1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2020 Joyent, Inc. 27 * Copyright 2017 Nexenta Systems, Inc. 28 */ 29 30 /* Portions Copyright 2007 Jeremy Teo */ 31 /* Portions Copyright 2010 Robert Milkowski */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/time.h> 36 #include <sys/systm.h> 37 #include <sys/sysmacros.h> 38 #include <sys/resource.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/stat.h> 44 #include <sys/kmem.h> 45 #include <sys/taskq.h> 46 #include <sys/uio.h> 47 #include <sys/vmsystm.h> 48 #include <sys/atomic.h> 49 #include <sys/vm.h> 50 #include <vm/seg_vn.h> 51 #include <vm/pvn.h> 52 #include <vm/as.h> 53 #include <vm/kpm.h> 54 #include <vm/seg_kpm.h> 55 #include <sys/mman.h> 56 #include <sys/pathname.h> 57 #include <sys/cmn_err.h> 58 #include <sys/errno.h> 59 #include <sys/unistd.h> 60 #include <sys/zfs_dir.h> 61 #include <sys/zfs_acl.h> 62 #include <sys/zfs_ioctl.h> 63 #include <sys/fs/zfs.h> 64 #include <sys/dmu.h> 65 #include <sys/dmu_objset.h> 66 #include <sys/spa.h> 67 #include <sys/txg.h> 68 #include <sys/dbuf.h> 69 #include <sys/zap.h> 70 #include <sys/sa.h> 71 #include <sys/dirent.h> 72 #include <sys/policy.h> 73 #include <sys/sunddi.h> 74 #include <sys/filio.h> 75 #include <sys/sid.h> 76 #include "fs/fs_subr.h" 77 #include <sys/zfs_ctldir.h> 78 #include <sys/zfs_fuid.h> 79 #include <sys/zfs_sa.h> 80 #include <sys/dnlc.h> 81 #include <sys/zfs_rlock.h> 82 #include <sys/extdirent.h> 83 #include <sys/kidmap.h> 84 #include <sys/cred.h> 85 #include <sys/attr.h> 86 #include <sys/zil.h> 87 #include <sys/sa_impl.h> 88 #include <sys/zfs_project.h> 89 90 /* 91 * Programming rules. 92 * 93 * Each vnode op performs some logical unit of work. To do this, the ZPL must 94 * properly lock its in-core state, create a DMU transaction, do the work, 95 * record this work in the intent log (ZIL), commit the DMU transaction, 96 * and wait for the intent log to commit if it is a synchronous operation. 97 * Moreover, the vnode ops must work in both normal and log replay context. 98 * The ordering of events is important to avoid deadlocks and references 99 * to freed memory. The example below illustrates the following Big Rules: 100 * 101 * (1) A check must be made in each zfs thread for a mounted file system. 102 * This is done avoiding races using ZFS_ENTER(zfsvfs). 103 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 104 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 105 * can return EIO from the calling function. 106 * 107 * (2) VN_RELE() should always be the last thing except for zil_commit() 108 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 109 * First, if it's the last reference, the vnode/znode 110 * can be freed, so the zp may point to freed memory. Second, the last 111 * reference will call zfs_zinactive(), which may induce a lot of work -- 112 * pushing cached pages (which acquires range locks) and syncing out 113 * cached atime changes. Third, zfs_zinactive() may require a new tx, 114 * which could deadlock the system if you were already holding one. 115 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 116 * 117 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 118 * as they can span dmu_tx_assign() calls. 119 * 120 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 121 * dmu_tx_assign(). This is critical because we don't want to block 122 * while holding locks. 123 * 124 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 125 * reduces lock contention and CPU usage when we must wait (note that if 126 * throughput is constrained by the storage, nearly every transaction 127 * must wait). 128 * 129 * Note, in particular, that if a lock is sometimes acquired before 130 * the tx assigns, and sometimes after (e.g. z_lock), then failing 131 * to use a non-blocking assign can deadlock the system. The scenario: 132 * 133 * Thread A has grabbed a lock before calling dmu_tx_assign(). 134 * Thread B is in an already-assigned tx, and blocks for this lock. 135 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 136 * forever, because the previous txg can't quiesce until B's tx commits. 137 * 138 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 139 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 140 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT, 141 * to indicate that this operation has already called dmu_tx_wait(). 142 * This will ensure that we don't retry forever, waiting a short bit 143 * each time. 144 * 145 * (5) If the operation succeeded, generate the intent log entry for it 146 * before dropping locks. This ensures that the ordering of events 147 * in the intent log matches the order in which they actually occurred. 148 * During ZIL replay the zfs_log_* functions will update the sequence 149 * number to indicate the zil transaction has replayed. 150 * 151 * (6) At the end of each vnode op, the DMU tx must always commit, 152 * regardless of whether there were any errors. 153 * 154 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 155 * to ensure that synchronous semantics are provided when necessary. 156 * 157 * In general, this is how things should be ordered in each vnode op: 158 * 159 * ZFS_ENTER(zfsvfs); // exit if unmounted 160 * top: 161 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 162 * rw_enter(...); // grab any other locks you need 163 * tx = dmu_tx_create(...); // get DMU tx 164 * dmu_tx_hold_*(); // hold each object you might modify 165 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 166 * if (error) { 167 * rw_exit(...); // drop locks 168 * zfs_dirent_unlock(dl); // unlock directory entry 169 * VN_RELE(...); // release held vnodes 170 * if (error == ERESTART) { 171 * waited = B_TRUE; 172 * dmu_tx_wait(tx); 173 * dmu_tx_abort(tx); 174 * goto top; 175 * } 176 * dmu_tx_abort(tx); // abort DMU tx 177 * ZFS_EXIT(zfsvfs); // finished in zfs 178 * return (error); // really out of space 179 * } 180 * error = do_real_work(); // do whatever this VOP does 181 * if (error == 0) 182 * zfs_log_*(...); // on success, make ZIL entry 183 * dmu_tx_commit(tx); // commit DMU tx -- error or not 184 * rw_exit(...); // drop locks 185 * zfs_dirent_unlock(dl); // unlock directory entry 186 * VN_RELE(...); // release held vnodes 187 * zil_commit(zilog, foid); // synchronous when necessary 188 * ZFS_EXIT(zfsvfs); // finished in zfs 189 * return (error); // done, report error 190 */ 191 192 /* ARGSUSED */ 193 static int 194 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 195 { 196 znode_t *zp = VTOZ(*vpp); 197 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 198 199 ZFS_ENTER(zfsvfs); 200 ZFS_VERIFY_ZP(zp); 201 202 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 203 ((flag & FAPPEND) == 0)) { 204 ZFS_EXIT(zfsvfs); 205 return (SET_ERROR(EPERM)); 206 } 207 208 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 209 ZTOV(zp)->v_type == VREG && 210 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 211 if (fs_vscan(*vpp, cr, 0) != 0) { 212 ZFS_EXIT(zfsvfs); 213 return (SET_ERROR(EACCES)); 214 } 215 } 216 217 /* Keep a count of the synchronous opens in the znode */ 218 if (flag & (FSYNC | FDSYNC)) 219 atomic_inc_32(&zp->z_sync_cnt); 220 221 ZFS_EXIT(zfsvfs); 222 return (0); 223 } 224 225 /* ARGSUSED */ 226 static int 227 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 228 caller_context_t *ct) 229 { 230 znode_t *zp = VTOZ(vp); 231 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 232 233 /* 234 * Clean up any locks held by this process on the vp. 235 */ 236 cleanlocks(vp, ddi_get_pid(), 0); 237 cleanshares(vp, ddi_get_pid()); 238 239 ZFS_ENTER(zfsvfs); 240 ZFS_VERIFY_ZP(zp); 241 242 /* Decrement the synchronous opens in the znode */ 243 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 244 atomic_dec_32(&zp->z_sync_cnt); 245 246 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 247 ZTOV(zp)->v_type == VREG && 248 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 249 VERIFY(fs_vscan(vp, cr, 1) == 0); 250 251 ZFS_EXIT(zfsvfs); 252 return (0); 253 } 254 255 /* 256 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 257 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 258 */ 259 static int 260 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 261 { 262 znode_t *zp = VTOZ(vp); 263 uint64_t noff = (uint64_t)*off; /* new offset */ 264 uint64_t file_sz; 265 int error; 266 boolean_t hole; 267 268 file_sz = zp->z_size; 269 if (noff >= file_sz) { 270 return (SET_ERROR(ENXIO)); 271 } 272 273 if (cmd == _FIO_SEEK_HOLE) 274 hole = B_TRUE; 275 else 276 hole = B_FALSE; 277 278 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 279 280 if (error == ESRCH) 281 return (SET_ERROR(ENXIO)); 282 283 /* 284 * We could find a hole that begins after the logical end-of-file, 285 * because dmu_offset_next() only works on whole blocks. If the 286 * EOF falls mid-block, then indicate that the "virtual hole" 287 * at the end of the file begins at the logical EOF, rather than 288 * at the end of the last block. 289 */ 290 if (noff > file_sz) { 291 ASSERT(hole); 292 noff = file_sz; 293 } 294 295 if (noff < *off) 296 return (error); 297 *off = noff; 298 return (error); 299 } 300 301 static int 302 zfs_ioctl_getxattr(vnode_t *vp, intptr_t data, int flag, cred_t *cr, 303 caller_context_t *ct) 304 { 305 zfsxattr_t fsx = { 0 }; 306 znode_t *zp = VTOZ(vp); 307 308 if (zp->z_pflags & ZFS_PROJINHERIT) 309 fsx.fsx_xflags = ZFS_PROJINHERIT_FL; 310 if (zp->z_pflags & ZFS_PROJID) 311 fsx.fsx_projid = zp->z_projid; 312 if (ddi_copyout(&fsx, (void *)data, sizeof (fsx), flag)) 313 return (SET_ERROR(EFAULT)); 314 315 return (0); 316 } 317 318 static int zfs_setattr(vnode_t *, vattr_t *, int, cred_t *, caller_context_t *); 319 320 static int 321 zfs_ioctl_setxattr(vnode_t *vp, intptr_t data, int flags, cred_t *cr, 322 caller_context_t *ct) 323 { 324 znode_t *zp = VTOZ(vp); 325 zfsxattr_t fsx; 326 xvattr_t xva; 327 xoptattr_t *xoap; 328 int err; 329 330 if (ddi_copyin((void *)data, &fsx, sizeof (fsx), flags)) 331 return (SET_ERROR(EFAULT)); 332 333 if (!zpl_is_valid_projid(fsx.fsx_projid)) 334 return (SET_ERROR(EINVAL)); 335 336 if (fsx.fsx_xflags & ~ZFS_PROJINHERIT_FL) 337 return (SET_ERROR(EOPNOTSUPP)); 338 339 xva_init(&xva); 340 xoap = xva_getxoptattr(&xva); 341 342 XVA_SET_REQ(&xva, XAT_PROJINHERIT); 343 if (fsx.fsx_xflags & ZFS_PROJINHERIT_FL) 344 xoap->xoa_projinherit = B_TRUE; 345 346 XVA_SET_REQ(&xva, XAT_PROJID); 347 xoap->xoa_projid = fsx.fsx_projid; 348 349 return (zfs_setattr(vp, (vattr_t *)&xva, flags, cr, ct)); 350 } 351 352 /* ARGSUSED */ 353 static int 354 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 355 int *rvalp, caller_context_t *ct) 356 { 357 offset_t off; 358 offset_t ndata; 359 dmu_object_info_t doi; 360 int error; 361 zfsvfs_t *zfsvfs; 362 znode_t *zp; 363 364 switch (com) { 365 case _FIOFFS: 366 { 367 return (zfs_sync(vp->v_vfsp, 0, cred)); 368 369 /* 370 * The following two ioctls are used by bfu. Faking out, 371 * necessary to avoid bfu errors. 372 */ 373 } 374 case _FIOGDIO: 375 case _FIOSDIO: 376 { 377 return (0); 378 } 379 380 case _FIODIRECTIO: 381 { 382 /* 383 * ZFS inherently provides the basic semantics for directio. 384 * This is the summary from the ZFS on Linux support for 385 * O_DIRECT, which is the common form of directio, and required 386 * no changes to ZFS. 387 * 388 * 1. Minimize cache effects of the I/O. 389 * 390 * By design the ARC is already scan-resistant, which helps 391 * mitigate the need for special O_DIRECT handling. 392 * 393 * 2. O_DIRECT _MAY_ impose restrictions on IO alignment and 394 * length. 395 * 396 * No additional alignment or length restrictions are 397 * imposed by ZFS. 398 * 399 * 3. O_DIRECT _MAY_ perform unbuffered IO operations directly 400 * between user memory and block device. 401 * 402 * No unbuffered IO operations are currently supported. In 403 * order to support features such as compression, encryption, 404 * and checksumming a copy must be made to transform the 405 * data. 406 * 407 * 4. O_DIRECT _MAY_ imply O_DSYNC (XFS). 408 * 409 * O_DIRECT does not imply O_DSYNC for ZFS. 410 * 411 * 5. O_DIRECT _MAY_ disable file locking that serializes IO 412 * operations. 413 * 414 * All I/O in ZFS is locked for correctness and this locking 415 * is not disabled by O_DIRECT. 416 */ 417 return (0); 418 } 419 420 case _FIO_SEEK_DATA: 421 case _FIO_SEEK_HOLE: 422 { 423 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 424 return (SET_ERROR(EFAULT)); 425 426 zp = VTOZ(vp); 427 zfsvfs = zp->z_zfsvfs; 428 ZFS_ENTER(zfsvfs); 429 ZFS_VERIFY_ZP(zp); 430 431 /* offset parameter is in/out */ 432 error = zfs_holey(vp, com, &off); 433 ZFS_EXIT(zfsvfs); 434 if (error) 435 return (error); 436 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 437 return (SET_ERROR(EFAULT)); 438 return (0); 439 } 440 case _FIO_COUNT_FILLED: 441 { 442 /* 443 * _FIO_COUNT_FILLED adds a new ioctl command which 444 * exposes the number of filled blocks in a 445 * ZFS object. 