xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision 2caf0dcd2abc26b477e317999994020212790d38)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/vnode.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/kmem.h>
39 #include <sys/taskq.h>
40 #include <sys/uio.h>
41 #include <sys/vmsystm.h>
42 #include <sys/atomic.h>
43 #include <vm/seg_vn.h>
44 #include <vm/pvn.h>
45 #include <vm/as.h>
46 #include <sys/mman.h>
47 #include <sys/pathname.h>
48 #include <sys/cmn_err.h>
49 #include <sys/errno.h>
50 #include <sys/unistd.h>
51 #include <sys/zfs_vfsops.h>
52 #include <sys/zfs_dir.h>
53 #include <sys/zfs_acl.h>
54 #include <sys/zfs_ioctl.h>
55 #include <sys/fs/zfs.h>
56 #include <sys/dmu.h>
57 #include <sys/spa.h>
58 #include <sys/txg.h>
59 #include <sys/refcount.h>  /* temporary for debugging purposes */
60 #include <sys/dbuf.h>
61 #include <sys/zap.h>
62 #include <sys/dirent.h>
63 #include <sys/policy.h>
64 #include <sys/sunddi.h>
65 #include <sys/filio.h>
66 #include "fs/fs_subr.h"
67 #include <sys/zfs_ctldir.h>
68 #include <sys/dnlc.h>
69 
70 /*
71  * Programming rules.
72  *
73  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
74  * properly lock its in-core state, create a DMU transaction, do the work,
75  * record this work in the intent log (ZIL), commit the DMU transaction,
76  * and wait the the intent log to commit if it's is a synchronous operation.
77  * Morover, the vnode ops must work in both normal and log replay context.
78  * The ordering of events is important to avoid deadlocks and references
79  * to freed memory.  The example below illustrates the following Big Rules:
80  *
81  *  (1) A check must be made in each zfs thread for a mounted file system.
82  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
83  *	A ZFS_EXIT(zfsvfs) is needed before all returns.
84  *
85  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
86  *	and ZFS_EXIT(). This is for 3 reasons:
87  *	First, if it's the last reference, the vnode/znode
88  *	can be freed, so the zp may point to freed memory.  Second, the last
89  *	reference will call zfs_zinactive(), which may induce a lot of work --
90  *	pushing cached pages (which requires z_grow_lock) and syncing out
91  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
92  *	which could deadlock the system if you were already holding one.
93  *
94  *  (3)	Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign().
95  *	In normal operation, this will be TXG_NOWAIT.  During ZIL replay,
96  *	it will be a specific txg.  Either way, dmu_tx_assign() never blocks.
97  *	This is critical because we don't want to block while holding locks.
98  *	Note, in particular, that if a lock is sometimes acquired before
99  *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
100  *	use a non-blocking assign can deadlock the system.  The scenario:
101  *
102  *	Thread A has grabbed a lock before calling dmu_tx_assign().
103  *	Thread B is in an already-assigned tx, and blocks for this lock.
104  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
105  *	forever, because the previous txg can't quiesce until B's tx commits.
106  *
107  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
108  *	then drop all locks, call txg_wait_open(), and try again.
109  *
110  *  (4)	If the operation succeeded, generate the intent log entry for it
111  *	before dropping locks.  This ensures that the ordering of events
112  *	in the intent log matches the order in which they actually occurred.
113  *
114  *  (5)	At the end of each vnode op, the DMU tx must always commit,
115  *	regardless of whether there were any errors.
116  *
117  *  (6)	After dropping all locks, invoke zil_commit(zilog, seq, ioflag)
118  *	to ensure that synchronous semantics are provided when necessary.
119  *
120  * In general, this is how things should be ordered in each vnode op:
121  *
122  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
123  * top:
124  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
125  *	rw_enter(...);			// grab any other locks you need
126  *	tx = dmu_tx_create(...);	// get DMU tx
127  *	dmu_tx_hold_*();		// hold each object you might modify
128  *	error = dmu_tx_assign(tx, zfsvfs->z_assign);	// try to assign
129  *	if (error) {
130  *		dmu_tx_abort(tx);	// abort DMU tx
131  *		rw_exit(...);		// drop locks
132  *		zfs_dirent_unlock(dl);	// unlock directory entry
133  *		VN_RELE(...);		// release held vnodes
134  *		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
135  *			txg_wait_open(dmu_objset_pool(os), 0);
136  *			goto top;
137  *		}
138  *		ZFS_EXIT(zfsvfs);	// finished in zfs
139  *		return (error);		// really out of space
140  *	}
141  *	error = do_real_work();		// do whatever this VOP does
142  *	if (error == 0)
143  *		seq = zfs_log_*(...);	// on success, make ZIL entry
144  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
145  *	rw_exit(...);			// drop locks
146  *	zfs_dirent_unlock(dl);		// unlock directory entry
147  *	VN_RELE(...);			// release held vnodes
148  *	zil_commit(zilog, seq, ioflag);	// synchronous when necessary
149  *	ZFS_EXIT(zfsvfs);		// finished in zfs
150  *	return (error);			// done, report error
151  */
152 
153 /* ARGSUSED */
154 static int
155 zfs_open(vnode_t **vpp, int flag, cred_t *cr)
156 {
157 	return (0);
158 }
159 
160 /* ARGSUSED */
161 static int
162 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr)
163 {
164 	/*
165 	 * Clean up any locks held by this process on the vp.
166 	 */
167 	cleanlocks(vp, ddi_get_pid(), 0);
168 	cleanshares(vp, ddi_get_pid());
169 
170 	return (0);
171 }
172 
173 /*
174  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
175  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
176  */
177 static int
178 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
179 {
180 	znode_t	*zp = VTOZ(vp);
181 	uint64_t noff = (uint64_t)*off; /* new offset */
182 	uint64_t file_sz;
183 	int error;
184 	boolean_t hole;
185 
186 	rw_enter(&zp->z_grow_lock, RW_READER);
187 	file_sz = zp->z_phys->zp_size;
188 	if (noff >= file_sz)  {
189 		rw_exit(&zp->z_grow_lock);
190 		return (ENXIO);
191 	}
192 
193 	if (cmd == _FIO_SEEK_HOLE)
194 		hole = B_TRUE;
195 	else
196 		hole = B_FALSE;
197 
198 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
199 	rw_exit(&zp->z_grow_lock);
200 
201 	/* end of file? */
202 	if ((error == ESRCH) || (noff > file_sz)) {
203 		/*
204 		 * Handle the virtual hole at the end of file.
205 		 */
206 		if (hole) {
207 			*off = file_sz;
208 			return (0);
209 		}
210 		return (ENXIO);
211 	}
212 
213 	if (noff < *off)
214 		return (error);
215 	*off = noff;
216 	return (error);
217 }
218 
219 /* ARGSUSED */
220 static int
221 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
222     int *rvalp)
223 {
224 	offset_t off;
225 	int error;
226 	zfsvfs_t *zfsvfs;
227 
228 	switch (com) {
229 	    case _FIOFFS:
230 		return (zfs_sync(vp->v_vfsp, 0, cred));
231 
232 		/*
233 		 * The following two ioctls are used by bfu.  Faking out,
234 		 * necessary to avoid bfu errors.
235 		 */
236 	    case _FIOGDIO:
237 	    case _FIOSDIO:
238 		return (0);
239 
240 	    case _FIO_SEEK_DATA:
241 	    case _FIO_SEEK_HOLE:
242 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
243 			return (EFAULT);
244 
245 		zfsvfs = VTOZ(vp)->z_zfsvfs;
246 		ZFS_ENTER(zfsvfs);
247 
248 		/* offset parameter is in/out */
249 		error = zfs_holey(vp, com, &off);
250 		ZFS_EXIT(zfsvfs);
251 		if (error)
252 			return (error);
253 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
254 			return (EFAULT);
255 		return (0);
256 	}
257 	return (ENOTTY);
258 }
259 
260 /*
261  * When a file is memory mapped, we must keep the IO data synchronized
262  * between the DMU cache and the memory mapped pages.  What this means:
263  *
264  * On Write:	If we find a memory mapped page, we write to *both*
265  *		the page and the dmu buffer.
266  *
267  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
268  *	the file is memory mapped.
269  */
270 static int
271 mappedwrite(vnode_t *vp, uint64_t woff, int nbytes, uio_t *uio, dmu_tx_t *tx)
272 {
273 	znode_t	*zp = VTOZ(vp);
274 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
275 	int64_t	start, off;
276 	int len = nbytes;
277 	int error = 0;
278 
279 	start = uio->uio_loffset;
280 	off = start & PAGEOFFSET;
281 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
282 		page_t *pp;
283 		uint64_t bytes = MIN(PAGESIZE - off, len);
284 
285 		/*
286 		 * We don't want a new page to "appear" in the middle of
287 		 * the file update (because it may not get the write
288 		 * update data), so we grab a lock to block
289 		 * zfs_getpage().
290 		 */
291 		rw_enter(&zp->z_map_lock, RW_WRITER);
292 		if (pp = page_lookup(vp, start, SE_SHARED)) {
293 			caddr_t va;
294 
295 			rw_exit(&zp->z_map_lock);
296 			va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L);
297 			error = uiomove(va+off, bytes, UIO_WRITE, uio);
298 			if (error == 0) {
299 				dmu_write(zfsvfs->z_os, zp->z_id,
300 				    woff, bytes, va+off, tx);
301 			}
302 			ppmapout(va);
303 			page_unlock(pp);
304 		} else {
305 			error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
306 			    woff, bytes, uio, tx);
307 			rw_exit(&zp->z_map_lock);
308 		}
309 		len -= bytes;
310 		woff += bytes;
311 		off = 0;
312 		if (error)
313 			break;
314 	}
315 	return (error);
316 }
317 
318 /*
319  * When a file is memory mapped, we must keep the IO data synchronized
320  * between the DMU cache and the memory mapped pages.  What this means:
321  *
322  * On Read:	We "read" preferentially from memory mapped pages,
323  *		else we default from the dmu buffer.
324  *
325  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
326  *	the file is memory mapped.
327  */
328 static int
329 mappedread(vnode_t *vp, char *addr, int nbytes, uio_t *uio)
330 {
331 	int64_t	start, off, bytes;
332 	int len = nbytes;
333 	int error = 0;
334 
335 	start = uio->uio_loffset;
336 	off = start & PAGEOFFSET;
337 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
338 		page_t *pp;
339 
340 		bytes = MIN(PAGESIZE - off, len);
341 		if (pp = page_lookup(vp, start, SE_SHARED)) {
342 			caddr_t va;
343 
344 			va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L);
345 			error = uiomove(va + off, bytes, UIO_READ, uio);
346 			ppmapout(va);
347 			page_unlock(pp);
348 		} else {
349 			/* XXX use dmu_read here? */
350 			error = uiomove(addr, bytes, UIO_READ, uio);
351 		}
352 		len -= bytes;
353 		addr += bytes;
354 		off = 0;
355 		if (error)
356 			break;
357 	}
358 	return (error);
359 }
360 
361 uint_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
362 
363 /*
364  * Read bytes from specified file into supplied buffer.
365  *
366  *	IN:	vp	- vnode of file to be read from.
367  *		uio	- structure supplying read location, range info,
368  *			  and return buffer.
369  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
370  *		cr	- credentials of caller.
371  *
372  *	OUT:	uio	- updated offset and range, buffer filled.
373  *
374  *	RETURN:	0 if success
375  *		error code if failure
376  *
377  * Side Effects:
378  *	vp - atime updated if byte count > 0
379  */
380 /* ARGSUSED */
381 static int
382 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
383 {
384 	znode_t		*zp = VTOZ(vp);
385 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
386 	uint64_t	delta;
387 	ssize_t		n, size, cnt, ndone;
388 	int		error, i, numbufs;
389 	dmu_buf_t	*dbp, **dbpp;
390 
391 	ZFS_ENTER(zfsvfs);
392 
393 	/*
394 	 * Validate file offset
395 	 */
396 	if (uio->uio_loffset < (offset_t)0) {
397 		ZFS_EXIT(zfsvfs);
398 		return (EINVAL);
399 	}
400 
401 	/*
402 	 * Fasttrack empty reads
403 	 */
404 	if (uio->uio_resid == 0) {
405 		ZFS_EXIT(zfsvfs);
406 		return (0);
407 	}
408 
409 	/*
410 	 * Check for region locks
411 	 */
412 	if (MANDMODE((mode_t)zp->z_phys->zp_mode)) {
413 		if (error = chklock(vp, FREAD,
414 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
415 			ZFS_EXIT(zfsvfs);
416 			return (error);
417 		}
418 	}
419 
420 	/*
421 	 * If we're in FRSYNC mode, sync out this znode before reading it.
422 	 */
423 	zil_commit(zfsvfs->z_log, zp->z_last_itx, ioflag & FRSYNC);
424 
425 	/*
426 	 * Make sure nobody restructures the file (changes block size)
427 	 * in the middle of the read.
428 	 */
429 	rw_enter(&zp->z_grow_lock, RW_READER);
430 	/*
431 	 * If we are reading past end-of-file we can skip
432 	 * to the end; but we might still need to set atime.
433 	 */
434 	if (uio->uio_loffset >= zp->z_phys->zp_size) {
435 		cnt = 0;
436 		error = 0;
437 		goto out;
438 	}
439 
440 	cnt = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset);
441 
442 	for (ndone = 0; ndone < cnt; ndone += zfs_read_chunk_size) {
443 		ASSERT(uio->uio_loffset < zp->z_phys->zp_size);
444 		n = MIN(zfs_read_chunk_size,
445 		    zp->z_phys->zp_size - uio->uio_loffset);
446 		n = MIN(n, cnt);
447 		error = dmu_buf_hold_array(zfsvfs->z_os, zp->z_id,
448 		    uio->uio_loffset, n, TRUE, FTAG, &numbufs, &dbpp);
449 		if (error)
450 			goto out;
451 		/*
452 		 * Compute the adjustment to align the dmu buffers
453 		 * with the uio buffer.
454 		 */
455 		delta = uio->uio_loffset - dbpp[0]->db_offset;
456 
457 		for (i = 0; i < numbufs; i++) {
458 			if (n < 0)
459 				break;
460 			dbp = dbpp[i];
461 			size = dbp->db_size - delta;
462 			/*
463 			 * XXX -- this is correct, but may be suboptimal.
464 			 * If the pages are all clean, we don't need to
465 			 * go through mappedread().  Maybe the VMODSORT
466 			 * stuff can help us here.
467 			 */
468 			if (vn_has_cached_data(vp)) {
469 				error = mappedread(vp, (caddr_t)dbp->db_data +
470 				    delta, (n < size ? n : size), uio);
471 			} else {
472 				error = uiomove((caddr_t)dbp->db_data + delta,
473 					(n < size ? n : size), UIO_READ, uio);
474 			}
475 			if (error) {
476 				dmu_buf_rele_array(dbpp, numbufs, FTAG);
477 				goto out;
478 			}
479 			n -= dbp->db_size;
480 			if (delta) {
481 				n += delta;
482 				delta = 0;
483 			}
484 		}
485 		dmu_buf_rele_array(dbpp, numbufs, FTAG);
486 	}
487 out:
488 	rw_exit(&zp->z_grow_lock);
489 
490 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
491 	ZFS_EXIT(zfsvfs);
492 	return (error);
493 }
494 
495 /*
496  * Fault in the pages of the first n bytes specified by the uio structure.
