZFS_ENTER(zfsvfs); 1297 ZFS_VERIFY_ZP(zdp); 1298 1299 *vpp = NULL; 1300 1301 if (flags & LOOKUP_XATTR) { 1302 /* 1303 * If the xattr property is off, refuse the lookup request. 1304 */ 1305 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1306 ZFS_EXIT(zfsvfs); 1307 return (SET_ERROR(EINVAL)); 1308 } 1309 1310 /* 1311 * We don't allow recursive attributes.. 1312 * Maybe someday we will. 1313 */ 1314 if (zdp->z_pflags & ZFS_XATTR) { 1315 ZFS_EXIT(zfsvfs); 1316 return (SET_ERROR(EINVAL)); 1317 } 1318 1319 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1320 ZFS_EXIT(zfsvfs); 1321 return (error); 1322 } 1323 1324 /* 1325 * Do we have permission to get into attribute directory? 1326 */ 1327 1328 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1329 B_FALSE, cr)) { 1330 VN_RELE(*vpp); 1331 *vpp = NULL; 1332 } 1333 1334 ZFS_EXIT(zfsvfs); 1335 return (error); 1336 } 1337 1338 if (dvp->v_type != VDIR) { 1339 ZFS_EXIT(zfsvfs); 1340 return (SET_ERROR(ENOTDIR)); 1341 } 1342 1343 /* 1344 * Check accessibility of directory. 1345 */ 1346 1347 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1348 ZFS_EXIT(zfsvfs); 1349 return (error); 1350 } 1351 1352 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1353 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1354 ZFS_EXIT(zfsvfs); 1355 return (SET_ERROR(EILSEQ)); 1356 } 1357 1358 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1359 if (error == 0) 1360 error = specvp_check(vpp, cr); 1361 1362 ZFS_EXIT(zfsvfs); 1363 return (error); 1364 } 1365 1366 /* 1367 * Attempt to create a new entry in a directory. If the entry 1368 * already exists, truncate the file if permissible, else return 1369 * an error. Return the vp of the created or trunc'd file. 1370 * 1371 * IN: dvp - vnode of directory to put new file entry in. 1372 * name - name of new file entry. 1373 * vap - attributes of new file. 1374 * excl - flag indicating exclusive or non-exclusive mode. 1375 * mode - mode to open file with. 1376 * cr - credentials of caller. 1377 * flag - large file flag [UNUSED]. 1378 * ct - caller context 1379 * vsecp - ACL to be set 1380 * 1381 * OUT: vpp - vnode of created or trunc'd entry. 1382 * 1383 * RETURN: 0 on success, error code on failure. 1384 * 1385 * Timestamps: 1386 * dvp - ctime|mtime updated if new entry created 1387 * vp - ctime|mtime always, atime if new 1388 */ 1389 1390 /* ARGSUSED */ 1391 static int 1392 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1393 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1394 vsecattr_t *vsecp) 1395 { 1396 znode_t *zp, *dzp = VTOZ(dvp); 1397 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1398 zilog_t *zilog; 1399 objset_t *os; 1400 zfs_dirlock_t *dl; 1401 dmu_tx_t *tx; 1402 int error; 1403 ksid_t *ksid; 1404 uid_t uid; 1405 gid_t gid = crgetgid(cr); 1406 zfs_acl_ids_t acl_ids; 1407 boolean_t fuid_dirtied; 1408 boolean_t have_acl = B_FALSE; 1409 boolean_t waited = B_FALSE; 1410 1411 /* 1412 * If we have an ephemeral id, ACL, or XVATTR then 1413 * make sure file system is at proper version 1414 */ 1415 1416 ksid = crgetsid(cr, KSID_OWNER); 1417 if (ksid) 1418 uid = ksid_getid(ksid); 1419 else 1420 uid = crgetuid(cr); 1421 1422 if (zfsvfs->z_use_fuids == B_FALSE && 1423 (vsecp || (vap->va_mask & AT_XVATTR) || 1424 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1425 return (SET_ERROR(EINVAL)); 1426 1427 ZFS_ENTER(zfsvfs); 1428 ZFS_VERIFY_ZP(dzp); 1429 os = zfsvfs->z_os; 1430 zilog = zfsvfs->z_log; 1431 1432 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1433 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1434 ZFS_EXIT(zfsvfs); 1435 return (SET_ERROR(EILSEQ)); 1436 } 1437 1438 if (vap->va_mask & AT_XVATTR) { 1439 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1440 crgetuid(cr), cr, vap->va_type)) != 0) { 1441 ZFS_EXIT(zfsvfs); 1442 return (error); 1443 } 1444 } 1445 top: 1446 *vpp = NULL; 1447 1448 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1449 vap->va_mode &= ~VSVTX; 1450 1451 if (*name == '\0') { 1452 /* 1453 * Null component name refers to the directory itself. 1454 */ 1455 VN_HOLD(dvp); 1456 zp = dzp; 1457 dl = NULL; 1458 error = 0; 1459 } else { 1460 /* possible VN_HOLD(zp) */ 1461 int zflg = 0; 1462 1463 if (flag & FIGNORECASE) 1464 zflg |= ZCILOOK; 1465 1466 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1467 NULL, NULL); 1468 if (error) { 1469 if (have_acl) 1470 zfs_acl_ids_free(&acl_ids); 1471 if (strcmp(name, "..") == 0) 1472 error = SET_ERROR(EISDIR); 1473 ZFS_EXIT(zfsvfs); 1474 return (error); 1475 } 1476 } 1477 1478 if (zp == NULL) { 1479 uint64_t txtype; 1480 1481 /* 1482 * Create a new file object and update the directory 1483 * to reference it. 1484 */ 1485 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1486 if (have_acl) 1487 zfs_acl_ids_free(&acl_ids); 1488 goto out; 1489 } 1490 1491 /* 1492 * We only support the creation of regular files in 1493 * extended attribute directories. 1494 */ 1495 1496 if ((dzp->z_pflags & ZFS_XATTR) && 1497 (vap->va_type != VREG)) { 1498 if (have_acl) 1499 zfs_acl_ids_free(&acl_ids); 1500 error = SET_ERROR(EINVAL); 1501 goto out; 1502 } 1503 1504 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1505 cr, vsecp, &acl_ids)) != 0) 1506 goto out; 1507 have_acl = B_TRUE; 1508 1509 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1510 zfs_acl_ids_free(&acl_ids); 1511 error = SET_ERROR(EDQUOT); 1512 goto out; 1513 } 1514 1515 tx = dmu_tx_create(os); 1516 1517 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1518 ZFS_SA_BASE_ATTR_SIZE); 1519 1520 fuid_dirtied = zfsvfs->z_fuid_dirty; 1521 if (fuid_dirtied) 1522 zfs_fuid_txhold(zfsvfs, tx); 1523 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1524 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1525 if (!zfsvfs->z_use_sa && 1526 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1527 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1528 0, acl_ids.z_aclp->z_acl_bytes); 1529 } 1530 error = dmu_tx_assign(tx, 1531 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1532 if (error) { 1533 zfs_dirent_unlock(dl); 1534 if (error == ERESTART) { 1535 waited = B_TRUE; 1536 dmu_tx_wait(tx); 1537 dmu_tx_abort(tx); 1538 goto top; 1539 } 1540 zfs_acl_ids_free(&acl_ids); 1541 dmu_tx_abort(tx); 1542 ZFS_EXIT(zfsvfs); 1543 return (error); 1544 } 1545 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1546 1547 if (fuid_dirtied) 1548 zfs_fuid_sync(zfsvfs, tx); 1549 1550 (void) zfs_link_create(dl, zp, tx, ZNEW); 1551 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1552 if (flag & FIGNORECASE) 1553 txtype |= TX_CI; 1554 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1555 vsecp, acl_ids.z_fuidp, vap); 1556 zfs_acl_ids_free(&acl_ids); 1557 dmu_tx_commit(tx); 1558 } else { 1559 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1560 1561 if (have_acl) 1562 zfs_acl_ids_free(&acl_ids); 1563 have_acl = B_FALSE; 1564 1565 /* 1566 * A directory entry already exists for this name. 1567 */ 1568 /* 1569 * Can't truncate an existing file if in exclusive mode. 1570 */ 1571 if (excl == EXCL) { 1572 error = SET_ERROR(EEXIST); 1573 goto out; 1574 } 1575 /* 1576 * Can't open a directory for writing. 1577 */ 1578 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1579 error = SET_ERROR(EISDIR); 1580 goto out; 1581 } 1582 /* 1583 * Verify requested access to file. 1584 */ 1585 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1586 goto out; 1587 } 1588 1589 mutex_enter(&dzp->z_lock); 1590 dzp->z_seq++; 1591 mutex_exit(&dzp->z_lock); 1592 1593 /* 1594 * Truncate regular files if requested. 1595 */ 1596 if ((ZTOV(zp)->v_type == VREG) && 1597 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1598 /* we can't hold any locks when calling zfs_freesp() */ 1599 zfs_dirent_unlock(dl); 1600 dl = NULL; 1601 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1602 if (error == 0) { 1603 vnevent_create(ZTOV(zp), ct); 1604 } 1605 } 1606 } 1607 out: 1608 1609 if (dl) 1610 zfs_dirent_unlock(dl); 1611 1612 if (error) { 1613 if (zp) 1614 VN_RELE(ZTOV(zp)); 1615 } else { 1616 *vpp = ZTOV(zp); 1617 error = specvp_check(vpp, cr); 1618 } 1619 1620 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1621 zil_commit(zilog, 0); 1622 1623 ZFS_EXIT(zfsvfs); 1624 return (error); 1625 } 1626 1627 /* 1628 * Remove an entry from a directory. 1629 * 1630 * IN: dvp - vnode of directory to remove entry from. 1631 * name - name of entry to remove. 1632 * cr - credentials of caller. 1633 * ct - caller context 1634 * flags - case flags 1635 * 1636 * RETURN: 0 on success, error code on failure. 1637 * 1638 * Timestamps: 1639 * dvp - ctime|mtime 1640 * vp - ctime (if nlink > 0) 1641 */ 1642 1643 uint64_t null_xattr = 0; 1644 1645 /*ARGSUSED*/ 1646 static int 1647 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1648 int flags) 1649 { 1650 znode_t *zp, *dzp = VTOZ(dvp); 1651 znode_t *xzp; 1652 vnode_t *vp; 1653 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1654 zilog_t *zilog; 1655 uint64_t acl_obj, xattr_obj; 1656 uint64_t xattr_obj_unlinked = 0; 1657 uint64_t obj = 0; 1658 zfs_dirlock_t *dl; 1659 dmu_tx_t *tx; 1660 boolean_t may_delete_now, delete_now = FALSE; 1661 boolean_t unlinked, toobig = FALSE; 1662 uint64_t txtype; 1663 pathname_t *realnmp = NULL; 1664 pathname_t realnm; 1665 int error; 1666 int zflg = ZEXISTS; 1667 boolean_t waited = B_FALSE; 1668 1669 ZFS_ENTER(zfsvfs); 1670 ZFS_VERIFY_ZP(dzp); 1671 zilog = zfsvfs->z_log; 1672 1673 if (flags & FIGNORECASE) { 1674 zflg |= ZCILOOK; 1675 pn_alloc(&realnm); 1676 realnmp = &realnm; 1677 } 1678 1679 top: 1680 xattr_obj = 0; 1681 xzp = NULL; 1682 /* 1683 * Attempt to lock directory; fail if entry doesn't exist. 1684 */ 1685 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1686 NULL, realnmp)) { 1687 if (realnmp) 1688 pn_free(realnmp); 1689 ZFS_EXIT(zfsvfs); 1690 return (error); 1691 } 1692 1693 vp = ZTOV(zp); 1694 1695 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1696 goto out; 1697 } 1698 1699 /* 1700 * Need to use rmdir for removing directories. 1701 */ 1702 if (vp->v_type == VDIR) { 1703 error = SET_ERROR(EPERM); 1704 goto out; 1705 } 1706 1707 vnevent_remove(vp, dvp, name, ct); 1708 1709 if (realnmp) 1710 dnlc_remove(dvp, realnmp->pn_buf); 1711 else 1712 dnlc_remove(dvp, name); 1713 1714 mutex_enter(&vp->v_lock); 1715 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1716 mutex_exit(&vp->v_lock); 1717 1718 /* 1719 * We may delete the znode now, or we may put it in the unlinked set; 1720 * it depends on whether we're the last link, and on whether there are 1721 * other holds on the vnode. So we dmu_tx_hold() the right things to 1722 * allow for either case. 1723 */ 1724 obj = zp->z_id; 1725 tx = dmu_tx_create(zfsvfs->z_os); 1726 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1727 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1728 zfs_sa_upgrade_txholds(tx, zp); 1729 zfs_sa_upgrade_txholds(tx, dzp); 1730 if (may_delete_now) { 1731 toobig = 1732 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1733 /* if the file is too big, only hold_free a token amount */ 1734 dmu_tx_hold_free(tx, zp->z_id, 0, 1735 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1736 } 1737 1738 /* are there any extended attributes? */ 1739 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1740 &xattr_obj, sizeof (xattr_obj)); 1741 if (error == 0 && xattr_obj) { 1742 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1743 ASSERT0(error); 1744 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1745 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1746 } 1747 1748 mutex_enter(&zp->z_lock); 1749 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1750 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1751 mutex_exit(&zp->z_lock); 1752 1753 /* charge as an update -- would be nice not to charge at all */ 1754 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1755 1756 /* 1757 * Mark this transaction as typically resulting in a net free of space 1758 */ 1759 dmu_tx_mark_netfree(tx); 1760 1761 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1762 if (error) { 1763 zfs_dirent_unlock(dl); 1764 VN_RELE(vp); 1765 if (xzp) 1766 VN_RELE(ZTOV(xzp)); 1767 if (error == ERESTART) { 1768 waited = B_TRUE; 1769 dmu_tx_wait(tx); 1770 dmu_tx_abort(tx); 1771 goto top; 1772 } 1773 if (realnmp) 1774 pn_free(realnmp); 1775 dmu_tx_abort(tx); 1776 ZFS_EXIT(zfsvfs); 1777 return (error); 1778 } 1779 1780 /* 1781 * Remove the directory entry. 1782 */ 1783 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1784 1785 if (error) { 1786 dmu_tx_commit(tx); 1787 goto out; 1788 } 1789 1790 if (unlinked) { 1791 /* 1792 * Hold z_lock so that we can make sure that the ACL obj 1793 * hasn't changed. Could have been deleted due to 1794 * zfs_sa_upgrade(). 1795 */ 1796 mutex_enter(&zp->z_lock); 1797 mutex_enter(&vp->v_lock); 1798 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1799 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1800 delete_now = may_delete_now && !toobig && 1801 vp->v_count == 1 && !vn_has_cached_data(vp) && 1802 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1803 acl_obj; 1804 mutex_exit(&vp->v_lock); 1805 } 1806 1807 if (delete_now) { 1808 if (xattr_obj_unlinked) { 1809 ASSERT3U(xzp->z_links, ==, 2); 1810 mutex_enter(&xzp->z_lock); 1811 xzp->z_unlinked = 1; 1812 xzp->z_links = 0; 1813 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1814 &xzp->z_links, sizeof (xzp->z_links), tx); 1815 ASSERT3U(error, ==, 0); 1816 mutex_exit(&xzp->z_lock); 1817 zfs_unlinked_add(xzp, tx); 1818 1819 if (zp->z_is_sa) 1820 error = sa_remove(zp->z_sa_hdl, 1821 SA_ZPL_XATTR(zfsvfs), tx); 1822 else 1823 error = sa_update(zp->z_sa_hdl, 1824 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1825 sizeof (uint64_t), tx); 1826 ASSERT0(error); 1827 } 1828 mutex_enter(&vp->v_lock); 1829 VN_RELE_LOCKED(vp); 1830 ASSERT0(vp->v_count); 1831 mutex_exit(&vp->v_lock); 1832 mutex_exit(&zp->z_lock); 1833 zfs_znode_delete(zp, tx); 1834 } else if (unlinked) { 1835 mutex_exit(&zp->z_lock); 1836 zfs_unlinked_add(zp, tx); 1837 } 1838 1839 txtype = TX_REMOVE; 1840 if (flags & FIGNORECASE) 1841 txtype |= TX_CI; 1842 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1843 1844 dmu_tx_commit(tx); 1845 out: 1846 if (realnmp) 1847 pn_free(realnmp); 1848 1849 zfs_dirent_unlock(dl); 1850 1851 if (!delete_now) 1852 VN_RELE(vp); 1853 if (xzp) 1854 VN_RELE(ZTOV(xzp)); 1855 1856 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1857 zil_commit(zilog, 0); 1858 1859 ZFS_EXIT(zfsvfs); 1860 return (error); 1861 } 1862 1863 /* 1864 * Create a new directory and insert it into dvp using the name 1865 * provided. Return a pointer to the inserted directory. 