446 */ 447 zp = VTOZ(vp); 448 zfsvfs = zp->z_zfsvfs; 449 ZFS_ENTER(zfsvfs); 450 ZFS_VERIFY_ZP(zp); 451 452 /* 453 * Wait for all dirty blocks for this object 454 * to get synced out to disk, and the DMU info 455 * updated. 456 */ 457 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 458 if (error) { 459 ZFS_EXIT(zfsvfs); 460 return (error); 461 } 462 463 /* 464 * Retrieve fill count from DMU object. 465 */ 466 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 467 if (error) { 468 ZFS_EXIT(zfsvfs); 469 return (error); 470 } 471 472 ndata = doi.doi_fill_count; 473 474 ZFS_EXIT(zfsvfs); 475 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 476 return (SET_ERROR(EFAULT)); 477 return (0); 478 } 479 case ZFS_IOC_FSGETXATTR: 480 return (zfs_ioctl_getxattr(vp, data, flag, cred, ct)); 481 case ZFS_IOC_FSSETXATTR: 482 return (zfs_ioctl_setxattr(vp, data, flag, cred, ct)); 483 } 484 return (SET_ERROR(ENOTTY)); 485 } 486 487 /* 488 * Utility functions to map and unmap a single physical page. These 489 * are used to manage the mappable copies of ZFS file data, and therefore 490 * do not update ref/mod bits. 491 */ 492 caddr_t 493 zfs_map_page(page_t *pp, enum seg_rw rw) 494 { 495 if (kpm_enable) 496 return (hat_kpm_mapin(pp, 0)); 497 ASSERT(rw == S_READ || rw == S_WRITE); 498 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 499 (caddr_t)-1)); 500 } 501 502 void 503 zfs_unmap_page(page_t *pp, caddr_t addr) 504 { 505 if (kpm_enable) { 506 hat_kpm_mapout(pp, 0, addr); 507 } else { 508 ppmapout(addr); 509 } 510 } 511 512 /* 513 * When a file is memory mapped, we must keep the IO data synchronized 514 * between the DMU cache and the memory mapped pages. What this means: 515 * 516 * On Write: If we find a memory mapped page, we write to *both* 517 * the page and the dmu buffer. 518 */ 519 static void 520 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 521 { 522 int64_t off; 523 524 off = start & PAGEOFFSET; 525 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 526 page_t *pp; 527 uint64_t nbytes = MIN(PAGESIZE - off, len); 528 529 if (pp = page_lookup(vp, start, SE_SHARED)) { 530 caddr_t va; 531 532 va = zfs_map_page(pp, S_WRITE); 533 (void) dmu_read(os, oid, start+off, nbytes, va+off, 534 DMU_READ_PREFETCH); 535 zfs_unmap_page(pp, va); 536 page_unlock(pp); 537 } 538 len -= nbytes; 539 off = 0; 540 } 541 } 542 543 /* 544 * When a file is memory mapped, we must keep the IO data synchronized 545 * between the DMU cache and the memory mapped pages. What this means: 546 * 547 * On Read: We "read" preferentially from memory mapped pages, 548 * else we default from the dmu buffer. 549 * 550 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 551 * the file is memory mapped. 552 */ 553 static int 554 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 555 { 556 znode_t *zp = VTOZ(vp); 557 int64_t start, off; 558 int len = nbytes; 559 int error = 0; 560 561 start = uio->uio_loffset; 562 off = start & PAGEOFFSET; 563 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 564 page_t *pp; 565 uint64_t bytes = MIN(PAGESIZE - off, len); 566 567 if (pp = page_lookup(vp, start, SE_SHARED)) { 568 caddr_t va; 569 570 va = zfs_map_page(pp, S_READ); 571 error = uiomove(va + off, bytes, UIO_READ, uio); 572 zfs_unmap_page(pp, va); 573 page_unlock(pp); 574 } else { 575 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 576 uio, bytes); 577 } 578 len -= bytes; 579 off = 0; 580 if (error) 581 break; 582 } 583 return (error); 584 } 585 586 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 587 588 /* 589 * Read bytes from specified file into supplied buffer. 590 * 591 * IN: vp - vnode of file to be read from. 592 * uio - structure supplying read location, range info, 593 * and return buffer. 594 * ioflag - SYNC flags; used to provide FRSYNC semantics. 595 * cr - credentials of caller. 596 * ct - caller context 597 * 598 * OUT: uio - updated offset and range, buffer filled. 599 * 600 * RETURN: 0 on success, error code on failure. 601 * 602 * Side Effects: 603 * vp - atime updated if byte count > 0 604 */ 605 /* ARGSUSED */ 606 static int 607 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 608 { 609 znode_t *zp = VTOZ(vp); 610 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 611 ssize_t n, nbytes; 612 int error = 0; 613 boolean_t frsync = B_FALSE; 614 xuio_t *xuio = NULL; 615 616 ZFS_ENTER(zfsvfs); 617 ZFS_VERIFY_ZP(zp); 618 619 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 620 ZFS_EXIT(zfsvfs); 621 return (SET_ERROR(EACCES)); 622 } 623 624 /* 625 * Validate file offset 626 */ 627 if (uio->uio_loffset < (offset_t)0) { 628 ZFS_EXIT(zfsvfs); 629 return (SET_ERROR(EINVAL)); 630 } 631 632 /* 633 * Fasttrack empty reads 634 */ 635 if (uio->uio_resid == 0) { 636 ZFS_EXIT(zfsvfs); 637 return (0); 638 } 639 640 /* 641 * Check for mandatory locks 642 */ 643 if (MANDMODE(zp->z_mode)) { 644 if (error = chklock(vp, FREAD, 645 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 646 ZFS_EXIT(zfsvfs); 647 return (error); 648 } 649 } 650 651 #ifdef FRSYNC 652 /* 653 * If we're in FRSYNC mode, sync out this znode before reading it. 654 * Only do this for non-snapshots. 655 * 656 * Some platforms do not support FRSYNC and instead map it 657 * to FSYNC, which results in unnecessary calls to zil_commit. We 658 * only honor FRSYNC requests on platforms which support it. 659 */ 660 frsync = !!(ioflag & FRSYNC); 661 #endif 662 663 if (zfsvfs->z_log && 664 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) 665 zil_commit(zfsvfs->z_log, zp->z_id); 666 667 /* 668 * Lock the range against changes. 669 */ 670 locked_range_t *lr = rangelock_enter(&zp->z_rangelock, 671 uio->uio_loffset, uio->uio_resid, RL_READER); 672 673 /* 674 * If we are reading past end-of-file we can skip 675 * to the end; but we might still need to set atime. 676 */ 677 if (uio->uio_loffset >= zp->z_size) { 678 error = 0; 679 goto out; 680 } 681 682 ASSERT(uio->uio_loffset < zp->z_size); 683 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 684 685 if ((uio->uio_extflg == UIO_XUIO) && 686 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 687 int nblk; 688 int blksz = zp->z_blksz; 689 uint64_t offset = uio->uio_loffset; 690 691 xuio = (xuio_t *)uio; 692 if ((ISP2(blksz))) { 693 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 694 blksz)) / blksz; 695 } else { 696 ASSERT(offset + n <= blksz); 697 nblk = 1; 698 } 699 (void) dmu_xuio_init(xuio, nblk); 700 701 if (vn_has_cached_data(vp)) { 702 /* 703 * For simplicity, we always allocate a full buffer 704 * even if we only expect to read a portion of a block. 705 */ 706 while (--nblk >= 0) { 707 (void) dmu_xuio_add(xuio, 708 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 709 blksz), 0, blksz); 710 } 711 } 712 } 713 714 while (n > 0) { 715 nbytes = MIN(n, zfs_read_chunk_size - 716 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 717 718 if (vn_has_cached_data(vp)) { 719 error = mappedread(vp, nbytes, uio); 720 } else { 721 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 722 uio, nbytes); 723 } 724 if (error) { 725 /* convert checksum errors into IO errors */ 726 if (error == ECKSUM) 727 error = SET_ERROR(EIO); 728 break; 729 } 730 731 n -= nbytes; 732 } 733 out: 734 rangelock_exit(lr); 735 736 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 737 ZFS_EXIT(zfsvfs); 738 return (error); 739 } 740 741 static void 742 zfs_write_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, 743 cred_t *cr, boolean_t *did_check, dmu_tx_t *tx) 744 { 745 ASSERT(did_check != NULL); 746 ASSERT(tx != NULL); 747 748 if (*did_check) 749 return; 750 751 zilog_t *zilog = zfsvfs->z_log; 752 753 /* 754 * Clear Set-UID/Set-GID bits on successful write if not 755 * privileged and at least one of the execute bits is set. 756 * 757 * It would be nice to do this after all writes have 758 * been done, but that would still expose the ISUID/ISGID 759 * to another app after the partial write is committed. 760 * 761 * Note: we don't call zfs_fuid_map_id() here because 762 * user 0 is not an ephemeral uid. 763 */ 764 mutex_enter(&zp->z_acl_lock); 765 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 && 766 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 767 secpolicy_vnode_setid_retain(cr, 768 ((zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0)) != 0) { 769 uint64_t newmode; 770 vattr_t va; 771 772 zp->z_mode &= ~(S_ISUID | S_ISGID); 773 newmode = zp->z_mode; 774 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 775 (void *)&newmode, sizeof (uint64_t), tx); 776 777 /* 778 * Make sure SUID/SGID bits will be removed when we replay the 779 * log. 780 */ 781 bzero(&va, sizeof (va)); 782 va.va_mask = AT_MODE; 783 va.va_nodeid = zp->z_id; 784 va.va_mode = newmode; 785 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va, AT_MODE, NULL); 786 } 787 mutex_exit(&zp->z_acl_lock); 788 789 *did_check = B_TRUE; 790 } 791 792 /* 793 * Write the bytes to a file. 794 * 795 * IN: vp - vnode of file to be written to. 796 * uio - structure supplying write location, range info, 797 * and data buffer. 798 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 799 * set if in append mode. 800 * cr - credentials of caller. 801 * ct - caller context (NFS/CIFS fem monitor only) 802 * 803 * OUT: uio - updated offset and range. 804 * 805 * RETURN: 0 on success, error code on failure. 806 * 807 * Timestamps: 808 * vp - ctime|mtime updated if byte count > 0 809 */ 810 811 /* ARGSUSED */ 812 static int 813 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 814 { 815 znode_t *zp = VTOZ(vp); 816 rlim64_t limit = uio->uio_llimit; 817 ssize_t start_resid = uio->uio_resid; 818 ssize_t tx_bytes; 819 uint64_t end_size; 820 dmu_tx_t *tx; 821 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 822 zilog_t *zilog; 823 offset_t woff; 824 ssize_t n, nbytes; 825 int max_blksz = zfsvfs->z_max_blksz; 826 int error = 0; 827 int prev_error; 828 arc_buf_t *abuf; 829 iovec_t *aiov = NULL; 830 xuio_t *xuio = NULL; 831 int i_iov = 0; 832 int iovcnt = uio->uio_iovcnt; 833 iovec_t *iovp = uio->uio_iov; 834 int write_eof; 835 int count = 0; 836 sa_bulk_attr_t bulk[4]; 837 uint64_t mtime[2], ctime[2]; 838 boolean_t did_clear_setid_bits = B_FALSE; 839 840 /* 841 * Fasttrack empty write 842 */ 843 n = start_resid; 844 if (n == 0) 845 return (0); 846 847 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 848 limit = MAXOFFSET_T; 849 850 ZFS_ENTER(zfsvfs); 851 ZFS_VERIFY_ZP(zp); 852 853 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 854 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 855 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 856 &zp->z_size, 8); 857 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 858 &zp->z_pflags, 8); 859 860 /* 861 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 862 * callers might not be able to detect properly that we are read-only, 863 * so check it explicitly here. 864 */ 865 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 866 ZFS_EXIT(zfsvfs); 867 return (SET_ERROR(EROFS)); 868 } 869 870 /* 871 * If immutable or not appending then return EPERM. 872 * Intentionally allow ZFS_READONLY through here. 873 * See zfs_zaccess_common() 874 */ 875 if ((zp->z_pflags & ZFS_IMMUTABLE) || 876 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 877 (uio->uio_loffset < zp->z_size))) { 878 ZFS_EXIT(zfsvfs); 879 return (SET_ERROR(EPERM)); 880 } 881 882 zilog = zfsvfs->z_log; 883 884 /* 885 * Validate file offset 886 */ 887 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 888 if (woff < 0) { 889 ZFS_EXIT(zfsvfs); 890 return (SET_ERROR(EINVAL)); 891 } 892 893 /* 894 * Check for mandatory locks before calling rangelock_enter() 895 * in order to prevent a deadlock with locks set via fcntl(). 896 */ 897 if (MANDMODE((mode_t)zp->z_mode) && 898 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 899 ZFS_EXIT(zfsvfs); 900 return (error); 901 } 902 903 /* 904 * Pre-fault the pages to ensure slow (eg NFS) pages 905 * don't hold up txg. 906 * Skip this if uio contains loaned arc_buf. 907 */ 908 if ((uio->uio_extflg == UIO_XUIO) && 909 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 910 xuio = (xuio_t *)uio; 911 else 912 uio_prefaultpages(MIN(n, max_blksz), uio); 913 914 /* 915 * If in append mode, set the io offset pointer to eof. 916 */ 917 locked_range_t *lr; 918 if (ioflag & FAPPEND) { 919 /* 920 * Obtain an appending range lock to guarantee file append 921 * semantics. We reset the write offset once we have the lock. 922 */ 923 lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); 924 woff = lr->lr_offset; 925 if (lr->lr_length == UINT64_MAX) { 926 /* 927 * We overlocked the file because this write will cause 928 * the file block size to increase. 929 * Note that zp_size cannot change with this lock held. 930 */ 931 woff = zp->z_size; 932 } 933 uio->uio_loffset = woff; 934 } else { 935 /* 936 * Note that if the file block size will change as a result of 937 * this write, then this range lock will lock the entire file 938 * so that we can re-write the block safely. 