497  * 1 byte in each page is touched and the uio struct is unmodified.
498  * Any error will exit this routine as this is only a best
499  * attempt to get the pages resident. This is a copy of ufs_trans_touch().
500  */
501 static void
502 zfs_prefault_write(ssize_t n, struct uio *uio)
503 {
504 	struct iovec *iov;
505 	ulong_t cnt, incr;
506 	caddr_t p;
507 	uint8_t tmp;
508 
509 	iov = uio->uio_iov;
510 
511 	while (n) {
512 		cnt = MIN(iov->iov_len, n);
513 		if (cnt == 0) {
514 			/* empty iov entry */
515 			iov++;
516 			continue;
517 		}
518 		n -= cnt;
519 		/*
520 		 * touch each page in this segment.
521 		 */
522 		p = iov->iov_base;
523 		while (cnt) {
524 			switch (uio->uio_segflg) {
525 			case UIO_USERSPACE:
526 			case UIO_USERISPACE:
527 				if (fuword8(p, &tmp))
528 					return;
529 				break;
530 			case UIO_SYSSPACE:
531 				if (kcopy(p, &tmp, 1))
532 					return;
533 				break;
534 			}
535 			incr = MIN(cnt, PAGESIZE);
536 			p += incr;
537 			cnt -= incr;
538 		}
539 		/*
540 		 * touch the last byte in case it straddles a page.
541 		 */
542 		p--;
543 		switch (uio->uio_segflg) {
544 		case UIO_USERSPACE:
545 		case UIO_USERISPACE:
546 			if (fuword8(p, &tmp))
547 				return;
548 			break;
549 		case UIO_SYSSPACE:
550 			if (kcopy(p, &tmp, 1))
551 				return;
552 			break;
553 		}
554 		iov++;
555 	}
556 }
557 
558 /*
559  * Write the bytes to a file.
560  *
561  *	IN:	vp	- vnode of file to be written to.
562  *		uio	- structure supplying write location, range info,
563  *			  and data buffer.
564  *		ioflag	- FAPPEND flag set if in append mode.
565  *		cr	- credentials of caller.
566  *
567  *	OUT:	uio	- updated offset and range.
568  *
569  *	RETURN:	0 if success
570  *		error code if failure
571  *
572  * Timestamps:
573  *	vp - ctime|mtime updated if byte count > 0
574  *
575  * Note: zfs_write() holds z_append_lock across calls to txg_wait_open().
576  * It has to because of the semantics of FAPPEND.  The implication is that
577  * we must never grab z_append_lock while in an assigned tx.
578  */
579 /* ARGSUSED */
580 static int
581 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
582 {
583 	znode_t		*zp = VTOZ(vp);
584 	rlim64_t	limit = uio->uio_llimit;
585 	ssize_t		start_resid = uio->uio_resid;
586 	ssize_t		tx_bytes;
587 	uint64_t	end_size;
588 	dmu_tx_t	*tx;
589 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
590 	zilog_t		*zilog = zfsvfs->z_log;
591 	uint64_t	seq = 0;
592 	offset_t	woff;
593 	ssize_t		n, nbytes;
594 	int		max_blksz = zfsvfs->z_max_blksz;
595 	int		need_append_lock, error;
596 	krw_t		grow_rw = RW_READER;
597 
598 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
599 		limit = MAXOFFSET_T;
600 
601 	n = start_resid;
602 
603 	/*
604 	 * Fasttrack empty write
605 	 */
606 	if (n == 0)
607 		return (0);
608 
609 	ZFS_ENTER(zfsvfs);
610 
611 	/*
612 	 * Pre-fault the pages to ensure slow (eg NFS) pages don't hold up txg
613 	 */
614 	zfs_prefault_write(MIN(start_resid, SPA_MAXBLOCKSIZE), uio);
615 
616 	/*
617 	 * If in append mode, set the io offset pointer to eof.
618 	 */
619 	need_append_lock = ioflag & FAPPEND;
620 	if (need_append_lock) {
621 		rw_enter(&zp->z_append_lock, RW_WRITER);
622 		woff = uio->uio_loffset = zp->z_phys->zp_size;
623 	} else {
624 		woff = uio->uio_loffset;
625 		/*
626 		 * Validate file offset
627 		 */
628 		if (woff < 0) {
629 			ZFS_EXIT(zfsvfs);
630 			return (EINVAL);
631 		}
632 
633 		/*
634 		 * If this write could change the file length,
635 		 * we need to synchronize with "appenders".
636 		 */
637 		if (woff < limit - n && woff + n > zp->z_phys->zp_size) {
638 			need_append_lock = TRUE;
639 			rw_enter(&zp->z_append_lock, RW_READER);
640 		}
641 	}
642 
643 	if (woff >= limit) {
644 		error = EFBIG;
645 		goto no_tx_done;
646 	}
647 
648 	if ((woff + n) > limit || woff > (limit - n))
649 		n = limit - woff;
650 
651 	/*
652 	 * Check for region locks
653 	 */
654 	if (MANDMODE((mode_t)zp->z_phys->zp_mode) &&
655 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0)
656 		goto no_tx_done;
657 top:
658 	/*
659 	 * Make sure nobody restructures the file (changes block size)
660 	 * in the middle of the write.
661 	 */
662 	rw_enter(&zp->z_grow_lock, grow_rw);
663 
664 	end_size = MAX(zp->z_phys->zp_size, woff + n);
665 	tx = dmu_tx_create(zfsvfs->z_os);
666 	dmu_tx_hold_bonus(tx, zp->z_id);
667 	dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
668 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
669 	if (error) {
670 		dmu_tx_abort(tx);
671 		rw_exit(&zp->z_grow_lock);
672 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
673 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
674 			goto top;
675 		}
676 		goto no_tx_done;
677 	}
678 
679 	if (end_size > zp->z_blksz &&
680 	    (!ISP2(zp->z_blksz) || zp->z_blksz < max_blksz)) {
681 		uint64_t new_blksz;
682 		/*
683 		 * This write will increase the file size beyond
684 		 * the current block size so increase the block size.
685 		 */
686 		if (grow_rw == RW_READER && !rw_tryupgrade(&zp->z_grow_lock)) {
687 			dmu_tx_commit(tx);
688 			rw_exit(&zp->z_grow_lock);
689 			grow_rw = RW_WRITER;
690 			goto top;
691 		}
692 		if (zp->z_blksz > max_blksz) {
693 			ASSERT(!ISP2(zp->z_blksz));
694 			new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
695 		} else {
696 			new_blksz = MIN(end_size, max_blksz);
697 		}
698 		error = zfs_grow_blocksize(zp, new_blksz, tx);
699 		if (error) {
700 			tx_bytes = 0;
701 			goto tx_done;
702 		}
703 	}
704 
705 	if (grow_rw == RW_WRITER) {
706 		rw_downgrade(&zp->z_grow_lock);
707 		grow_rw = RW_READER;
708 	}
709 
710 	/*
711 	 * The file data does not fit in the znode "cache", so we
712 	 * will be writing to the file block data buffers.
713 	 * Each buffer will be written in a separate transaction;
714 	 * this keeps the intent log records small and allows us
715 	 * to do more fine-grained space accounting.
716 	 */
717 	while (n > 0) {
718 		/*
719 		 * XXX - should we really limit each write to z_max_blksz?
720 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
721 		 */
722 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
723 		rw_enter(&zp->z_map_lock, RW_READER);
724 
725 		tx_bytes = uio->uio_resid;
726 		if (vn_has_cached_data(vp)) {
727 			rw_exit(&zp->z_map_lock);
728 			error = mappedwrite(vp, woff, nbytes, uio, tx);
729 		} else {
730 			error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
731 			    woff, nbytes, uio, tx);
732 			rw_exit(&zp->z_map_lock);
733 		}
734 		tx_bytes -= uio->uio_resid;
735 
736 		if (error) {
737 			/* XXX - do we need to "clean up" the dmu buffer? */
738 			break;
739 		}
740 
741 		ASSERT(tx_bytes == nbytes);
742 
743 		n -= nbytes;
744 		if (n <= 0)
745 			break;
746 
747 		/*
748 		 * We have more work ahead of us, so wrap up this transaction
749 		 * and start another.  Exact same logic as tx_done below.
750 		 */
751 		while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) {
752 			dmu_buf_will_dirty(zp->z_dbuf, tx);
753 			(void) atomic_cas_64(&zp->z_phys->zp_size, end_size,
754 			    uio->uio_loffset);
755 		}
756 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
757 		seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes,
758 		    ioflag, uio);
759 		dmu_tx_commit(tx);
760 
761 		/* Pre-fault the next set of pages */
762 		zfs_prefault_write(MIN(n, SPA_MAXBLOCKSIZE), uio);
763 
764 		/*
765 		 * Start another transaction.
766 		 */
767 		woff = uio->uio_loffset;
768 		tx = dmu_tx_create(zfsvfs->z_os);
769 		dmu_tx_hold_bonus(tx, zp->z_id);
770 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
771 		error = dmu_tx_assign(tx, zfsvfs->z_assign);
772 		if (error) {
773 			dmu_tx_abort(tx);
774 			rw_exit(&zp->z_grow_lock);
775 			if (error == ERESTART &&
776 			    zfsvfs->z_assign == TXG_NOWAIT) {
777 				txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
778 				goto top;
779 			}
780 			goto no_tx_done;
781 		}
782 	}
783 
784 tx_done:
785 
786 	if (tx_bytes != 0) {
787 		/*
788 		 * Update the file size if it has changed; account
789 		 * for possible concurrent updates.
790 		 */
791 		while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) {
792 			dmu_buf_will_dirty(zp->z_dbuf, tx);
793 			(void) atomic_cas_64(&zp->z_phys->zp_size, end_size,
794 			    uio->uio_loffset);
795 		}
796 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
797 		seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes,
798 		    ioflag, uio);
799 	}
800 	dmu_tx_commit(tx);
801 
802 	rw_exit(&zp->z_grow_lock);
803 
804 no_tx_done:
805 
806 	if (need_append_lock)
807 		rw_exit(&zp->z_append_lock);
808 
809 	/*
810 	 * If we're in replay mode, or we made no progress, return error.
811 	 * Otherwise, it's at least a partial write, so it's successful.
812 	 */
813 	if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) {
814 		ZFS_EXIT(zfsvfs);
815 		return (error);
816 	}
817 
818 	zil_commit(zilog, seq, ioflag & (FSYNC | FDSYNC));
819 
820 	ZFS_EXIT(zfsvfs);
821 	return (0);
822 }
823 
824 /*
825  * Get data to generate a TX_WRITE intent log record.
826  */
827 int
828 zfs_get_data(void *arg, lr_write_t *lr)
829 {
830 	zfsvfs_t *zfsvfs = arg;
831 	objset_t *os = zfsvfs->z_os;
832 	znode_t *zp;
833 	uint64_t off = lr->lr_offset;
834 	int dlen = lr->lr_length;  		/* length of user data */
835 	int reclen = lr->lr_common.lrc_reclen;
836 	int error = 0;
837 
838 	ASSERT(dlen != 0);
839 
840 	/*
841 	 * Nothing to do if the file has been removed or truncated.
842 	 */
843 	if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0)
844 		return (ENOENT);
845 	if (off >= zp->z_phys->zp_size || zp->z_reap) {
846 		VN_RELE(ZTOV(zp));
847 		return (ENOENT);
848 	}
849 
850 	/*
851 	 * Write records come in two flavors: immediate and indirect.
852 	 * For small writes it's cheaper to store the data with the
853 	 * log record (immediate); for large writes it's cheaper to
854 	 * sync the data and get a pointer to it (indirect) so that
855 	 * we don't have to write the data twice.
856 	 */
857 	if (sizeof (lr_write_t) + dlen <= reclen) { /* immediate write */
858 		rw_enter(&zp->z_grow_lock, RW_READER);
859 		dmu_buf_t *db;
860 		VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, off, FTAG, &db));
861 		bcopy((char *)db->db_data + off - db->db_offset, lr + 1, dlen);
862 		dmu_buf_rele(db, FTAG);
863 		rw_exit(&zp->z_grow_lock);
864 	} else {
865 		/*
866 		 * We have to grab z_grow_lock as RW_WRITER because
867 		 * dmu_sync() can't handle concurrent dbuf_dirty() (6313856).
868 		 * z_grow_lock will be replaced with a range lock soon,
869 		 * which will eliminate the concurrency hit, but dmu_sync()
870 		 * really needs more thought.  It shouldn't have to rely on
871 		 * the caller to provide MT safety.
872 		 */
873 		rw_enter(&zp->z_grow_lock, RW_WRITER);
874 		txg_suspend(dmu_objset_pool(os));
875 		error = dmu_sync(os, lr->lr_foid, off, &lr->lr_blkoff,
876 		    &lr->lr_blkptr, lr->lr_common.lrc_txg);
877 		txg_resume(dmu_objset_pool(os));
878 		rw_exit(&zp->z_grow_lock);
879 	}
880 	VN_RELE(ZTOV(zp));
881 	return (error);
882 }
883 
884 /*ARGSUSED*/
885 static int
886 zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr)
887 {
888 	znode_t *zp = VTOZ(vp);
889 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
890 	int error;
891 
892 	ZFS_ENTER(zfsvfs);
893 	error = zfs_zaccess_rwx(zp, mode, cr);
894 	ZFS_EXIT(zfsvfs);
895 	return (error);
896 }
897 
898 /*
899  * Lookup an entry in a directory, or an extended attribute directory.
900  * If it exists, return a held vnode reference for it.
901  *
902  *	IN:	dvp	- vnode of directory to search.
903  *		nm	- name of entry to lookup.
904  *		pnp	- full pathname to lookup [UNUSED].
905  *		flags	- LOOKUP_XATTR set if looking for an attribute.
906  *		rdir	- root directory vnode [UNUSED].
907  *		cr	- credentials of caller.
908  *
909  *	OUT:	vpp	- vnode of located entry, NULL if not found.
910  *
911  *	RETURN:	0 if success
912  *		error code if failure
913  *
914  * Timestamps:
915  *	NA
916  */
917 /* ARGSUSED */
918 static int
919 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
920     int flags, vnode_t *rdir, cred_t *cr)
921 {
922 
923 	znode_t *zdp = VTOZ(dvp);
924 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
925 	int	error;
926 
927 	ZFS_ENTER(zfsvfs);
928 
929 	*vpp = NULL;
930 
931 	if (flags & LOOKUP_XATTR) {
932 		/*
933 		 * We don't allow recursive attributes..
934 		 * Maybe someday we will.
935 		 */
936 		if (zdp->z_phys->zp_flags & ZFS_XATTR) {
937 			ZFS_EXIT(zfsvfs);
938 			return (EINVAL);
939 		}
940 
941 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr)) {
942 			ZFS_EXIT(zfsvfs);
943 			return (error);
944 		}
945 
946 		/*
947 		 * Do we have permission to get into attribute directory?
948 		 */
949 
950 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) {
951 			VN_RELE(*vpp);
952 		}
953 
954 		ZFS_EXIT(zfsvfs);
955 		return (error);
956 	}
957 
958 	if (dvp->v_type != VDIR) {
959 		ZFS_EXIT(zfsvfs);
960 		return (ENOTDIR);
961 	}
962 
963 	/*
964 	 * Check accessibility of directory.