1866 * 1867 * IN: dvp - vnode of directory to add subdir to. 1868 * dirname - name of new directory. 1869 * vap - attributes of new directory. 1870 * cr - credentials of caller. 1871 * ct - caller context 1872 * flags - case flags 1873 * vsecp - ACL to be set 1874 * 1875 * OUT: vpp - vnode of created directory. 1876 * 1877 * RETURN: 0 on success, error code on failure. 1878 * 1879 * Timestamps: 1880 * dvp - ctime|mtime updated 1881 * vp - ctime|mtime|atime updated 1882 */ 1883 /*ARGSUSED*/ 1884 static int 1885 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1886 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1887 { 1888 znode_t *zp, *dzp = VTOZ(dvp); 1889 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1890 zilog_t *zilog; 1891 zfs_dirlock_t *dl; 1892 uint64_t txtype; 1893 dmu_tx_t *tx; 1894 int error; 1895 int zf = ZNEW; 1896 ksid_t *ksid; 1897 uid_t uid; 1898 gid_t gid = crgetgid(cr); 1899 zfs_acl_ids_t acl_ids; 1900 boolean_t fuid_dirtied; 1901 boolean_t waited = B_FALSE; 1902 1903 ASSERT(vap->va_type == VDIR); 1904 1905 /* 1906 * If we have an ephemeral id, ACL, or XVATTR then 1907 * make sure file system is at proper version 1908 */ 1909 1910 ksid = crgetsid(cr, KSID_OWNER); 1911 if (ksid) 1912 uid = ksid_getid(ksid); 1913 else 1914 uid = crgetuid(cr); 1915 if (zfsvfs->z_use_fuids == B_FALSE && 1916 (vsecp || (vap->va_mask & AT_XVATTR) || 1917 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1918 return (SET_ERROR(EINVAL)); 1919 1920 ZFS_ENTER(zfsvfs); 1921 ZFS_VERIFY_ZP(dzp); 1922 zilog = zfsvfs->z_log; 1923 1924 if (dzp->z_pflags & ZFS_XATTR) { 1925 ZFS_EXIT(zfsvfs); 1926 return (SET_ERROR(EINVAL)); 1927 } 1928 1929 if (zfsvfs->z_utf8 && u8_validate(dirname, 1930 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1931 ZFS_EXIT(zfsvfs); 1932 return (SET_ERROR(EILSEQ)); 1933 } 1934 if (flags & FIGNORECASE) 1935 zf |= ZCILOOK; 1936 1937 if (vap->va_mask & AT_XVATTR) { 1938 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1939 crgetuid(cr), cr, vap->va_type)) != 0) { 1940 ZFS_EXIT(zfsvfs); 1941 return (error); 1942 } 1943 } 1944 1945 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1946 vsecp, &acl_ids)) != 0) { 1947 ZFS_EXIT(zfsvfs); 1948 return (error); 1949 } 1950 /* 1951 * First make sure the new directory doesn't exist. 1952 * 1953 * Existence is checked first to make sure we don't return 1954 * EACCES instead of EEXIST which can cause some applications 1955 * to fail. 1956 */ 1957 top: 1958 *vpp = NULL; 1959 1960 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1961 NULL, NULL)) { 1962 zfs_acl_ids_free(&acl_ids); 1963 ZFS_EXIT(zfsvfs); 1964 return (error); 1965 } 1966 1967 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1968 zfs_acl_ids_free(&acl_ids); 1969 zfs_dirent_unlock(dl); 1970 ZFS_EXIT(zfsvfs); 1971 return (error); 1972 } 1973 1974 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1975 zfs_acl_ids_free(&acl_ids); 1976 zfs_dirent_unlock(dl); 1977 ZFS_EXIT(zfsvfs); 1978 return (SET_ERROR(EDQUOT)); 1979 } 1980 1981 /* 1982 * Add a new entry to the directory. 1983 */ 1984 tx = dmu_tx_create(zfsvfs->z_os); 1985 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1986 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1987 fuid_dirtied = zfsvfs->z_fuid_dirty; 1988 if (fuid_dirtied) 1989 zfs_fuid_txhold(zfsvfs, tx); 1990 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1991 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1992 acl_ids.z_aclp->z_acl_bytes); 1993 } 1994 1995 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1996 ZFS_SA_BASE_ATTR_SIZE); 1997 1998 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1999 if (error) { 2000 zfs_dirent_unlock(dl); 2001 if (error == ERESTART) { 2002 waited = B_TRUE; 2003 dmu_tx_wait(tx); 2004 dmu_tx_abort(tx); 2005 goto top; 2006 } 2007 zfs_acl_ids_free(&acl_ids); 2008 dmu_tx_abort(tx); 2009 ZFS_EXIT(zfsvfs); 2010 return (error); 2011 } 2012 2013 /* 2014 * Create new node. 2015 */ 2016 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 2017 2018 if (fuid_dirtied) 2019 zfs_fuid_sync(zfsvfs, tx); 2020 2021 /* 2022 * Now put new name in parent dir. 2023 */ 2024 (void) zfs_link_create(dl, zp, tx, ZNEW); 2025 2026 *vpp = ZTOV(zp); 2027 2028 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2029 if (flags & FIGNORECASE) 2030 txtype |= TX_CI; 2031 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2032 acl_ids.z_fuidp, vap); 2033 2034 zfs_acl_ids_free(&acl_ids); 2035 2036 dmu_tx_commit(tx); 2037 2038 zfs_dirent_unlock(dl); 2039 2040 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2041 zil_commit(zilog, 0); 2042 2043 ZFS_EXIT(zfsvfs); 2044 return (0); 2045 } 2046 2047 /* 2048 * Remove a directory subdir entry. If the current working 2049 * directory is the same as the subdir to be removed, the 2050 * remove will fail. 2051 * 2052 * IN: dvp - vnode of directory to remove from. 2053 * name - name of directory to be removed. 2054 * cwd - vnode of current working directory. 2055 * cr - credentials of caller. 2056 * ct - caller context 2057 * flags - case flags 2058 * 2059 * RETURN: 0 on success, error code on failure. 2060 * 2061 * Timestamps: 2062 * dvp - ctime|mtime updated 2063 */ 2064 /*ARGSUSED*/ 2065 static int 2066 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2067 caller_context_t *ct, int flags) 2068 { 2069 znode_t *dzp = VTOZ(dvp); 2070 znode_t *zp; 2071 vnode_t *vp; 2072 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2073 zilog_t *zilog; 2074 zfs_dirlock_t *dl; 2075 dmu_tx_t *tx; 2076 int error; 2077 int zflg = ZEXISTS; 2078 boolean_t waited = B_FALSE; 2079 2080 ZFS_ENTER(zfsvfs); 2081 ZFS_VERIFY_ZP(dzp); 2082 zilog = zfsvfs->z_log; 2083 2084 if (flags & FIGNORECASE) 2085 zflg |= ZCILOOK; 2086 top: 2087 zp = NULL; 2088 2089 /* 2090 * Attempt to lock directory; fail if entry doesn't exist. 2091 */ 2092 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2093 NULL, NULL)) { 2094 ZFS_EXIT(zfsvfs); 2095 return (error); 2096 } 2097 2098 vp = ZTOV(zp); 2099 2100 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2101 goto out; 2102 } 2103 2104 if (vp->v_type != VDIR) { 2105 error = SET_ERROR(ENOTDIR); 2106 goto out; 2107 } 2108 2109 if (vp == cwd) { 2110 error = SET_ERROR(EINVAL); 2111 goto out; 2112 } 2113 2114 vnevent_rmdir(vp, dvp, name, ct); 2115 2116 /* 2117 * Grab a lock on the directory to make sure that noone is 2118 * trying to add (or lookup) entries while we are removing it. 2119 */ 2120 rw_enter(&zp->z_name_lock, RW_WRITER); 2121 2122 /* 2123 * Grab a lock on the parent pointer to make sure we play well 2124 * with the treewalk and directory rename code. 2125 */ 2126 rw_enter(&zp->z_parent_lock, RW_WRITER); 2127 2128 tx = dmu_tx_create(zfsvfs->z_os); 2129 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2130 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2131 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2132 zfs_sa_upgrade_txholds(tx, zp); 2133 zfs_sa_upgrade_txholds(tx, dzp); 2134 dmu_tx_mark_netfree(tx); 2135 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2136 if (error) { 2137 rw_exit(&zp->z_parent_lock); 2138 rw_exit(&zp->z_name_lock); 2139 zfs_dirent_unlock(dl); 2140 VN_RELE(vp); 2141 if (error == ERESTART) { 2142 waited = B_TRUE; 2143 dmu_tx_wait(tx); 2144 dmu_tx_abort(tx); 2145 goto top; 2146 } 2147 dmu_tx_abort(tx); 2148 ZFS_EXIT(zfsvfs); 2149 return (error); 2150 } 2151 2152 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2153 2154 if (error == 0) { 2155 uint64_t txtype = TX_RMDIR; 2156 if (flags & FIGNORECASE) 2157 txtype |= TX_CI; 2158 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2159 } 2160 2161 dmu_tx_commit(tx); 2162 2163 rw_exit(&zp->z_parent_lock); 2164 rw_exit(&zp->z_name_lock); 2165 out: 2166 zfs_dirent_unlock(dl); 2167 2168 VN_RELE(vp); 2169 2170 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2171 zil_commit(zilog, 0); 2172 2173 ZFS_EXIT(zfsvfs); 2174 return (error); 2175 } 2176 2177 /* 2178 * Read as many directory entries as will fit into the provided 2179 * buffer from the given directory cursor position (specified in 2180 * the uio structure). 2181 * 2182 * IN: vp - vnode of directory to read. 2183 * uio - structure supplying read location, range info, 2184 * and return buffer. 2185 * cr - credentials of caller. 2186 * ct - caller context 2187 * flags - case flags 2188 * 2189 * OUT: uio - updated offset and range, buffer filled. 2190 * eofp - set to true if end-of-file detected. 2191 * 2192 * RETURN: 0 on success, error code on failure. 2193 * 2194 * Timestamps: 2195 * vp - atime updated 2196 * 2197 * Note that the low 4 bits of the cookie returned by zap is always zero. 2198 * This allows us to use the low range for "special" directory entries: 2199 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2200 * we use the offset 2 for the '.zfs' directory. 2201 */ 2202 /* ARGSUSED */ 2203 static int 2204 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2205 caller_context_t *ct, int flags) 2206 { 2207 znode_t *zp = VTOZ(vp); 2208 iovec_t *iovp; 2209 edirent_t *eodp; 2210 dirent64_t *odp; 2211 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2212 objset_t *os; 2213 caddr_t outbuf; 2214 size_t bufsize; 2215 zap_cursor_t zc; 2216 zap_attribute_t zap; 2217 uint_t bytes_wanted; 2218 uint64_t offset; /* must be unsigned; checks for < 1 */ 2219 uint64_t parent; 2220 int local_eof; 2221 int outcount; 2222 int error; 2223 uint8_t prefetch; 2224 boolean_t check_sysattrs; 2225 2226 ZFS_ENTER(zfsvfs); 2227 ZFS_VERIFY_ZP(zp); 2228 2229 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2230 &parent, sizeof (parent))) != 0) { 2231 ZFS_EXIT(zfsvfs); 2232 return (error); 2233 } 2234 2235 /* 2236 * If we are not given an eof variable, 2237 * use a local one. 2238 */ 2239 if (eofp == NULL) 2240 eofp = &local_eof; 2241 2242 /* 2243 * Check for valid iov_len. 2244 */ 2245 if (uio->uio_iov->iov_len <= 0) { 2246 ZFS_EXIT(zfsvfs); 2247 return (SET_ERROR(EINVAL)); 2248 } 2249 2250 /* 2251 * Quit if directory has been removed (posix) 2252 */ 2253 if ((*eofp = zp->z_unlinked) != 0) { 2254 ZFS_EXIT(zfsvfs); 2255 return (0); 2256 } 2257 2258 error = 0; 2259 os = zfsvfs->z_os; 2260 offset = uio->uio_loffset; 2261 prefetch = zp->z_zn_prefetch; 2262 2263 /* 2264 * Initialize the iterator cursor. 2265 */ 2266 if (offset <= 3) { 2267 /* 2268 * Start iteration from the beginning of the directory. 2269 */ 2270 zap_cursor_init(&zc, os, zp->z_id); 2271 } else { 2272 /* 2273 * The offset is a serialized cursor. 2274 */ 2275 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2276 } 2277 2278 /* 2279 * Get space to change directory entries into fs independent format. 2280 */ 2281 iovp = uio->uio_iov; 2282 bytes_wanted = iovp->iov_len; 2283 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2284 bufsize = bytes_wanted; 2285 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2286 odp = (struct dirent64 *)outbuf; 2287 } else { 2288 bufsize = bytes_wanted; 2289 outbuf = NULL; 2290 odp = (struct dirent64 *)iovp->iov_base; 2291 } 2292 eodp = (struct edirent *)odp; 2293 2294 /* 2295 * If this VFS supports the system attribute view interface; and 2296 * we're looking at an extended attribute directory; and we care 2297 * about normalization conflicts on this vfs; then we must check 2298 * for normalization conflicts with the sysattr name space. 2299 */ 2300 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2301 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2302 (flags & V_RDDIR_ENTFLAGS); 2303 2304 /* 2305 * Transform to file-system independent format 2306 */ 2307 outcount = 0; 2308 while (outcount < bytes_wanted) { 2309 ino64_t objnum; 2310 ushort_t reclen; 2311 off64_t *next = NULL; 2312 2313 /* 2314 * Special case `.', `..', and `.zfs'. 2315 */ 2316 if (offset == 0) { 2317 (void) strcpy(zap.za_name, "."); 2318 zap.za_normalization_conflict = 0; 2319 objnum = zp->z_id; 2320 } else if (offset == 1) { 2321 (void) strcpy(zap.za_name, ".."); 2322 zap.za_normalization_conflict = 0; 2323 objnum = parent; 2324 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2325 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2326 zap.za_normalization_conflict = 0; 2327 objnum = ZFSCTL_INO_ROOT; 2328 } else { 2329 /* 2330 * Grab next entry. 2331 */ 2332 if (error = zap_cursor_retrieve(&zc, &zap)) { 2333 if ((*eofp = (error == ENOENT)) != 0) 2334 break; 2335 else 2336 goto update; 2337 } 2338 2339 if (zap.za_integer_length != 8 || 2340 zap.za_num_integers != 1) { 2341 cmn_err(CE_WARN, "zap_readdir: bad directory " 2342 "entry, obj = %lld, offset = %lld\n", 2343 (u_longlong_t)zp->z_id, 2344 (u_longlong_t)offset); 2345 error = SET_ERROR(ENXIO); 2346 goto update; 2347 } 2348 2349 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2350 /* 2351 * MacOS X can extract the object type here such as: 2352 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2353 */ 2354 2355 if (check_sysattrs && !zap.za_normalization_conflict) { 2356 zap.za_normalization_conflict = 2357 xattr_sysattr_casechk(zap.za_name); 2358 } 2359 } 2360 2361 if (flags & V_RDDIR_ACCFILTER) { 2362 /* 2363 * If we have no access at all, don't include 2364 * this entry in the returned information 2365 */ 2366 znode_t *ezp; 2367 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2368 goto skip_entry; 2369 if (!zfs_has_access(ezp, cr)) { 2370 VN_RELE(ZTOV(ezp)); 2371 goto skip_entry; 2372 } 2373 VN_RELE(ZTOV(ezp)); 2374 } 2375 2376 if (flags & V_RDDIR_ENTFLAGS) 2377 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2378 else 2379 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2380 2381 /* 2382 * Will this entry fit in the buffer? 2383 */ 2384 if (outcount + reclen > bufsize) { 2385 /* 2386 * Did we manage to fit anything in the buffer? 2387 */ 2388 if (!outcount) { 2389 error = SET_ERROR(EINVAL); 2390 goto update; 2391 } 2392 break; 2393 } 2394 if (flags & V_RDDIR_ENTFLAGS) { 2395 /* 2396 * Add extended flag entry: 2397 */ 2398 eodp->ed_ino = objnum; 2399 eodp->ed_reclen = reclen; 2400 /* NOTE: ed_off is the offset for the *next* entry */ 2401 next = &(eodp->ed_off); 2402 eodp->ed_eflags = zap.za_normalization_conflict ? 