939 */ 940 lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); 941 } 942 943 if (woff >= limit) { 944 rangelock_exit(lr); 945 ZFS_EXIT(zfsvfs); 946 return (SET_ERROR(EFBIG)); 947 } 948 949 if ((woff + n) > limit || woff > (limit - n)) 950 n = limit - woff; 951 952 /* Will this write extend the file length? */ 953 write_eof = (woff + n > zp->z_size); 954 955 end_size = MAX(zp->z_size, woff + n); 956 957 /* 958 * Write the file in reasonable size chunks. Each chunk is written 959 * in a separate transaction; this keeps the intent log records small 960 * and allows us to do more fine-grained space accounting. 961 */ 962 while (n > 0) { 963 woff = uio->uio_loffset; 964 965 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, 966 zp->z_uid) || 967 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, 968 zp->z_gid) || 969 (zp->z_projid != ZFS_DEFAULT_PROJID && 970 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 971 zp->z_projid))) { 972 error = SET_ERROR(EDQUOT); 973 break; 974 } 975 976 arc_buf_t *abuf = NULL; 977 if (xuio) { 978 ASSERT(i_iov < iovcnt); 979 aiov = &iovp[i_iov]; 980 abuf = dmu_xuio_arcbuf(xuio, i_iov); 981 dmu_xuio_clear(xuio, i_iov); 982 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 983 iovec_t *, aiov, arc_buf_t *, abuf); 984 ASSERT((aiov->iov_base == abuf->b_data) || 985 ((char *)aiov->iov_base - (char *)abuf->b_data + 986 aiov->iov_len == arc_buf_size(abuf))); 987 i_iov++; 988 } else if (n >= max_blksz && woff >= zp->z_size && 989 P2PHASE(woff, max_blksz) == 0 && 990 zp->z_blksz == max_blksz) { 991 /* 992 * This write covers a full block. "Borrow" a buffer 993 * from the dmu so that we can fill it before we enter 994 * a transaction. This avoids the possibility of 995 * holding up the transaction if the data copy hangs 996 * up on a pagefault (e.g., from an NFS server mapping). 997 */ 998 size_t cbytes; 999 1000 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 1001 max_blksz); 1002 ASSERT(abuf != NULL); 1003 ASSERT(arc_buf_size(abuf) == max_blksz); 1004 if (error = uiocopy(abuf->b_data, max_blksz, 1005 UIO_WRITE, uio, &cbytes)) { 1006 dmu_return_arcbuf(abuf); 1007 break; 1008 } 1009 ASSERT(cbytes == max_blksz); 1010 } 1011 1012 /* 1013 * Start a transaction. 1014 */ 1015 tx = dmu_tx_create(zfsvfs->z_os); 1016 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1017 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 1018 zfs_sa_upgrade_txholds(tx, zp); 1019 error = dmu_tx_assign(tx, TXG_WAIT); 1020 if (error) { 1021 dmu_tx_abort(tx); 1022 if (abuf != NULL) 1023 dmu_return_arcbuf(abuf); 1024 break; 1025 } 1026 1027 /* 1028 * NB: We must call zfs_write_clear_setid_bits_if_necessary 1029 * before committing the transaction! 1030 */ 1031 1032 /* 1033 * If rangelock_enter() over-locked we grow the blocksize 1034 * and then reduce the lock range. This will only happen 1035 * on the first iteration since rangelock_reduce() will 1036 * shrink down lr_length to the appropriate size. 1037 */ 1038 if (lr->lr_length == UINT64_MAX) { 1039 uint64_t new_blksz; 1040 1041 if (zp->z_blksz > max_blksz) { 1042 /* 1043 * File's blocksize is already larger than the 1044 * "recordsize" property. Only let it grow to 1045 * the next power of 2. 1046 */ 1047 ASSERT(!ISP2(zp->z_blksz)); 1048 new_blksz = MIN(end_size, 1049 1 << highbit64(zp->z_blksz)); 1050 } else { 1051 new_blksz = MIN(end_size, max_blksz); 1052 } 1053 zfs_grow_blocksize(zp, new_blksz, tx); 1054 rangelock_reduce(lr, woff, n); 1055 } 1056 1057 /* 1058 * XXX - should we really limit each write to z_max_blksz? 1059 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 1060 */ 1061 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 1062 1063 if (abuf == NULL) { 1064 tx_bytes = uio->uio_resid; 1065 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 1066 uio, nbytes, tx); 1067 tx_bytes -= uio->uio_resid; 1068 } else { 1069 tx_bytes = nbytes; 1070 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 1071 /* 1072 * If this is not a full block write, but we are 1073 * extending the file past EOF and this data starts 1074 * block-aligned, use assign_arcbuf(). Otherwise, 1075 * write via dmu_write(). 1076 */ 1077 if (tx_bytes < max_blksz && (!write_eof || 1078 aiov->iov_base != abuf->b_data)) { 1079 ASSERT(xuio); 1080 dmu_write(zfsvfs->z_os, zp->z_id, woff, 1081 aiov->iov_len, aiov->iov_base, tx); 1082 dmu_return_arcbuf(abuf); 1083 xuio_stat_wbuf_copied(); 1084 } else { 1085 ASSERT(xuio || tx_bytes == max_blksz); 1086 dmu_assign_arcbuf_by_dbuf( 1087 sa_get_db(zp->z_sa_hdl), woff, abuf, tx); 1088 } 1089 ASSERT(tx_bytes <= uio->uio_resid); 1090 uioskip(uio, tx_bytes); 1091 } 1092 if (tx_bytes && vn_has_cached_data(vp)) { 1093 update_pages(vp, woff, 1094 tx_bytes, zfsvfs->z_os, zp->z_id); 1095 } 1096 1097 /* 1098 * If we made no progress, we're done. If we made even 1099 * partial progress, update the znode and ZIL accordingly. 1100 */ 1101 if (tx_bytes == 0) { 1102 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 1103 (void *)&zp->z_size, sizeof (uint64_t), tx); 1104 dmu_tx_commit(tx); 1105 ASSERT(error != 0); 1106 break; 1107 } 1108 1109 zfs_write_clear_setid_bits_if_necessary(zfsvfs, zp, cr, 1110 &did_clear_setid_bits, tx); 1111 1112 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 1113 B_TRUE); 1114 1115 /* 1116 * Update the file size (zp_size) if it has changed; 1117 * account for possible concurrent updates. 1118 */ 1119 while ((end_size = zp->z_size) < uio->uio_loffset) { 1120 (void) atomic_cas_64(&zp->z_size, end_size, 1121 uio->uio_loffset); 1122 } 1123 /* 1124 * If we are replaying and eof is non zero then force 1125 * the file size to the specified eof. Note, there's no 1126 * concurrency during replay. 1127 */ 1128 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 1129 zp->z_size = zfsvfs->z_replay_eof; 1130 1131 /* 1132 * Keep track of a possible pre-existing error from a partial 1133 * write via dmu_write_uio_dbuf above. 1134 */ 1135 prev_error = error; 1136 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1137 1138 /* 1139 * NB: During replay, the TX_SETATTR record logged by 1140 * zfs_write_clear_setid_bits_if_necessary must precede 1141 * any of the TX_WRITE records logged here. 1142 */ 1143 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 1144 dmu_tx_commit(tx); 1145 1146 if (prev_error != 0 || error != 0) 1147 break; 1148 ASSERT(tx_bytes == nbytes); 1149 n -= nbytes; 1150 1151 if (!xuio && n > 0) 1152 uio_prefaultpages(MIN(n, max_blksz), uio); 1153 } 1154 1155 rangelock_exit(lr); 1156 1157 /* 1158 * If we're in replay mode, or we made no progress, return error. 1159 * Otherwise, it's at least a partial write, so it's successful. 1160 */ 1161 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1162 ZFS_EXIT(zfsvfs); 1163 return (error); 1164 } 1165 1166 if (ioflag & (FSYNC | FDSYNC) || 1167 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1168 zil_commit(zilog, zp->z_id); 1169 1170 ZFS_EXIT(zfsvfs); 1171 return (0); 1172 } 1173 1174 /* ARGSUSED */ 1175 void 1176 zfs_get_done(zgd_t *zgd, int error) 1177 { 1178 znode_t *zp = zgd->zgd_private; 1179 objset_t *os = zp->z_zfsvfs->z_os; 1180 1181 if (zgd->zgd_db) 1182 dmu_buf_rele(zgd->zgd_db, zgd); 1183 1184 rangelock_exit(zgd->zgd_lr); 1185 1186 /* 1187 * Release the vnode asynchronously as we currently have the 1188 * txg stopped from syncing. 1189 */ 1190 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1191 1192 kmem_free(zgd, sizeof (zgd_t)); 1193 } 1194 1195 #ifdef DEBUG 1196 static int zil_fault_io = 0; 1197 #endif 1198 1199 /* 1200 * Get data to generate a TX_WRITE intent log record. 1201 */ 1202 int 1203 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) 1204 { 1205 zfsvfs_t *zfsvfs = arg; 1206 objset_t *os = zfsvfs->z_os; 1207 znode_t *zp; 1208 uint64_t object = lr->lr_foid; 1209 uint64_t offset = lr->lr_offset; 1210 uint64_t size = lr->lr_length; 1211 dmu_buf_t *db; 1212 zgd_t *zgd; 1213 int error = 0; 1214 1215 ASSERT3P(lwb, !=, NULL); 1216 ASSERT3P(zio, !=, NULL); 1217 ASSERT3U(size, !=, 0); 1218 1219 /* 1220 * Nothing to do if the file has been removed 1221 */ 1222 if (zfs_zget(zfsvfs, object, &zp) != 0) 1223 return (SET_ERROR(ENOENT)); 1224 if (zp->z_unlinked) { 1225 /* 1226 * Release the vnode asynchronously as we currently have the 1227 * txg stopped from syncing. 1228 */ 1229 VN_RELE_ASYNC(ZTOV(zp), 1230 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1231 return (SET_ERROR(ENOENT)); 1232 } 1233 1234 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1235 zgd->zgd_lwb = lwb; 1236 zgd->zgd_private = zp; 1237 1238 /* 1239 * Write records come in two flavors: immediate and indirect. 1240 * For small writes it's cheaper to store the data with the 1241 * log record (immediate); for large writes it's cheaper to 1242 * sync the data and get a pointer to it (indirect) so that 1243 * we don't have to write the data twice. 1244 */ 1245 if (buf != NULL) { /* immediate write */ 1246 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock, 1247 offset, size, RL_READER); 1248 /* test for truncation needs to be done while range locked */ 1249 if (offset >= zp->z_size) { 1250 error = SET_ERROR(ENOENT); 1251 } else { 1252 error = dmu_read(os, object, offset, size, buf, 1253 DMU_READ_NO_PREFETCH); 1254 } 1255 ASSERT(error == 0 || error == ENOENT); 1256 } else { /* indirect write */ 1257 /* 1258 * Have to lock the whole block to ensure when it's 1259 * written out and its checksum is being calculated 1260 * that no one can change the data. We need to re-check 1261 * blocksize after we get the lock in case it's changed! 1262 */ 1263 for (;;) { 1264 uint64_t blkoff; 1265 size = zp->z_blksz; 1266 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1267 offset -= blkoff; 1268 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock, 1269 offset, size, RL_READER); 1270 if (zp->z_blksz == size) 1271 break; 1272 offset += blkoff; 1273 rangelock_exit(zgd->zgd_lr); 1274 } 1275 /* test for truncation needs to be done while range locked */ 1276 if (lr->lr_offset >= zp->z_size) 1277 error = SET_ERROR(ENOENT); 1278 #ifdef DEBUG 1279 if (zil_fault_io) { 1280 error = SET_ERROR(EIO); 1281 zil_fault_io = 0; 1282 } 1283 #endif 1284 if (error == 0) 1285 error = dmu_buf_hold(os, object, offset, zgd, &db, 1286 DMU_READ_NO_PREFETCH); 1287 1288 if (error == 0) { 1289 blkptr_t *bp = &lr->lr_blkptr; 1290 1291 zgd->zgd_db = db; 1292 zgd->zgd_bp = bp; 1293 1294 ASSERT(db->db_offset == offset); 1295 ASSERT(db->db_size == size); 1296 1297 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1298 zfs_get_done, zgd); 1299 ASSERT(error || lr->lr_length <= size); 1300 1301 /* 1302 * On success, we need to wait for the write I/O 1303 * initiated by dmu_sync() to complete before we can 1304 * release this dbuf. We will finish everything up 1305 * in the zfs_get_done() callback. 1306 */ 1307 if (error == 0) 1308 return (0); 1309 1310 if (error == EALREADY) { 1311 lr->lr_common.lrc_txtype = TX_WRITE2; 1312 /* 1313 * TX_WRITE2 relies on the data previously 1314 * written by the TX_WRITE that caused 1315 * EALREADY. We zero out the BP because 1316 * it is the old, currently-on-disk BP. 1317 */ 1318 zgd->zgd_bp = NULL; 1319 BP_ZERO(bp); 1320 error = 0; 1321 } 1322 } 1323 } 1324 1325 zfs_get_done(zgd, error); 1326 1327 return (error); 1328 } 1329 1330 /*ARGSUSED*/ 1331 static int 1332 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1333 caller_context_t *ct) 1334 { 1335 znode_t *zp = VTOZ(vp); 1336 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1337 int error; 1338 1339 ZFS_ENTER(zfsvfs); 1340 ZFS_VERIFY_ZP(zp); 1341 1342 if (flag & V_ACE_MASK) 1343 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1344 else 1345 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1346 1347 ZFS_EXIT(zfsvfs); 1348 return (error); 1349 } 1350 1351 /* 1352 * If vnode is for a device return a specfs vnode instead. 1353 */ 1354 static int 1355 specvp_check(vnode_t **vpp, cred_t *cr) 1356 { 1357 int error = 0; 1358 1359 if (IS_DEVVP(*vpp)) { 1360 struct vnode *svp; 1361 1362 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1363 VN_RELE(*vpp); 1364 if (svp == NULL) 1365 error = SET_ERROR(ENOSYS); 1366 *vpp = svp; 1367 } 1368 return (error); 1369 } 1370 1371 1372 /* 1373 * Lookup an entry in a directory, or an extended attribute directory. 1374 * If it exists, return a held vnode reference for it. 1375 * 1376 * IN: dvp - vnode of directory to search. 1377 * nm - name of entry to lookup. 1378 * pnp - full pathname to lookup [UNUSED]. 1379 * flags - LOOKUP_XATTR set if looking for an attribute. 1380 * rdir - root directory vnode [UNUSED]. 1381 * cr - credentials of caller. 1382 * ct - caller context 1383 * direntflags - directory lookup flags 1384 * realpnp - returned pathname. 1385 * 1386 * OUT: vpp - vnode of located entry, NULL if not found. 