965 	 */
966 
967 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) {
968 		ZFS_EXIT(zfsvfs);
969 		return (error);
970 	}
971 
972 	if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) {
973 
974 		/*
975 		 * Convert device special files
976 		 */
977 		if (IS_DEVVP(*vpp)) {
978 			vnode_t	*svp;
979 
980 			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
981 			VN_RELE(*vpp);
982 			if (svp == NULL)
983 				error = ENOSYS;
984 			else
985 				*vpp = svp;
986 		}
987 	}
988 
989 	ZFS_EXIT(zfsvfs);
990 	return (error);
991 }
992 
993 /*
994  * Attempt to create a new entry in a directory.  If the entry
995  * already exists, truncate the file if permissible, else return
996  * an error.  Return the vp of the created or trunc'd file.
997  *
998  *	IN:	dvp	- vnode of directory to put new file entry in.
999  *		name	- name of new file entry.
1000  *		vap	- attributes of new file.
1001  *		excl	- flag indicating exclusive or non-exclusive mode.
1002  *		mode	- mode to open file with.
1003  *		cr	- credentials of caller.
1004  *		flag	- large file flag [UNUSED].
1005  *
1006  *	OUT:	vpp	- vnode of created or trunc'd entry.
1007  *
1008  *	RETURN:	0 if success
1009  *		error code if failure
1010  *
1011  * Timestamps:
1012  *	dvp - ctime|mtime updated if new entry created
1013  *	 vp - ctime|mtime always, atime if new
1014  */
1015 /* ARGSUSED */
1016 static int
1017 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1018     int mode, vnode_t **vpp, cred_t *cr, int flag)
1019 {
1020 	znode_t		*zp, *dzp = VTOZ(dvp);
1021 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1022 	zilog_t		*zilog = zfsvfs->z_log;
1023 	uint64_t	seq = 0;
1024 	objset_t	*os = zfsvfs->z_os;
1025 	zfs_dirlock_t	*dl;
1026 	dmu_tx_t	*tx;
1027 	int		error;
1028 	uint64_t	zoid;
1029 
1030 	ZFS_ENTER(zfsvfs);
1031 
1032 top:
1033 	*vpp = NULL;
1034 
1035 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1036 		vap->va_mode &= ~VSVTX;
1037 
1038 	if (*name == '\0') {
1039 		/*
1040 		 * Null component name refers to the directory itself.
1041 		 */
1042 		VN_HOLD(dvp);
1043 		zp = dzp;
1044 		dl = NULL;
1045 		error = 0;
1046 	} else {
1047 		/* possible VN_HOLD(zp) */
1048 		if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) {
1049 			if (strcmp(name, "..") == 0)
1050 				error = EISDIR;
1051 			ZFS_EXIT(zfsvfs);
1052 			return (error);
1053 		}
1054 	}
1055 
1056 	zoid = zp ? zp->z_id : -1ULL;
1057 
1058 	if (zp == NULL) {
1059 		/*
1060 		 * Create a new file object and update the directory
1061 		 * to reference it.
1062 		 */
1063 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) {
1064 			goto out;
1065 		}
1066 
1067 		/*
1068 		 * We only support the creation of regular files in
1069 		 * extended attribute directories.
1070 		 */
1071 		if ((dzp->z_phys->zp_flags & ZFS_XATTR) &&
1072 		    (vap->va_type != VREG)) {
1073 			error = EINVAL;
1074 			goto out;
1075 		}
1076 
1077 		tx = dmu_tx_create(os);
1078 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1079 		dmu_tx_hold_bonus(tx, dzp->z_id);
1080 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1081 		if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
1082 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1083 			    0, SPA_MAXBLOCKSIZE);
1084 		error = dmu_tx_assign(tx, zfsvfs->z_assign);
1085 		if (error) {
1086 			dmu_tx_abort(tx);
1087 			zfs_dirent_unlock(dl);
1088 			if (error == ERESTART &&
1089 			    zfsvfs->z_assign == TXG_NOWAIT) {
1090 				txg_wait_open(dmu_objset_pool(os), 0);
1091 				goto top;
1092 			}
1093 			ZFS_EXIT(zfsvfs);
1094 			return (error);
1095 		}
1096 		zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0);
1097 		ASSERT(zp->z_id == zoid);
1098 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1099 		seq = zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name);
1100 		dmu_tx_commit(tx);
1101 	} else {
1102 		/*
1103 		 * A directory entry already exists for this name.
1104 		 */
1105 		/*
1106 		 * Can't truncate an existing file if in exclusive mode.
1107 		 */
1108 		if (excl == EXCL) {
1109 			error = EEXIST;
1110 			goto out;
1111 		}
1112 		/*
1113 		 * Can't open a directory for writing.
1114 		 */
1115 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1116 			error = EISDIR;
1117 			goto out;
1118 		}
1119 		/*
1120 		 * Verify requested access to file.
1121 		 */
1122 		if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) {
1123 			goto out;
1124 		}
1125 		/*
1126 		 * Truncate regular files if requested.
1127 		 */
1128 
1129 		/*
1130 		 * Need to update dzp->z_seq?
1131 		 */
1132 
1133 		mutex_enter(&dzp->z_lock);
1134 		dzp->z_seq++;
1135 		mutex_exit(&dzp->z_lock);
1136 
1137 		if ((ZTOV(zp)->v_type == VREG) && (zp->z_phys->zp_size != 0) &&
1138 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1139 			/*
1140 			 * Truncate the file.
1141 			 */
1142 			tx = dmu_tx_create(os);
1143 			dmu_tx_hold_bonus(tx, zoid);
1144 			dmu_tx_hold_free(tx, zoid, 0, DMU_OBJECT_END);
1145 			error = dmu_tx_assign(tx, zfsvfs->z_assign);
1146 			if (error) {
1147 				dmu_tx_abort(tx);
1148 				if (dl)
1149 					zfs_dirent_unlock(dl);
1150 				VN_RELE(ZTOV(zp));
1151 				if (error == ERESTART &&
1152 				    zfsvfs->z_assign == TXG_NOWAIT) {
1153 					txg_wait_open(dmu_objset_pool(os), 0);
1154 					goto top;
1155 				}
1156 				ZFS_EXIT(zfsvfs);
1157 				return (error);
1158 			}
1159 			/*
1160 			 * Grab the grow_lock to serialize this change with
1161 			 * respect to other file manipulations.
1162 			 */
1163 			rw_enter(&zp->z_grow_lock, RW_WRITER);
1164 			error = zfs_freesp(zp, 0, 0, mode, tx, cr);
1165 			if (error == 0) {
1166 				zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
1167 				seq = zfs_log_truncate(zilog, tx,
1168 				    TX_TRUNCATE, zp, 0, 0);
1169 			}
1170 			rw_exit(&zp->z_grow_lock);
1171 			dmu_tx_commit(tx);
1172 		}
1173 	}
1174 out:
1175 
1176 	if (dl)
1177 		zfs_dirent_unlock(dl);
1178 
1179 	if (error) {
1180 		if (zp)
1181 			VN_RELE(ZTOV(zp));
1182 	} else {
1183 		*vpp = ZTOV(zp);
1184 		/*
1185 		 * If vnode is for a device return a specfs vnode instead.
1186 		 */
1187 		if (IS_DEVVP(*vpp)) {
1188 			struct vnode *svp;
1189 
1190 			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1191 			VN_RELE(*vpp);
1192 			if (svp == NULL) {
1193 				error = ENOSYS;
1194 			}
1195 			*vpp = svp;
1196 		}
1197 	}
1198 
1199 	zil_commit(zilog, seq, 0);
1200 
1201 	ZFS_EXIT(zfsvfs);
1202 	return (error);
1203 }
1204 
1205 /*
1206  * Remove an entry from a directory.
1207  *
1208  *	IN:	dvp	- vnode of directory to remove entry from.
1209  *		name	- name of entry to remove.
1210  *		cr	- credentials of caller.
1211  *
1212  *	RETURN:	0 if success
1213  *		error code if failure
1214  *
1215  * Timestamps:
1216  *	dvp - ctime|mtime
1217  *	 vp - ctime (if nlink > 0)
1218  */
1219 static int
1220 zfs_remove(vnode_t *dvp, char *name, cred_t *cr)
1221 {
1222 	znode_t		*zp, *dzp = VTOZ(dvp);
1223 	znode_t		*xzp = NULL;
1224 	vnode_t		*vp;
1225 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1226 	zilog_t		*zilog = zfsvfs->z_log;
1227 	uint64_t	seq = 0;
1228 	uint64_t	acl_obj, xattr_obj;
1229 	zfs_dirlock_t	*dl;
1230 	dmu_tx_t	*tx;
1231 	int		may_delete_now, delete_now = FALSE;
1232 	int		reaped;
1233 	int		error;
1234 
1235 	ZFS_ENTER(zfsvfs);
1236 
1237 top:
1238 	/*
1239 	 * Attempt to lock directory; fail if entry doesn't exist.
1240 	 */
1241 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) {
1242 		ZFS_EXIT(zfsvfs);
1243 		return (error);
1244 	}
1245 
1246 	vp = ZTOV(zp);
1247 
1248 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1249 		goto out;
1250 	}
1251 
1252 	/*
1253 	 * Need to use rmdir for removing directories.
1254 	 */
1255 	if (vp->v_type == VDIR) {
1256 		error = EPERM;
1257 		goto out;
1258 	}
1259 
1260 	vnevent_remove(vp);
1261 
1262 	dnlc_remove(dvp, name);
1263 
1264 	mutex_enter(&vp->v_lock);
1265 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1266 	mutex_exit(&vp->v_lock);
1267 
1268 	/*
1269 	 * We may delete the znode now, or we may put it on the delete queue;
1270 	 * it depends on whether we're the last link, and on whether there are
1271 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1272 	 * allow for either case.
1273 	 */
1274 	tx = dmu_tx_create(zfsvfs->z_os);
1275 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1276 	dmu_tx_hold_bonus(tx, zp->z_id);
1277 	if (may_delete_now)
1278 		dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
1279 
1280 	/* are there any extended attributes? */
1281 	if ((xattr_obj = zp->z_phys->zp_xattr) != 0) {
1282 		/*
1283 		 * XXX - There is a possibility that the delete
1284 		 * of the parent file could succeed, but then we get
1285 		 * an ENOSPC when we try to delete the xattrs...
1286 		 * so we would need to re-try the deletes periodically
1287 		 */
1288 		/* XXX - do we need this if we are deleting? */
1289 		dmu_tx_hold_bonus(tx, xattr_obj);
1290 	}
1291 
1292 	/* are there any additional acls */
1293 	if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 &&
1294 	    may_delete_now)
1295 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1296 
1297 	/* charge as an update -- would be nice not to charge at all */
1298 	dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL);
1299 
1300 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1301 	if (error) {
1302 		dmu_tx_abort(tx);
1303 		zfs_dirent_unlock(dl);
1304 		VN_RELE(vp);
1305 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1306 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
1307 			goto top;
1308 		}
1309 		ZFS_EXIT(zfsvfs);
1310 		return (error);
1311 	}
1312 
1313 	/*
1314 	 * Remove the directory entry.
1315 	 */
1316 	error = zfs_link_destroy(dl, zp, tx, 0, &reaped);
1317 
1318 	if (error) {
1319 		dmu_tx_commit(tx);
1320 		goto out;
1321 	}
1322 
1323 	if (reaped) {
1324 		mutex_enter(&vp->v_lock);
1325 		delete_now = may_delete_now &&
1326 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1327 		    zp->z_phys->zp_xattr == xattr_obj &&
1328 		    zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj;
1329 		mutex_exit(&vp->v_lock);
1330 	}
1331 
1332 	if (delete_now) {
1333 		if (zp->z_phys->zp_xattr) {
1334 			error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp);
1335 			ASSERT3U(error, ==, 0);
1336 			ASSERT3U(xzp->z_phys->zp_links, ==, 2);
1337 			dmu_buf_will_dirty(xzp->z_dbuf, tx);
1338 			mutex_enter(&xzp->z_lock);
1339 			xzp->z_reap = 1;
1340 			xzp->z_phys->zp_links = 0;
1341 			mutex_exit(&xzp->z_lock);
1342 			zfs_dq_add(xzp, tx);
1343 			zp->z_phys->zp_xattr = 0; /* probably unnecessary */
1344 		}
1345 		mutex_enter(&zp->z_lock);
1346 		mutex_enter(&vp->v_lock);
1347 		vp->v_count--;
1348 		ASSERT3U(vp->v_count, ==, 0);
1349 		mutex_exit(&vp->v_lock);
1350 		zp->z_active = 0;
1351 		mutex_exit(&zp->z_lock);
1352 		zfs_znode_delete(zp, tx);
1353 		VFS_RELE(zfsvfs->z_vfs);
1354 	} else if (reaped) {
1355 		zfs_dq_add(zp, tx);
1356 	}
1357 
1358 	seq = zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name);
1359 
1360 	dmu_tx_commit(tx);
1361 out:
1362 	zfs_dirent_unlock(dl);
1363 
1364 	if (!delete_now) {
1365 		VN_RELE(vp);
1366 	} else if (xzp) {
1367 		/* this rele delayed to prevent nesting transactions */
1368 		VN_RELE(ZTOV(xzp));
1369 	}
1370 
1371 	zil_commit(zilog, seq, 0);
1372 
1373 	ZFS_EXIT(zfsvfs);
1374 	return (error);
1375 }
1376 
1377 /*
1378  * Create a new directory and insert it into dvp using the name
1379  * provided.  Return a pointer to the inserted directory.
1380  *
1381  *	IN:	dvp	- vnode of directory to add subdir to.
1382  *		dirname	- name of new directory.
1383  *		vap	- attributes of new directory.
1384  *		cr	- credentials of caller.
1385  *
1386  *	OUT:	vpp	- vnode of created directory.
1387  *
1388  *	RETURN:	0 if success
1389  *		error code if failure
1390  *
1391  * Timestamps:
1392  *	dvp - ctime|mtime updated
1393  *	 vp - ctime|mtime|atime updated
1394  */
1395 static int
1396 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr)
1397 {
1398 	znode_t		*zp, *dzp = VTOZ(dvp);
1399 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1400 	zilog_t		*zilog = zfsvfs->z_log;
1401 	uint64_t	seq = 0;
1402 	zfs_dirlock_t	*dl;
1403 	uint64_t	zoid = 0;
1404 	dmu_tx_t	*tx;
1405 	int		error;
1406 
1407 	ASSERT(vap->va_type == VDIR);
1408 
1409 	ZFS_ENTER(zfsvfs);
1410 
1411 	if (dzp->z_phys->zp_flags & ZFS_XATTR) {
1412 		ZFS_EXIT(zfsvfs);
1413 		return (EINVAL);
1414 	}
1415 top:
1416 	*vpp = NULL;
1417 
1418 	/*
1419 	 * First make sure the new directory doesn't exist.
1420 	 */
1421 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) {
1422 		ZFS_EXIT(zfsvfs);
1423 		return (error);
1424 	}
1425 
1426 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) {
1427 		zfs_dirent_unlock(dl);
1428 		ZFS_EXIT(zfsvfs);
1429 		return (error);
1430 	}
1431 
1432 	/*
1433 	 * Add a new entry to the directory.
1434 	 */
1435 	tx = dmu_tx_create(zfsvfs->z_os);
1436 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1437 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1438 	if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
1439 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1440 		    0, SPA_MAXBLOCKSIZE);
1441 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1442 	if (error) {
1443 		dmu_tx_abort(tx);
1444 		zfs_dirent_unlock(dl);
1445 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1446 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
1447 			goto top;
1448 		}
1449 		ZFS_EXIT(zfsvfs);
1450 		return (error);
1451 	}
1452 
1453 	/*
1454 	 * Create new node.