2403 ED_CASE_CONFLICT : 0; 2404 (void) strncpy(eodp->ed_name, zap.za_name, 2405 EDIRENT_NAMELEN(reclen)); 2406 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2407 } else { 2408 /* 2409 * Add normal entry: 2410 */ 2411 odp->d_ino = objnum; 2412 odp->d_reclen = reclen; 2413 /* NOTE: d_off is the offset for the *next* entry */ 2414 next = &(odp->d_off); 2415 (void) strncpy(odp->d_name, zap.za_name, 2416 DIRENT64_NAMELEN(reclen)); 2417 odp = (dirent64_t *)((intptr_t)odp + reclen); 2418 } 2419 outcount += reclen; 2420 2421 ASSERT(outcount <= bufsize); 2422 2423 /* Prefetch znode */ 2424 if (prefetch) 2425 dmu_prefetch(os, objnum, 0, 0, 0, 2426 ZIO_PRIORITY_SYNC_READ); 2427 2428 skip_entry: 2429 /* 2430 * Move to the next entry, fill in the previous offset. 2431 */ 2432 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2433 zap_cursor_advance(&zc); 2434 offset = zap_cursor_serialize(&zc); 2435 } else { 2436 offset += 1; 2437 } 2438 if (next) 2439 *next = offset; 2440 } 2441 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2442 2443 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2444 iovp->iov_base += outcount; 2445 iovp->iov_len -= outcount; 2446 uio->uio_resid -= outcount; 2447 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2448 /* 2449 * Reset the pointer. 2450 */ 2451 offset = uio->uio_loffset; 2452 } 2453 2454 update: 2455 zap_cursor_fini(&zc); 2456 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2457 kmem_free(outbuf, bufsize); 2458 2459 if (error == ENOENT) 2460 error = 0; 2461 2462 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2463 2464 uio->uio_loffset = offset; 2465 ZFS_EXIT(zfsvfs); 2466 return (error); 2467 } 2468 2469 ulong_t zfs_fsync_sync_cnt = 4; 2470 2471 static int 2472 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2473 { 2474 znode_t *zp = VTOZ(vp); 2475 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2476 2477 /* 2478 * Regardless of whether this is required for standards conformance, 2479 * this is the logical behavior when fsync() is called on a file with 2480 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2481 * going to be pushed out as part of the zil_commit(). 2482 */ 2483 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2484 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2485 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2486 2487 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2488 2489 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2490 ZFS_ENTER(zfsvfs); 2491 ZFS_VERIFY_ZP(zp); 2492 zil_commit(zfsvfs->z_log, zp->z_id); 2493 ZFS_EXIT(zfsvfs); 2494 } 2495 return (0); 2496 } 2497 2498 2499 /* 2500 * Get the requested file attributes and place them in the provided 2501 * vattr structure. 2502 * 2503 * IN: vp - vnode of file. 2504 * vap - va_mask identifies requested attributes. 2505 * If AT_XVATTR set, then optional attrs are requested 2506 * flags - ATTR_NOACLCHECK (CIFS server context) 2507 * cr - credentials of caller. 2508 * ct - caller context 2509 * 2510 * OUT: vap - attribute values. 2511 * 2512 * RETURN: 0 (always succeeds). 2513 */ 2514 /* ARGSUSED */ 2515 static int 2516 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2517 caller_context_t *ct) 2518 { 2519 znode_t *zp = VTOZ(vp); 2520 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2521 int error = 0; 2522 uint64_t links; 2523 uint64_t mtime[2], ctime[2]; 2524 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2525 xoptattr_t *xoap = NULL; 2526 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2527 sa_bulk_attr_t bulk[2]; 2528 int count = 0; 2529 2530 ZFS_ENTER(zfsvfs); 2531 ZFS_VERIFY_ZP(zp); 2532 2533 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2534 2535 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2536 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2537 2538 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2539 ZFS_EXIT(zfsvfs); 2540 return (error); 2541 } 2542 2543 /* 2544 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2545 * Also, if we are the owner don't bother, since owner should 2546 * always be allowed to read basic attributes of file. 2547 */ 2548 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2549 (vap->va_uid != crgetuid(cr))) { 2550 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2551 skipaclchk, cr)) { 2552 ZFS_EXIT(zfsvfs); 2553 return (error); 2554 } 2555 } 2556 2557 /* 2558 * Return all attributes. It's cheaper to provide the answer 2559 * than to determine whether we were asked the question. 2560 */ 2561 2562 mutex_enter(&zp->z_lock); 2563 vap->va_type = vp->v_type; 2564 vap->va_mode = zp->z_mode & MODEMASK; 2565 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2566 vap->va_nodeid = zp->z_id; 2567 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2568 links = zp->z_links + 1; 2569 else 2570 links = zp->z_links; 2571 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2572 vap->va_size = zp->z_size; 2573 vap->va_rdev = vp->v_rdev; 2574 vap->va_seq = zp->z_seq; 2575 2576 /* 2577 * Add in any requested optional attributes and the create time. 2578 * Also set the corresponding bits in the returned attribute bitmap. 2579 */ 2580 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2581 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2582 xoap->xoa_archive = 2583 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2584 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2585 } 2586 2587 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2588 xoap->xoa_readonly = 2589 ((zp->z_pflags & ZFS_READONLY) != 0); 2590 XVA_SET_RTN(xvap, XAT_READONLY); 2591 } 2592 2593 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2594 xoap->xoa_system = 2595 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2596 XVA_SET_RTN(xvap, XAT_SYSTEM); 2597 } 2598 2599 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2600 xoap->xoa_hidden = 2601 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2602 XVA_SET_RTN(xvap, XAT_HIDDEN); 2603 } 2604 2605 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2606 xoap->xoa_nounlink = 2607 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2608 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2609 } 2610 2611 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2612 xoap->xoa_immutable = 2613 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2614 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2615 } 2616 2617 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2618 xoap->xoa_appendonly = 2619 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2620 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2621 } 2622 2623 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2624 xoap->xoa_nodump = 2625 ((zp->z_pflags & ZFS_NODUMP) != 0); 2626 XVA_SET_RTN(xvap, XAT_NODUMP); 2627 } 2628 2629 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2630 xoap->xoa_opaque = 2631 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2632 XVA_SET_RTN(xvap, XAT_OPAQUE); 2633 } 2634 2635 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2636 xoap->xoa_av_quarantined = 2637 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2638 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2639 } 2640 2641 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2642 xoap->xoa_av_modified = 2643 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2644 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2645 } 2646 2647 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2648 vp->v_type == VREG) { 2649 zfs_sa_get_scanstamp(zp, xvap); 2650 } 2651 2652 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2653 uint64_t times[2]; 2654 2655 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2656 times, sizeof (times)); 2657 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2658 XVA_SET_RTN(xvap, XAT_CREATETIME); 2659 } 2660 2661 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2662 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2663 XVA_SET_RTN(xvap, XAT_REPARSE); 2664 } 2665 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2666 xoap->xoa_generation = zp->z_gen; 2667 XVA_SET_RTN(xvap, XAT_GEN); 2668 } 2669 2670 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2671 xoap->xoa_offline = 2672 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2673 XVA_SET_RTN(xvap, XAT_OFFLINE); 2674 } 2675 2676 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2677 xoap->xoa_sparse = 2678 ((zp->z_pflags & ZFS_SPARSE) != 0); 2679 XVA_SET_RTN(xvap, XAT_SPARSE); 2680 } 2681 } 2682 2683 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2684 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2685 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2686 2687 mutex_exit(&zp->z_lock); 2688 2689 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2690 2691 if (zp->z_blksz == 0) { 2692 /* 2693 * Block size hasn't been set; suggest maximal I/O transfers. 2694 */ 2695 vap->va_blksize = zfsvfs->z_max_blksz; 2696 } 2697 2698 ZFS_EXIT(zfsvfs); 2699 return (0); 2700 } 2701 2702 /* 2703 * Set the file attributes to the values contained in the 2704 * vattr structure. 2705 * 2706 * IN: vp - vnode of file to be modified. 2707 * vap - new attribute values. 2708 * If AT_XVATTR set, then optional attrs are being set 2709 * flags - ATTR_UTIME set if non-default time values provided. 2710 * - ATTR_NOACLCHECK (CIFS context only). 2711 * cr - credentials of caller. 2712 * ct - caller context 2713 * 2714 * RETURN: 0 on success, error code on failure. 2715 * 2716 * Timestamps: 2717 * vp - ctime updated, mtime updated if size changed. 2718 */ 2719 /* ARGSUSED */ 2720 static int 2721 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2722 caller_context_t *ct) 2723 { 2724 znode_t *zp = VTOZ(vp); 2725 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2726 zilog_t *zilog; 2727 dmu_tx_t *tx; 2728 vattr_t oldva; 2729 xvattr_t tmpxvattr; 2730 uint_t mask = vap->va_mask; 2731 uint_t saved_mask = 0; 2732 int trim_mask = 0; 2733 uint64_t new_mode; 2734 uint64_t new_uid, new_gid; 2735 uint64_t xattr_obj; 2736 uint64_t mtime[2], ctime[2]; 2737 znode_t *attrzp; 2738 int need_policy = FALSE; 2739 int err, err2; 2740 zfs_fuid_info_t *fuidp = NULL; 2741 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2742 xoptattr_t *xoap; 2743 zfs_acl_t *aclp; 2744 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2745 boolean_t fuid_dirtied = B_FALSE; 2746 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2747 int count = 0, xattr_count = 0; 2748 2749 if (mask == 0) 2750 return (0); 2751 2752 if (mask & AT_NOSET) 2753 return (SET_ERROR(EINVAL)); 2754 2755 ZFS_ENTER(zfsvfs); 2756 ZFS_VERIFY_ZP(zp); 2757 2758 zilog = zfsvfs->z_log; 2759 2760 /* 2761 * Make sure that if we have ephemeral uid/gid or xvattr specified 2762 * that file system is at proper version level 2763 */ 2764 2765 if (zfsvfs->z_use_fuids == B_FALSE && 2766 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2767 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2768 (mask & AT_XVATTR))) { 2769 ZFS_EXIT(zfsvfs); 2770 return (SET_ERROR(EINVAL)); 2771 } 2772 2773 if (mask & AT_SIZE && vp->v_type == VDIR) { 2774 ZFS_EXIT(zfsvfs); 2775 return (SET_ERROR(EISDIR)); 2776 } 2777 2778 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2779 ZFS_EXIT(zfsvfs); 2780 return (SET_ERROR(EINVAL)); 2781 } 2782 2783 /* 2784 * If this is an xvattr_t, then get a pointer to the structure of 2785 * optional attributes. If this is NULL, then we have a vattr_t. 2786 */ 2787 xoap = xva_getxoptattr(xvap); 2788 2789 xva_init(&tmpxvattr); 2790 2791 /* 2792 * Immutable files can only alter immutable bit and atime 2793 */ 2794 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2795 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2796 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2797 ZFS_EXIT(zfsvfs); 2798 return (SET_ERROR(EPERM)); 2799 } 2800 2801 /* 2802 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 2803 */ 2804 2805 /* 2806 * Verify timestamps doesn't overflow 32 bits. 2807 * ZFS can handle large timestamps, but 32bit syscalls can't 2808 * handle times greater than 2039. This check should be removed 2809 * once large timestamps are fully supported. 2810 */ 2811 if (mask & (AT_ATIME | AT_MTIME)) { 2812 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2813 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2814 ZFS_EXIT(zfsvfs); 2815 return (SET_ERROR(EOVERFLOW)); 2816 } 2817 } 2818 2819 top: 2820 attrzp = NULL; 2821 aclp = NULL; 2822 2823 /* Can this be moved to before the top label? */ 2824 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2825 ZFS_EXIT(zfsvfs); 2826 return (SET_ERROR(EROFS)); 2827 } 2828 2829 /* 2830 * First validate permissions 2831 */ 2832 2833 if (mask & AT_SIZE) { 2834 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2835 if (err) { 2836 ZFS_EXIT(zfsvfs); 2837 return (err); 2838 } 2839 /* 2840 * XXX - Note, we are not providing any open 2841 * mode flags here (like FNDELAY), so we may 2842 * block if there are locks present... this 2843 * should be addressed in openat(). 2844 */ 2845 /* XXX - would it be OK to generate a log record here? */ 2846 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2847 if (err) { 2848 ZFS_EXIT(zfsvfs); 2849 return (err); 2850 } 2851 2852 if (vap->va_size == 0) 2853 vnevent_truncate(ZTOV(zp), ct); 2854 } 2855 2856 if (mask & (AT_ATIME|AT_MTIME) || 2857 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2858 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2859 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2860 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2861 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2862 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2863 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2864 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2865 skipaclchk, cr); 2866 } 2867 2868 if (mask & (AT_UID|AT_GID)) { 2869 int idmask = (mask & (AT_UID|AT_GID)); 2870 int take_owner; 2871 int take_group; 2872 2873 /* 2874 * NOTE: even if a new mode is being set, 2875 * we may clear S_ISUID/S_ISGID bits. 2876 */ 2877 2878 if (!