1387 * 1388 * RETURN: 0 on success, error code on failure. 1389 * 1390 * Timestamps: 1391 * NA 1392 */ 1393 /* ARGSUSED */ 1394 static int 1395 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1396 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1397 int *direntflags, pathname_t *realpnp) 1398 { 1399 znode_t *zdp = VTOZ(dvp); 1400 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1401 int error = 0; 1402 1403 /* 1404 * Fast path lookup, however we must skip DNLC lookup 1405 * for case folding or normalizing lookups because the 1406 * DNLC code only stores the passed in name. This means 1407 * creating 'a' and removing 'A' on a case insensitive 1408 * file system would work, but DNLC still thinks 'a' 1409 * exists and won't let you create it again on the next 1410 * pass through fast path. 1411 */ 1412 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1413 1414 if (dvp->v_type != VDIR) { 1415 return (SET_ERROR(ENOTDIR)); 1416 } else if (zdp->z_sa_hdl == NULL) { 1417 return (SET_ERROR(EIO)); 1418 } 1419 1420 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1421 error = zfs_fastaccesschk_execute(zdp, cr); 1422 if (!error) { 1423 *vpp = dvp; 1424 VN_HOLD(*vpp); 1425 return (0); 1426 } 1427 return (error); 1428 } else if (!zdp->z_zfsvfs->z_norm && 1429 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) { 1430 1431 vnode_t *tvp = dnlc_lookup(dvp, nm); 1432 1433 if (tvp) { 1434 error = zfs_fastaccesschk_execute(zdp, cr); 1435 if (error) { 1436 VN_RELE(tvp); 1437 return (error); 1438 } 1439 if (tvp == DNLC_NO_VNODE) { 1440 VN_RELE(tvp); 1441 return (SET_ERROR(ENOENT)); 1442 } else { 1443 *vpp = tvp; 1444 return (specvp_check(vpp, cr)); 1445 } 1446 } 1447 } 1448 } 1449 1450 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1451 1452 ZFS_ENTER(zfsvfs); 1453 ZFS_VERIFY_ZP(zdp); 1454 1455 *vpp = NULL; 1456 1457 if (flags & LOOKUP_XATTR) { 1458 /* 1459 * If the xattr property is off, refuse the lookup request. 1460 */ 1461 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1462 ZFS_EXIT(zfsvfs); 1463 return (SET_ERROR(EINVAL)); 1464 } 1465 1466 /* 1467 * We don't allow recursive attributes.. 1468 * Maybe someday we will. 1469 */ 1470 if (zdp->z_pflags & ZFS_XATTR) { 1471 ZFS_EXIT(zfsvfs); 1472 return (SET_ERROR(EINVAL)); 1473 } 1474 1475 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1476 ZFS_EXIT(zfsvfs); 1477 return (error); 1478 } 1479 1480 /* 1481 * Do we have permission to get into attribute directory? 1482 */ 1483 1484 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1485 B_FALSE, cr)) { 1486 VN_RELE(*vpp); 1487 *vpp = NULL; 1488 } 1489 1490 ZFS_EXIT(zfsvfs); 1491 return (error); 1492 } 1493 1494 if (dvp->v_type != VDIR) { 1495 ZFS_EXIT(zfsvfs); 1496 return (SET_ERROR(ENOTDIR)); 1497 } 1498 1499 /* 1500 * Check accessibility of directory. 1501 */ 1502 1503 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1504 ZFS_EXIT(zfsvfs); 1505 return (error); 1506 } 1507 1508 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1509 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1510 ZFS_EXIT(zfsvfs); 1511 return (SET_ERROR(EILSEQ)); 1512 } 1513 1514 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1515 if (error == 0) 1516 error = specvp_check(vpp, cr); 1517 1518 ZFS_EXIT(zfsvfs); 1519 return (error); 1520 } 1521 1522 /* 1523 * Attempt to create a new entry in a directory. If the entry 1524 * already exists, truncate the file if permissible, else return 1525 * an error. Return the vp of the created or trunc'd file. 1526 * 1527 * IN: dvp - vnode of directory to put new file entry in. 1528 * name - name of new file entry. 1529 * vap - attributes of new file. 1530 * excl - flag indicating exclusive or non-exclusive mode. 1531 * mode - mode to open file with. 1532 * cr - credentials of caller. 1533 * flag - large file flag [UNUSED]. 1534 * ct - caller context 1535 * vsecp - ACL to be set 1536 * 1537 * OUT: vpp - vnode of created or trunc'd entry. 1538 * 1539 * RETURN: 0 on success, error code on failure. 1540 * 1541 * Timestamps: 1542 * dvp - ctime|mtime updated if new entry created 1543 * vp - ctime|mtime always, atime if new 1544 */ 1545 1546 /* ARGSUSED */ 1547 static int 1548 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1549 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1550 vsecattr_t *vsecp) 1551 { 1552 znode_t *zp, *dzp = VTOZ(dvp); 1553 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1554 zilog_t *zilog; 1555 objset_t *os; 1556 zfs_dirlock_t *dl; 1557 dmu_tx_t *tx; 1558 int error; 1559 ksid_t *ksid; 1560 uid_t uid; 1561 gid_t gid = crgetgid(cr); 1562 zfs_acl_ids_t acl_ids; 1563 boolean_t fuid_dirtied; 1564 boolean_t have_acl = B_FALSE; 1565 boolean_t waited = B_FALSE; 1566 1567 /* 1568 * If we have an ephemeral id, ACL, or XVATTR then 1569 * make sure file system is at proper version 1570 */ 1571 1572 ksid = crgetsid(cr, KSID_OWNER); 1573 if (ksid) 1574 uid = ksid_getid(ksid); 1575 else 1576 uid = crgetuid(cr); 1577 1578 if (zfsvfs->z_use_fuids == B_FALSE && 1579 (vsecp || (vap->va_mask & AT_XVATTR) || 1580 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1581 return (SET_ERROR(EINVAL)); 1582 1583 ZFS_ENTER(zfsvfs); 1584 ZFS_VERIFY_ZP(dzp); 1585 os = zfsvfs->z_os; 1586 zilog = zfsvfs->z_log; 1587 1588 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1589 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1590 ZFS_EXIT(zfsvfs); 1591 return (SET_ERROR(EILSEQ)); 1592 } 1593 1594 if (vap->va_mask & AT_XVATTR) { 1595 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1596 crgetuid(cr), cr, vap->va_type)) != 0) { 1597 ZFS_EXIT(zfsvfs); 1598 return (error); 1599 } 1600 } 1601 top: 1602 *vpp = NULL; 1603 1604 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1605 vap->va_mode &= ~VSVTX; 1606 1607 if (*name == '\0') { 1608 /* 1609 * Null component name refers to the directory itself. 1610 */ 1611 VN_HOLD(dvp); 1612 zp = dzp; 1613 dl = NULL; 1614 error = 0; 1615 } else { 1616 /* possible VN_HOLD(zp) */ 1617 int zflg = 0; 1618 1619 if (flag & FIGNORECASE) 1620 zflg |= ZCILOOK; 1621 1622 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1623 NULL, NULL); 1624 if (error) { 1625 if (have_acl) 1626 zfs_acl_ids_free(&acl_ids); 1627 if (strcmp(name, "..") == 0) 1628 error = SET_ERROR(EISDIR); 1629 ZFS_EXIT(zfsvfs); 1630 return (error); 1631 } 1632 } 1633 1634 if (zp == NULL) { 1635 uint64_t txtype; 1636 uint64_t projid = ZFS_DEFAULT_PROJID; 1637 1638 /* 1639 * Create a new file object and update the directory 1640 * to reference it. 1641 */ 1642 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1643 if (have_acl) 1644 zfs_acl_ids_free(&acl_ids); 1645 goto out; 1646 } 1647 1648 /* 1649 * We only support the creation of regular files in 1650 * extended attribute directories. 1651 */ 1652 1653 if ((dzp->z_pflags & ZFS_XATTR) && 1654 (vap->va_type != VREG)) { 1655 if (have_acl) 1656 zfs_acl_ids_free(&acl_ids); 1657 error = SET_ERROR(EINVAL); 1658 goto out; 1659 } 1660 1661 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1662 cr, vsecp, &acl_ids)) != 0) 1663 goto out; 1664 have_acl = B_TRUE; 1665 1666 if (vap->va_type == VREG || vap->va_type == VDIR) 1667 projid = zfs_inherit_projid(dzp); 1668 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) { 1669 zfs_acl_ids_free(&acl_ids); 1670 error = SET_ERROR(EDQUOT); 1671 goto out; 1672 } 1673 1674 tx = dmu_tx_create(os); 1675 1676 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1677 ZFS_SA_BASE_ATTR_SIZE); 1678 1679 fuid_dirtied = zfsvfs->z_fuid_dirty; 1680 if (fuid_dirtied) 1681 zfs_fuid_txhold(zfsvfs, tx); 1682 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1683 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1684 if (!zfsvfs->z_use_sa && 1685 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1686 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1687 0, acl_ids.z_aclp->z_acl_bytes); 1688 } 1689 error = dmu_tx_assign(tx, 1690 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1691 if (error) { 1692 zfs_dirent_unlock(dl); 1693 if (error == ERESTART) { 1694 waited = B_TRUE; 1695 dmu_tx_wait(tx); 1696 dmu_tx_abort(tx); 1697 goto top; 1698 } 1699 zfs_acl_ids_free(&acl_ids); 1700 dmu_tx_abort(tx); 1701 ZFS_EXIT(zfsvfs); 1702 return (error); 1703 } 1704 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1705 1706 if (fuid_dirtied) 1707 zfs_fuid_sync(zfsvfs, tx); 1708 1709 (void) zfs_link_create(dl, zp, tx, ZNEW); 1710 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1711 if (flag & FIGNORECASE) 1712 txtype |= TX_CI; 1713 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1714 vsecp, acl_ids.z_fuidp, vap); 1715 zfs_acl_ids_free(&acl_ids); 1716 dmu_tx_commit(tx); 1717 } else { 1718 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1719 1720 if (have_acl) 1721 zfs_acl_ids_free(&acl_ids); 1722 have_acl = B_FALSE; 1723 1724 /* 1725 * A directory entry already exists for this name. 1726 */ 1727 /* 1728 * Can't truncate an existing file if in exclusive mode. 1729 */ 1730 if (excl == EXCL) { 1731 error = SET_ERROR(EEXIST); 1732 goto out; 1733 } 1734 /* 1735 * Can't open a directory for writing. 1736 */ 1737 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1738 error = SET_ERROR(EISDIR); 1739 goto out; 1740 } 1741 /* 1742 * Verify requested access to file. 1743 */ 1744 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1745 goto out; 1746 } 1747 1748 mutex_enter(&dzp->z_lock); 1749 dzp->z_seq++; 1750 mutex_exit(&dzp->z_lock); 1751 1752 /* 1753 * Truncate regular files if requested. 1754 */ 1755 if ((ZTOV(zp)->v_type == VREG) && 1756 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1757 /* we can't hold any locks when calling zfs_freesp() */ 1758 zfs_dirent_unlock(dl); 1759 dl = NULL; 1760 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1761 if (error == 0) { 1762 vnevent_create(ZTOV(zp), ct); 1763 } 1764 } 1765 } 1766 out: 1767 1768 if (dl) 1769 zfs_dirent_unlock(dl); 1770 1771 if (error) { 1772 if (zp) 1773 VN_RELE(ZTOV(zp)); 1774 } else { 1775 *vpp = ZTOV(zp); 1776 error = specvp_check(vpp, cr); 1777 } 1778 1779 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1780 zil_commit(zilog, 0); 1781 1782 ZFS_EXIT(zfsvfs); 1783 return (error); 1784 } 1785 1786 /* 1787 * Remove an entry from a directory. 1788 * 1789 * IN: dvp - vnode of directory to remove entry from. 1790 * name - name of entry to remove. 1791 * cr - credentials of caller. 1792 * ct - caller context 1793 * flags - case flags 1794 * 1795 * RETURN: 0 on success, error code on failure. 1796 * 1797 * Timestamps: 1798 * dvp - ctime|mtime 1799 * vp - ctime (if nlink > 0) 1800 */ 1801 1802 uint64_t null_xattr = 0; 1803 1804 /*ARGSUSED*/ 1805 static int 1806 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1807 int flags) 1808 { 1809 znode_t *zp, *dzp = VTOZ(dvp); 1810 znode_t *xzp; 1811 vnode_t *vp; 1812 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1813 zilog_t *zilog; 1814 uint64_t acl_obj, xattr_obj; 1815 uint64_t xattr_obj_unlinked = 0; 1816 uint64_t obj = 0; 1817 zfs_dirlock_t *dl; 1818 dmu_tx_t *tx; 1819 boolean_t may_delete_now, delete_now = FALSE; 1820 boolean_t unlinked, toobig = FALSE; 1821 uint64_t txtype; 1822 pathname_t *realnmp = NULL; 1823 pathname_t realnm; 1824 int error; 1825 int zflg = ZEXISTS; 1826 boolean_t waited = B_FALSE; 1827 1828 ZFS_ENTER(zfsvfs); 1829 ZFS_VERIFY_ZP(dzp); 1830 zilog = zfsvfs->z_log; 1831 1832 if (flags & FIGNORECASE) { 1833 zflg |= ZCILOOK; 1834 pn_alloc(&realnm); 1835 realnmp = &realnm; 1836 } 1837 1838 top: 1839 xattr_obj = 0; 1840 xzp = NULL; 1841 /* 1842 * Attempt to lock directory; fail if entry doesn't exist. 1843 */ 1844 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1845 NULL, realnmp)) { 1846 if (realnmp) 1847 pn_free(realnmp); 1848 ZFS_EXIT(zfsvfs); 1849 return (error); 1850 } 1851 1852 vp = ZTOV(zp); 1853 1854 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1855 goto out; 1856 } 1857 1858 /* 1859 * Need to use rmdir for removing directories. 