1455 	 */
1456 	zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0);
1457 
1458 	/*
1459 	 * Now put new name in parent dir.
1460 	 */
1461 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1462 
1463 	*vpp = ZTOV(zp);
1464 
1465 	seq = zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname);
1466 	dmu_tx_commit(tx);
1467 
1468 	zfs_dirent_unlock(dl);
1469 
1470 	zil_commit(zilog, seq, 0);
1471 
1472 	ZFS_EXIT(zfsvfs);
1473 	return (0);
1474 }
1475 
1476 /*
1477  * Remove a directory subdir entry.  If the current working
1478  * directory is the same as the subdir to be removed, the
1479  * remove will fail.
1480  *
1481  *	IN:	dvp	- vnode of directory to remove from.
1482  *		name	- name of directory to be removed.
1483  *		cwd	- vnode of current working directory.
1484  *		cr	- credentials of caller.
1485  *
1486  *	RETURN:	0 if success
1487  *		error code if failure
1488  *
1489  * Timestamps:
1490  *	dvp - ctime|mtime updated
1491  */
1492 static int
1493 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr)
1494 {
1495 	znode_t		*dzp = VTOZ(dvp);
1496 	znode_t		*zp;
1497 	vnode_t		*vp;
1498 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1499 	zilog_t		*zilog = zfsvfs->z_log;
1500 	uint64_t	seq = 0;
1501 	zfs_dirlock_t	*dl;
1502 	dmu_tx_t	*tx;
1503 	int		error;
1504 
1505 	ZFS_ENTER(zfsvfs);
1506 
1507 top:
1508 	zp = NULL;
1509 
1510 	/*
1511 	 * Attempt to lock directory; fail if entry doesn't exist.
1512 	 */
1513 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) {
1514 		ZFS_EXIT(zfsvfs);
1515 		return (error);
1516 	}
1517 
1518 	vp = ZTOV(zp);
1519 
1520 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1521 		goto out;
1522 	}
1523 
1524 	if (vp->v_type != VDIR) {
1525 		error = ENOTDIR;
1526 		goto out;
1527 	}
1528 
1529 	if (vp == cwd) {
1530 		error = EINVAL;
1531 		goto out;
1532 	}
1533 
1534 	vnevent_rmdir(vp);
1535 
1536 	/*
1537 	 * Grab a lock on the parent pointer make sure we play well
1538 	 * with the treewalk and directory rename code.
1539 	 */
1540 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1541 
1542 	tx = dmu_tx_create(zfsvfs->z_os);
1543 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1544 	dmu_tx_hold_bonus(tx, zp->z_id);
1545 	dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL);
1546 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1547 	if (error) {
1548 		dmu_tx_abort(tx);
1549 		rw_exit(&zp->z_parent_lock);
1550 		zfs_dirent_unlock(dl);
1551 		VN_RELE(vp);
1552 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1553 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
1554 			goto top;
1555 		}
1556 		ZFS_EXIT(zfsvfs);
1557 		return (error);
1558 	}
1559 
1560 	error = zfs_link_destroy(dl, zp, tx, 0, NULL);
1561 
1562 	if (error == 0)
1563 		seq = zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name);
1564 
1565 	dmu_tx_commit(tx);
1566 
1567 	rw_exit(&zp->z_parent_lock);
1568 out:
1569 	zfs_dirent_unlock(dl);
1570 
1571 	VN_RELE(vp);
1572 
1573 	zil_commit(zilog, seq, 0);
1574 
1575 	ZFS_EXIT(zfsvfs);
1576 	return (error);
1577 }
1578 
1579 /*
1580  * Read as many directory entries as will fit into the provided
1581  * buffer from the given directory cursor position (specified in
1582  * the uio structure.
1583  *
1584  *	IN:	vp	- vnode of directory to read.
1585  *		uio	- structure supplying read location, range info,
1586  *			  and return buffer.
1587  *		cr	- credentials of caller.
1588  *
1589  *	OUT:	uio	- updated offset and range, buffer filled.
1590  *		eofp	- set to true if end-of-file detected.
1591  *
1592  *	RETURN:	0 if success
1593  *		error code if failure
1594  *
1595  * Timestamps:
1596  *	vp - atime updated
1597  *
1598  * Note that the low 4 bits of the cookie returned by zap is always zero.
1599  * This allows us to use the low range for "special" directory entries:
1600  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1601  * we use the offset 2 for the '.zfs' directory.
1602  */
1603 /* ARGSUSED */
1604 static int
1605 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp)
1606 {
1607 	znode_t		*zp = VTOZ(vp);
1608 	iovec_t		*iovp;
1609 	dirent64_t	*odp;
1610 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
1611 	objset_t	*os;
1612 	caddr_t		outbuf;
1613 	size_t		bufsize;
1614 	zap_cursor_t	zc;
1615 	zap_attribute_t	zap;
1616 	uint_t		bytes_wanted;
1617 	ushort_t	this_reclen;
1618 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1619 	off64_t		*next;
1620 	int		local_eof;
1621 	int		outcount;
1622 	int		error;
1623 	uint8_t		prefetch;
1624 
1625 	ZFS_ENTER(zfsvfs);
1626 
1627 	/*
1628 	 * If we are not given an eof variable,
1629 	 * use a local one.
1630 	 */
1631 	if (eofp == NULL)
1632 		eofp = &local_eof;
1633 
1634 	/*
1635 	 * Check for valid iov_len.
1636 	 */
1637 	if (uio->uio_iov->iov_len <= 0) {
1638 		ZFS_EXIT(zfsvfs);
1639 		return (EINVAL);
1640 	}
1641 
1642 	/*
1643 	 * Quit if directory has been removed (posix)
1644 	 */
1645 	if ((*eofp = zp->z_reap) != 0) {
1646 		ZFS_EXIT(zfsvfs);
1647 		return (0);
1648 	}
1649 
1650 	error = 0;
1651 	os = zfsvfs->z_os;
1652 	offset = uio->uio_loffset;
1653 	prefetch = zp->z_zn_prefetch;
1654 
1655 	/*
1656 	 * Initialize the iterator cursor.
1657 	 */
1658 	if (offset <= 3) {
1659 		/*
1660 		 * Start iteration from the beginning of the directory.
1661 		 */
1662 		zap_cursor_init(&zc, os, zp->z_id);
1663 	} else {
1664 		/*
1665 		 * The offset is a serialized cursor.
1666 		 */
1667 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1668 	}
1669 
1670 	/*
1671 	 * Get space to change directory entries into fs independent format.
1672 	 */
1673 	iovp = uio->uio_iov;
1674 	bytes_wanted = iovp->iov_len;
1675 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
1676 		bufsize = bytes_wanted;
1677 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
1678 		odp = (struct dirent64 *)outbuf;
1679 	} else {
1680 		bufsize = bytes_wanted;
1681 		odp = (struct dirent64 *)iovp->iov_base;
1682 	}
1683 
1684 	/*
1685 	 * Transform to file-system independent format
1686 	 */
1687 	outcount = 0;
1688 	while (outcount < bytes_wanted) {
1689 		/*
1690 		 * Special case `.', `..', and `.zfs'.
1691 		 */
1692 		if (offset == 0) {
1693 			(void) strcpy(zap.za_name, ".");
1694 			zap.za_first_integer = zp->z_id;
1695 			this_reclen = DIRENT64_RECLEN(1);
1696 		} else if (offset == 1) {
1697 			(void) strcpy(zap.za_name, "..");
1698 			zap.za_first_integer = zp->z_phys->zp_parent;
1699 			this_reclen = DIRENT64_RECLEN(2);
1700 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1701 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1702 			zap.za_first_integer = ZFSCTL_INO_ROOT;
1703 			this_reclen =
1704 			    DIRENT64_RECLEN(sizeof (ZFS_CTLDIR_NAME) - 1);
1705 		} else {
1706 			/*
1707 			 * Grab next entry.
1708 			 */
1709 			if (error = zap_cursor_retrieve(&zc, &zap)) {
1710 				if ((*eofp = (error == ENOENT)) != 0)
1711 					break;
1712 				else
1713 					goto update;
1714 			}
1715 
1716 			if (zap.za_integer_length != 8 ||
1717 			    zap.za_num_integers != 1) {
1718 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1719 				    "entry, obj = %lld, offset = %lld\n",
1720 				    (u_longlong_t)zp->z_id,
1721 				    (u_longlong_t)offset);
1722 				error = ENXIO;
1723 				goto update;
1724 			}
1725 			this_reclen = DIRENT64_RECLEN(strlen(zap.za_name));
1726 		}
1727 
1728 		/*
1729 		 * Will this entry fit in the buffer?
1730 		 */
1731 		if (outcount + this_reclen > bufsize) {
1732 			/*
1733 			 * Did we manage to fit anything in the buffer?
1734 			 */
1735 			if (!outcount) {
1736 				error = EINVAL;
1737 				goto update;
1738 			}
1739 			break;
1740 		}
1741 		/*
1742 		 * Add this entry:
1743 		 */
1744 		odp->d_ino = (ino64_t)zap.za_first_integer;
1745 		odp->d_reclen = (ushort_t)this_reclen;
1746 		/* NOTE: d_off is the offset for the *next* entry */
1747 		next = &(odp->d_off);
1748 		(void) strncpy(odp->d_name, zap.za_name,
1749 		    DIRENT64_NAMELEN(this_reclen));
1750 		outcount += this_reclen;
1751 		odp = (dirent64_t *)((intptr_t)odp + this_reclen);
1752 
1753 		ASSERT(outcount <= bufsize);
1754 
1755 		/* Prefetch znode */
1756 		if (prefetch)
1757 			dmu_prefetch(os, zap.za_first_integer, 0, 0);
1758 
1759 		/*
1760 		 * Move to the next entry, fill in the previous offset.
1761 		 */
1762 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1763 			zap_cursor_advance(&zc);
1764 			offset = zap_cursor_serialize(&zc);
1765 		} else {
1766 			offset += 1;
1767 		}
1768 		*next = offset;
1769 	}
1770 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1771 
1772 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
1773 		iovp->iov_base += outcount;
1774 		iovp->iov_len -= outcount;
1775 		uio->uio_resid -= outcount;
1776 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
1777 		/*
1778 		 * Reset the pointer.
1779 		 */
1780 		offset = uio->uio_loffset;
1781 	}
1782 
1783 update:
1784 	zap_cursor_fini(&zc);
1785 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
1786 		kmem_free(outbuf, bufsize);
1787 
1788 	if (error == ENOENT)
1789 		error = 0;
1790 
1791 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
1792 
1793 	uio->uio_loffset = offset;
1794 	ZFS_EXIT(zfsvfs);
1795 	return (error);
1796 }
1797 
1798 /* ARGSUSED */
1799 static int
1800 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr)
1801 {
1802 	znode_t	*zp = VTOZ(vp);
1803 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1804 
1805 	ZFS_ENTER(zfsvfs);
1806 	zil_commit(zfsvfs->z_log, zp->z_last_itx, FSYNC);
1807 	ZFS_EXIT(zfsvfs);
1808 	return (0);
1809 }
1810 
1811 /*
1812  * Get the requested file attributes and place them in the provided
1813  * vattr structure.
1814  *
1815  *	IN:	vp	- vnode of file.
1816  *		vap	- va_mask identifies requested attributes.
1817  *		flags	- [UNUSED]
1818  *		cr	- credentials of caller.
1819  *
1820  *	OUT:	vap	- attribute values.
1821  *
1822  *	RETURN:	0 (always succeeds)
1823  */
1824 /* ARGSUSED */
1825 static int
1826 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr)
1827 {
1828 	znode_t *zp = VTOZ(vp);
1829 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1830 	znode_phys_t *pzp = zp->z_phys;
1831 	int	error;
1832 
1833 	ZFS_ENTER(zfsvfs);
1834 
1835 	/*
1836 	 * Return all attributes.  It's cheaper to provide the answer
1837 	 * than to determine whether we were asked the question.
1838 	 */
1839 	mutex_enter(&zp->z_lock);
1840 
1841 	vap->va_type = vp->v_type;
1842 	vap->va_mode = pzp->zp_mode & MODEMASK;
1843 	vap->va_uid = zp->z_phys->zp_uid;
1844 	vap->va_gid = zp->z_phys->zp_gid;
1845 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
1846 	vap->va_nodeid = zp->z_id;
1847 	vap->va_nlink = MIN(pzp->zp_links, UINT32_MAX);	/* nlink_t limit! */
1848 	vap->va_size = pzp->zp_size;
1849 	vap->va_rdev = pzp->zp_rdev;
1850 	vap->va_seq = zp->z_seq;
1851 
1852 	ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime);
1853 	ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime);
1854 	ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime);
1855 
1856 	/*
1857 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
1858 	 * Also, if we are the owner don't bother, since owner should
1859 	 * always be allowed to read basic attributes of file.
1860 	 */
1861 	if (!(zp->z_phys->zp_flags & ZFS_ACL_TRIVIAL) &&
1862 	    (zp->z_phys->zp_uid != crgetuid(cr))) {
1863 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) {
1864 			mutex_exit(&zp->z_lock);
1865 			ZFS_EXIT(zfsvfs);
1866 			return (error);
1867 		}
1868 	}
1869 
1870 	mutex_exit(&zp->z_lock);
1871 
1872 	dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks);
1873 
1874 	if (zp->z_blksz == 0) {
1875 		/*
1876 		 * Block size hasn't been set; suggest maximal I/O transfers.
1877 		 */
1878 		vap->va_blksize = zfsvfs->z_max_blksz;
1879 	}
1880 
1881 	ZFS_EXIT(zfsvfs);
1882 	return (0);
1883 }
1884 
1885 /*
1886  * Set the file attributes to the values contained in the
1887  * vattr structure.
1888  *
1889  *	IN:	vp	- vnode of file to be modified.
1890  *		vap	- new attribute values.
1891  *		flags	- ATTR_UTIME set if non-default time values provided.
1892  *		cr	- credentials of caller.
1893  *
1894  *	RETURN:	0 if success
1895  *		error code if failure
1896  *
1897  * Timestamps:
1898  *	vp - ctime updated, mtime updated if size changed.
1899  */
1900 /* ARGSUSED */
1901 static int
1902 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1903 	caller_context_t *ct)
1904 {
1905 	struct znode	*zp = VTOZ(vp);
1906 	znode_phys_t	*pzp = zp->z_phys;
1907 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
1908 	zilog_t		*zilog = zfsvfs->z_log;
1909 	uint64_t	seq = 0;
1910 	dmu_tx_t	*tx;
1911 	uint_t		mask = vap->va_mask;
1912 	uint_t		mask_applied = 0;
1913 	vattr_t		oldva;
1914 	int		trim_mask = FALSE;
1915 	int		saved_mask;
1916 	uint64_t	new_mode;
1917 	znode_t		*attrzp;
1918 	int		have_grow_lock;
1919 	int		need_policy = FALSE;
1920 	int		err;
1921 
1922 	if (mask == 0)
1923 		return (0);
1924 
1925 	if (mask & AT_NOSET)
1926 		return (EINVAL);
1927 
1928 	if (mask & AT_SIZE && vp->v_type == VDIR)
1929 		return (EISDIR);
1930 
1931 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO)
1932 		return (EINVAL);
1933 
1934 	ZFS_ENTER(zfsvfs);
1935 
1936 top:
1937 	have_grow_lock = FALSE;
1938 	attrzp = NULL;
1939 
1940 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
1941 		ZFS_EXIT(zfsvfs);
1942 		return (EROFS);
1943 	}
1944 
1945 	/*
1946 	 * First validate permissions
1947 	 */
1948 
1949 	if (mask & AT_SIZE) {
1950 		err = zfs_zaccess(zp, ACE_WRITE_DATA, cr);
1951 		if (err) {
1952 			ZFS_EXIT(zfsvfs);
1953 			return (err);
1954 		}
1955 	}
1956 
1957 	if (mask & (AT_ATIME|AT_MTIME))
1958 		need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr);
1959 
1960 	if (mask & (AT_UID|AT_GID)) {
1961 		int	idmask = (mask & (AT_UID|AT_GID));
1962 		int	take_owner;
1963 		int	take_group;
1964 
1965 		/*
1966 		 * NOTE: even if a new mode is being set,
1967 		 * we may clear S_ISUID/S_ISGID bits.