(mask & AT_MODE)) 2879 vap->va_mode = zp->z_mode; 2880 2881 /* 2882 * Take ownership or chgrp to group we are a member of 2883 */ 2884 2885 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2886 take_group = (mask & AT_GID) && 2887 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2888 2889 /* 2890 * If both AT_UID and AT_GID are set then take_owner and 2891 * take_group must both be set in order to allow taking 2892 * ownership. 2893 * 2894 * Otherwise, send the check through secpolicy_vnode_setattr() 2895 * 2896 */ 2897 2898 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2899 ((idmask == AT_UID) && take_owner) || 2900 ((idmask == AT_GID) && take_group)) { 2901 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2902 skipaclchk, cr) == 0) { 2903 /* 2904 * Remove setuid/setgid for non-privileged users 2905 */ 2906 secpolicy_setid_clear(vap, cr); 2907 trim_mask = (mask & (AT_UID|AT_GID)); 2908 } else { 2909 need_policy = TRUE; 2910 } 2911 } else { 2912 need_policy = TRUE; 2913 } 2914 } 2915 2916 mutex_enter(&zp->z_lock); 2917 oldva.va_mode = zp->z_mode; 2918 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2919 if (mask & AT_XVATTR) { 2920 /* 2921 * Update xvattr mask to include only those attributes 2922 * that are actually changing. 2923 * 2924 * the bits will be restored prior to actually setting 2925 * the attributes so the caller thinks they were set. 2926 */ 2927 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2928 if (xoap->xoa_appendonly != 2929 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2930 need_policy = TRUE; 2931 } else { 2932 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2933 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2934 } 2935 } 2936 2937 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2938 if (xoap->xoa_nounlink != 2939 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2940 need_policy = TRUE; 2941 } else { 2942 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2943 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2944 } 2945 } 2946 2947 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2948 if (xoap->xoa_immutable != 2949 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2950 need_policy = TRUE; 2951 } else { 2952 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2953 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2954 } 2955 } 2956 2957 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2958 if (xoap->xoa_nodump != 2959 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2960 need_policy = TRUE; 2961 } else { 2962 XVA_CLR_REQ(xvap, XAT_NODUMP); 2963 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2964 } 2965 } 2966 2967 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2968 if (xoap->xoa_av_modified != 2969 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2970 need_policy = TRUE; 2971 } else { 2972 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2973 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2974 } 2975 } 2976 2977 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2978 if ((vp->v_type != VREG && 2979 xoap->xoa_av_quarantined) || 2980 xoap->xoa_av_quarantined != 2981 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2982 need_policy = TRUE; 2983 } else { 2984 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2985 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2986 } 2987 } 2988 2989 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2990 mutex_exit(&zp->z_lock); 2991 ZFS_EXIT(zfsvfs); 2992 return (SET_ERROR(EPERM)); 2993 } 2994 2995 if (need_policy == FALSE && 2996 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2997 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2998 need_policy = TRUE; 2999 } 3000 } 3001 3002 mutex_exit(&zp->z_lock); 3003 3004 if (mask & AT_MODE) { 3005 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 3006 err = secpolicy_setid_setsticky_clear(vp, vap, 3007 &oldva, cr); 3008 if (err) { 3009 ZFS_EXIT(zfsvfs); 3010 return (err); 3011 } 3012 trim_mask |= AT_MODE; 3013 } else { 3014 need_policy = TRUE; 3015 } 3016 } 3017 3018 if (need_policy) { 3019 /* 3020 * If trim_mask is set then take ownership 3021 * has been granted or write_acl is present and user 3022 * has the ability to modify mode. In that case remove 3023 * UID|GID and or MODE from mask so that 3024 * secpolicy_vnode_setattr() doesn't revoke it. 3025 */ 3026 3027 if (trim_mask) { 3028 saved_mask = vap->va_mask; 3029 vap->va_mask &= ~trim_mask; 3030 } 3031 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3032 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3033 if (err) { 3034 ZFS_EXIT(zfsvfs); 3035 return (err); 3036 } 3037 3038 if (trim_mask) 3039 vap->va_mask |= saved_mask; 3040 } 3041 3042 /* 3043 * secpolicy_vnode_setattr, or take ownership may have 3044 * changed va_mask 3045 */ 3046 mask = vap->va_mask; 3047 3048 if ((mask & (AT_UID | AT_GID))) { 3049 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3050 &xattr_obj, sizeof (xattr_obj)); 3051 3052 if (err == 0 && xattr_obj) { 3053 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3054 if (err) 3055 goto out2; 3056 } 3057 if (mask & AT_UID) { 3058 new_uid = zfs_fuid_create(zfsvfs, 3059 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3060 if (new_uid != zp->z_uid && 3061 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 3062 if (attrzp) 3063 VN_RELE(ZTOV(attrzp)); 3064 err = SET_ERROR(EDQUOT); 3065 goto out2; 3066 } 3067 } 3068 3069 if (mask & AT_GID) { 3070 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3071 cr, ZFS_GROUP, &fuidp); 3072 if (new_gid != zp->z_gid && 3073 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 3074 if (attrzp) 3075 VN_RELE(ZTOV(attrzp)); 3076 err = SET_ERROR(EDQUOT); 3077 goto out2; 3078 } 3079 } 3080 } 3081 tx = dmu_tx_create(zfsvfs->z_os); 3082 3083 if (mask & AT_MODE) { 3084 uint64_t pmode = zp->z_mode; 3085 uint64_t acl_obj; 3086 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3087 3088 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3089 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3090 err = SET_ERROR(EPERM); 3091 goto out; 3092 } 3093 3094 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3095 goto out; 3096 3097 mutex_enter(&zp->z_lock); 3098 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3099 /* 3100 * Are we upgrading ACL from old V0 format 3101 * to V1 format? 3102 */ 3103 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3104 zfs_znode_acl_version(zp) == 3105 ZFS_ACL_VERSION_INITIAL) { 3106 dmu_tx_hold_free(tx, acl_obj, 0, 3107 DMU_OBJECT_END); 3108 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3109 0, aclp->z_acl_bytes); 3110 } else { 3111 dmu_tx_hold_write(tx, acl_obj, 0, 3112 aclp->z_acl_bytes); 3113 } 3114 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3115 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3116 0, aclp->z_acl_bytes); 3117 } 3118 mutex_exit(&zp->z_lock); 3119 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3120 } else { 3121 if ((mask & AT_XVATTR) && 3122 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3123 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3124 else 3125 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3126 } 3127 3128 if (attrzp) { 3129 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3130 } 3131 3132 fuid_dirtied = zfsvfs->z_fuid_dirty; 3133 if (fuid_dirtied) 3134 zfs_fuid_txhold(zfsvfs, tx); 3135 3136 zfs_sa_upgrade_txholds(tx, zp); 3137 3138 err = dmu_tx_assign(tx, TXG_WAIT); 3139 if (err) 3140 goto out; 3141 3142 count = 0; 3143 /* 3144 * Set each attribute requested. 3145 * We group settings according to the locks they need to acquire. 3146 * 3147 * Note: you cannot set ctime directly, although it will be 3148 * updated as a side-effect of calling this function. 3149 */ 3150 3151 3152 if (mask & (AT_UID|AT_GID|AT_MODE)) 3153 mutex_enter(&zp->z_acl_lock); 3154 mutex_enter(&zp->z_lock); 3155 3156 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3157 &zp->z_pflags, sizeof (zp->z_pflags)); 3158 3159 if (attrzp) { 3160 if (mask & (AT_UID|AT_GID|AT_MODE)) 3161 mutex_enter(&attrzp->z_acl_lock); 3162 mutex_enter(&attrzp->z_lock); 3163 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3164 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3165 sizeof (attrzp->z_pflags)); 3166 } 3167 3168 if (mask & (AT_UID|AT_GID)) { 3169 3170 if (mask & AT_UID) { 3171 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3172 &new_uid, sizeof (new_uid)); 3173 zp->z_uid = new_uid; 3174 if (attrzp) { 3175 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3176 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3177 sizeof (new_uid)); 3178 attrzp->z_uid = new_uid; 3179 } 3180 } 3181 3182 if (mask & AT_GID) { 3183 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3184 NULL, &new_gid, sizeof (new_gid)); 3185 zp->z_gid = new_gid; 3186 if (attrzp) { 3187 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3188 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3189 sizeof (new_gid)); 3190 attrzp->z_gid = new_gid; 3191 } 3192 } 3193 if (!(mask & AT_MODE)) { 3194 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3195 NULL, &new_mode, sizeof (new_mode)); 3196 new_mode = zp->z_mode; 3197 } 3198 err = zfs_acl_chown_setattr(zp); 3199 ASSERT(err == 0); 3200 if (attrzp) { 3201 err = zfs_acl_chown_setattr(attrzp); 3202 ASSERT(err == 0); 3203 } 3204 } 3205 3206 if (mask & AT_MODE) { 3207 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3208 &new_mode, sizeof (new_mode)); 3209 zp->z_mode = new_mode; 3210 ASSERT3U((uintptr_t)aclp, !=, NULL); 3211 err = zfs_aclset_common(zp, aclp, cr, tx); 3212 ASSERT0(err); 3213 if (zp->z_acl_cached) 3214 zfs_acl_free(zp->z_acl_cached); 3215 zp->z_acl_cached = aclp; 3216 aclp = NULL; 3217 } 3218 3219 3220 if (mask & AT_ATIME) { 3221 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3222 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3223 &zp->z_atime, sizeof (zp->z_atime)); 3224 } 3225 3226 if (mask & AT_MTIME) { 3227 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3229 mtime, sizeof (mtime)); 3230 } 3231 3232 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3233 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3234 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3235 NULL, mtime, sizeof (mtime)); 3236 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3237 &ctime, sizeof (ctime)); 3238 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3239 B_TRUE); 3240 } else if (mask != 0) { 3241 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3242 &ctime, sizeof (ctime)); 3243 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3244 B_TRUE); 3245 if (attrzp) { 3246 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3247 SA_ZPL_CTIME(zfsvfs), NULL, 3248 &ctime, sizeof (ctime)); 3249 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3250 mtime, ctime, B_TRUE); 3251 } 3252 } 3253 /* 3254 * Do this after setting timestamps to prevent timestamp 3255 * update from toggling bit 3256 */ 3257 3258 if (xoap && (mask & AT_XVATTR)) { 3259 3260 /* 3261 * restore trimmed off masks 3262 * so that return masks can be set for caller. 3263 */ 3264 3265 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3266 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3267 } 3268 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3269 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3270 } 3271 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3272 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3273 } 3274 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3275 XVA_SET_REQ(xvap, XAT_NODUMP); 3276 } 3277 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3278 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3279 } 3280 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3281 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3282 } 3283 3284 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3285 ASSERT(vp->v_type == VREG); 3286 3287 zfs_xvattr_set(zp, xvap, tx); 3288 } 3289 3290 if (fuid_dirtied) 3291 zfs_fuid_sync(zfsvfs, tx); 3292 3293 if (mask != 0) 3294 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3295 3296 mutex_exit(&zp->z_lock); 3297 if (mask & (AT_UID|AT_GID|AT_MODE)) 3298 mutex_exit(&zp->z_acl_lock); 3299 3300 if (attrzp) { 3301 if (mask & (AT_UID|AT_GID|AT_MODE)) 3302 mutex_exit(&attrzp->z_acl_lock); 3303 mutex_exit(&attrzp->z_lock); 3304 } 3305 out: 3306 if (err == 0 && attrzp) { 3307 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3308 xattr_count, tx); 3309 ASSERT(err2 == 0); 3310 } 3311 3312 if (attrzp) 3313 VN_RELE(ZTOV(attrzp)); 3314 3315 if (aclp) 3316 zfs_acl_free(aclp); 3317 3318 if (fuidp) { 3319 zfs_fuid_info_free(fuidp); 3320 fuidp = NULL; 3321 } 3322 3323 if (err) { 3324 dmu_tx_abort(tx); 3325 if (err == ERESTART) 3326 goto top; 3327 } else { 3328 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3329 dmu_tx_commit(tx); 3330 } 3331 3332 out2: 3333 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3334 zil_commit(zilog, 0); 3335 3336 ZFS_EXIT(zfsvfs); 3337 return (err); 3338 } 3339 3340 typedef struct zfs_zlock { 3341 krwlock_t *zl_rwlock; /* lock we acquired */ 3342 znode_t *zl_znode; /* znode we held */ 3343 struct zfs_zlock *zl_next; /* next in list */ 3344 } zfs_zlock_t; 3345 3346 /* 3347 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3348 */ 3349 static void 3350 zfs_rename_unlock(zfs_zlock_t **zlpp) 3351 { 3352 zfs_zlock_t *zl; 3353 3354 while ((zl = *zlpp) != NULL) { 3355 if (zl->zl_znode != NULL) 3356 VN_RELE(ZTOV(zl->zl_znode)); 3357 rw_exit(zl->zl_rwlock); 3358 *zlpp = zl->zl_next; 3359 kmem_free(zl, sizeof (*zl)); 3360 } 3361 } 3362 3363 /* 3364 * Search back through the directory tree, using the ".." entries. 3365 * Lock each directory in the chain to prevent concurrent renames. 3366 * Fail any attempt to move a directory into one of its own descendants. 3367 * XXX - z_parent_lock can overlap with map or grow locks 3368 */ 3369 static int 3370 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3371 { 3372 zfs_zlock_t *zl; 3373 znode_t *zp = tdzp; 3374 uint64_t rootid = zp->z_zfsvfs->z_root; 3375 uint64_t oidp = zp->z_id; 3376 krwlock_t *rwlp = &szp->z_parent_lock; 3377 krw_t rw = RW_WRITER; 3378 3379 /* 3380 * First pass write-locks szp and compares to zp->z_id. 3381 * Later passes read-lock zp and compare to zp->z_parent. 