1860 */ 1861 if (vp->v_type == VDIR) { 1862 error = SET_ERROR(EPERM); 1863 goto out; 1864 } 1865 1866 vnevent_remove(vp, dvp, name, ct); 1867 1868 if (realnmp) 1869 dnlc_remove(dvp, realnmp->pn_buf); 1870 else 1871 dnlc_remove(dvp, name); 1872 1873 mutex_enter(&vp->v_lock); 1874 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1875 mutex_exit(&vp->v_lock); 1876 1877 /* 1878 * We may delete the znode now, or we may put it in the unlinked set; 1879 * it depends on whether we're the last link, and on whether there are 1880 * other holds on the vnode. So we dmu_tx_hold() the right things to 1881 * allow for either case. 1882 */ 1883 obj = zp->z_id; 1884 tx = dmu_tx_create(zfsvfs->z_os); 1885 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1886 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1887 zfs_sa_upgrade_txholds(tx, zp); 1888 zfs_sa_upgrade_txholds(tx, dzp); 1889 if (may_delete_now) { 1890 toobig = 1891 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1892 /* if the file is too big, only hold_free a token amount */ 1893 dmu_tx_hold_free(tx, zp->z_id, 0, 1894 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1895 } 1896 1897 /* are there any extended attributes? */ 1898 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1899 &xattr_obj, sizeof (xattr_obj)); 1900 if (error == 0 && xattr_obj) { 1901 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1902 ASSERT0(error); 1903 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1904 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1905 } 1906 1907 mutex_enter(&zp->z_lock); 1908 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1909 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1910 mutex_exit(&zp->z_lock); 1911 1912 /* charge as an update -- would be nice not to charge at all */ 1913 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1914 1915 /* 1916 * Mark this transaction as typically resulting in a net free of space 1917 */ 1918 dmu_tx_mark_netfree(tx); 1919 1920 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1921 if (error) { 1922 zfs_dirent_unlock(dl); 1923 VN_RELE(vp); 1924 if (xzp) 1925 VN_RELE(ZTOV(xzp)); 1926 if (error == ERESTART) { 1927 waited = B_TRUE; 1928 dmu_tx_wait(tx); 1929 dmu_tx_abort(tx); 1930 goto top; 1931 } 1932 if (realnmp) 1933 pn_free(realnmp); 1934 dmu_tx_abort(tx); 1935 ZFS_EXIT(zfsvfs); 1936 return (error); 1937 } 1938 1939 /* 1940 * Remove the directory entry. 1941 */ 1942 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1943 1944 if (error) { 1945 dmu_tx_commit(tx); 1946 goto out; 1947 } 1948 1949 if (unlinked) { 1950 /* 1951 * Hold z_lock so that we can make sure that the ACL obj 1952 * hasn't changed. Could have been deleted due to 1953 * zfs_sa_upgrade(). 1954 */ 1955 mutex_enter(&zp->z_lock); 1956 mutex_enter(&vp->v_lock); 1957 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1958 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1959 delete_now = may_delete_now && !toobig && 1960 vp->v_count == 1 && !vn_has_cached_data(vp) && 1961 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1962 acl_obj; 1963 mutex_exit(&vp->v_lock); 1964 } 1965 1966 if (delete_now) { 1967 if (xattr_obj_unlinked) { 1968 ASSERT3U(xzp->z_links, ==, 2); 1969 mutex_enter(&xzp->z_lock); 1970 xzp->z_unlinked = 1; 1971 xzp->z_links = 0; 1972 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1973 &xzp->z_links, sizeof (xzp->z_links), tx); 1974 ASSERT3U(error, ==, 0); 1975 mutex_exit(&xzp->z_lock); 1976 zfs_unlinked_add(xzp, tx); 1977 1978 if (zp->z_is_sa) 1979 error = sa_remove(zp->z_sa_hdl, 1980 SA_ZPL_XATTR(zfsvfs), tx); 1981 else 1982 error = sa_update(zp->z_sa_hdl, 1983 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1984 sizeof (uint64_t), tx); 1985 ASSERT0(error); 1986 } 1987 mutex_enter(&vp->v_lock); 1988 VN_RELE_LOCKED(vp); 1989 ASSERT0(vp->v_count); 1990 mutex_exit(&vp->v_lock); 1991 mutex_exit(&zp->z_lock); 1992 zfs_znode_delete(zp, tx); 1993 } else if (unlinked) { 1994 mutex_exit(&zp->z_lock); 1995 zfs_unlinked_add(zp, tx); 1996 } 1997 1998 txtype = TX_REMOVE; 1999 if (flags & FIGNORECASE) 2000 txtype |= TX_CI; 2001 zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked); 2002 2003 dmu_tx_commit(tx); 2004 out: 2005 if (realnmp) 2006 pn_free(realnmp); 2007 2008 zfs_dirent_unlock(dl); 2009 2010 if (!delete_now) 2011 VN_RELE(vp); 2012 if (xzp) 2013 VN_RELE(ZTOV(xzp)); 2014 2015 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2016 zil_commit(zilog, 0); 2017 2018 ZFS_EXIT(zfsvfs); 2019 return (error); 2020 } 2021 2022 /* 2023 * Create a new directory and insert it into dvp using the name 2024 * provided. Return a pointer to the inserted directory. 2025 * 2026 * IN: dvp - vnode of directory to add subdir to. 2027 * dirname - name of new directory. 2028 * vap - attributes of new directory. 2029 * cr - credentials of caller. 2030 * ct - caller context 2031 * flags - case flags 2032 * vsecp - ACL to be set 2033 * 2034 * OUT: vpp - vnode of created directory. 2035 * 2036 * RETURN: 0 on success, error code on failure. 2037 * 2038 * Timestamps: 2039 * dvp - ctime|mtime updated 2040 * vp - ctime|mtime|atime updated 2041 */ 2042 /*ARGSUSED*/ 2043 static int 2044 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 2045 caller_context_t *ct, int flags, vsecattr_t *vsecp) 2046 { 2047 znode_t *zp, *dzp = VTOZ(dvp); 2048 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2049 zilog_t *zilog; 2050 zfs_dirlock_t *dl; 2051 uint64_t txtype; 2052 dmu_tx_t *tx; 2053 int error; 2054 int zf = ZNEW; 2055 ksid_t *ksid; 2056 uid_t uid; 2057 gid_t gid = crgetgid(cr); 2058 zfs_acl_ids_t acl_ids; 2059 boolean_t fuid_dirtied; 2060 boolean_t waited = B_FALSE; 2061 2062 ASSERT(vap->va_type == VDIR); 2063 2064 /* 2065 * If we have an ephemeral id, ACL, or XVATTR then 2066 * make sure file system is at proper version 2067 */ 2068 2069 ksid = crgetsid(cr, KSID_OWNER); 2070 if (ksid) 2071 uid = ksid_getid(ksid); 2072 else 2073 uid = crgetuid(cr); 2074 if (zfsvfs->z_use_fuids == B_FALSE && 2075 (vsecp || (vap->va_mask & AT_XVATTR) || 2076 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 2077 return (SET_ERROR(EINVAL)); 2078 2079 ZFS_ENTER(zfsvfs); 2080 ZFS_VERIFY_ZP(dzp); 2081 zilog = zfsvfs->z_log; 2082 2083 if (dzp->z_pflags & ZFS_XATTR) { 2084 ZFS_EXIT(zfsvfs); 2085 return (SET_ERROR(EINVAL)); 2086 } 2087 2088 if (zfsvfs->z_utf8 && u8_validate(dirname, 2089 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2090 ZFS_EXIT(zfsvfs); 2091 return (SET_ERROR(EILSEQ)); 2092 } 2093 if (flags & FIGNORECASE) 2094 zf |= ZCILOOK; 2095 2096 if (vap->va_mask & AT_XVATTR) { 2097 if ((error = secpolicy_xvattr((xvattr_t *)vap, 2098 crgetuid(cr), cr, vap->va_type)) != 0) { 2099 ZFS_EXIT(zfsvfs); 2100 return (error); 2101 } 2102 } 2103 2104 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 2105 vsecp, &acl_ids)) != 0) { 2106 ZFS_EXIT(zfsvfs); 2107 return (error); 2108 } 2109 /* 2110 * First make sure the new directory doesn't exist. 2111 * 2112 * Existence is checked first to make sure we don't return 2113 * EACCES instead of EEXIST which can cause some applications 2114 * to fail. 2115 */ 2116 top: 2117 *vpp = NULL; 2118 2119 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 2120 NULL, NULL)) { 2121 zfs_acl_ids_free(&acl_ids); 2122 ZFS_EXIT(zfsvfs); 2123 return (error); 2124 } 2125 2126 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 2127 zfs_acl_ids_free(&acl_ids); 2128 zfs_dirent_unlock(dl); 2129 ZFS_EXIT(zfsvfs); 2130 return (error); 2131 } 2132 2133 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) { 2134 zfs_acl_ids_free(&acl_ids); 2135 zfs_dirent_unlock(dl); 2136 ZFS_EXIT(zfsvfs); 2137 return (SET_ERROR(EDQUOT)); 2138 } 2139 2140 /* 2141 * Add a new entry to the directory. 2142 */ 2143 tx = dmu_tx_create(zfsvfs->z_os); 2144 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 2145 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2146 fuid_dirtied = zfsvfs->z_fuid_dirty; 2147 if (fuid_dirtied) 2148 zfs_fuid_txhold(zfsvfs, tx); 2149 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2150 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2151 acl_ids.z_aclp->z_acl_bytes); 2152 } 2153 2154 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 2155 ZFS_SA_BASE_ATTR_SIZE); 2156 2157 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2158 if (error) { 2159 zfs_dirent_unlock(dl); 2160 if (error == ERESTART) { 2161 waited = B_TRUE; 2162 dmu_tx_wait(tx); 2163 dmu_tx_abort(tx); 2164 goto top; 2165 } 2166 zfs_acl_ids_free(&acl_ids); 2167 dmu_tx_abort(tx); 2168 ZFS_EXIT(zfsvfs); 2169 return (error); 2170 } 2171 2172 /* 2173 * Create new node. 2174 */ 2175 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 2176 2177 if (fuid_dirtied) 2178 zfs_fuid_sync(zfsvfs, tx); 2179 2180 /* 2181 * Now put new name in parent dir. 2182 */ 2183 (void) zfs_link_create(dl, zp, tx, ZNEW); 2184 2185 *vpp = ZTOV(zp); 2186 2187 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2188 if (flags & FIGNORECASE) 2189 txtype |= TX_CI; 2190 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2191 acl_ids.z_fuidp, vap); 2192 2193 zfs_acl_ids_free(&acl_ids); 2194 2195 dmu_tx_commit(tx); 2196 2197 zfs_dirent_unlock(dl); 2198 2199 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2200 zil_commit(zilog, 0); 2201 2202 ZFS_EXIT(zfsvfs); 2203 return (0); 2204 } 2205 2206 /* 2207 * Remove a directory subdir entry. If the current working 2208 * directory is the same as the subdir to be removed, the 2209 * remove will fail. 2210 * 2211 * IN: dvp - vnode of directory to remove from. 2212 * name - name of directory to be removed. 2213 * cwd - vnode of current working directory. 2214 * cr - credentials of caller. 2215 * ct - caller context 2216 * flags - case flags 2217 * 2218 * RETURN: 0 on success, error code on failure. 2219 * 2220 * Timestamps: 2221 * dvp - ctime|mtime updated 2222 */ 2223 /*ARGSUSED*/ 2224 static int 2225 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2226 caller_context_t *ct, int flags) 2227 { 2228 znode_t *dzp = VTOZ(dvp); 2229 znode_t *zp; 2230 vnode_t *vp; 2231 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2232 zilog_t *zilog; 2233 zfs_dirlock_t *dl; 2234 dmu_tx_t *tx; 2235 int error; 2236 int zflg = ZEXISTS; 2237 boolean_t waited = B_FALSE; 2238 2239 ZFS_ENTER(zfsvfs); 2240 ZFS_VERIFY_ZP(dzp); 2241 zilog = zfsvfs->z_log; 2242 2243 if (flags & FIGNORECASE) 2244 zflg |= ZCILOOK; 2245 top: 2246 zp = NULL; 2247 2248 /* 2249 * Attempt to lock directory; fail if entry doesn't exist. 2250 */ 2251 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2252 NULL, NULL)) { 2253 ZFS_EXIT(zfsvfs); 2254 return (error); 2255 } 2256 2257 vp = ZTOV(zp); 2258 2259 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2260 goto out; 2261 } 2262 2263 if (vp->v_type != VDIR) { 2264 error = SET_ERROR(ENOTDIR); 2265 goto out; 2266 } 2267 2268 if (vp == cwd) { 2269 error = SET_ERROR(EINVAL); 2270 goto out; 2271 } 2272 2273 vnevent_rmdir(vp, dvp, name, ct); 2274 2275 /* 2276 * Grab a lock on the directory to make sure that noone is 2277 * trying to add (or lookup) entries while we are removing it. 2278 */ 2279 rw_enter(&zp->z_name_lock, RW_WRITER); 2280 2281 /* 2282 * Grab a lock on the parent pointer to make sure we play well 2283 * with the treewalk and directory rename code. 2284 */ 2285 rw_enter(&zp->z_parent_lock, RW_WRITER); 2286 2287 tx = dmu_tx_create(zfsvfs->z_os); 2288 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2289 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2290 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2291 zfs_sa_upgrade_txholds(tx, zp); 2292 zfs_sa_upgrade_txholds(tx, dzp); 2293 dmu_tx_mark_netfree(tx); 2294 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2295 if (error) { 2296 rw_exit(&zp->z_parent_lock); 2297 rw_exit(&zp->z_name_lock); 2298 zfs_dirent_unlock(dl); 2299 VN_RELE(vp); 2300 if (error == ERESTART) { 2301 waited = B_TRUE; 2302 dmu_tx_wait(tx); 2303 dmu_tx_abort(tx); 2304 goto top; 2305 } 2306 dmu_tx_abort(tx); 2307 ZFS_EXIT(zfsvfs); 2308 return (error); 2309 } 2310 2311 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2312 2313 if (error == 0) { 2314 uint64_t txtype = TX_RMDIR; 2315 if (flags & FIGNORECASE) 2316 txtype |= TX_CI; 2317 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT, 2318 B_FALSE); 2319 } 2320 2321 dmu_tx_commit(tx); 2322 2323 rw_exit(&zp->z_parent_lock); 2324 rw_exit(&zp->z_name_lock); 2325 out: 2326 zfs_dirent_unlock(dl); 2327 2328 VN_RELE(vp); 2329 2330 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2331 zil_commit(zilog, 0); 2332 2333 ZFS_EXIT(zfsvfs); 2334 return (error); 2335 } 2336 2337 /* 2338 * Read as many directory entries as will fit into the provided 2339 * buffer from the given directory cursor position (specified in 2340 * the uio structure). 2341 * 2342 * IN: vp - vnode of directory to read. 2343 * uio - structure supplying read location, range info, 2344 * and return buffer. 2345 * cr - credentials of caller. 2346 * ct - caller context 2347 * flags - case flags 2348 * 2349 * OUT: uio - updated offset and range, buffer filled. 2350 * eofp - set to true if end-of-file detected. 2351 * 2352 * RETURN: 0 on success, error code on failure. 2353 * 2354 * Timestamps: 2355 * vp - atime updated 2356 * 2357 * Note that the low 4 bits of the cookie returned by zap is always zero. 2358 * This allows us to use the low range for "special" directory entries: 2359 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2360 * we use the offset 2 for the '.zfs' directory. 