1968 		 */
1969 
1970 		if (!(mask & AT_MODE))
1971 			vap->va_mode = pzp->zp_mode;
1972 
1973 		/*
1974 		 * Take ownership or chgrp to group we are a member of
1975 		 */
1976 
1977 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
1978 		take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr);
1979 
1980 		/*
1981 		 * If both AT_UID and AT_GID are set then take_owner and
1982 		 * take_group must both be set in order to allow taking
1983 		 * ownership.
1984 		 *
1985 		 * Otherwise, send the check through secpolicy_vnode_setattr()
1986 		 *
1987 		 */
1988 
1989 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
1990 		    ((idmask == AT_UID) && take_owner) ||
1991 		    ((idmask == AT_GID) && take_group)) {
1992 			if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) {
1993 				/*
1994 				 * Remove setuid/setgid for non-privileged users
1995 				 */
1996 				secpolicy_setid_clear(vap, cr);
1997 				trim_mask = TRUE;
1998 				saved_mask = vap->va_mask;
1999 			} else {
2000 				need_policy =  TRUE;
2001 			}
2002 		} else {
2003 			need_policy =  TRUE;
2004 		}
2005 	}
2006 
2007 	if (mask & AT_MODE)
2008 		need_policy = TRUE;
2009 
2010 	if (need_policy) {
2011 		mutex_enter(&zp->z_lock);
2012 		oldva.va_mode = pzp->zp_mode;
2013 		oldva.va_uid = zp->z_phys->zp_uid;
2014 		oldva.va_gid = zp->z_phys->zp_gid;
2015 		mutex_exit(&zp->z_lock);
2016 
2017 		/*
2018 		 * If trim_mask is set then take ownership
2019 		 * has been granted.  In that case remove
2020 		 * UID|GID from mask so that
2021 		 * secpolicy_vnode_setattr() doesn't revoke it.
2022 		 */
2023 		if (trim_mask)
2024 			vap->va_mask &= ~(AT_UID|AT_GID);
2025 
2026 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2027 		    (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp);
2028 		if (err) {
2029 			ZFS_EXIT(zfsvfs);
2030 			return (err);
2031 		}
2032 
2033 		if (trim_mask)
2034 			vap->va_mask |= (saved_mask & (AT_UID|AT_GID));
2035 	}
2036 
2037 	/*
2038 	 * secpolicy_vnode_setattr, or take ownership may have
2039 	 * changed va_mask
2040 	 */
2041 	mask = vap->va_mask;
2042 
2043 	tx = dmu_tx_create(zfsvfs->z_os);
2044 	dmu_tx_hold_bonus(tx, zp->z_id);
2045 
2046 	if (mask & AT_MODE) {
2047 
2048 		new_mode = (pzp->zp_mode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2049 
2050 		if (zp->z_phys->zp_acl.z_acl_extern_obj)
2051 			dmu_tx_hold_write(tx,
2052 			    pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE);
2053 		else
2054 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2055 			    0, ZFS_ACL_SIZE(MAX_ACL_SIZE));
2056 	}
2057 
2058 	if (mask & AT_SIZE) {
2059 		uint64_t off = vap->va_size;
2060 		/*
2061 		 * Grab the grow_lock to serialize this change with
2062 		 * respect to other file manipulations.
2063 		 */
2064 		rw_enter(&zp->z_grow_lock, RW_WRITER);
2065 		have_grow_lock = TRUE;
2066 		if (off < zp->z_phys->zp_size)
2067 			dmu_tx_hold_free(tx, zp->z_id, off, DMU_OBJECT_END);
2068 		else if (zp->z_blksz < zfsvfs->z_max_blksz && off > zp->z_blksz)
2069 			/* we will rewrite this block if we grow */
2070 			dmu_tx_hold_write(tx, zp->z_id, 0, zp->z_phys->zp_size);
2071 	}
2072 
2073 	if ((mask & (AT_UID | AT_GID)) && zp->z_phys->zp_xattr != 0) {
2074 		err = zfs_zget(zp->z_zfsvfs, zp->z_phys->zp_xattr, &attrzp);
2075 		if (err) {
2076 			dmu_tx_abort(tx);
2077 			if (have_grow_lock)
2078 				rw_exit(&zp->z_grow_lock);
2079 			ZFS_EXIT(zfsvfs);
2080 			return (err);
2081 		}
2082 		dmu_tx_hold_bonus(tx, attrzp->z_id);
2083 	}
2084 
2085 	err = dmu_tx_assign(tx, zfsvfs->z_assign);
2086 	if (err) {
2087 		if (attrzp)
2088 			VN_RELE(ZTOV(attrzp));
2089 		dmu_tx_abort(tx);
2090 		if (have_grow_lock)
2091 			rw_exit(&zp->z_grow_lock);
2092 		if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2093 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
2094 			goto top;
2095 		}
2096 		ZFS_EXIT(zfsvfs);
2097 		return (err);
2098 	}
2099 
2100 	dmu_buf_will_dirty(zp->z_dbuf, tx);
2101 
2102 	/*
2103 	 * Set each attribute requested.
2104 	 * We group settings according to the locks they need to acquire.
2105 	 *
2106 	 * Note: you cannot set ctime directly, although it will be
2107 	 * updated as a side-effect of calling this function.
2108 	 */
2109 	if (mask & AT_SIZE) {
2110 		/*
2111 		 * XXX - Note, we are not providing any open
2112 		 * mode flags here (like FNDELAY), so we may
2113 		 * block if there are locks present... this
2114 		 * should be addressed in openat().
2115 		 */
2116 		err = zfs_freesp(zp, vap->va_size, 0, 0, tx, cr);
2117 		if (err) {
2118 			mutex_enter(&zp->z_lock);
2119 			goto out;
2120 		}
2121 		mask_applied |= AT_SIZE;
2122 	}
2123 
2124 	mask_applied = mask;	/* no errors after this point */
2125 
2126 	mutex_enter(&zp->z_lock);
2127 
2128 	if (mask & AT_MODE) {
2129 		err = zfs_acl_chmod_setattr(zp, new_mode, tx);
2130 		ASSERT3U(err, ==, 0);
2131 	}
2132 
2133 	if (attrzp)
2134 		mutex_enter(&attrzp->z_lock);
2135 
2136 	if (mask & AT_UID) {
2137 		zp->z_phys->zp_uid = (uint64_t)vap->va_uid;
2138 		if (attrzp) {
2139 			attrzp->z_phys->zp_uid = (uint64_t)vap->va_uid;
2140 		}
2141 	}
2142 
2143 	if (mask & AT_GID) {
2144 		zp->z_phys->zp_gid = (uint64_t)vap->va_gid;
2145 		if (attrzp)
2146 			attrzp->z_phys->zp_gid = (uint64_t)vap->va_gid;
2147 	}
2148 
2149 	if (attrzp)
2150 		mutex_exit(&attrzp->z_lock);
2151 
2152 	if (mask & AT_ATIME)
2153 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
2154 
2155 	if (mask & AT_MTIME)
2156 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
2157 
2158 	if (mask_applied & AT_SIZE)
2159 		zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx);
2160 	else if (mask_applied != 0)
2161 		zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
2162 
2163 out:
2164 
2165 	if (mask_applied != 0)
2166 		seq = zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap,
2167 		    mask_applied);
2168 
2169 	mutex_exit(&zp->z_lock);
2170 
2171 	if (attrzp)
2172 		VN_RELE(ZTOV(attrzp));
2173 
2174 	if (have_grow_lock)
2175 		rw_exit(&zp->z_grow_lock);
2176 
2177 	dmu_tx_commit(tx);
2178 
2179 	zil_commit(zilog, seq, 0);
2180 
2181 	ZFS_EXIT(zfsvfs);
2182 	return (err);
2183 }
2184 
2185 /*
2186  * Search back through the directory tree, using the ".." entries.
2187  * Lock each directory in the chain to prevent concurrent renames.
2188  * Fail any attempt to move a directory into one of its own descendants.
2189  * XXX - z_parent_lock can overlap with map or grow locks
2190  */
2191 typedef struct zfs_zlock {
2192 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2193 	znode_t		*zl_znode;	/* znode we held */
2194 	struct zfs_zlock *zl_next;	/* next in list */
2195 } zfs_zlock_t;
2196 
2197 static int
2198 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2199 {
2200 	zfs_zlock_t	*zl;
2201 	znode_t 	*zp = tdzp;
2202 	uint64_t	rootid = zp->z_zfsvfs->z_root;
2203 	uint64_t	*oidp = &zp->z_id;
2204 	krwlock_t	*rwlp = &szp->z_parent_lock;
2205 	krw_t		rw = RW_WRITER;
2206 
2207 	/*
2208 	 * First pass write-locks szp and compares to zp->z_id.
2209 	 * Later passes read-lock zp and compare to zp->z_parent.
2210 	 */
2211 	do {
2212 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2213 		zl->zl_rwlock = rwlp;
2214 		zl->zl_znode = NULL;
2215 		zl->zl_next = *zlpp;
2216 		*zlpp = zl;
2217 
2218 		rw_enter(rwlp, rw);
2219 
2220 		if (*oidp == szp->z_id)		/* We're a descendant of szp */
2221 			return (EINVAL);
2222 
2223 		if (*oidp == rootid)		/* We've hit the top */
2224 			return (0);
2225 
2226 		if (rw == RW_READER) {		/* i.e. not the first pass */
2227 			int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp);
2228 			if (error)
2229 				return (error);
2230 			zl->zl_znode = zp;
2231 		}
2232 		oidp = &zp->z_phys->zp_parent;
2233 		rwlp = &zp->z_parent_lock;
2234 		rw = RW_READER;
2235 
2236 	} while (zp->z_id != sdzp->z_id);
2237 
2238 	return (0);
2239 }
2240 
2241 /*
2242  * Drop locks and release vnodes that were held by zfs_rename_lock().
2243  */
2244 static void
2245 zfs_rename_unlock(zfs_zlock_t **zlpp)
2246 {
2247 	zfs_zlock_t *zl;
2248 
2249 	while ((zl = *zlpp) != NULL) {
2250 		if (zl->zl_znode != NULL)
2251 			VN_RELE(ZTOV(zl->zl_znode));
2252 		rw_exit(zl->zl_rwlock);
2253 		*zlpp = zl->zl_next;
2254 		kmem_free(zl, sizeof (*zl));
2255 	}
2256 }
2257 
2258 /*
2259  * Move an entry from the provided source directory to the target
2260  * directory.  Change the entry name as indicated.
2261  *
2262  *	IN:	sdvp	- Source directory containing the "old entry".
2263  *		snm	- Old entry name.
2264  *		tdvp	- Target directory to contain the "new entry".
2265  *		tnm	- New entry name.
2266  *		cr	- credentials of caller.
2267  *
2268  *	RETURN:	0 if success
2269  *		error code if failure
2270  *
2271  * Timestamps:
2272  *	sdvp,tdvp - ctime|mtime updated
2273  */
2274 static int
2275 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr)
2276 {
2277 	znode_t		*tdzp, *szp, *tzp;
2278 	znode_t		*sdzp = VTOZ(sdvp);
2279 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
2280 	zilog_t		*zilog = zfsvfs->z_log;
2281 	uint64_t	seq = 0;
2282 	vnode_t		*realvp;
2283 	zfs_dirlock_t	*sdl, *tdl;
2284 	dmu_tx_t	*tx;
2285 	zfs_zlock_t	*zl;
2286 	int		cmp, serr, terr, error;
2287 
2288 	ZFS_ENTER(zfsvfs);
2289 
2290 	/*
2291 	 * Make sure we have the real vp for the target directory.
2292 	 */
2293 	if (VOP_REALVP(tdvp, &realvp) == 0)
2294 		tdvp = realvp;
2295 
2296 	if (tdvp->v_vfsp != sdvp->v_vfsp) {
2297 		ZFS_EXIT(zfsvfs);
2298 		return (EXDEV);
2299 	}
2300 
2301 	tdzp = VTOZ(tdvp);
2302 top:
2303 	szp = NULL;
2304 	tzp = NULL;
2305 	zl = NULL;
2306 
2307 	/*
2308 	 * This is to prevent the creation of links into attribute space
2309 	 * by renaming a linked file into/outof an attribute directory.
2310 	 * See the comment in zfs_link() for why this is considered bad.
2311 	 */
2312 	if ((tdzp->z_phys->zp_flags & ZFS_XATTR) !=
2313 	    (sdzp->z_phys->zp_flags & ZFS_XATTR)) {
2314 		ZFS_EXIT(zfsvfs);
2315 		return (EINVAL);
2316 	}
2317 
2318 	/*
2319 	 * Lock source and target directory entries.  To prevent deadlock,
2320 	 * a lock ordering must be defined.  We lock the directory with
2321 	 * the smallest object id first, or if it's a tie, the one with
2322 	 * the lexically first name.
2323 	 */
2324 	if (sdzp->z_id < tdzp->z_id) {
2325 		cmp = -1;
2326 	} else if (sdzp->z_id > tdzp->z_id) {
2327 		cmp = 1;
2328 	} else {
2329 		cmp = strcmp(snm, tnm);
2330 		if (cmp == 0) {
2331 			/*
2332 			 * POSIX: "If the old argument and the new argument
2333 			 * both refer to links to the same existing file,
2334 			 * the rename() function shall return successfully
2335 			 * and perform no other action."
2336 			 */
2337 			ZFS_EXIT(zfsvfs);
2338 			return (0);
2339 		}
2340 	}
2341 	if (cmp < 0) {
2342 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS);
2343 		terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0);
2344 	} else {
2345 		terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0);
2346 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS);
2347 	}
2348 
2349 	if (serr) {
2350 		/*
2351 		 * Source entry invalid or not there.
2352 		 */
2353 		if (!terr) {
2354 			zfs_dirent_unlock(tdl);
2355 			if (tzp)
2356 				VN_RELE(ZTOV(tzp));
2357 		}
2358 		if (strcmp(snm, "..") == 0)
2359 			serr = EINVAL;
2360 		ZFS_EXIT(zfsvfs);
2361 		return (serr);
2362 	}
2363 	if (terr) {
2364 		zfs_dirent_unlock(sdl);
2365 		VN_RELE(ZTOV(szp));
2366 		if (strcmp(tnm, "..") == 0)
2367 			terr = EINVAL;
2368 		ZFS_EXIT(zfsvfs);
2369 		return (terr);
2370 	}
2371 
2372 	/*
2373 	 * Must have write access at the source to remove the old entry
2374 	 * and write access at the target to create the new entry.