3382 */ 3383 do { 3384 if (!rw_tryenter(rwlp, rw)) { 3385 /* 3386 * Another thread is renaming in this path. 3387 * Note that if we are a WRITER, we don't have any 3388 * parent_locks held yet. 3389 */ 3390 if (rw == RW_READER && zp->z_id > szp->z_id) { 3391 /* 3392 * Drop our locks and restart 3393 */ 3394 zfs_rename_unlock(&zl); 3395 *zlpp = NULL; 3396 zp = tdzp; 3397 oidp = zp->z_id; 3398 rwlp = &szp->z_parent_lock; 3399 rw = RW_WRITER; 3400 continue; 3401 } else { 3402 /* 3403 * Wait for other thread to drop its locks 3404 */ 3405 rw_enter(rwlp, rw); 3406 } 3407 } 3408 3409 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3410 zl->zl_rwlock = rwlp; 3411 zl->zl_znode = NULL; 3412 zl->zl_next = *zlpp; 3413 *zlpp = zl; 3414 3415 if (oidp == szp->z_id) /* We're a descendant of szp */ 3416 return (SET_ERROR(EINVAL)); 3417 3418 if (oidp == rootid) /* We've hit the top */ 3419 return (0); 3420 3421 if (rw == RW_READER) { /* i.e. not the first pass */ 3422 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3423 if (error) 3424 return (error); 3425 zl->zl_znode = zp; 3426 } 3427 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3428 &oidp, sizeof (oidp)); 3429 rwlp = &zp->z_parent_lock; 3430 rw = RW_READER; 3431 3432 } while (zp->z_id != sdzp->z_id); 3433 3434 return (0); 3435 } 3436 3437 /* 3438 * Move an entry from the provided source directory to the target 3439 * directory. Change the entry name as indicated. 3440 * 3441 * IN: sdvp - Source directory containing the "old entry". 3442 * snm - Old entry name. 3443 * tdvp - Target directory to contain the "new entry". 3444 * tnm - New entry name. 3445 * cr - credentials of caller. 3446 * ct - caller context 3447 * flags - case flags 3448 * 3449 * RETURN: 0 on success, error code on failure. 3450 * 3451 * Timestamps: 3452 * sdvp,tdvp - ctime|mtime updated 3453 */ 3454 /*ARGSUSED*/ 3455 static int 3456 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3457 caller_context_t *ct, int flags) 3458 { 3459 znode_t *tdzp, *szp, *tzp; 3460 znode_t *sdzp = VTOZ(sdvp); 3461 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3462 zilog_t *zilog; 3463 vnode_t *realvp; 3464 zfs_dirlock_t *sdl, *tdl; 3465 dmu_tx_t *tx; 3466 zfs_zlock_t *zl; 3467 int cmp, serr, terr; 3468 int error = 0, rm_err = 0; 3469 int zflg = 0; 3470 boolean_t waited = B_FALSE; 3471 3472 ZFS_ENTER(zfsvfs); 3473 ZFS_VERIFY_ZP(sdzp); 3474 zilog = zfsvfs->z_log; 3475 3476 /* 3477 * Make sure we have the real vp for the target directory. 3478 */ 3479 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3480 tdvp = realvp; 3481 3482 tdzp = VTOZ(tdvp); 3483 ZFS_VERIFY_ZP(tdzp); 3484 3485 /* 3486 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3487 * ctldir appear to have the same v_vfsp. 3488 */ 3489 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3490 ZFS_EXIT(zfsvfs); 3491 return (SET_ERROR(EXDEV)); 3492 } 3493 3494 if (zfsvfs->z_utf8 && u8_validate(tnm, 3495 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3496 ZFS_EXIT(zfsvfs); 3497 return (SET_ERROR(EILSEQ)); 3498 } 3499 3500 if (flags & FIGNORECASE) 3501 zflg |= ZCILOOK; 3502 3503 top: 3504 szp = NULL; 3505 tzp = NULL; 3506 zl = NULL; 3507 3508 /* 3509 * This is to prevent the creation of links into attribute space 3510 * by renaming a linked file into/outof an attribute directory. 3511 * See the comment in zfs_link() for why this is considered bad. 3512 */ 3513 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3514 ZFS_EXIT(zfsvfs); 3515 return (SET_ERROR(EINVAL)); 3516 } 3517 3518 /* 3519 * Lock source and target directory entries. To prevent deadlock, 3520 * a lock ordering must be defined. We lock the directory with 3521 * the smallest object id first, or if it's a tie, the one with 3522 * the lexically first name. 3523 */ 3524 if (sdzp->z_id < tdzp->z_id) { 3525 cmp = -1; 3526 } else if (sdzp->z_id > tdzp->z_id) { 3527 cmp = 1; 3528 } else { 3529 /* 3530 * First compare the two name arguments without 3531 * considering any case folding. 3532 */ 3533 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3534 3535 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3536 ASSERT(error == 0 || !zfsvfs->z_utf8); 3537 if (cmp == 0) { 3538 /* 3539 * POSIX: "If the old argument and the new argument 3540 * both refer to links to the same existing file, 3541 * the rename() function shall return successfully 3542 * and perform no other action." 3543 */ 3544 ZFS_EXIT(zfsvfs); 3545 return (0); 3546 } 3547 /* 3548 * If the file system is case-folding, then we may 3549 * have some more checking to do. A case-folding file 3550 * system is either supporting mixed case sensitivity 3551 * access or is completely case-insensitive. Note 3552 * that the file system is always case preserving. 3553 * 3554 * In mixed sensitivity mode case sensitive behavior 3555 * is the default. FIGNORECASE must be used to 3556 * explicitly request case insensitive behavior. 3557 * 3558 * If the source and target names provided differ only 3559 * by case (e.g., a request to rename 'tim' to 'Tim'), 3560 * we will treat this as a special case in the 3561 * case-insensitive mode: as long as the source name 3562 * is an exact match, we will allow this to proceed as 3563 * a name-change request. 3564 */ 3565 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3566 (zfsvfs->z_case == ZFS_CASE_MIXED && 3567 flags & FIGNORECASE)) && 3568 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3569 &error) == 0) { 3570 /* 3571 * case preserving rename request, require exact 3572 * name matches 3573 */ 3574 zflg |= ZCIEXACT; 3575 zflg &= ~ZCILOOK; 3576 } 3577 } 3578 3579 /* 3580 * If the source and destination directories are the same, we should 3581 * grab the z_name_lock of that directory only once. 3582 */ 3583 if (sdzp == tdzp) { 3584 zflg |= ZHAVELOCK; 3585 rw_enter(&sdzp->z_name_lock, RW_READER); 3586 } 3587 3588 if (cmp < 0) { 3589 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3590 ZEXISTS | zflg, NULL, NULL); 3591 terr = zfs_dirent_lock(&tdl, 3592 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3593 } else { 3594 terr = zfs_dirent_lock(&tdl, 3595 tdzp, tnm, &tzp, zflg, NULL, NULL); 3596 serr = zfs_dirent_lock(&sdl, 3597 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3598 NULL, NULL); 3599 } 3600 3601 if (serr) { 3602 /* 3603 * Source entry invalid or not there. 3604 */ 3605 if (!terr) { 3606 zfs_dirent_unlock(tdl); 3607 if (tzp) 3608 VN_RELE(ZTOV(tzp)); 3609 } 3610 3611 if (sdzp == tdzp) 3612 rw_exit(&sdzp->z_name_lock); 3613 3614 if (strcmp(snm, "..") == 0) 3615 serr = SET_ERROR(EINVAL); 3616 ZFS_EXIT(zfsvfs); 3617 return (serr); 3618 } 3619 if (terr) { 3620 zfs_dirent_unlock(sdl); 3621 VN_RELE(ZTOV(szp)); 3622 3623 if (sdzp == tdzp) 3624 rw_exit(&sdzp->z_name_lock); 3625 3626 if (strcmp(tnm, "..") == 0) 3627 terr = SET_ERROR(EINVAL); 3628 ZFS_EXIT(zfsvfs); 3629 return (terr); 3630 } 3631 3632 /* 3633 * Must have write access at the source to remove the old entry 3634 * and write access at the target to create the new entry. 3635 * Note that if target and source are the same, this can be 3636 * done in a single check. 3637 */ 3638 3639 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3640 goto out; 3641 3642 if (ZTOV(szp)->v_type == VDIR) { 3643 /* 3644 * Check to make sure rename is valid. 3645 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3646 */ 3647 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3648 goto out; 3649 } 3650 3651 /* 3652 * Does target exist? 3653 */ 3654 if (tzp) { 3655 /* 3656 * Source and target must be the same type. 3657 */ 3658 if (ZTOV(szp)->v_type == VDIR) { 3659 if (ZTOV(tzp)->v_type != VDIR) { 3660 error = SET_ERROR(ENOTDIR); 3661 goto out; 3662 } 3663 } else { 3664 if (ZTOV(tzp)->v_type == VDIR) { 3665 error = SET_ERROR(EISDIR); 3666 goto out; 3667 } 3668 } 3669 /* 3670 * POSIX dictates that when the source and target 3671 * entries refer to the same file object, rename 3672 * must do nothing and exit without error. 3673 */ 3674 if (szp->z_id == tzp->z_id) { 3675 error = 0; 3676 goto out; 3677 } 3678 } 3679 3680 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct); 3681 if (tzp) 3682 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3683 3684 /* 3685 * notify the target directory if it is not the same 3686 * as source directory. 3687 */ 3688 if (tdvp != sdvp) { 3689 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct); 3690 } 3691 3692 tx = dmu_tx_create(zfsvfs->z_os); 3693 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3694 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3695 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3696 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3697 if (sdzp != tdzp) { 3698 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3699 zfs_sa_upgrade_txholds(tx, tdzp); 3700 } 3701 if (tzp) { 3702 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3703 zfs_sa_upgrade_txholds(tx, tzp); 3704 } 3705 3706 zfs_sa_upgrade_txholds(tx, szp); 3707 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3708 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 3709 if (error) { 3710 if (zl != NULL) 3711 zfs_rename_unlock(&zl); 3712 zfs_dirent_unlock(sdl); 3713 zfs_dirent_unlock(tdl); 3714 3715 if (sdzp == tdzp) 3716 rw_exit(&sdzp->z_name_lock); 3717 3718 VN_RELE(ZTOV(szp)); 3719 if (tzp) 3720 VN_RELE(ZTOV(tzp)); 3721 if (error == ERESTART) { 3722 waited = B_TRUE; 3723 dmu_tx_wait(tx); 3724 dmu_tx_abort(tx); 3725 goto top; 3726 } 3727 dmu_tx_abort(tx); 3728 ZFS_EXIT(zfsvfs); 3729 return (error); 3730 } 3731 3732 if (tzp) /* Attempt to remove the existing target */ 3733 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3734 3735 if (error == 0) { 3736 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3737 if (error == 0) { 3738 szp->z_pflags |= ZFS_AV_MODIFIED; 3739 3740 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3741 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3742 ASSERT0(error); 3743 3744 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3745 if (error == 0) { 3746 zfs_log_rename(zilog, tx, TX_RENAME | 3747 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3748 sdl->dl_name, tdzp, tdl->dl_name, szp); 3749 3750 /* 3751 * Update path information for the target vnode 3752 */ 3753 vn_renamepath(tdvp, ZTOV(szp), tnm, 3754 strlen(tnm)); 3755 } else { 3756 /* 3757 * At this point, we have successfully created 3758 * the target name, but have failed to remove 3759 * the source name. Since the create was done 3760 * with the ZRENAMING flag, there are 3761 * complications; for one, the link count is 3762 * wrong. The easiest way to deal with this 3763 * is to remove the newly created target, and 3764 * return the original error. This must 3765 * succeed; fortunately, it is very unlikely to 3766 * fail, since we just created it. 3767 */ 3768 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3769 ZRENAMING, NULL), ==, 0); 3770 } 3771 } 3772 } 3773 3774 dmu_tx_commit(tx); 3775 3776 if (tzp && rm_err == 0) 3777 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3778 3779 if (error == 0) { 3780 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3781 /* notify the target dir if it is not the same as source dir */ 3782 if (tdvp != sdvp) 3783 vnevent_rename_dest_dir(tdvp, ct); 3784 } 3785 out: 3786 if (zl != NULL) 3787 zfs_rename_unlock(&zl); 3788 3789 zfs_dirent_unlock(sdl); 3790 zfs_dirent_unlock(tdl); 3791 3792 if (sdzp == tdzp) 3793 rw_exit(&sdzp->z_name_lock); 3794 3795 3796 VN_RELE(ZTOV(szp)); 3797 if (tzp) 3798 VN_RELE(ZTOV(tzp)); 3799 3800 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3801 zil_commit(zilog, 0); 3802 3803 ZFS_EXIT(zfsvfs); 3804 return (error); 3805 } 3806 3807 /* 3808 * Insert the indicated symbolic reference entry into the directory. 3809 * 3810 * IN: dvp - Directory to contain new symbolic link. 3811 * link - Name for new symlink entry. 3812 * vap - Attributes of new entry. 3813 * cr - credentials of caller. 3814 * ct - caller context 3815 * flags - case flags 3816 * 3817 * RETURN: 0 on success, error code on failure. 3818 * 3819 * Timestamps: 3820 * dvp - ctime|mtime updated 3821 */ 3822 /*ARGSUSED*/ 3823 static int 3824 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3825 caller_context_t *ct, int flags) 3826 { 3827 znode_t *zp, *dzp = VTOZ(dvp); 3828 zfs_dirlock_t *dl; 3829 dmu_tx_t *tx; 3830 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3831 zilog_t *zilog; 3832 uint64_t len = strlen(link); 3833 int error; 3834 int zflg = ZNEW; 3835 zfs_acl_ids_t acl_ids; 3836 boolean_t fuid_dirtied; 3837 uint64_t txtype = TX_SYMLINK; 3838 boolean_t waited = B_FALSE; 3839 3840 ASSERT(vap->va_type == VLNK); 3841 3842 ZFS_ENTER(zfsvfs); 3843 ZFS_VERIFY_ZP(dzp); 3844 zilog = zfsvfs->z_log; 3845 3846 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3847 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3848 ZFS_EXIT(zfsvfs); 3849 return (SET_ERROR(EILSEQ)); 3850 } 3851 if (flags & FIGNORECASE) 3852 zflg |= ZCILOOK; 3853 3854 if (len > MAXPATHLEN) { 3855 ZFS_EXIT(zfsvfs); 3856 return (SET_ERROR(ENAMETOOLONG)); 3857 } 3858 3859 if ((error = zfs_acl_ids_create(dzp, 0, 3860 vap, cr, NULL, &acl_ids)) != 0) { 3861 ZFS_EXIT(zfsvfs); 3862 return (error); 3863 } 3864 top: 3865 /* 3866 * Attempt to lock directory; fail if entry already exists. 3867 */ 3868 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3869 if (error) { 3870 zfs_acl_ids_free(&acl_ids); 3871 ZFS_EXIT(zfsvfs); 3872 return (error); 3873 } 3874 3875 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3876 zfs_acl_ids_free(&acl_ids); 3877 zfs_dirent_unlock(dl); 3878 ZFS_EXIT(zfsvfs); 3879 return (error); 3880 } 3881 3882 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3883 zfs_acl_ids_free(&acl_ids); 3884 zfs_dirent_unlock(dl); 3885 ZFS_EXIT(zfsvfs); 3886 return (SET_ERROR(EDQUOT)); 3887 } 3888 tx = dmu_tx_create(zfsvfs->z_os); 3889 fuid_dirtied = zfsvfs->z_fuid_dirty; 3890 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3891 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3892 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3893 ZFS_SA_BASE_ATTR_SIZE + len); 3894 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3895 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3896 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3897 acl_ids.z_aclp->z_acl_bytes); 3898 } 3899 if (fuid_dirtied) 3900 zfs_fuid_txhold(zfsvfs, tx); 3901 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 3902 if (error) { 3903 zfs_dirent_unlock(dl); 3904 if (error == ERESTART) { 3905 waited = B_TRUE; 3906 dmu_tx_wait(tx); 3907 dmu_tx_abort(tx); 3908 goto top; 3909 } 3910 zfs_acl_ids_free(&acl_ids); 3911 dmu_tx_abort(tx); 3912 ZFS_EXIT(zfsvfs); 3913 return (error); 3914 } 3915 3916 /* 3917 * Create a new object for the symlink. 