2361 */ 2362 /* ARGSUSED */ 2363 static int 2364 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2365 caller_context_t *ct, int flags) 2366 { 2367 znode_t *zp = VTOZ(vp); 2368 iovec_t *iovp; 2369 edirent_t *eodp; 2370 dirent64_t *odp; 2371 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2372 objset_t *os; 2373 caddr_t outbuf; 2374 size_t bufsize; 2375 zap_cursor_t zc; 2376 zap_attribute_t zap; 2377 uint_t bytes_wanted; 2378 uint64_t offset; /* must be unsigned; checks for < 1 */ 2379 uint64_t parent; 2380 int local_eof; 2381 int outcount; 2382 int error; 2383 uint8_t prefetch; 2384 boolean_t check_sysattrs; 2385 2386 ZFS_ENTER(zfsvfs); 2387 ZFS_VERIFY_ZP(zp); 2388 2389 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2390 &parent, sizeof (parent))) != 0) { 2391 ZFS_EXIT(zfsvfs); 2392 return (error); 2393 } 2394 2395 /* 2396 * If we are not given an eof variable, 2397 * use a local one. 2398 */ 2399 if (eofp == NULL) 2400 eofp = &local_eof; 2401 2402 /* 2403 * Check for valid iov_len. 2404 */ 2405 if (uio->uio_iov->iov_len <= 0) { 2406 ZFS_EXIT(zfsvfs); 2407 return (SET_ERROR(EINVAL)); 2408 } 2409 2410 /* 2411 * Quit if directory has been removed (posix) 2412 */ 2413 if ((*eofp = zp->z_unlinked) != 0) { 2414 ZFS_EXIT(zfsvfs); 2415 return (0); 2416 } 2417 2418 error = 0; 2419 os = zfsvfs->z_os; 2420 offset = uio->uio_loffset; 2421 prefetch = zp->z_zn_prefetch; 2422 2423 /* 2424 * Initialize the iterator cursor. 2425 */ 2426 if (offset <= 3) { 2427 /* 2428 * Start iteration from the beginning of the directory. 2429 */ 2430 zap_cursor_init(&zc, os, zp->z_id); 2431 } else { 2432 /* 2433 * The offset is a serialized cursor. 2434 */ 2435 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2436 } 2437 2438 /* 2439 * Get space to change directory entries into fs independent format. 2440 */ 2441 iovp = uio->uio_iov; 2442 bytes_wanted = iovp->iov_len; 2443 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2444 bufsize = bytes_wanted; 2445 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2446 odp = (struct dirent64 *)outbuf; 2447 } else { 2448 bufsize = bytes_wanted; 2449 outbuf = NULL; 2450 odp = (struct dirent64 *)iovp->iov_base; 2451 } 2452 eodp = (struct edirent *)odp; 2453 2454 /* 2455 * If this VFS supports the system attribute view interface; and 2456 * we're looking at an extended attribute directory; and we care 2457 * about normalization conflicts on this vfs; then we must check 2458 * for normalization conflicts with the sysattr name space. 2459 */ 2460 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2461 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2462 (flags & V_RDDIR_ENTFLAGS); 2463 2464 /* 2465 * Transform to file-system independent format 2466 */ 2467 outcount = 0; 2468 while (outcount < bytes_wanted) { 2469 ino64_t objnum; 2470 ushort_t reclen; 2471 off64_t *next = NULL; 2472 2473 /* 2474 * Special case `.', `..', and `.zfs'. 2475 */ 2476 if (offset == 0) { 2477 (void) strcpy(zap.za_name, "."); 2478 zap.za_normalization_conflict = 0; 2479 objnum = zp->z_id; 2480 } else if (offset == 1) { 2481 (void) strcpy(zap.za_name, ".."); 2482 zap.za_normalization_conflict = 0; 2483 objnum = parent; 2484 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2485 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2486 zap.za_normalization_conflict = 0; 2487 objnum = ZFSCTL_INO_ROOT; 2488 } else { 2489 /* 2490 * Grab next entry. 2491 */ 2492 if (error = zap_cursor_retrieve(&zc, &zap)) { 2493 if ((*eofp = (error == ENOENT)) != 0) 2494 break; 2495 else 2496 goto update; 2497 } 2498 2499 if (zap.za_integer_length != 8 || 2500 zap.za_num_integers != 1) { 2501 cmn_err(CE_WARN, "zap_readdir: bad directory " 2502 "entry, obj = %lld, offset = %lld\n", 2503 (u_longlong_t)zp->z_id, 2504 (u_longlong_t)offset); 2505 error = SET_ERROR(ENXIO); 2506 goto update; 2507 } 2508 2509 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2510 /* 2511 * MacOS X can extract the object type here such as: 2512 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2513 */ 2514 2515 if (check_sysattrs && !zap.za_normalization_conflict) { 2516 zap.za_normalization_conflict = 2517 xattr_sysattr_casechk(zap.za_name); 2518 } 2519 } 2520 2521 if (flags & V_RDDIR_ACCFILTER) { 2522 /* 2523 * If we have no access at all, don't include 2524 * this entry in the returned information 2525 */ 2526 znode_t *ezp; 2527 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2528 goto skip_entry; 2529 if (!zfs_has_access(ezp, cr)) { 2530 VN_RELE(ZTOV(ezp)); 2531 goto skip_entry; 2532 } 2533 VN_RELE(ZTOV(ezp)); 2534 } 2535 2536 if (flags & V_RDDIR_ENTFLAGS) 2537 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2538 else 2539 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2540 2541 /* 2542 * Will this entry fit in the buffer? 2543 */ 2544 if (outcount + reclen > bufsize) { 2545 /* 2546 * Did we manage to fit anything in the buffer? 2547 */ 2548 if (!outcount) { 2549 error = SET_ERROR(EINVAL); 2550 goto update; 2551 } 2552 break; 2553 } 2554 if (flags & V_RDDIR_ENTFLAGS) { 2555 /* 2556 * Add extended flag entry: 2557 */ 2558 eodp->ed_ino = objnum; 2559 eodp->ed_reclen = reclen; 2560 /* NOTE: ed_off is the offset for the *next* entry */ 2561 next = &(eodp->ed_off); 2562 eodp->ed_eflags = zap.za_normalization_conflict ? 2563 ED_CASE_CONFLICT : 0; 2564 (void) strncpy(eodp->ed_name, zap.za_name, 2565 EDIRENT_NAMELEN(reclen)); 2566 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2567 } else { 2568 /* 2569 * Add normal entry: 2570 */ 2571 odp->d_ino = objnum; 2572 odp->d_reclen = reclen; 2573 /* NOTE: d_off is the offset for the *next* entry */ 2574 next = &(odp->d_off); 2575 (void) strncpy(odp->d_name, zap.za_name, 2576 DIRENT64_NAMELEN(reclen)); 2577 odp = (dirent64_t *)((intptr_t)odp + reclen); 2578 } 2579 outcount += reclen; 2580 2581 ASSERT(outcount <= bufsize); 2582 2583 /* Prefetch znode */ 2584 if (prefetch) 2585 dmu_prefetch(os, objnum, 0, 0, 0, 2586 ZIO_PRIORITY_SYNC_READ); 2587 2588 skip_entry: 2589 /* 2590 * Move to the next entry, fill in the previous offset. 2591 */ 2592 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2593 zap_cursor_advance(&zc); 2594 offset = zap_cursor_serialize(&zc); 2595 } else { 2596 offset += 1; 2597 } 2598 if (next) 2599 *next = offset; 2600 } 2601 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2602 2603 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2604 iovp->iov_base += outcount; 2605 iovp->iov_len -= outcount; 2606 uio->uio_resid -= outcount; 2607 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2608 /* 2609 * Reset the pointer. 2610 */ 2611 offset = uio->uio_loffset; 2612 } 2613 2614 update: 2615 zap_cursor_fini(&zc); 2616 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2617 kmem_free(outbuf, bufsize); 2618 2619 if (error == ENOENT) 2620 error = 0; 2621 2622 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2623 2624 uio->uio_loffset = offset; 2625 ZFS_EXIT(zfsvfs); 2626 return (error); 2627 } 2628 2629 ulong_t zfs_fsync_sync_cnt = 4; 2630 2631 static int 2632 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2633 { 2634 znode_t *zp = VTOZ(vp); 2635 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2636 2637 /* 2638 * Regardless of whether this is required for standards conformance, 2639 * this is the logical behavior when fsync() is called on a file with 2640 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2641 * going to be pushed out as part of the zil_commit(). 2642 */ 2643 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2644 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2645 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2646 2647 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2648 2649 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2650 ZFS_ENTER(zfsvfs); 2651 ZFS_VERIFY_ZP(zp); 2652 zil_commit(zfsvfs->z_log, zp->z_id); 2653 ZFS_EXIT(zfsvfs); 2654 } 2655 return (0); 2656 } 2657 2658 2659 /* 2660 * Get the requested file attributes and place them in the provided 2661 * vattr structure. 2662 * 2663 * IN: vp - vnode of file. 2664 * vap - va_mask identifies requested attributes. 2665 * If AT_XVATTR set, then optional attrs are requested 2666 * flags - ATTR_NOACLCHECK (CIFS server context) 2667 * cr - credentials of caller. 2668 * ct - caller context 2669 * 2670 * OUT: vap - attribute values. 2671 * 2672 * RETURN: 0 (always succeeds). 2673 */ 2674 /* ARGSUSED */ 2675 static int 2676 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2677 caller_context_t *ct) 2678 { 2679 znode_t *zp = VTOZ(vp); 2680 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2681 int error = 0; 2682 uint64_t links; 2683 uint64_t mtime[2], ctime[2]; 2684 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2685 xoptattr_t *xoap = NULL; 2686 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2687 sa_bulk_attr_t bulk[2]; 2688 int count = 0; 2689 2690 ZFS_ENTER(zfsvfs); 2691 ZFS_VERIFY_ZP(zp); 2692 2693 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2694 2695 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2696 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2697 2698 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2699 ZFS_EXIT(zfsvfs); 2700 return (error); 2701 } 2702 2703 /* 2704 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2705 * Also, if we are the owner don't bother, since owner should 2706 * always be allowed to read basic attributes of file. 2707 */ 2708 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2709 (vap->va_uid != crgetuid(cr))) { 2710 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2711 skipaclchk, cr)) { 2712 ZFS_EXIT(zfsvfs); 2713 return (error); 2714 } 2715 } 2716 2717 /* 2718 * Return all attributes. It's cheaper to provide the answer 2719 * than to determine whether we were asked the question. 2720 */ 2721 2722 mutex_enter(&zp->z_lock); 2723 vap->va_type = vp->v_type; 2724 vap->va_mode = zp->z_mode & MODEMASK; 2725 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2726 vap->va_nodeid = zp->z_id; 2727 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2728 links = zp->z_links + 1; 2729 else 2730 links = zp->z_links; 2731 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2732 vap->va_size = zp->z_size; 2733 vap->va_rdev = vp->v_rdev; 2734 vap->va_seq = zp->z_seq; 2735 2736 /* 2737 * Add in any requested optional attributes and the create time. 2738 * Also set the corresponding bits in the returned attribute bitmap. 2739 */ 2740 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2741 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2742 xoap->xoa_archive = 2743 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2744 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2745 } 2746 2747 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2748 xoap->xoa_readonly = 2749 ((zp->z_pflags & ZFS_READONLY) != 0); 2750 XVA_SET_RTN(xvap, XAT_READONLY); 2751 } 2752 2753 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2754 xoap->xoa_system = 2755 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2756 XVA_SET_RTN(xvap, XAT_SYSTEM); 2757 } 2758 2759 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2760 xoap->xoa_hidden = 2761 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2762 XVA_SET_RTN(xvap, XAT_HIDDEN); 2763 } 2764 2765 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2766 xoap->xoa_nounlink = 2767 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2768 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2769 } 2770 2771 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2772 xoap->xoa_immutable = 2773 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2774 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2775 } 2776 2777 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2778 xoap->xoa_appendonly = 2779 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2780 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2781 } 2782 2783 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2784 xoap->xoa_nodump = 2785 ((zp->z_pflags & ZFS_NODUMP) != 0); 2786 XVA_SET_RTN(xvap, XAT_NODUMP); 2787 } 2788 2789 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2790 xoap->xoa_opaque = 2791 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2792 XVA_SET_RTN(xvap, XAT_OPAQUE); 2793 } 2794 2795 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2796 xoap->xoa_av_quarantined = 2797 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2798 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2799 } 2800 2801 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2802 xoap->xoa_av_modified = 2803 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2804 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2805 } 2806 2807 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2808 vp->v_type == VREG) { 2809 zfs_sa_get_scanstamp(zp, xvap); 2810 } 2811 2812 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2813 uint64_t times[2]; 2814 2815 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2816 times, sizeof (times)); 2817 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2818 XVA_SET_RTN(xvap, XAT_CREATETIME); 2819 } 2820 2821 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2822 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2823 XVA_SET_RTN(xvap, XAT_REPARSE); 2824 } 2825 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2826 xoap->xoa_generation = zp->z_gen; 2827 XVA_SET_RTN(xvap, XAT_GEN); 2828 } 2829 2830 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2831 xoap->xoa_offline = 2832 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2833 XVA_SET_RTN(xvap, XAT_OFFLINE); 2834 } 2835 2836 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2837 xoap->xoa_sparse = 2838 ((zp->z_pflags & ZFS_SPARSE) != 0); 2839 XVA_SET_RTN(xvap, XAT_SPARSE); 2840 } 2841 2842 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { 2843 xoap->xoa_projinherit = 2844 ((zp->z_pflags & ZFS_PROJINHERIT) != 0); 2845 XVA_SET_RTN(xvap, XAT_PROJINHERIT); 2846 } 2847 2848 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { 2849 xoap->xoa_projid = zp->z_projid; 2850 XVA_SET_RTN(xvap, XAT_PROJID); 2851 } 2852 } 2853 2854 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2855 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2856 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2857 2858 mutex_exit(&zp->z_lock); 2859 2860 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2861 2862 if (zp->z_blksz == 0) { 2863 /* 2864 * Block size hasn't been set; suggest maximal I/O transfers. 