2375 	 * Note that if target and source are the same, this can be
2376 	 * done in a single check.
2377 	 */
2378 
2379 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
2380 		goto out;
2381 
2382 	if (ZTOV(szp)->v_type == VDIR) {
2383 		/*
2384 		 * Check to make sure rename is valid.
2385 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2386 		 */
2387 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
2388 			goto out;
2389 	}
2390 
2391 	/*
2392 	 * Does target exist?
2393 	 */
2394 	if (tzp) {
2395 		/*
2396 		 * Source and target must be the same type.
2397 		 */
2398 		if (ZTOV(szp)->v_type == VDIR) {
2399 			if (ZTOV(tzp)->v_type != VDIR) {
2400 				error = ENOTDIR;
2401 				goto out;
2402 			}
2403 		} else {
2404 			if (ZTOV(tzp)->v_type == VDIR) {
2405 				error = EISDIR;
2406 				goto out;
2407 			}
2408 		}
2409 		/*
2410 		 * POSIX dictates that when the source and target
2411 		 * entries refer to the same file object, rename
2412 		 * must do nothing and exit without error.
2413 		 */
2414 		if (szp->z_id == tzp->z_id) {
2415 			error = 0;
2416 			goto out;
2417 		}
2418 	}
2419 
2420 	vnevent_rename_src(ZTOV(szp));
2421 	if (tzp)
2422 		vnevent_rename_dest(ZTOV(tzp));
2423 
2424 	tx = dmu_tx_create(zfsvfs->z_os);
2425 	dmu_tx_hold_bonus(tx, szp->z_id);	/* nlink changes */
2426 	dmu_tx_hold_bonus(tx, sdzp->z_id);	/* nlink changes */
2427 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
2428 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
2429 	if (sdzp != tdzp)
2430 		dmu_tx_hold_bonus(tx, tdzp->z_id);	/* nlink changes */
2431 	if (tzp)
2432 		dmu_tx_hold_bonus(tx, tzp->z_id);	/* parent changes */
2433 	dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL);
2434 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
2435 	if (error) {
2436 		dmu_tx_abort(tx);
2437 		if (zl != NULL)
2438 			zfs_rename_unlock(&zl);
2439 		zfs_dirent_unlock(sdl);
2440 		zfs_dirent_unlock(tdl);
2441 		VN_RELE(ZTOV(szp));
2442 		if (tzp)
2443 			VN_RELE(ZTOV(tzp));
2444 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2445 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
2446 			goto top;
2447 		}
2448 		ZFS_EXIT(zfsvfs);
2449 		return (error);
2450 	}
2451 
2452 	if (tzp)	/* Attempt to remove the existing target */
2453 		error = zfs_link_destroy(tdl, tzp, tx, 0, NULL);
2454 
2455 	if (error == 0) {
2456 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
2457 		if (error == 0) {
2458 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
2459 			ASSERT(error == 0);
2460 			seq = zfs_log_rename(zilog, tx, TX_RENAME,
2461 			    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
2462 		}
2463 	}
2464 
2465 	dmu_tx_commit(tx);
2466 out:
2467 	if (zl != NULL)
2468 		zfs_rename_unlock(&zl);
2469 
2470 	zfs_dirent_unlock(sdl);
2471 	zfs_dirent_unlock(tdl);
2472 
2473 	VN_RELE(ZTOV(szp));
2474 	if (tzp)
2475 		VN_RELE(ZTOV(tzp));
2476 
2477 	zil_commit(zilog, seq, 0);
2478 
2479 	ZFS_EXIT(zfsvfs);
2480 	return (error);
2481 }
2482 
2483 /*
2484  * Insert the indicated symbolic reference entry into the directory.
2485  *
2486  *	IN:	dvp	- Directory to contain new symbolic link.
2487  *		link	- Name for new symlink entry.
2488  *		vap	- Attributes of new entry.
2489  *		target	- Target path of new symlink.
2490  *		cr	- credentials of caller.
2491  *
2492  *	RETURN:	0 if success
2493  *		error code if failure
2494  *
2495  * Timestamps:
2496  *	dvp - ctime|mtime updated
2497  */
2498 static int
2499 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr)
2500 {
2501 	znode_t		*zp, *dzp = VTOZ(dvp);
2502 	zfs_dirlock_t	*dl;
2503 	dmu_tx_t	*tx;
2504 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2505 	zilog_t		*zilog = zfsvfs->z_log;
2506 	uint64_t	seq = 0;
2507 	uint64_t	zoid;
2508 	int		len = strlen(link);
2509 	int		error;
2510 
2511 	ASSERT(vap->va_type == VLNK);
2512 
2513 	ZFS_ENTER(zfsvfs);
2514 top:
2515 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) {
2516 		ZFS_EXIT(zfsvfs);
2517 		return (error);
2518 	}
2519 
2520 	if (len > MAXPATHLEN) {
2521 		ZFS_EXIT(zfsvfs);
2522 		return (ENAMETOOLONG);
2523 	}
2524 
2525 	/*
2526 	 * Attempt to lock directory; fail if entry already exists.
2527 	 */
2528 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) {
2529 		ZFS_EXIT(zfsvfs);
2530 		return (error);
2531 	}
2532 
2533 	tx = dmu_tx_create(zfsvfs->z_os);
2534 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
2535 	dmu_tx_hold_bonus(tx, dzp->z_id);
2536 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
2537 	if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
2538 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE);
2539 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
2540 	if (error) {
2541 		dmu_tx_abort(tx);
2542 		zfs_dirent_unlock(dl);
2543 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2544 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
2545 			goto top;
2546 		}
2547 		ZFS_EXIT(zfsvfs);
2548 		return (error);
2549 	}
2550 
2551 	dmu_buf_will_dirty(dzp->z_dbuf, tx);
2552 
2553 	/*
2554 	 * Create a new object for the symlink.
2555 	 * Put the link content into bonus buffer if it will fit;
2556 	 * otherwise, store it just like any other file data.
2557 	 */
2558 	zoid = 0;
2559 	if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) {
2560 		zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len);
2561 		if (len != 0)
2562 			bcopy(link, zp->z_phys + 1, len);
2563 	} else {
2564 		dmu_buf_t *dbp;
2565 		zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0);
2566 
2567 		rw_enter(&zp->z_grow_lock, RW_WRITER);
2568 		error = zfs_grow_blocksize(zp, len, tx);
2569 		rw_exit(&zp->z_grow_lock);
2570 		if (error)
2571 			goto out;
2572 
2573 		VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, zoid, 0, FTAG, &dbp));
2574 		dmu_buf_will_dirty(dbp, tx);
2575 
2576 		ASSERT3U(len, <=, dbp->db_size);
2577 		bcopy(link, dbp->db_data, len);
2578 		dmu_buf_rele(dbp, FTAG);
2579 	}
2580 	zp->z_phys->zp_size = len;
2581 
2582 	/*
2583 	 * Insert the new object into the directory.
2584 	 */
2585 	(void) zfs_link_create(dl, zp, tx, ZNEW);
2586 out:
2587 	if (error == 0)
2588 		seq = zfs_log_symlink(zilog, tx, TX_SYMLINK,
2589 		    dzp, zp, name, link);
2590 
2591 	dmu_tx_commit(tx);
2592 
2593 	zfs_dirent_unlock(dl);
2594 
2595 	VN_RELE(ZTOV(zp));
2596 
2597 	zil_commit(zilog, seq, 0);
2598 
2599 	ZFS_EXIT(zfsvfs);
2600 	return (error);
2601 }
2602 
2603 /*
2604  * Return, in the buffer contained in the provided uio structure,
2605  * the symbolic path referred to by vp.
2606  *
2607  *	IN:	vp	- vnode of symbolic link.
2608  *		uoip	- structure to contain the link path.
2609  *		cr	- credentials of caller.
2610  *
2611  *	OUT:	uio	- structure to contain the link path.
2612  *
2613  *	RETURN:	0 if success
2614  *		error code if failure
2615  *
2616  * Timestamps:
2617  *	vp - atime updated
2618  */
2619 /* ARGSUSED */
2620 static int
2621 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr)
2622 {
2623 	znode_t		*zp = VTOZ(vp);
2624 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2625 	size_t		bufsz;
2626 	int		error;
2627 
2628 	ZFS_ENTER(zfsvfs);
2629 
2630 	bufsz = (size_t)zp->z_phys->zp_size;
2631 	if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) {
2632 		error = uiomove(zp->z_phys + 1,
2633 		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
2634 	} else {
2635 		dmu_buf_t *dbp;
2636 		error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp);
2637 		if (error) {
2638 			ZFS_EXIT(zfsvfs);
2639 			return (error);
2640 		}
2641 		error = uiomove(dbp->db_data,
2642 		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
2643 		dmu_buf_rele(dbp, FTAG);
2644 	}
2645 
2646 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2647 	ZFS_EXIT(zfsvfs);
2648 	return (error);
2649 }
2650 
2651 /*
2652  * Insert a new entry into directory tdvp referencing svp.
2653  *
2654  *	IN:	tdvp	- Directory to contain new entry.
2655  *		svp	- vnode of new entry.
2656  *		name	- name of new entry.
2657  *		cr	- credentials of caller.
2658  *
2659  *	RETURN:	0 if success
2660  *		error code if failure
2661  *
2662  * Timestamps:
2663  *	tdvp - ctime|mtime updated
2664  *	 svp - ctime updated
2665  */
2666 /* ARGSUSED */
2667 static int
2668 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr)
2669 {
2670 	znode_t		*dzp = VTOZ(tdvp);
2671 	znode_t		*tzp, *szp;
2672 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2673 	zilog_t		*zilog = zfsvfs->z_log;
2674 	uint64_t	seq = 0;
2675 	zfs_dirlock_t	*dl;
2676 	dmu_tx_t	*tx;
2677 	vnode_t		*realvp;
2678 	int		error;
2679 
2680 	ASSERT(tdvp->v_type == VDIR);
2681 
2682 	ZFS_ENTER(zfsvfs);
2683 
2684 	if (VOP_REALVP(svp, &realvp) == 0)
2685 		svp = realvp;
2686 
2687 	if (svp->v_vfsp != tdvp->v_vfsp) {
2688 		ZFS_EXIT(zfsvfs);
2689 		return (EXDEV);
2690 	}
2691 
2692 	szp = VTOZ(svp);
2693 top:
2694 	/*
2695 	 * We do not support links between attributes and non-attributes
2696 	 * because of the potential security risk of creating links
2697 	 * into "normal" file space in order to circumvent restrictions
2698 	 * imposed in attribute space.
2699 	 */
2700 	if ((szp->z_phys->zp_flags & ZFS_XATTR) !=
2701 	    (dzp->z_phys->zp_flags & ZFS_XATTR)) {
2702 		ZFS_EXIT(zfsvfs);
2703 		return (EINVAL);
2704 	}
2705 
2706 	/*
2707 	 * POSIX dictates that we return EPERM here.
2708 	 * Better choices include ENOTSUP or EISDIR.
2709 	 */
2710 	if (svp->v_type == VDIR) {
2711 		ZFS_EXIT(zfsvfs);
2712 		return (EPERM);
2713 	}
2714 
2715 	if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) &&
2716 	    secpolicy_basic_link(cr) != 0) {
2717 		ZFS_EXIT(zfsvfs);
2718 		return (EPERM);
2719 	}
2720 
2721 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) {
2722 		ZFS_EXIT(zfsvfs);
2723 		return (error);
2724 	}
2725 
2726 	/*
2727 	 * Attempt to lock directory; fail if entry already exists.
2728 	 */
2729 	if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) {
2730 		ZFS_EXIT(zfsvfs);
2731 		return (error);
2732 	}
2733 
2734 	tx = dmu_tx_create(zfsvfs->z_os);
2735 	dmu_tx_hold_bonus(tx, szp->z_id);
2736 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
2737 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
2738 	if (error) {
2739 		dmu_tx_abort(tx);
2740 		zfs_dirent_unlock(dl);
2741 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2742 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
2743 			goto top;
2744 		}
2745 		ZFS_EXIT(zfsvfs);
2746 		return (error);
2747 	}
2748 
2749 	error = zfs_link_create(dl, szp, tx, 0);
2750 
2751 	if (error == 0)
2752 		seq = zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name);
2753 
2754 	dmu_tx_commit(tx);
2755 
2756 	zfs_dirent_unlock(dl);
2757 
2758 	zil_commit(zilog, seq, 0);
2759 
2760 	ZFS_EXIT(zfsvfs);
2761 	return (error);
2762 }
2763 
2764 /*
2765  * zfs_null_putapage() is used when the file system has been force
2766  * unmounted. It just drops the pages.
2767  */
2768 /* ARGSUSED */
2769 static int
2770 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
2771 		size_t *lenp, int flags, cred_t *cr)
2772 {
2773 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
2774 	return (0);
2775 }
2776 
2777 /* ARGSUSED */
2778 static int
2779 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
2780 		size_t *lenp, int flags, cred_t *cr)
2781 {
2782 	znode_t		*zp = VTOZ(vp);
2783 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2784 	zilog_t		*zilog = zfsvfs->z_log;
2785 	dmu_tx_t	*tx;
2786 	u_offset_t	off;
2787 	ssize_t		len;
2788 	caddr_t		va;
2789 	int		err;
2790 
2791 top:
2792 	rw_enter(&zp->z_grow_lock, RW_READER);
2793 
2794 	off = pp->p_offset;
2795 	len = MIN(PAGESIZE, zp->z_phys->zp_size - off);
2796 
2797 	tx = dmu_tx_create(zfsvfs->z_os);
2798 	dmu_tx_hold_write(tx, zp->z_id, off, len);
2799 	dmu_tx_hold_bonus(tx, zp->z_id);
2800 	err = dmu_tx_assign(tx, zfsvfs->z_assign);
2801 	if (err != 0) {
2802 		dmu_tx_abort(tx);
2803 		rw_exit(&zp->z_grow_lock);
2804 		if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2805 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
2806 			goto top;
2807 		}
2808 		goto out;
2809 	}
2810 
2811 	va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1);
2812 
2813 	dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
2814 
2815 	ppmapout(va);
2816 
2817 	zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
2818 	(void) zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0, NULL);
2819 	dmu_tx_commit(tx);
2820 
2821 	rw_exit(&zp->z_grow_lock);
2822 
2823 	pvn_write_done(pp, B_WRITE | flags);
2824 	if (offp)
2825 		*offp = off;
2826 	if (lenp)
2827 		*lenp = len;
2828 
2829 out:
2830 	return (err);
2831 }
2832 
2833 /*
2834  * Copy the portion of the file indicated from pages into the file.
2835  * The pages are stored in a page list attached to the files vnode.
2836  *
2837  *	IN:	vp	- vnode of file to push page data to.
2838  *		off	- position in file to put data.
2839  *		len	- amount of data to write.
2840  *		flags	- flags to control the operation.
2841  *		cr	- credentials of caller.
2842  *
2843  *	RETURN:	0 if success
2844  *		error code if failure
2845  *
2846  * Timestamps:
2847  *	vp - ctime|mtime updated
2848  */
2849 static int
2850 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr)
2851 {
2852 	znode_t		*zp = VTOZ(vp);
2853 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2854 	page_t		*pp;
2855 	size_t		io_len;
2856 	u_offset_t	io_off;
2857 	int		error = 0;
2858 
2859 	ZFS_ENTER(zfsvfs);
2860 
2861 	ASSERT(zp->z_dbuf_held && zp->z_phys);
2862 
2863 	if (len == 0) {
2864 		/*
2865 		 * Search the entire vp list for pages >= off.