3918 * for version 4 ZPL datsets the symlink will be an SA attribute 3919 */ 3920 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3921 3922 if (fuid_dirtied) 3923 zfs_fuid_sync(zfsvfs, tx); 3924 3925 mutex_enter(&zp->z_lock); 3926 if (zp->z_is_sa) 3927 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3928 link, len, tx); 3929 else 3930 zfs_sa_symlink(zp, link, len, tx); 3931 mutex_exit(&zp->z_lock); 3932 3933 zp->z_size = len; 3934 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3935 &zp->z_size, sizeof (zp->z_size), tx); 3936 /* 3937 * Insert the new object into the directory. 3938 */ 3939 (void) zfs_link_create(dl, zp, tx, ZNEW); 3940 3941 if (flags & FIGNORECASE) 3942 txtype |= TX_CI; 3943 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3944 3945 zfs_acl_ids_free(&acl_ids); 3946 3947 dmu_tx_commit(tx); 3948 3949 zfs_dirent_unlock(dl); 3950 3951 VN_RELE(ZTOV(zp)); 3952 3953 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3954 zil_commit(zilog, 0); 3955 3956 ZFS_EXIT(zfsvfs); 3957 return (error); 3958 } 3959 3960 /* 3961 * Return, in the buffer contained in the provided uio structure, 3962 * the symbolic path referred to by vp. 3963 * 3964 * IN: vp - vnode of symbolic link. 3965 * uio - structure to contain the link path. 3966 * cr - credentials of caller. 3967 * ct - caller context 3968 * 3969 * OUT: uio - structure containing the link path. 3970 * 3971 * RETURN: 0 on success, error code on failure. 3972 * 3973 * Timestamps: 3974 * vp - atime updated 3975 */ 3976 /* ARGSUSED */ 3977 static int 3978 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3979 { 3980 znode_t *zp = VTOZ(vp); 3981 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3982 int error; 3983 3984 ZFS_ENTER(zfsvfs); 3985 ZFS_VERIFY_ZP(zp); 3986 3987 mutex_enter(&zp->z_lock); 3988 if (zp->z_is_sa) 3989 error = sa_lookup_uio(zp->z_sa_hdl, 3990 SA_ZPL_SYMLINK(zfsvfs), uio); 3991 else 3992 error = zfs_sa_readlink(zp, uio); 3993 mutex_exit(&zp->z_lock); 3994 3995 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3996 3997 ZFS_EXIT(zfsvfs); 3998 return (error); 3999 } 4000 4001 /* 4002 * Insert a new entry into directory tdvp referencing svp. 4003 * 4004 * IN: tdvp - Directory to contain new entry. 4005 * svp - vnode of new entry. 4006 * name - name of new entry. 4007 * cr - credentials of caller. 4008 * ct - caller context 4009 * 4010 * RETURN: 0 on success, error code on failure. 4011 * 4012 * Timestamps: 4013 * tdvp - ctime|mtime updated 4014 * svp - ctime updated 4015 */ 4016 /* ARGSUSED */ 4017 static int 4018 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 4019 caller_context_t *ct, int flags) 4020 { 4021 znode_t *dzp = VTOZ(tdvp); 4022 znode_t *tzp, *szp; 4023 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4024 zilog_t *zilog; 4025 zfs_dirlock_t *dl; 4026 dmu_tx_t *tx; 4027 vnode_t *realvp; 4028 int error; 4029 int zf = ZNEW; 4030 uint64_t parent; 4031 uid_t owner; 4032 boolean_t waited = B_FALSE; 4033 4034 ASSERT(tdvp->v_type == VDIR); 4035 4036 ZFS_ENTER(zfsvfs); 4037 ZFS_VERIFY_ZP(dzp); 4038 zilog = zfsvfs->z_log; 4039 4040 if (VOP_REALVP(svp, &realvp, ct) == 0) 4041 svp = realvp; 4042 4043 /* 4044 * POSIX dictates that we return EPERM here. 4045 * Better choices include ENOTSUP or EISDIR. 4046 */ 4047 if (svp->v_type == VDIR) { 4048 ZFS_EXIT(zfsvfs); 4049 return (SET_ERROR(EPERM)); 4050 } 4051 4052 szp = VTOZ(svp); 4053 ZFS_VERIFY_ZP(szp); 4054 4055 /* 4056 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4057 * ctldir appear to have the same v_vfsp. 4058 */ 4059 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4060 ZFS_EXIT(zfsvfs); 4061 return (SET_ERROR(EXDEV)); 4062 } 4063 4064 /* Prevent links to .zfs/shares files */ 4065 4066 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4067 &parent, sizeof (uint64_t))) != 0) { 4068 ZFS_EXIT(zfsvfs); 4069 return (error); 4070 } 4071 if (parent == zfsvfs->z_shares_dir) { 4072 ZFS_EXIT(zfsvfs); 4073 return (SET_ERROR(EPERM)); 4074 } 4075 4076 if (zfsvfs->z_utf8 && u8_validate(name, 4077 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4078 ZFS_EXIT(zfsvfs); 4079 return (SET_ERROR(EILSEQ)); 4080 } 4081 if (flags & FIGNORECASE) 4082 zf |= ZCILOOK; 4083 4084 /* 4085 * We do not support links between attributes and non-attributes 4086 * because of the potential security risk of creating links 4087 * into "normal" file space in order to circumvent restrictions 4088 * imposed in attribute space. 4089 */ 4090 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4091 ZFS_EXIT(zfsvfs); 4092 return (SET_ERROR(EINVAL)); 4093 } 4094 4095 4096 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4097 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4098 ZFS_EXIT(zfsvfs); 4099 return (SET_ERROR(EPERM)); 4100 } 4101 4102 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4103 ZFS_EXIT(zfsvfs); 4104 return (error); 4105 } 4106 4107 top: 4108 /* 4109 * Attempt to lock directory; fail if entry already exists. 4110 */ 4111 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4112 if (error) { 4113 ZFS_EXIT(zfsvfs); 4114 return (error); 4115 } 4116 4117 tx = dmu_tx_create(zfsvfs->z_os); 4118 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4119 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4120 zfs_sa_upgrade_txholds(tx, szp); 4121 zfs_sa_upgrade_txholds(tx, dzp); 4122 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4123 if (error) { 4124 zfs_dirent_unlock(dl); 4125 if (error == ERESTART) { 4126 waited = B_TRUE; 4127 dmu_tx_wait(tx); 4128 dmu_tx_abort(tx); 4129 goto top; 4130 } 4131 dmu_tx_abort(tx); 4132 ZFS_EXIT(zfsvfs); 4133 return (error); 4134 } 4135 4136 error = zfs_link_create(dl, szp, tx, 0); 4137 4138 if (error == 0) { 4139 uint64_t txtype = TX_LINK; 4140 if (flags & FIGNORECASE) 4141 txtype |= TX_CI; 4142 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4143 } 4144 4145 dmu_tx_commit(tx); 4146 4147 zfs_dirent_unlock(dl); 4148 4149 if (error == 0) { 4150 vnevent_link(svp, ct); 4151 } 4152 4153 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4154 zil_commit(zilog, 0); 4155 4156 ZFS_EXIT(zfsvfs); 4157 return (error); 4158 } 4159 4160 /* 4161 * zfs_null_putapage() is used when the file system has been force 4162 * unmounted. It just drops the pages. 4163 */ 4164 /* ARGSUSED */ 4165 static int 4166 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4167 size_t *lenp, int flags, cred_t *cr) 4168 { 4169 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4170 return (0); 4171 } 4172 4173 /* 4174 * Push a page out to disk, klustering if possible. 4175 * 4176 * IN: vp - file to push page to. 4177 * pp - page to push. 4178 * flags - additional flags. 4179 * cr - credentials of caller. 4180 * 4181 * OUT: offp - start of range pushed. 4182 * lenp - len of range pushed. 4183 * 4184 * RETURN: 0 on success, error code on failure. 4185 * 4186 * NOTE: callers must have locked the page to be pushed. On 4187 * exit, the page (and all other pages in the kluster) must be 4188 * unlocked. 4189 */ 4190 /* ARGSUSED */ 4191 static int 4192 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4193 size_t *lenp, int flags, cred_t *cr) 4194 { 4195 znode_t *zp = VTOZ(vp); 4196 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4197 dmu_tx_t *tx; 4198 u_offset_t off, koff; 4199 size_t len, klen; 4200 int err; 4201 4202 off = pp->p_offset; 4203 len = PAGESIZE; 4204 /* 4205 * If our blocksize is bigger than the page size, try to kluster 4206 * multiple pages so that we write a full block (thus avoiding 4207 * a read-modify-write). 4208 */ 4209 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4210 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4211 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4212 ASSERT(koff <= zp->z_size); 4213 if (koff + klen > zp->z_size) 4214 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4215 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4216 } 4217 ASSERT3U(btop(len), ==, btopr(len)); 4218 4219 /* 4220 * Can't push pages past end-of-file. 4221 */ 4222 if (off >= zp->z_size) { 4223 /* ignore all pages */ 4224 err = 0; 4225 goto out; 4226 } else if (off + len > zp->z_size) { 4227 int npages = btopr(zp->z_size - off); 4228 page_t *trunc; 4229 4230 page_list_break(&pp, &trunc, npages); 4231 /* ignore pages past end of file */ 4232 if (trunc) 4233 pvn_write_done(trunc, flags); 4234 len = zp->z_size - off; 4235 } 4236 4237 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4238 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4239 err = SET_ERROR(EDQUOT); 4240 goto out; 4241 } 4242 tx = dmu_tx_create(zfsvfs->z_os); 4243 dmu_tx_hold_write(tx, zp->z_id, off, len); 4244 4245 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4246 zfs_sa_upgrade_txholds(tx, zp); 4247 err = dmu_tx_assign(tx, TXG_WAIT); 4248 if (err != 0) { 4249 dmu_tx_abort(tx); 4250 goto out; 4251 } 4252 4253 if (zp->z_blksz <= PAGESIZE) { 4254 caddr_t va = zfs_map_page(pp, S_READ); 4255 ASSERT3U(len, <=, PAGESIZE); 4256 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4257 zfs_unmap_page(pp, va); 4258 } else { 4259 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4260 } 4261 4262 if (err == 0) { 4263 uint64_t mtime[2], ctime[2]; 4264 sa_bulk_attr_t bulk[3]; 4265 int count = 0; 4266 4267 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4268 &mtime, 16); 4269 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4270 &ctime, 16); 4271 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4272 &zp->z_pflags, 8); 4273 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4274 B_TRUE); 4275 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 4276 ASSERT0(err); 4277 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4278 } 4279 dmu_tx_commit(tx); 4280 4281 out: 4282 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4283 if (offp) 4284 *offp = off; 4285 if (lenp) 4286 *lenp = len; 4287 4288 return (err); 4289 } 4290 4291 /* 4292 * Copy the portion of the file indicated from pages into the file. 4293 * The pages are stored in a page list attached to the files vnode. 4294 * 4295 * IN: vp - vnode of file to push page data to. 4296 * off - position in file to put data. 4297 * len - amount of data to write. 4298 * flags - flags to control the operation. 4299 * cr - credentials of caller. 4300 * ct - caller context. 4301 * 4302 * RETURN: 0 on success, error code on failure. 4303 * 4304 * Timestamps: 4305 * vp - ctime|mtime updated 4306 */ 4307 /*ARGSUSED*/ 4308 static int 4309 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4310 caller_context_t *ct) 4311 { 4312 znode_t *zp = VTOZ(vp); 4313 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4314 page_t *pp; 4315 size_t io_len; 4316 u_offset_t io_off; 4317 uint_t blksz; 4318 locked_range_t *lr; 4319 int error = 0; 4320 4321 ZFS_ENTER(zfsvfs); 4322 ZFS_VERIFY_ZP(zp); 4323 4324 /* 4325 * There's nothing to do if no data is cached. 4326 */ 4327 if (!vn_has_cached_data(vp)) { 4328 ZFS_EXIT(zfsvfs); 4329 return (0); 4330 } 4331 4332 /* 4333 * Align this request to the file block size in case we kluster. 4334 * XXX - this can result in pretty aggresive locking, which can 4335 * impact simultanious read/write access. One option might be 4336 * to break up long requests (len == 0) into block-by-block 4337 * operations to get narrower locking. 4338 */ 4339 blksz = zp->z_blksz; 4340 if (ISP2(blksz)) 4341 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4342 else 4343 io_off = 0; 4344 if (len > 0 && ISP2(blksz)) 4345 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4346 else 4347 io_len = 0; 4348 4349 if (io_len == 0) { 4350 /* 4351 * Search the entire vp list for pages >= io_off. 4352 */ 4353 lr = rangelock_enter(&zp->z_rangelock, 4354 io_off, UINT64_MAX, RL_WRITER); 4355 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4356 goto out; 4357 } 4358 lr = rangelock_enter(&zp->z_rangelock, io_off, io_len, RL_WRITER); 4359 4360 if (off > zp->z_size) { 4361 /* past end of file */ 4362 rangelock_exit(lr); 4363 ZFS_EXIT(zfsvfs); 4364 return (0); 4365 } 4366 4367 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4368 4369 for (off = io_off; io_off < off + len; io_off += io_len) { 4370 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4371 pp = page_lookup(vp, io_off, 4372 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4373 } else { 4374 pp = page_lookup_nowait(vp, io_off, 4375 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4376 } 4377 4378 if (pp != NULL && pvn_getdirty(pp, flags)) { 4379 int err; 4380 4381 /* 4382 * Found a dirty page to push 4383 */ 4384 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4385 if (err) 4386 error = err; 4387 } else { 4388 io_len = PAGESIZE; 4389 } 4390 } 4391 out: 4392 rangelock_exit(lr); 4393 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4394 zil_commit(zfsvfs->z_log, zp->z_id); 4395 ZFS_EXIT(zfsvfs); 4396 return (error); 4397 } 4398 4399 /*ARGSUSED*/ 4400 void 4401 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4402 { 4403 znode_t *zp = VTOZ(vp); 4404 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4405 int error; 4406 4407 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4408 if (zp->z_sa_hdl == NULL) { 4409 /* 4410 * The fs has been unmounted, or we did a 4411 * suspend/resume and this file no longer exists. 4412 */ 4413 if (vn_has_cached_data(vp)) { 4414 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4415 B_INVAL, cr); 4416 } 4417 4418 mutex_enter(&zp->z_lock); 4419 mutex_enter(&vp->v_lock); 4420 ASSERT(vp->v_count == 1); 4421 VN_RELE_LOCKED(vp); 4422 mutex_exit(&vp->v_lock); 4423 mutex_exit(&zp->z_lock); 4424 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4425 zfs_znode_free(zp); 4426 return; 4427 } 4428 4429 /* 4430 * Attempt to push any data in the page cache. If this fails 4431 * we will get kicked out later in zfs_zinactive(). 