2865 */ 2866 vap->va_blksize = zfsvfs->z_max_blksz; 2867 } 2868 2869 ZFS_EXIT(zfsvfs); 2870 return (0); 2871 } 2872 2873 /* 2874 * For the operation of changing file's user/group/project, we need to 2875 * handle not only the main object that is assigned to the file directly, 2876 * but also the ones that are used by the file via hidden xattr directory. 2877 * 2878 * Because the xattr directory may contain many EA entries, it may be 2879 * impossible to change all of them in the same transaction as changing the 2880 * main object's user/group/project attributes. If so, we have to change them 2881 * via other multiple independent transactions one by one. It may be not a good 2882 * solution, but we have no better idea yet. 2883 */ 2884 static int 2885 zfs_setattr_dir(znode_t *dzp) 2886 { 2887 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2888 objset_t *os = zfsvfs->z_os; 2889 zap_cursor_t zc; 2890 zap_attribute_t zap; 2891 zfs_dirlock_t *dl; 2892 znode_t *zp = NULL; 2893 dmu_tx_t *tx = NULL; 2894 sa_bulk_attr_t bulk[4]; 2895 int count; 2896 int err; 2897 2898 zap_cursor_init(&zc, os, dzp->z_id); 2899 while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) { 2900 count = 0; 2901 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) { 2902 err = ENXIO; 2903 break; 2904 } 2905 2906 err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp, 2907 ZEXISTS, NULL, NULL); 2908 if (err == ENOENT) 2909 goto next; 2910 if (err) 2911 break; 2912 2913 if (zp->z_uid == dzp->z_uid && 2914 zp->z_gid == dzp->z_gid && 2915 zp->z_projid == dzp->z_projid) 2916 goto next; 2917 2918 tx = dmu_tx_create(os); 2919 if (!(zp->z_pflags & ZFS_PROJID)) 2920 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2921 else 2922 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2923 2924 err = dmu_tx_assign(tx, TXG_WAIT); 2925 if (err) 2926 break; 2927 2928 mutex_enter(&dzp->z_lock); 2929 2930 if (zp->z_uid != dzp->z_uid) { 2931 zp->z_uid = dzp->z_uid; 2932 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 2933 &dzp->z_uid, sizeof (dzp->z_uid)); 2934 } 2935 2936 if (zp->z_gid != dzp->z_gid) { 2937 zp->z_gid = dzp->z_gid; 2938 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 2939 &dzp->z_gid, sizeof (dzp->z_gid)); 2940 } 2941 2942 if (zp->z_projid != dzp->z_projid) { 2943 if (!(zp->z_pflags & ZFS_PROJID)) { 2944 zp->z_pflags |= ZFS_PROJID; 2945 SA_ADD_BULK_ATTR(bulk, count, 2946 SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 2947 sizeof (zp->z_pflags)); 2948 } 2949 2950 zp->z_projid = dzp->z_projid; 2951 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs), 2952 NULL, &zp->z_projid, sizeof (zp->z_projid)); 2953 } 2954 2955 mutex_exit(&dzp->z_lock); 2956 2957 if (likely(count > 0)) { 2958 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 2959 dmu_tx_commit(tx); 2960 } else { 2961 dmu_tx_abort(tx); 2962 } 2963 tx = NULL; 2964 if (err != 0 && err != ENOENT) 2965 break; 2966 2967 next: 2968 if (zp) { 2969 VN_RELE(ZTOV(zp)); 2970 zp = NULL; 2971 zfs_dirent_unlock(dl); 2972 } 2973 zap_cursor_advance(&zc); 2974 } 2975 2976 if (tx) 2977 dmu_tx_abort(tx); 2978 if (zp) { 2979 VN_RELE(ZTOV(zp)); 2980 zfs_dirent_unlock(dl); 2981 } 2982 zap_cursor_fini(&zc); 2983 2984 return (err == ENOENT ? 0 : err); 2985 } 2986 2987 /* 2988 * Set the file attributes to the values contained in the 2989 * vattr structure. 2990 * 2991 * IN: vp - vnode of file to be modified. 2992 * vap - new attribute values. 2993 * If AT_XVATTR set, then optional attrs are being set 2994 * flags - ATTR_UTIME set if non-default time values provided. 2995 * - ATTR_NOACLCHECK (CIFS context only). 2996 * cr - credentials of caller. 2997 * ct - caller context 2998 * 2999 * RETURN: 0 on success, error code on failure. 3000 * 3001 * Timestamps: 3002 * vp - ctime updated, mtime updated if size changed. 3003 */ 3004 /* ARGSUSED */ 3005 static int 3006 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 3007 caller_context_t *ct) 3008 { 3009 znode_t *zp = VTOZ(vp); 3010 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3011 objset_t *os = zfsvfs->z_os; 3012 zilog_t *zilog; 3013 dmu_tx_t *tx; 3014 vattr_t oldva; 3015 xvattr_t tmpxvattr; 3016 uint_t mask = vap->va_mask; 3017 uint_t saved_mask = 0; 3018 int trim_mask = 0; 3019 uint64_t new_mode; 3020 uint64_t new_uid, new_gid; 3021 uint64_t xattr_obj; 3022 uint64_t mtime[2], ctime[2]; 3023 uint64_t projid = ZFS_INVALID_PROJID; 3024 znode_t *attrzp; 3025 int need_policy = FALSE; 3026 int err, err2 = 0; 3027 zfs_fuid_info_t *fuidp = NULL; 3028 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 3029 xoptattr_t *xoap; 3030 zfs_acl_t *aclp; 3031 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 3032 boolean_t fuid_dirtied = B_FALSE; 3033 boolean_t handle_eadir = B_FALSE; 3034 sa_bulk_attr_t bulk[8], xattr_bulk[8]; 3035 int count = 0, xattr_count = 0; 3036 3037 if (mask == 0) 3038 return (0); 3039 3040 if (mask & AT_NOSET) 3041 return (SET_ERROR(EINVAL)); 3042 3043 ZFS_ENTER(zfsvfs); 3044 ZFS_VERIFY_ZP(zp); 3045 3046 /* 3047 * If this is a xvattr_t, then get a pointer to the structure of 3048 * optional attributes. If this is NULL, then we have a vattr_t. 3049 */ 3050 xoap = xva_getxoptattr(xvap); 3051 if (xoap != NULL && (mask & AT_XVATTR)) { 3052 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { 3053 if (!dmu_objset_projectquota_enabled(os) || 3054 (vp->v_type != VREG && vp->v_type != VDIR)) { 3055 ZFS_EXIT(zfsvfs); 3056 return (SET_ERROR(ENOTSUP)); 3057 } 3058 3059 projid = xoap->xoa_projid; 3060 if (unlikely(projid == ZFS_INVALID_PROJID)) { 3061 ZFS_EXIT(zfsvfs); 3062 return (SET_ERROR(EINVAL)); 3063 } 3064 3065 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID) 3066 projid = ZFS_INVALID_PROJID; 3067 else 3068 need_policy = TRUE; 3069 } 3070 3071 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) && 3072 (!dmu_objset_projectquota_enabled(os) || 3073 (vp->v_type != VREG && vp->v_type != VDIR))) { 3074 ZFS_EXIT(zfsvfs); 3075 return (SET_ERROR(ENOTSUP)); 3076 } 3077 } 3078 3079 zilog = zfsvfs->z_log; 3080 3081 /* 3082 * Make sure that if we have ephemeral uid/gid or xvattr specified 3083 * that file system is at proper version level 3084 */ 3085 3086 if (zfsvfs->z_use_fuids == B_FALSE && 3087 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 3088 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 3089 (mask & AT_XVATTR))) { 3090 ZFS_EXIT(zfsvfs); 3091 return (SET_ERROR(EINVAL)); 3092 } 3093 3094 if (mask & AT_SIZE && vp->v_type == VDIR) { 3095 ZFS_EXIT(zfsvfs); 3096 return (SET_ERROR(EISDIR)); 3097 } 3098 3099 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 3100 ZFS_EXIT(zfsvfs); 3101 return (SET_ERROR(EINVAL)); 3102 } 3103 3104 xva_init(&tmpxvattr); 3105 3106 /* 3107 * Immutable files can only alter immutable bit and atime 3108 */ 3109 if ((zp->z_pflags & ZFS_IMMUTABLE) && 3110 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 3111 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 3112 ZFS_EXIT(zfsvfs); 3113 return (SET_ERROR(EPERM)); 3114 } 3115 3116 /* 3117 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 3118 */ 3119 3120 /* 3121 * Verify timestamps doesn't overflow 32 bits. 3122 * ZFS can handle large timestamps, but 32bit syscalls can't 3123 * handle times greater than 2039. This check should be removed 3124 * once large timestamps are fully supported. 3125 */ 3126 if (mask & (AT_ATIME | AT_MTIME)) { 3127 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 3128 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 3129 ZFS_EXIT(zfsvfs); 3130 return (SET_ERROR(EOVERFLOW)); 3131 } 3132 } 3133 3134 top: 3135 attrzp = NULL; 3136 aclp = NULL; 3137 3138 /* Can this be moved to before the top label? */ 3139 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 3140 ZFS_EXIT(zfsvfs); 3141 return (SET_ERROR(EROFS)); 3142 } 3143 3144 /* 3145 * First validate permissions 3146 */ 3147 3148 if (mask & AT_SIZE) { 3149 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 3150 if (err) { 3151 ZFS_EXIT(zfsvfs); 3152 return (err); 3153 } 3154 /* 3155 * XXX - Note, we are not providing any open 3156 * mode flags here (like FNDELAY), so we may 3157 * block if there are locks present... this 3158 * should be addressed in openat(). 3159 */ 3160 /* XXX - would it be OK to generate a log record here? */ 3161 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 3162 if (err) { 3163 ZFS_EXIT(zfsvfs); 3164 return (err); 3165 } 3166 3167 if (vap->va_size == 0) 3168 vnevent_truncate(ZTOV(zp), ct); 3169 } 3170 3171 if (mask & (AT_ATIME|AT_MTIME) || 3172 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 3173 XVA_ISSET_REQ(xvap, XAT_READONLY) || 3174 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 3175 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 3176 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 3177 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 3178 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 3179 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 3180 skipaclchk, cr); 3181 } 3182 3183 if (mask & (AT_UID|AT_GID)) { 3184 int idmask = (mask & (AT_UID|AT_GID)); 3185 int take_owner; 3186 int take_group; 3187 3188 /* 3189 * NOTE: even if a new mode is being set, 3190 * we may clear S_ISUID/S_ISGID bits. 3191 */ 3192 3193 if (!(mask & AT_MODE)) 3194 vap->va_mode = zp->z_mode; 3195 3196 /* 3197 * Take ownership or chgrp to group we are a member of 3198 */ 3199 3200 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 3201 take_group = (mask & AT_GID) && 3202 zfs_groupmember(zfsvfs, vap->va_gid, cr); 3203 3204 /* 3205 * If both AT_UID and AT_GID are set then take_owner and 3206 * take_group must both be set in order to allow taking 3207 * ownership. 3208 * 3209 * Otherwise, send the check through secpolicy_vnode_setattr() 3210 * 3211 */ 3212 3213 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 3214 ((idmask == AT_UID) && take_owner) || 3215 ((idmask == AT_GID) && take_group)) { 3216 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 3217 skipaclchk, cr) == 0) { 3218 /* 3219 * Remove setuid/setgid for non-privileged users 3220 */ 3221 secpolicy_setid_clear(vap, cr); 3222 trim_mask = (mask & (AT_UID|AT_GID)); 3223 } else { 3224 need_policy = TRUE; 3225 } 3226 } else { 3227 need_policy = TRUE; 3228 } 3229 } 3230 3231 mutex_enter(&zp->z_lock); 3232 oldva.va_mode = zp->z_mode; 3233 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 3234 if (mask & AT_XVATTR) { 3235 /* 3236 * Update xvattr mask to include only those attributes 3237 * that are actually changing. 