2866 		 */
2867 		error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage,
2868 		    flags, cr);
2869 		goto out;
2870 	}
2871 
2872 	if (off > zp->z_phys->zp_size) {
2873 		/* past end of file */
2874 		ZFS_EXIT(zfsvfs);
2875 		return (0);
2876 	}
2877 
2878 	len = MIN(len, zp->z_phys->zp_size - off);
2879 
2880 	for (io_off = off; io_off < off + len; io_off += io_len) {
2881 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
2882 			pp  = page_lookup(vp, io_off,
2883 				(flags & (B_INVAL | B_FREE)) ?
2884 					SE_EXCL : SE_SHARED);
2885 		} else {
2886 			pp = page_lookup_nowait(vp, io_off,
2887 				(flags & B_FREE) ? SE_EXCL : SE_SHARED);
2888 		}
2889 
2890 		if (pp != NULL && pvn_getdirty(pp, flags)) {
2891 			int err;
2892 
2893 			/*
2894 			 * Found a dirty page to push
2895 			 */
2896 			if (err =
2897 			    zfs_putapage(vp, pp, &io_off, &io_len, flags, cr))
2898 				error = err;
2899 		} else {
2900 			io_len = PAGESIZE;
2901 		}
2902 	}
2903 out:
2904 	zil_commit(zfsvfs->z_log, UINT64_MAX, (flags & B_ASYNC) ? 0 : FDSYNC);
2905 	ZFS_EXIT(zfsvfs);
2906 	return (error);
2907 }
2908 
2909 void
2910 zfs_inactive(vnode_t *vp, cred_t *cr)
2911 {
2912 	znode_t	*zp = VTOZ(vp);
2913 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2914 	int error;
2915 
2916 	rw_enter(&zfsvfs->z_um_lock, RW_READER);
2917 	if (zfsvfs->z_unmounted2) {
2918 		ASSERT(zp->z_dbuf_held == 0);
2919 
2920 		if (vn_has_cached_data(vp)) {
2921 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
2922 			    B_INVAL, cr);
2923 		}
2924 
2925 		mutex_enter(&zp->z_lock);
2926 		vp->v_count = 0; /* count arrives as 1 */
2927 		if (zp->z_dbuf == NULL) {
2928 			mutex_exit(&zp->z_lock);
2929 			zfs_znode_free(zp);
2930 		} else {
2931 			mutex_exit(&zp->z_lock);
2932 		}
2933 		rw_exit(&zfsvfs->z_um_lock);
2934 		VFS_RELE(zfsvfs->z_vfs);
2935 		return;
2936 	}
2937 
2938 	/*
2939 	 * Attempt to push any data in the page cache.  If this fails
2940 	 * we will get kicked out later in zfs_zinactive().
2941 	 */
2942 	if (vn_has_cached_data(vp)) {
2943 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
2944 		    cr);
2945 	}
2946 
2947 	if (zp->z_atime_dirty && zp->z_reap == 0) {
2948 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
2949 
2950 		dmu_tx_hold_bonus(tx, zp->z_id);
2951 		error = dmu_tx_assign(tx, TXG_WAIT);
2952 		if (error) {
2953 			dmu_tx_abort(tx);
2954 		} else {
2955 			dmu_buf_will_dirty(zp->z_dbuf, tx);
2956 			mutex_enter(&zp->z_lock);
2957 			zp->z_atime_dirty = 0;
2958 			mutex_exit(&zp->z_lock);
2959 			dmu_tx_commit(tx);
2960 		}
2961 	}
2962 
2963 	zfs_zinactive(zp);
2964 	rw_exit(&zfsvfs->z_um_lock);
2965 }
2966 
2967 /*
2968  * Bounds-check the seek operation.
2969  *
2970  *	IN:	vp	- vnode seeking within
2971  *		ooff	- old file offset
2972  *		noffp	- pointer to new file offset
2973  *
2974  *	RETURN:	0 if success
2975  *		EINVAL if new offset invalid
2976  */
2977 /* ARGSUSED */
2978 static int
2979 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp)
2980 {
2981 	if (vp->v_type == VDIR)
2982 		return (0);
2983 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
2984 }
2985 
2986 /*
2987  * Pre-filter the generic locking function to trap attempts to place
2988  * a mandatory lock on a memory mapped file.
2989  */
2990 static int
2991 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
2992     flk_callback_t *flk_cbp, cred_t *cr)
2993 {
2994 	znode_t *zp = VTOZ(vp);
2995 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2996 	int error;
2997 
2998 	ZFS_ENTER(zfsvfs);
2999 
3000 	/*
3001 	 * We are following the UFS semantics with respect to mapcnt
3002 	 * here: If we see that the file is mapped already, then we will
3003 	 * return an error, but we don't worry about races between this
3004 	 * function and zfs_map().
3005 	 */
3006 	if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) {
3007 		ZFS_EXIT(zfsvfs);
3008 		return (EAGAIN);
3009 	}
3010 	error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr);
3011 	ZFS_EXIT(zfsvfs);
3012 	return (error);
3013 }
3014 
3015 /*
3016  * If we can't find a page in the cache, we will create a new page
3017  * and fill it with file data.  For efficiency, we may try to fill
3018  * multiple pages as once (klustering).
3019  */
3020 static int
3021 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
3022     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
3023 {
3024 	znode_t *zp = VTOZ(vp);
3025 	page_t *pp, *cur_pp;
3026 	objset_t *os = zp->z_zfsvfs->z_os;
3027 	caddr_t va;
3028 	u_offset_t io_off, total;
3029 	uint64_t oid = zp->z_id;
3030 	size_t io_len;
3031 	int err;
3032 
3033 	/*
3034 	 * If we are only asking for a single page don't bother klustering.
3035 	 */
3036 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE ||
3037 	    off > zp->z_phys->zp_size) {
3038 		io_off = off;
3039 		io_len = PAGESIZE;
3040 		pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr);
3041 	} else {
3042 		/*
3043 		 * Try to fill a kluster of pages (a blocks worth).
3044 		 */
3045 		size_t klen;
3046 		u_offset_t koff;
3047 
3048 		if (!ISP2(zp->z_blksz)) {
3049 			/* Only one block in the file. */
3050 			klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
3051 			koff = 0;
3052 		} else {
3053 			klen = plsz;
3054 			koff = P2ALIGN(off, (u_offset_t)klen);
3055 		}
3056 		if (klen > zp->z_phys->zp_size)
3057 			klen = P2ROUNDUP(zp->z_phys->zp_size,
3058 			    (uint64_t)PAGESIZE);
3059 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
3060 			    &io_len, koff, klen, 0);
3061 	}
3062 	if (pp == NULL) {
3063 		/*
3064 		 * Some other thread entered the page before us.
3065 		 * Return to zfs_getpage to retry the lookup.
3066 		 */
3067 		*pl = NULL;
3068 		return (0);
3069 	}
3070 
3071 	/*
3072 	 * Fill the pages in the kluster.
3073 	 */
3074 	cur_pp = pp;
3075 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
3076 		ASSERT(io_off == cur_pp->p_offset);
3077 		va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1);
3078 		err = dmu_read(os, oid, io_off, PAGESIZE, va);
3079 		ppmapout(va);
3080 		if (err) {
3081 			/* On error, toss the entire kluster */
3082 			pvn_read_done(pp, B_ERROR);
3083 			return (err);
3084 		}
3085 		cur_pp = cur_pp->p_next;
3086 	}
3087 out:
3088 	/*
3089 	 * Fill in the page list array from the kluster.  If
3090 	 * there are too many pages in the kluster, return
3091 	 * as many pages as possible starting from the desired
3092 	 * offset `off'.
3093 	 * NOTE: the page list will always be null terminated.
3094 	 */
3095 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
3096 
3097 	return (0);
3098 }
3099 
3100 /*
3101  * Return pointers to the pages for the file region [off, off + len]
3102  * in the pl array.  If plsz is greater than len, this function may
3103  * also return page pointers from before or after the specified
3104  * region (i.e. some region [off', off' + plsz]).  These additional
3105  * pages are only returned if they are already in the cache, or were
3106  * created as part of a klustered read.
3107  *
3108  *	IN:	vp	- vnode of file to get data from.
3109  *		off	- position in file to get data from.
3110  *		len	- amount of data to retrieve.
3111  *		plsz	- length of provided page list.
3112  *		seg	- segment to obtain pages for.
3113  *		addr	- virtual address of fault.
3114  *		rw	- mode of created pages.
3115  *		cr	- credentials of caller.
3116  *
3117  *	OUT:	protp	- protection mode of created pages.
3118  *		pl	- list of pages created.
3119  *
3120  *	RETURN:	0 if success
3121  *		error code if failure
3122  *
3123  * Timestamps:
3124  *	vp - atime updated
3125  */
3126 /* ARGSUSED */
3127 static int
3128 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
3129 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3130 	enum seg_rw rw, cred_t *cr)
3131 {
3132 	znode_t		*zp = VTOZ(vp);
3133 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3134 	page_t		*pp, **pl0 = pl;
3135 	int		cnt = 0, need_unlock = 0, err = 0;
3136 
3137 	ZFS_ENTER(zfsvfs);
3138 
3139 	if (protp)
3140 		*protp = PROT_ALL;
3141 
3142 	ASSERT(zp->z_dbuf_held && zp->z_phys);
3143 
3144 	/* no faultahead (for now) */
3145 	if (pl == NULL) {
3146 		ZFS_EXIT(zfsvfs);
3147 		return (0);
3148 	}
3149 
3150 	/* can't fault past EOF */
3151 	if (off >= zp->z_phys->zp_size) {
3152 		ZFS_EXIT(zfsvfs);
3153 		return (EFAULT);
3154 	}
3155 
3156 	/*
3157 	 * Make sure nobody restructures the file (changes block size)
3158 	 * in the middle of the getpage.
3159 	 */
3160 	rw_enter(&zp->z_grow_lock, RW_READER);
3161 
3162 	/*
3163 	 * If we already own the lock, then we must be page faulting
3164 	 * in the middle of a write to this file (i.e., we are writing
3165 	 * to this file using data from a mapped region of the file).
3166 	 */
3167 	if (!rw_owner(&zp->z_map_lock)) {
3168 		rw_enter(&zp->z_map_lock, RW_WRITER);
3169 		need_unlock = TRUE;
3170 	}
3171 
3172 	/*
3173 	 * Loop through the requested range [off, off + len] looking
3174 	 * for pages.  If we don't find a page, we will need to create
3175 	 * a new page and fill it with data from the file.
3176 	 */
3177 	while (len > 0) {
3178 		if (plsz < PAGESIZE)
3179 			break;
3180 		if (pp = page_lookup(vp, off, SE_SHARED)) {
3181 			*pl++ = pp;
3182 			off += PAGESIZE;
3183 			addr += PAGESIZE;
3184 			len -= PAGESIZE;
3185 			plsz -= PAGESIZE;
3186 		} else {
3187 			err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw);
3188 			/*
3189 			 * klustering may have changed our region
3190 			 * to be block aligned.
3191 			 */
3192 			if (((pp = *pl) != 0) && (off != pp->p_offset)) {
3193 				int delta = off - pp->p_offset;
3194 				len += delta;
3195 				off -= delta;
3196 				addr -= delta;
3197 			}
3198 			while (*pl) {
3199 				pl++;
3200 				cnt++;
3201 				off += PAGESIZE;
3202 				addr += PAGESIZE;
3203 				plsz -= PAGESIZE;
3204 				if (len > PAGESIZE)
3205 					len -= PAGESIZE;
3206 				else
3207 					len = 0;
3208 			}
3209 		}
3210 		if (err)
3211 			goto out;
3212 	}
3213 
3214 	/*
3215 	 * Fill out the page array with any pages already in the cache.
3216 	 */
3217 	while (plsz > 0) {
3218 		pp = page_lookup_nowait(vp, off, SE_SHARED);
3219 		if (pp == NULL)
3220 			break;
3221 		*pl++ = pp;
3222 		off += PAGESIZE;
3223 		plsz -= PAGESIZE;
3224 	}
3225 
3226 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3227 out:
3228 	if (err) {
3229 		/*
3230 		 * Release any pages we have locked.
3231 		 */
3232 		while (pl > pl0)
3233 			page_unlock(*--pl);
3234 	}
3235 	*pl = NULL;
3236 
3237 	if (need_unlock)
3238 		rw_exit(&zp->z_map_lock);
3239 	rw_exit(&zp->z_grow_lock);
3240 
3241 	ZFS_EXIT(zfsvfs);
3242 	return (err);
3243 }
3244 
3245 /*
3246  * Request a memory map for a section of a file.  This code interacts
3247  * with common code and the VM system as follows:
3248  *
3249  *	common code calls mmap(), which ends up in smmap_common()
3250  *
3251  *	this calls VOP_MAP(), which takes you into (say) zfs
3252  *
3253  *	zfs_map() calls as_map(), passing segvn_create() as the callback
3254  *
3255  *	segvn_create() creates the new segment and calls VOP_ADDMAP()
3256  *
3257  *	zfs_addmap() updates z_mapcnt
3258  */
3259 static int
3260 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
3261     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr)
3262 {
3263 	znode_t *zp = VTOZ(vp);
3264 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3265 	segvn_crargs_t	vn_a;
3266 	int		error;
3267 
3268 	ZFS_ENTER(zfsvfs);
3269 
3270 	if (vp->v_flag & VNOMAP) {
3271 		ZFS_EXIT(zfsvfs);
3272 		return (ENOSYS);
3273 	}
3274 
3275 	if (off < 0 || len > MAXOFFSET_T - off) {
3276 		ZFS_EXIT(zfsvfs);
3277 		return (ENXIO);
3278 	}
3279 
3280 	if (vp->v_type != VREG) {
3281 		ZFS_EXIT(zfsvfs);
3282 		return (ENODEV);
3283 	}
3284 
3285 	/*
3286 	 * If file is locked, disallow mapping.
3287 	 */
3288 	if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) {
3289 		ZFS_EXIT(zfsvfs);
3290 		return (EAGAIN);
3291 	}
3292 
3293 	as_rangelock(as);
3294 	if ((flags & MAP_FIXED) == 0) {
3295 		map_addr(addrp, len, off, 1, flags);
3296 		if (*addrp == NULL) {
3297 			as_rangeunlock(as);
3298 			ZFS_EXIT(zfsvfs);
3299 			return (ENOMEM);
3300 		}
3301 	} else {
3302 		/*
3303 		 * User specified address - blow away any previous mappings
3304 		 */
3305 		(void) as_unmap(as, *addrp, len);
3306 	}
3307 
3308 	vn_a.vp = vp;
3309 	vn_a.offset = (u_offset_t)off;
3310 	vn_a.type = flags & MAP_TYPE;
3311 	vn_a.prot = prot;
3312 	vn_a.maxprot = maxprot;
3313 	vn_a.cred = cr;
3314 	vn_a.amp = NULL;
3315 	vn_a.flags = flags & ~MAP_TYPE;
3316 	vn_a.szc = 0;
3317 	vn_a.lgrp_mem_policy_flags = 0;
3318 
3319 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
3320 
3321 	as_rangeunlock(as);
3322 	ZFS_EXIT(zfsvfs);
3323 	return (error);
3324 }
3325 
3326 /* ARGSUSED */
3327 static int
3328 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
3329     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr)
3330 {
3331 	uint64_t pages = btopr(len);
3332 
3333 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
3334 	return (0);
3335 }
3336 
3337 /* ARGSUSED */
3338 static int
3339 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
3340     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr)
3341 {
3342 	uint64_t pages = btopr(len);
3343 
3344 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
3345 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
3346 	return (0);
3347 }
3348 
3349 /*
3350  * Free or allocate space in a file.  Currently, this function only
3351  * supports the `F_FREESP' command.  However, this command is somewhat
3352  * misnamed, as its functionality includes the ability to allocate as
3353  * well as free space.