4432 */ 4433 if (vn_has_cached_data(vp)) { 4434 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4435 cr); 4436 } 4437 4438 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4439 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4440 4441 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4442 zfs_sa_upgrade_txholds(tx, zp); 4443 error = dmu_tx_assign(tx, TXG_WAIT); 4444 if (error) { 4445 dmu_tx_abort(tx); 4446 } else { 4447 mutex_enter(&zp->z_lock); 4448 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4449 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4450 zp->z_atime_dirty = 0; 4451 mutex_exit(&zp->z_lock); 4452 dmu_tx_commit(tx); 4453 } 4454 } 4455 4456 zfs_zinactive(zp); 4457 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4458 } 4459 4460 /* 4461 * Bounds-check the seek operation. 4462 * 4463 * IN: vp - vnode seeking within 4464 * ooff - old file offset 4465 * noffp - pointer to new file offset 4466 * ct - caller context 4467 * 4468 * RETURN: 0 on success, EINVAL if new offset invalid. 4469 */ 4470 /* ARGSUSED */ 4471 static int 4472 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4473 caller_context_t *ct) 4474 { 4475 if (vp->v_type == VDIR) 4476 return (0); 4477 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4478 } 4479 4480 /* 4481 * Pre-filter the generic locking function to trap attempts to place 4482 * a mandatory lock on a memory mapped file. 4483 */ 4484 static int 4485 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4486 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4487 { 4488 znode_t *zp = VTOZ(vp); 4489 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4490 4491 ZFS_ENTER(zfsvfs); 4492 ZFS_VERIFY_ZP(zp); 4493 4494 /* 4495 * We are following the UFS semantics with respect to mapcnt 4496 * here: If we see that the file is mapped already, then we will 4497 * return an error, but we don't worry about races between this 4498 * function and zfs_map(). 4499 */ 4500 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4501 ZFS_EXIT(zfsvfs); 4502 return (SET_ERROR(EAGAIN)); 4503 } 4504 ZFS_EXIT(zfsvfs); 4505 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4506 } 4507 4508 /* 4509 * If we can't find a page in the cache, we will create a new page 4510 * and fill it with file data. For efficiency, we may try to fill 4511 * multiple pages at once (klustering) to fill up the supplied page 4512 * list. Note that the pages to be filled are held with an exclusive 4513 * lock to prevent access by other threads while they are being filled. 4514 */ 4515 static int 4516 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4517 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4518 { 4519 znode_t *zp = VTOZ(vp); 4520 page_t *pp, *cur_pp; 4521 objset_t *os = zp->z_zfsvfs->z_os; 4522 u_offset_t io_off, total; 4523 size_t io_len; 4524 int err; 4525 4526 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4527 /* 4528 * We only have a single page, don't bother klustering 4529 */ 4530 io_off = off; 4531 io_len = PAGESIZE; 4532 pp = page_create_va(vp, io_off, io_len, 4533 PG_EXCL | PG_WAIT, seg, addr); 4534 } else { 4535 /* 4536 * Try to find enough pages to fill the page list 4537 */ 4538 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4539 &io_len, off, plsz, 0); 4540 } 4541 if (pp == NULL) { 4542 /* 4543 * The page already exists, nothing to do here. 4544 */ 4545 *pl = NULL; 4546 return (0); 4547 } 4548 4549 /* 4550 * Fill the pages in the kluster. 4551 */ 4552 cur_pp = pp; 4553 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4554 caddr_t va; 4555 4556 ASSERT3U(io_off, ==, cur_pp->p_offset); 4557 va = zfs_map_page(cur_pp, S_WRITE); 4558 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4559 DMU_READ_PREFETCH); 4560 zfs_unmap_page(cur_pp, va); 4561 if (err) { 4562 /* On error, toss the entire kluster */ 4563 pvn_read_done(pp, B_ERROR); 4564 /* convert checksum errors into IO errors */ 4565 if (err == ECKSUM) 4566 err = SET_ERROR(EIO); 4567 return (err); 4568 } 4569 cur_pp = cur_pp->p_next; 4570 } 4571 4572 /* 4573 * Fill in the page list array from the kluster starting 4574 * from the desired offset `off'. 4575 * NOTE: the page list will always be null terminated. 4576 */ 4577 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4578 ASSERT(pl == NULL || (*pl)->p_offset == off); 4579 4580 return (0); 4581 } 4582 4583 /* 4584 * Return pointers to the pages for the file region [off, off + len] 4585 * in the pl array. If plsz is greater than len, this function may 4586 * also return page pointers from after the specified region 4587 * (i.e. the region [off, off + plsz]). These additional pages are 4588 * only returned if they are already in the cache, or were created as 4589 * part of a klustered read. 4590 * 4591 * IN: vp - vnode of file to get data from. 4592 * off - position in file to get data from. 4593 * len - amount of data to retrieve. 4594 * plsz - length of provided page list. 4595 * seg - segment to obtain pages for. 4596 * addr - virtual address of fault. 4597 * rw - mode of created pages. 4598 * cr - credentials of caller. 4599 * ct - caller context. 4600 * 4601 * OUT: protp - protection mode of created pages. 4602 * pl - list of pages created. 4603 * 4604 * RETURN: 0 on success, error code on failure. 4605 * 4606 * Timestamps: 4607 * vp - atime updated 4608 */ 4609 /* ARGSUSED */ 4610 static int 4611 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4612 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4613 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4614 { 4615 znode_t *zp = VTOZ(vp); 4616 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4617 page_t **pl0 = pl; 4618 int err = 0; 4619 4620 /* we do our own caching, faultahead is unnecessary */ 4621 if (pl == NULL) 4622 return (0); 4623 else if (len > plsz) 4624 len = plsz; 4625 else 4626 len = P2ROUNDUP(len, PAGESIZE); 4627 ASSERT(plsz >= len); 4628 4629 ZFS_ENTER(zfsvfs); 4630 ZFS_VERIFY_ZP(zp); 4631 4632 if (protp) 4633 *protp = PROT_ALL; 4634 4635 /* 4636 * Loop through the requested range [off, off + len) looking 4637 * for pages. If we don't find a page, we will need to create 4638 * a new page and fill it with data from the file. 4639 */ 4640 while (len > 0) { 4641 if (*pl = page_lookup(vp, off, SE_SHARED)) 4642 *(pl+1) = NULL; 4643 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4644 goto out; 4645 while (*pl) { 4646 ASSERT3U((*pl)->p_offset, ==, off); 4647 off += PAGESIZE; 4648 addr += PAGESIZE; 4649 if (len > 0) { 4650 ASSERT3U(len, >=, PAGESIZE); 4651 len -= PAGESIZE; 4652 } 4653 ASSERT3U(plsz, >=, PAGESIZE); 4654 plsz -= PAGESIZE; 4655 pl++; 4656 } 4657 } 4658 4659 /* 4660 * Fill out the page array with any pages already in the cache. 4661 */ 4662 while (plsz > 0 && 4663 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4664 off += PAGESIZE; 4665 plsz -= PAGESIZE; 4666 } 4667 out: 4668 if (err) { 4669 /* 4670 * Release any pages we have previously locked. 4671 */ 4672 while (pl > pl0) 4673 page_unlock(*--pl); 4674 } else { 4675 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4676 } 4677 4678 *pl = NULL; 4679 4680 ZFS_EXIT(zfsvfs); 4681 return (err); 4682 } 4683 4684 /* 4685 * Request a memory map for a section of a file. This code interacts 4686 * with common code and the VM system as follows: 4687 * 4688 * - common code calls mmap(), which ends up in smmap_common() 4689 * - this calls VOP_MAP(), which takes you into (say) zfs 4690 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4691 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4692 * - zfs_addmap() updates z_mapcnt 4693 */ 4694 /*ARGSUSED*/ 4695 static int 4696 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4697 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4698 caller_context_t *ct) 4699 { 4700 znode_t *zp = VTOZ(vp); 4701 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4702 segvn_crargs_t vn_a; 4703 int error; 4704 4705 ZFS_ENTER(zfsvfs); 4706 ZFS_VERIFY_ZP(zp); 4707 4708 /* 4709 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 4710 */ 4711 4712 if ((prot & PROT_WRITE) && (zp->z_pflags & 4713 (ZFS_IMMUTABLE | ZFS_APPENDONLY))) { 4714 ZFS_EXIT(zfsvfs); 4715 return (SET_ERROR(EPERM)); 4716 } 4717 4718 if ((prot & (PROT_READ | PROT_EXEC)) && 4719 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4720 ZFS_EXIT(zfsvfs); 4721 return (SET_ERROR(EACCES)); 4722 } 4723 4724 if (vp->v_flag & VNOMAP) { 4725 ZFS_EXIT(zfsvfs); 4726 return (SET_ERROR(ENOSYS)); 4727 } 4728 4729 if (off < 0 || len > MAXOFFSET_T - off) { 4730 ZFS_EXIT(zfsvfs); 4731 return (SET_ERROR(ENXIO)); 4732 } 4733 4734 if (vp->v_type != VREG) { 4735 ZFS_EXIT(zfsvfs); 4736 return (SET_ERROR(ENODEV)); 4737 } 4738 4739 /* 4740 * If file is locked, disallow mapping. 4741 */ 4742 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4743 ZFS_EXIT(zfsvfs); 4744 return (SET_ERROR(EAGAIN)); 4745 } 4746 4747 as_rangelock(as); 4748 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4749 if (error != 0) { 4750 as_rangeunlock(as); 4751 ZFS_EXIT(zfsvfs); 4752 return (error); 4753 } 4754 4755 vn_a.vp = vp; 4756 vn_a.offset = (u_offset_t)off; 4757 vn_a.type = flags & MAP_TYPE; 4758 vn_a.prot = prot; 4759 vn_a.maxprot = maxprot; 4760 vn_a.cred = cr; 4761 vn_a.amp = NULL; 4762 vn_a.flags = flags & ~MAP_TYPE; 4763 vn_a.szc = 0; 4764 vn_a.lgrp_mem_policy_flags = 0; 4765 4766 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4767 4768 as_rangeunlock(as); 4769 ZFS_EXIT(zfsvfs); 4770 return (error); 4771 } 4772 4773 /* ARGSUSED */ 4774 static int 4775 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4776 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4777 caller_context_t *ct) 4778 { 4779 uint64_t pages = btopr(len); 4780 4781 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4782 return (0); 4783 } 4784 4785 /* 4786 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4787 * more accurate mtime for the associated file. Since we don't have a way of 4788 * detecting when the data was actually modified, we have to resort to 4789 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4790 * last page is pushed. The problem occurs when the msync() call is omitted, 4791 * which by far the most common case: 4792 * 4793 * open() 4794 * mmap() 4795 * <modify memory> 4796 * munmap() 4797 * close() 4798 * <time lapse> 4799 * putpage() via fsflush 4800 * 4801 * If we wait until fsflush to come along, we can have a modification time that 4802 * is some arbitrary point in the future. In order to prevent this in the 4803 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4804 * torn down. 4805 */ 4806 /* ARGSUSED */ 4807 static int 4808 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4809 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4810 caller_context_t *ct) 4811 { 4812 uint64_t pages = btopr(len); 4813 4814 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4815 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4816 4817 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4818 vn_has_cached_data(vp)) 4819 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4820 4821 return (0); 4822 } 4823 4824 /* 4825 * Free or allocate space in a file. Currently, this function only 4826 * supports the `F_FREESP' command. However, this command is somewhat 4827 * misnamed, as its functionality includes the ability to allocate as 4828 * well as free space. 4829 * 4830 * IN: vp - vnode of file to free data in. 4831 * cmd - action to take (only F_FREESP supported). 4832 * bfp - section of file to free/alloc. 4833 * flag - current file open mode flags. 4834 * offset - current file offset. 4835 * cr - credentials of caller [UNUSED]. 4836 * ct - caller context. 4837 * 4838 * RETURN: 0 on success, error code on failure. 4839 * 4840 * Timestamps: 4841 * vp - ctime|mtime updated 4842 */ 4843 /* ARGSUSED */ 4844 static int 4845 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4846 offset_t offset, cred_t *cr, caller_context_t *ct) 4847 { 4848 znode_t *zp = VTOZ(vp); 4849 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4850 uint64_t off, len; 4851 int error; 4852 4853 ZFS_ENTER(zfsvfs); 4854 ZFS_VERIFY_ZP(zp); 4855 4856 if (cmd != F_FREESP) { 4857 ZFS_EXIT(zfsvfs); 4858 return (SET_ERROR(EINVAL)); 4859 } 4860 4861 /* 4862 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 4863 * callers might not be able to detect properly that we are read-only, 4864 * so check it explicitly here. 4865 */ 4866 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 4867 ZFS_EXIT(zfsvfs); 4868 return (SET_ERROR(EROFS)); 4869 } 4870 4871 if (error = convoff(vp, bfp, 0, offset)) { 4872 ZFS_EXIT(zfsvfs); 4873 return (error); 4874 } 4875 4876 if (bfp->l_len < 0) { 4877 ZFS_EXIT(zfsvfs); 4878 return (SET_ERROR(EINVAL)); 4879 } 4880 4881 off = bfp->l_start; 4882 len = bfp->l_len; /* 0 means from off to end of file */ 4883 4884 error = zfs_freesp(zp, off, len, flag, TRUE); 4885 4886 if (error == 0 && off == 0 && len == 0) 4887 vnevent_truncate(ZTOV(zp), ct); 4888 4889 ZFS_EXIT(zfsvfs); 4890 return (error); 4891 } 4892 4893 /*ARGSUSED*/ 4894 static int 4895 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4896 { 4897 znode_t *zp = VTOZ(vp); 4898 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4899 uint32_t gen; 4900 uint64_t gen64; 4901 uint64_t object = zp->z_id; 4902 zfid_short_t *zfid; 4903 int size, i, error; 4904 4905 ZFS_ENTER(zfsvfs); 4906 ZFS_VERIFY_ZP(zp); 4907 4908 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4909 &gen64, sizeof (uint64_t))) != 0) { 4910 ZFS_EXIT(zfsvfs); 4911 return (error); 4912 } 4913 4914 gen = (uint32_t)gen64; 4915 4916 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4917 if (fidp->fid_len < size) { 4918 fidp->fid_len = size; 4919 ZFS_EXIT(zfsvfs); 4920 return (SET_ERROR(ENOSPC)); 4921 } 4922 4923 zfid = (zfid_short_t *)fidp; 4924 4925 zfid->zf_len = size; 4926 4927 for (i = 0; i < sizeof (zfid->zf_object); i++) 4928 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4929 4930 /* Must have a non-zero generation number to distinguish from .zfs */ 4931 if (gen == 0) 4932 gen = 1; 4933 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4934 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4935 4936 if (size == LONG_FID_LEN) { 4937 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4938 zfid_long_t *zlfid; 4939 4940 zlfid = (zfid_long_t *)fidp; 4941 4942 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4943 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4944 4945 /* XXX - this should be the generation number for the objset */ 4946 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4947 zlfid->zf_setgen[i] = 0; 4948 } 4949 4950 ZFS_EXIT(zfsvfs); 4951 return (0); 4952 } 4953 4954 static int 4955 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4956 caller_context_t *ct) 4957 { 4958 znode_t *zp, *xzp; 4959 zfsvfs_t *zfsvfs; 4960 zfs_dirlock_t *dl; 4961 int error; 4962 4963 switch (cmd) { 4964 case _PC_LINK_MAX: 4965 *valp = ULONG_MAX; 4966 return (0); 4967 4968 case _PC_FILESIZEBITS: 4969 *valp = 64; 4970 return (0); 4971 4972 case _PC_XATTR_EXISTS: 4973 zp = VTOZ(vp); 4974 zfsvfs = zp->z_zfsvfs; 4975 ZFS_ENTER(zfsvfs); 4976 ZFS_VERIFY_ZP(zp); 4977 *valp = 0; 4978 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4979 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4980 if (error == 0) { 4981 zfs_dirent_unlock(dl); 4982 if (!zfs_dirempty(xzp)) 4983 *valp = 1; 4984 VN_RELE(ZTOV(xzp)); 4985 } else if (error == ENOENT) { 4986 /* 4987 * If there aren't extended attributes, it's the 4988 * same as having zero of them. 4989 */ 4990 error = 0; 4991 } 4992 ZFS_EXIT(zfsvfs); 4993 return (error); 4994 4995 case _PC_SATTR_ENABLED: 4996 case _PC_SATTR_EXISTS: 4997 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4998 (vp->v_type == VREG || vp->v_type == VDIR); 4999 return (0); 5000 5001 case _PC_ACCESS_FILTERING: 5002 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 5003 vp->v_type == VDIR; 5004 return (0); 5005 5006 case _PC_ACL_ENABLED: 5007 *valp = _ACL_ACE_ENABLED; 5008 return (0); 5009 5010 case _PC_MIN_HOLE_SIZE: 5011 *valp = (ulong_t)SPA_MINBLOCKSIZE; 5012 return (0); 5013 5014 case _PC_TIMESTAMP_RESOLUTION: 5015 /* nanosecond timestamp resolution */ 5016 *valp = 1L; 5017 return (0); 5018 5019 default: 5020 return (fs_pathconf(vp, cmd, valp, cr, ct)); 5021 } 5022 } 5023 5024 /*ARGSUSED*/ 5025 static int 5026 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5027 caller_context_t *ct) 5028 { 5029 znode_t *zp = VTOZ(vp); 5030 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5031 int error; 5032 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5033 5034 ZFS_ENTER(zfsvfs); 5035 ZFS_VERIFY_ZP(zp); 5036 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5037 ZFS_EXIT(zfsvfs); 5038 5039 return (error); 5040 } 5041 5042 /*ARGSUSED*/ 5043 static int 5044 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5045 caller_context_t *ct) 5046 { 5047 znode_t *zp = VTOZ(vp); 5048 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5049 int error; 5050 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5051 zilog_t *zilog = zfsvfs->z_log; 5052 5053 ZFS_ENTER(zfsvfs); 5054 ZFS_VERIFY_ZP(zp); 5055 5056 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5057 5058 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5059 zil_commit(zilog, 0); 5060 5061 ZFS_EXIT(zfsvfs); 5062 return (error); 5063 } 5064 5065 /* 5066 * The smallest read we may consider to loan out an arcbuf. 5067 * This must be a power of 2. 5068 */ 5069 int zcr_blksz_min = (1 << 10); /* 1K */ 5070 /* 5071 * If set to less than the file block size, allow loaning out of an 5072 * arcbuf for a partial block read. This must be a power of 2. 5073 */ 5074 int zcr_blksz_max = (1 << 17); /* 128K */ 5075 5076 /*ARGSUSED*/ 5077 static int 5078 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5079 caller_context_t *ct) 5080 { 5081 znode_t *zp = VTOZ(vp); 5082 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5083 int max_blksz = zfsvfs->z_max_blksz; 5084 uio_t *uio = &xuio->xu_uio; 5085 ssize_t size = uio->uio_resid; 5086 offset_t offset = uio->uio_loffset; 5087 int blksz; 5088 int fullblk, i; 5089 arc_buf_t *abuf; 5090 ssize_t maxsize; 5091 int preamble, postamble; 5092 5093 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5094 return (SET_ERROR(EINVAL)); 5095 5096 ZFS_ENTER(zfsvfs); 5097 ZFS_VERIFY_ZP(zp); 5098 switch (ioflag) { 5099 case UIO_WRITE: 5100 /* 5101 * Loan out an arc_buf for write if write size is bigger than 5102 * max_blksz, and the file's block size is also max_blksz. 5103 */ 5104 blksz = max_blksz; 5105 if (size < blksz || zp->z_blksz != blksz) { 5106 ZFS_EXIT(zfsvfs); 5107 return (SET_ERROR(EINVAL)); 5108 } 5109 /* 5110 * Caller requests buffers for write before knowing where the 5111 * write offset might be (e.g. NFS TCP write). 5112 */ 5113 if (offset == -1) { 5114 preamble = 0; 5115 } else { 5116 preamble = P2PHASE(offset, blksz); 5117 if (preamble) { 5118 preamble = blksz - preamble; 5119 size -= preamble; 5120 } 5121 } 5122 5123 postamble = P2PHASE(size, blksz); 5124 size -= postamble; 5125 5126 fullblk = size / blksz; 5127 (void) dmu_xuio_init(xuio, 5128 (preamble != 0) + fullblk + (postamble != 0)); 5129 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5130 int, postamble, int, 5131 (preamble != 0) + fullblk + (postamble != 0)); 5132 5133 /* 5134 * Have to fix iov base/len for partial buffers. They 5135 * currently represent full arc_buf's. 5136 */ 5137 if (preamble) { 5138 /* data begins in the middle of the arc_buf */ 5139 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5140 blksz); 5141 ASSERT(abuf); 5142 (void) dmu_xuio_add(xuio, abuf, 5143 blksz - preamble, preamble); 5144 } 5145 5146 for (i = 0; i < fullblk; i++) { 5147 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5148 blksz); 5149 ASSERT(abuf); 5150 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5151 } 5152 5153 if (postamble) { 5154 /* data ends in the middle of the arc_buf */ 5155 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5156 blksz); 5157 ASSERT(abuf); 5158 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5159 } 5160 break; 5161 case UIO_READ: 5162 /* 5163 * Loan out an arc_buf for read if the read size is larger than 5164 * the current file block size. Block alignment is not 5165 * considered. Partial arc_buf will be loaned out for read. 5166 */ 5167 blksz = zp->z_blksz; 5168 if (blksz < zcr_blksz_min) 5169 blksz = zcr_blksz_min; 5170 if (blksz > zcr_blksz_max) 5171 blksz = zcr_blksz_max; 5172 /* avoid potential complexity of dealing with it */ 5173 if (blksz > max_blksz) { 5174 ZFS_EXIT(zfsvfs); 5175 return (SET_ERROR(EINVAL)); 5176 } 5177 5178 maxsize = zp->z_size - uio->uio_loffset; 5179 if (size > maxsize) 5180 size = maxsize; 5181 5182 if (size < blksz || vn_has_cached_data(vp)) { 5183 ZFS_EXIT(zfsvfs); 5184 return (SET_ERROR(EINVAL)); 5185 } 5186 break; 5187 default: 5188 ZFS_EXIT(zfsvfs); 5189 return (SET_ERROR(EINVAL)); 5190 } 5191 5192 uio->uio_extflg = UIO_XUIO; 5193 XUIO_XUZC_RW(xuio) = ioflag; 5194 ZFS_EXIT(zfsvfs); 5195 return (0); 5196 } 5197 5198 /*ARGSUSED*/ 5199 static int 5200 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5201 { 5202 int i; 5203 arc_buf_t *abuf; 5204 int ioflag = XUIO_XUZC_RW(xuio); 5205 5206 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5207 5208 i = dmu_xuio_cnt(xuio); 5209 while (i-- > 0) { 5210 abuf = dmu_xuio_arcbuf(xuio, i); 5211 /* 5212 * if abuf == NULL, it must be a write buffer 5213 * that has been returned in zfs_write(). 5214 */ 5215 if (abuf) 5216 dmu_return_arcbuf(abuf); 5217 ASSERT(abuf || ioflag == UIO_WRITE); 5218 } 5219 5220 dmu_xuio_fini(xuio); 5221 return (0); 5222 } 5223 5224 /* 5225 * Predeclare these here so that the compiler assumes that 5226 * this is an "old style" function declaration that does 5227 * not include arguments => we won't get type mismatch errors 5228 * in the initializations that follow. 5229 */ 5230 static int zfs_inval(); 5231 static int zfs_isdir(); 5232 5233 static int 5234 zfs_inval() 5235 { 5236 return (SET_ERROR(EINVAL)); 5237 } 5238 5239 static int 5240 zfs_isdir() 5241 { 5242 return (SET_ERROR(EISDIR)); 5243 } 5244 /* 5245 * Directory vnode operations template 5246 */ 5247 vnodeops_t *zfs_dvnodeops; 5248 const fs_operation_def_t zfs_dvnodeops_template[] = { 5249 VOPNAME_OPEN, { .vop_open = zfs_open }, 5250 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5251 VOPNAME_READ, { .error = zfs_isdir }, 5252 VOPNAME_WRITE, { .error = zfs_isdir }, 5253 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5254 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5255 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5256 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5257 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5258 VOPNAME_CREATE, { .vop_create = zfs_create }, 5259 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5260 VOPNAME_LINK, { .vop_link = zfs_link }, 5261 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5262 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5263 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5264 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5265 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5266 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5267 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5268 VOPNAME_FID, { .vop_fid = zfs_fid }, 5269 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5270 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5271 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5272 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5273 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5274 NULL, NULL 5275 }; 5276 5277 /* 5278 * Regular file vnode operations template 5279 */ 5280 vnodeops_t *zfs_fvnodeops; 5281 const fs_operation_def_t zfs_fvnodeops_template[] = { 5282 VOPNAME_OPEN, { .vop_open = zfs_open }, 5283 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5284 VOPNAME_READ, { .vop_read = zfs_read }, 5285 VOPNAME_WRITE, { .vop_write = zfs_write }, 5286 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5287 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5288 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5289 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5290 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5291 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5292 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5293 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5294 VOPNAME_FID, { .vop_fid = zfs_fid }, 5295 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5296 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5297 VOPNAME_SPACE, { .vop_space = zfs_space }, 5298 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5299 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5300 VOPNAME_MAP, { .vop_map = zfs_map }, 5301 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5302 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5303 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5304 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5305 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5306 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5307 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5308 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5309 NULL, NULL 5310 }; 5311 5312 /* 5313 * Symbolic link vnode operations template 5314 */ 5315 vnodeops_t *zfs_symvnodeops; 5316 const fs_operation_def_t zfs_symvnodeops_template[] = { 5317 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5318 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5319 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5320 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5321 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5322 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5323 VOPNAME_FID, { .vop_fid = zfs_fid }, 5324 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5325 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5326 NULL, NULL 5327 }; 5328 5329 /* 5330 * special share hidden files vnode operations template 5331 */ 5332 vnodeops_t *zfs_sharevnodeops; 5333 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5334 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5335 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5336 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5337 VOPNAME_FID, { .vop_fid = zfs_fid }, 5338 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5339 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5340 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5341 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5342 NULL, NULL 5343 }; 5344 5345 /* 5346 * Extended attribute directory vnode operations template 5347 * 5348 * This template is identical to the directory vnodes 5349 * operation template except for restricted operations: 5350 * VOP_MKDIR() 5351 * VOP_SYMLINK() 5352 * 5353 * Note that there are other restrictions embedded in: 5354 * zfs_create() - restrict type to VREG 5355 * zfs_link() - no links into/out of attribute space 5356 * zfs_rename() - no moves into/out of attribute space 5357 */ 5358 vnodeops_t *zfs_xdvnodeops; 5359 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5360 VOPNAME_OPEN, { .vop_open = zfs_open }, 5361 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5362 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5363 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5364 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5365 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5366 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5367 VOPNAME_CREATE, { .vop_create = zfs_create }, 5368 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5369 VOPNAME_LINK, { .vop_link = zfs_link }, 5370 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5371 VOPNAME_MKDIR, { .error = zfs_inval }, 5372 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5373 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5374 VOPNAME_SYMLINK, { .error = zfs_inval }, 5375 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5376 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5377 VOPNAME_FID, { .vop_fid = zfs_fid }, 5378 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5379 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5380 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5381 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5382 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5383 NULL, NULL 5384 }; 5385 5386 /* 5387 * Error vnode operations template 5388 */ 5389 vnodeops_t *zfs_evnodeops; 5390 const fs_operation_def_t zfs_evnodeops_template[] = { 5391 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5392 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5393 NULL, NULL 5394 }; 5395