3354  *
3355  *	IN:	vp	- vnode of file to free data in.
3356  *		cmd	- action to take (only F_FREESP supported).
3357  *		bfp	- section of file to free/alloc.
3358  *		flag	- current file open mode flags.
3359  *		offset	- current file offset.
3360  *		cr	- credentials of caller [UNUSED].
3361  *
3362  *	RETURN:	0 if success
3363  *		error code if failure
3364  *
3365  * Timestamps:
3366  *	vp - ctime|mtime updated
3367  *
3368  * NOTE: This function is limited in that it will only permit space to
3369  *   be freed at the end of a file.  In essence, this function simply
3370  *   allows one to set the file size.
3371  */
3372 /* ARGSUSED */
3373 static int
3374 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
3375     offset_t offset, cred_t *cr, caller_context_t *ct)
3376 {
3377 	dmu_tx_t	*tx;
3378 	znode_t		*zp = VTOZ(vp);
3379 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3380 	zilog_t		*zilog = zfsvfs->z_log;
3381 	uint64_t	seq = 0;
3382 	uint64_t	off, len;
3383 	int		error;
3384 
3385 	ZFS_ENTER(zfsvfs);
3386 
3387 top:
3388 	if (cmd != F_FREESP) {
3389 		ZFS_EXIT(zfsvfs);
3390 		return (EINVAL);
3391 	}
3392 
3393 	if (error = convoff(vp, bfp, 0, offset)) {
3394 		ZFS_EXIT(zfsvfs);
3395 		return (error);
3396 	}
3397 
3398 	if (bfp->l_len < 0) {
3399 		ZFS_EXIT(zfsvfs);
3400 		return (EINVAL);
3401 	}
3402 
3403 	off = bfp->l_start;
3404 	len = bfp->l_len;
3405 	tx = dmu_tx_create(zfsvfs->z_os);
3406 	/*
3407 	 * Grab the grow_lock to serialize this change with
3408 	 * respect to other file size changes.
3409 	 */
3410 	dmu_tx_hold_bonus(tx, zp->z_id);
3411 	rw_enter(&zp->z_grow_lock, RW_WRITER);
3412 	if (off + len > zp->z_blksz && zp->z_blksz < zfsvfs->z_max_blksz &&
3413 	    off >= zp->z_phys->zp_size) {
3414 		/*
3415 		 * We are increasing the length of the file,
3416 		 * and this may mean a block size increase.
3417 		 */
3418 		dmu_tx_hold_write(tx, zp->z_id, 0,
3419 		    MIN(off + len, zfsvfs->z_max_blksz));
3420 	} else if (off < zp->z_phys->zp_size) {
3421 		/*
3422 		 * If len == 0, we are truncating the file.
3423 		 */
3424 		dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END);
3425 	}
3426 
3427 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
3428 	if (error) {
3429 		dmu_tx_abort(tx);
3430 		rw_exit(&zp->z_grow_lock);
3431 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
3432 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
3433 			goto top;
3434 		}
3435 		ZFS_EXIT(zfsvfs);
3436 		return (error);
3437 	}
3438 
3439 	error = zfs_freesp(zp, off, len, flag, tx, cr);
3440 
3441 	if (error == 0) {
3442 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
3443 		seq = zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
3444 	}
3445 
3446 	rw_exit(&zp->z_grow_lock);
3447 
3448 	dmu_tx_commit(tx);
3449 
3450 	zil_commit(zilog, seq, 0);
3451 
3452 	ZFS_EXIT(zfsvfs);
3453 	return (error);
3454 }
3455 
3456 static int
3457 zfs_fid(vnode_t *vp, fid_t *fidp)
3458 {
3459 	znode_t		*zp = VTOZ(vp);
3460 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3461 	uint32_t	gen = (uint32_t)zp->z_phys->zp_gen;
3462 	uint64_t	object = zp->z_id;
3463 	zfid_short_t	*zfid;
3464 	int		size, i;
3465 
3466 	ZFS_ENTER(zfsvfs);
3467 
3468 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
3469 	if (fidp->fid_len < size) {
3470 		fidp->fid_len = size;
3471 		ZFS_EXIT(zfsvfs);
3472 		return (ENOSPC);
3473 	}
3474 
3475 	zfid = (zfid_short_t *)fidp;
3476 
3477 	zfid->zf_len = size;
3478 
3479 	for (i = 0; i < sizeof (zfid->zf_object); i++)
3480 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
3481 
3482 	/* Must have a non-zero generation number to distinguish from .zfs */
3483 	if (gen == 0)
3484 		gen = 1;
3485 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
3486 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
3487 
3488 	if (size == LONG_FID_LEN) {
3489 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
3490 		zfid_long_t	*zlfid;
3491 
3492 		zlfid = (zfid_long_t *)fidp;
3493 
3494 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
3495 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
3496 
3497 		/* XXX - this should be the generation number for the objset */
3498 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
3499 			zlfid->zf_setgen[i] = 0;
3500 	}
3501 
3502 	ZFS_EXIT(zfsvfs);
3503 	return (0);
3504 }
3505 
3506 static int
3507 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr)
3508 {
3509 	znode_t		*zp, *xzp;
3510 	zfsvfs_t	*zfsvfs;
3511 	zfs_dirlock_t	*dl;
3512 	int		error;
3513 
3514 	switch (cmd) {
3515 	case _PC_LINK_MAX:
3516 		*valp = ULONG_MAX;
3517 		return (0);
3518 
3519 	case _PC_FILESIZEBITS:
3520 		*valp = 64;
3521 		return (0);
3522 
3523 	case _PC_XATTR_EXISTS:
3524 		zp = VTOZ(vp);
3525 		zfsvfs = zp->z_zfsvfs;
3526 		ZFS_ENTER(zfsvfs);
3527 		*valp = 0;
3528 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
3529 		    ZXATTR | ZEXISTS | ZSHARED);
3530 		if (error == 0) {
3531 			zfs_dirent_unlock(dl);
3532 			if (!zfs_dirempty(xzp))
3533 				*valp = 1;
3534 			VN_RELE(ZTOV(xzp));
3535 		} else if (error == ENOENT) {
3536 			/*
3537 			 * If there aren't extended attributes, it's the
3538 			 * same as having zero of them.
3539 			 */
3540 			error = 0;
3541 		}
3542 		ZFS_EXIT(zfsvfs);
3543 		return (error);
3544 
3545 	case _PC_ACL_ENABLED:
3546 		*valp = _ACL_ACE_ENABLED;
3547 		return (0);
3548 
3549 	case _PC_MIN_HOLE_SIZE:
3550 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
3551 		return (0);
3552 
3553 	default:
3554 		return (fs_pathconf(vp, cmd, valp, cr));
3555 	}
3556 }
3557 
3558 /*ARGSUSED*/
3559 static int
3560 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr)
3561 {
3562 	znode_t *zp = VTOZ(vp);
3563 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3564 	int error;
3565 
3566 	ZFS_ENTER(zfsvfs);
3567 	error = zfs_getacl(zp, vsecp, cr);
3568 	ZFS_EXIT(zfsvfs);
3569 
3570 	return (error);
3571 }
3572 
3573 /*ARGSUSED*/
3574 static int
3575 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr)
3576 {
3577 	znode_t *zp = VTOZ(vp);
3578 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3579 	int error;
3580 
3581 	ZFS_ENTER(zfsvfs);
3582 	error = zfs_setacl(zp, vsecp, cr);
3583 	ZFS_EXIT(zfsvfs);
3584 	return (error);
3585 }
3586 
3587 /*
3588  * Predeclare these here so that the compiler assumes that
3589  * this is an "old style" function declaration that does
3590  * not include arguments => we won't get type mismatch errors
3591  * in the initializations that follow.
3592  */
3593 static int zfs_inval();
3594 static int zfs_isdir();
3595 
3596 static int
3597 zfs_inval()
3598 {
3599 	return (EINVAL);
3600 }
3601 
3602 static int
3603 zfs_isdir()
3604 {
3605 	return (EISDIR);
3606 }
3607 /*
3608  * Directory vnode operations template
3609  */
3610 vnodeops_t *zfs_dvnodeops;
3611 const fs_operation_def_t zfs_dvnodeops_template[] = {
3612 	VOPNAME_OPEN, zfs_open,
3613 	VOPNAME_CLOSE, zfs_close,
3614 	VOPNAME_READ, zfs_isdir,
3615 	VOPNAME_WRITE, zfs_isdir,
3616 	VOPNAME_IOCTL, zfs_ioctl,
3617 	VOPNAME_GETATTR, zfs_getattr,
3618 	VOPNAME_SETATTR, zfs_setattr,
3619 	VOPNAME_ACCESS, zfs_access,
3620 	VOPNAME_LOOKUP, zfs_lookup,
3621 	VOPNAME_CREATE, zfs_create,
3622 	VOPNAME_REMOVE, zfs_remove,
3623 	VOPNAME_LINK, zfs_link,
3624 	VOPNAME_RENAME, zfs_rename,
3625 	VOPNAME_MKDIR, zfs_mkdir,
3626 	VOPNAME_RMDIR, zfs_rmdir,
3627 	VOPNAME_READDIR, zfs_readdir,
3628 	VOPNAME_SYMLINK, zfs_symlink,
3629 	VOPNAME_FSYNC, zfs_fsync,
3630 	VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
3631 	VOPNAME_FID, zfs_fid,
3632 	VOPNAME_SEEK, zfs_seek,
3633 	VOPNAME_PATHCONF, zfs_pathconf,
3634 	VOPNAME_GETSECATTR, zfs_getsecattr,
3635 	VOPNAME_SETSECATTR, zfs_setsecattr,
3636 	NULL, NULL
3637 };
3638 
3639 /*
3640  * Regular file vnode operations template
3641  */
3642 vnodeops_t *zfs_fvnodeops;
3643 const fs_operation_def_t zfs_fvnodeops_template[] = {
3644 	VOPNAME_OPEN, zfs_open,
3645 	VOPNAME_CLOSE, zfs_close,
3646 	VOPNAME_READ, zfs_read,
3647 	VOPNAME_WRITE, zfs_write,
3648 	VOPNAME_IOCTL, zfs_ioctl,
3649 	VOPNAME_GETATTR, zfs_getattr,
3650 	VOPNAME_SETATTR, zfs_setattr,
3651 	VOPNAME_ACCESS, zfs_access,
3652 	VOPNAME_LOOKUP, zfs_lookup,
3653 	VOPNAME_RENAME, zfs_rename,
3654 	VOPNAME_FSYNC, zfs_fsync,
3655 	VOPNAME_INACTIVE, (fs_generic_func_p)zfs_inactive,
3656 	VOPNAME_FID, zfs_fid,
3657 	VOPNAME_SEEK, zfs_seek,
3658 	VOPNAME_FRLOCK, zfs_frlock,
3659 	VOPNAME_SPACE, zfs_space,
3660 	VOPNAME_GETPAGE, zfs_getpage,
3661 	VOPNAME_PUTPAGE, zfs_putpage,
3662 	VOPNAME_MAP, (fs_generic_func_p) zfs_map,
3663 	VOPNAME_ADDMAP, (fs_generic_func_p) zfs_addmap,
3664 	VOPNAME_DELMAP, zfs_delmap,
3665 	VOPNAME_PATHCONF, zfs_pathconf,
3666 	VOPNAME_GETSECATTR, zfs_getsecattr,
3667 	VOPNAME_SETSECATTR, zfs_setsecattr,
3668 	VOPNAME_VNEVENT, fs_vnevent_support,
3669 	NULL, NULL
3670 };
3671 
3672 /*
3673  * Symbolic link vnode operations template
3674  */
3675 vnodeops_t *zfs_symvnodeops;
3676 const fs_operation_def_t zfs_symvnodeops_template[] = {
3677 	VOPNAME_GETATTR, zfs_getattr,
3678 	VOPNAME_SETATTR, zfs_setattr,
3679 	VOPNAME_ACCESS, zfs_access,
3680 	VOPNAME_RENAME, zfs_rename,
3681 	VOPNAME_READLINK, zfs_readlink,
3682 	VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
3683 	VOPNAME_FID, zfs_fid,
3684 	VOPNAME_PATHCONF, zfs_pathconf,
3685 	VOPNAME_VNEVENT, fs_vnevent_support,
3686 	NULL, NULL
3687 };
3688 
3689 /*
3690  * Extended attribute directory vnode operations template
3691  *	This template is identical to the directory vnodes
3692  *	operation template except for restricted operations:
3693  *		VOP_MKDIR()
3694  *		VOP_SYMLINK()
3695  * Note that there are other restrictions embedded in:
3696  *	zfs_create()	- restrict type to VREG
3697  *	zfs_link()	- no links into/out of attribute space
3698  *	zfs_rename()	- no moves into/out of attribute space
3699  */
3700 vnodeops_t *zfs_xdvnodeops;
3701 const fs_operation_def_t zfs_xdvnodeops_template[] = {
3702 	VOPNAME_OPEN, zfs_open,
3703 	VOPNAME_CLOSE, zfs_close,
3704 	VOPNAME_IOCTL, zfs_ioctl,
3705 	VOPNAME_GETATTR, zfs_getattr,
3706 	VOPNAME_SETATTR, zfs_setattr,
3707 	VOPNAME_ACCESS, zfs_access,
3708 	VOPNAME_LOOKUP, zfs_lookup,
3709 	VOPNAME_CREATE, zfs_create,
3710 	VOPNAME_REMOVE, zfs_remove,
3711 	VOPNAME_LINK, zfs_link,
3712 	VOPNAME_RENAME, zfs_rename,
3713 	VOPNAME_MKDIR, zfs_inval,
3714 	VOPNAME_RMDIR, zfs_rmdir,
3715 	VOPNAME_READDIR, zfs_readdir,
3716 	VOPNAME_SYMLINK, zfs_inval,
3717 	VOPNAME_FSYNC, zfs_fsync,
3718 	VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
3719 	VOPNAME_FID, zfs_fid,
3720 	VOPNAME_SEEK, zfs_seek,
3721 	VOPNAME_PATHCONF, zfs_pathconf,
3722 	VOPNAME_GETSECATTR, zfs_getsecattr,
3723 	VOPNAME_SETSECATTR, zfs_setsecattr,
3724 	VOPNAME_VNEVENT, fs_vnevent_support,
3725 	NULL, NULL
3726 };
3727 
3728 /*
3729  * Error vnode operations template
3730  */
3731 vnodeops_t *zfs_evnodeops;
3732 const fs_operation_def_t zfs_evnodeops_template[] = {
3733 	VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
3734 	VOPNAME_PATHCONF, zfs_pathconf,
3735 	NULL, NULL
3736 };
3737