3238 * 3239 * the bits will be restored prior to actually setting 3240 * the attributes so the caller thinks they were set. 3241 */ 3242 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 3243 if (xoap->xoa_appendonly != 3244 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 3245 need_policy = TRUE; 3246 } else { 3247 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 3248 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 3249 } 3250 } 3251 3252 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { 3253 if (xoap->xoa_projinherit != 3254 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) { 3255 need_policy = TRUE; 3256 } else { 3257 XVA_CLR_REQ(xvap, XAT_PROJINHERIT); 3258 XVA_SET_REQ(&tmpxvattr, XAT_PROJINHERIT); 3259 } 3260 } 3261 3262 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 3263 if (xoap->xoa_nounlink != 3264 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 3265 need_policy = TRUE; 3266 } else { 3267 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 3268 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 3269 } 3270 } 3271 3272 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 3273 if (xoap->xoa_immutable != 3274 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 3275 need_policy = TRUE; 3276 } else { 3277 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 3278 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 3279 } 3280 } 3281 3282 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 3283 if (xoap->xoa_nodump != 3284 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 3285 need_policy = TRUE; 3286 } else { 3287 XVA_CLR_REQ(xvap, XAT_NODUMP); 3288 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 3289 } 3290 } 3291 3292 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 3293 if (xoap->xoa_av_modified != 3294 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 3295 need_policy = TRUE; 3296 } else { 3297 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 3298 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 3299 } 3300 } 3301 3302 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 3303 if ((vp->v_type != VREG && 3304 xoap->xoa_av_quarantined) || 3305 xoap->xoa_av_quarantined != 3306 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 3307 need_policy = TRUE; 3308 } else { 3309 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 3310 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 3311 } 3312 } 3313 3314 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 3315 mutex_exit(&zp->z_lock); 3316 ZFS_EXIT(zfsvfs); 3317 return (SET_ERROR(EPERM)); 3318 } 3319 3320 if (need_policy == FALSE && 3321 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 3322 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 3323 need_policy = TRUE; 3324 } 3325 } 3326 3327 mutex_exit(&zp->z_lock); 3328 3329 if (mask & AT_MODE) { 3330 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 3331 err = secpolicy_setid_setsticky_clear(vp, vap, 3332 &oldva, cr); 3333 if (err) { 3334 ZFS_EXIT(zfsvfs); 3335 return (err); 3336 } 3337 trim_mask |= AT_MODE; 3338 } else { 3339 need_policy = TRUE; 3340 } 3341 } 3342 3343 if (need_policy) { 3344 /* 3345 * If trim_mask is set then take ownership 3346 * has been granted or write_acl is present and user 3347 * has the ability to modify mode. In that case remove 3348 * UID|GID and or MODE from mask so that 3349 * secpolicy_vnode_setattr() doesn't revoke it. 3350 */ 3351 3352 if (trim_mask) { 3353 saved_mask = vap->va_mask; 3354 vap->va_mask &= ~trim_mask; 3355 } 3356 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3357 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3358 if (err) { 3359 ZFS_EXIT(zfsvfs); 3360 return (err); 3361 } 3362 3363 if (trim_mask) 3364 vap->va_mask |= saved_mask; 3365 } 3366 3367 /* 3368 * secpolicy_vnode_setattr, or take ownership may have 3369 * changed va_mask 3370 */ 3371 mask = vap->va_mask; 3372 3373 if ((mask & (AT_UID | AT_GID)) || projid != ZFS_INVALID_PROJID) { 3374 handle_eadir = B_TRUE; 3375 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3376 &xattr_obj, sizeof (xattr_obj)); 3377 3378 if (err == 0 && xattr_obj) { 3379 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3380 if (err) 3381 goto out2; 3382 } 3383 if (mask & AT_UID) { 3384 new_uid = zfs_fuid_create(zfsvfs, 3385 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3386 if (new_uid != zp->z_uid && 3387 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT, 3388 new_uid)) { 3389 if (attrzp) 3390 VN_RELE(ZTOV(attrzp)); 3391 err = SET_ERROR(EDQUOT); 3392 goto out2; 3393 } 3394 } 3395 3396 if (mask & AT_GID) { 3397 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3398 cr, ZFS_GROUP, &fuidp); 3399 if (new_gid != zp->z_gid && 3400 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT, 3401 new_gid)) { 3402 if (attrzp) 3403 VN_RELE(ZTOV(attrzp)); 3404 err = SET_ERROR(EDQUOT); 3405 goto out2; 3406 } 3407 } 3408 3409 if (projid != ZFS_INVALID_PROJID && 3410 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) { 3411 if (attrzp) 3412 VN_RELE(ZTOV(attrzp)); 3413 err = EDQUOT; 3414 goto out2; 3415 } 3416 } 3417 tx = dmu_tx_create(os); 3418 3419 if (mask & AT_MODE) { 3420 uint64_t pmode = zp->z_mode; 3421 uint64_t acl_obj; 3422 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3423 3424 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3425 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3426 err = SET_ERROR(EPERM); 3427 goto out; 3428 } 3429 3430 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3431 goto out; 3432 3433 mutex_enter(&zp->z_lock); 3434 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3435 /* 3436 * Are we upgrading ACL from old V0 format 3437 * to V1 format? 3438 */ 3439 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3440 zfs_znode_acl_version(zp) == 3441 ZFS_ACL_VERSION_INITIAL) { 3442 dmu_tx_hold_free(tx, acl_obj, 0, 3443 DMU_OBJECT_END); 3444 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3445 0, aclp->z_acl_bytes); 3446 } else { 3447 dmu_tx_hold_write(tx, acl_obj, 0, 3448 aclp->z_acl_bytes); 3449 } 3450 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3451 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3452 0, aclp->z_acl_bytes); 3453 } 3454 mutex_exit(&zp->z_lock); 3455 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3456 } else { 3457 if (((mask & AT_XVATTR) && 3458 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || 3459 (projid != ZFS_INVALID_PROJID && 3460 !(zp->z_pflags & ZFS_PROJID))) 3461 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3462 else 3463 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3464 } 3465 3466 if (attrzp) { 3467 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3468 } 3469 3470 fuid_dirtied = zfsvfs->z_fuid_dirty; 3471 if (fuid_dirtied) 3472 zfs_fuid_txhold(zfsvfs, tx); 3473 3474 zfs_sa_upgrade_txholds(tx, zp); 3475 3476 err = dmu_tx_assign(tx, TXG_WAIT); 3477 if (err) 3478 goto out; 3479 3480 count = 0; 3481 /* 3482 * Set each attribute requested. 3483 * We group settings according to the locks they need to acquire. 3484 * 3485 * Note: you cannot set ctime directly, although it will be 3486 * updated as a side-effect of calling this function. 3487 */ 3488 3489 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) { 3490 /* 3491 * For the existing object that is upgraded from old system, 3492 * its on-disk layout has no slot for the project ID attribute. 3493 * But quota accounting logic needs to access related slots by 3494 * offset directly. So we need to adjust old objects' layout 3495 * to make the project ID to some unified and fixed offset. 3496 */ 3497 if (attrzp) 3498 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid); 3499 if (err == 0) 3500 err = sa_add_projid(zp->z_sa_hdl, tx, projid); 3501 3502 if (unlikely(err == EEXIST)) 3503 err = 0; 3504 else if (err != 0) 3505 goto out; 3506 else 3507 projid = ZFS_INVALID_PROJID; 3508 } 3509 3510 if (mask & (AT_UID|AT_GID|AT_MODE)) 3511 mutex_enter(&zp->z_acl_lock); 3512 mutex_enter(&zp->z_lock); 3513 3514 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3515 &zp->z_pflags, sizeof (zp->z_pflags)); 3516 3517 if (attrzp) { 3518 if (mask & (AT_UID|AT_GID|AT_MODE)) 3519 mutex_enter(&attrzp->z_acl_lock); 3520 mutex_enter(&attrzp->z_lock); 3521 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3522 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3523 sizeof (attrzp->z_pflags)); 3524 if (projid != ZFS_INVALID_PROJID) { 3525 attrzp->z_projid = projid; 3526 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3527 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid, 3528 sizeof (attrzp->z_projid)); 3529 } 3530 } 3531 3532 if (mask & (AT_UID|AT_GID)) { 3533 3534 if (mask & AT_UID) { 3535 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3536 &new_uid, sizeof (new_uid)); 3537 zp->z_uid = new_uid; 3538 if (attrzp) { 3539 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3540 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3541 sizeof (new_uid)); 3542 attrzp->z_uid = new_uid; 3543 } 3544 } 3545 3546 if (mask & AT_GID) { 3547 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3548 NULL, &new_gid, sizeof (new_gid)); 3549 zp->z_gid = new_gid; 3550 if (attrzp) { 3551 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3552 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3553 sizeof (new_gid)); 3554 attrzp->z_gid = new_gid; 3555 } 3556 } 3557 if (!(mask & AT_MODE)) { 3558 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3559 NULL, &new_mode, sizeof (new_mode)); 3560 new_mode = zp->z_mode; 3561 } 3562 err = zfs_acl_chown_setattr(zp); 3563 ASSERT(err == 0); 3564 if (attrzp) { 3565 err = zfs_acl_chown_setattr(attrzp); 3566 ASSERT(err == 0); 3567 } 3568 } 3569 3570 if (mask & AT_MODE) { 3571 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3572 &new_mode, sizeof (new_mode)); 3573 zp->z_mode = new_mode; 3574 ASSERT3U((uintptr_t)aclp, !=, NULL); 3575 err = zfs_aclset_common(zp, aclp, cr, tx); 3576 ASSERT0(err); 3577 if (zp->z_acl_cached) 3578 zfs_acl_free(zp->z_acl_cached); 3579 zp->z_acl_cached = aclp; 3580 aclp = NULL; 3581 } 3582 3583 3584 if (mask & AT_ATIME) { 3585 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3586 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3587 &zp->z_atime, sizeof (zp->z_atime)); 3588 } 3589 3590 if (mask & AT_MTIME) { 3591 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3592 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3593 mtime, sizeof (mtime)); 3594 } 3595 3596 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3597 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3598 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3599 NULL, mtime, sizeof (mtime)); 3600 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3601 &ctime, sizeof (ctime)); 3602 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3603 B_TRUE); 3604 } else if (mask != 0) { 3605 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3606 &ctime, sizeof (ctime)); 3607 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3608 B_TRUE); 3609 if (attrzp) { 3610 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3611 SA_ZPL_CTIME(zfsvfs), NULL, 3612 &ctime, sizeof (ctime)); 3613 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3614 mtime, ctime, B_TRUE); 3615 } 3616 } 3617 3618 if (projid != ZFS_INVALID_PROJID) { 3619 zp->z_projid = projid; 3620 SA_ADD_BULK_ATTR(bulk, count, 3621 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid, 3622 sizeof (zp->z_projid)); 3623 } 3624 3625 /* 3626 * Do this after setting timestamps to prevent timestamp 3627 * update from toggling bit 3628 */ 3629 3630 if (xoap && (mask & AT_XVATTR)) { 3631 3632 /* 3633 * restore trimmed off masks 3634 * so that return masks can be set for caller. 3635 */ 3636 3637 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3638 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3639 } 3640 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3641 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3642 } 3643 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3644 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3645 } 3646 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3647 XVA_SET_REQ(xvap, XAT_NODUMP); 3648 } 3649 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3650 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3651 } 3652 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3653 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3654 } 3655 if (XVA_ISSET_REQ(&tmpxvattr, XAT_PROJINHERIT)) { 3656 XVA_SET_REQ(xvap, XAT_PROJINHERIT); 3657 } 3658 3659 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3660 ASSERT(vp->v_type == VREG); 3661 3662 zfs_xvattr_set(zp, xvap, tx); 3663 } 3664 3665 if (fuid_dirtied) 3666 zfs_fuid_sync(zfsvfs, tx); 3667 3668 if (mask != 0) 3669 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3670 3671 mutex_exit(&zp->z_lock); 3672 if (mask & (AT_UID|AT_GID|AT_MODE)) 3673 mutex_exit(&zp->z_acl_lock); 3674 3675 if (attrzp) { 3676 if (mask & (AT_UID|AT_GID|AT_MODE)) 3677 mutex_exit(&attrzp->z_acl_lock); 3678 mutex_exit(&attrzp->z_lock); 3679 } 3680 out: 3681 if (err == 0 && xattr_count > 0) { 3682 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3683 xattr_count, tx); 3684 ASSERT(err2 == 0); 3685 } 3686 3687 if (aclp) 3688 zfs_acl_free(aclp); 3689 3690 if (fuidp) { 3691 zfs_fuid_info_free(fuidp); 3692 fuidp = NULL; 3693 } 3694 3695 if (err) { 3696 dmu_tx_abort(tx); 3697 if (attrzp) 3698 VN_RELE(ZTOV(attrzp)); 3699 if (err == ERESTART) 3700 goto top; 3701 } else { 3702 if (count > 0) 3703 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3704 dmu_tx_commit(tx); 3705 if (attrzp) { 3706 if (err2 == 0 && handle_eadir) 3707 err2 = zfs_setattr_dir(attrzp); 3708 VN_RELE(ZTOV(attrzp)); 3709 } 3710 } 3711 3712 out2: 3713 if (os->os_sync == ZFS_SYNC_ALWAYS) 3714 zil_commit(zilog, 0); 3715 3716 ZFS_EXIT(zfsvfs); 3717 return (err); 3718 } 3719 3720 typedef struct zfs_zlock { 3721 krwlock_t *zl_rwlock; /* lock we acquired */ 3722 znode_t *zl_znode; /* znode we held */ 3723 struct zfs_zlock *zl_next; /* next in list */ 3724 } zfs_zlock_t; 3725 3726 /* 3727 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3728 */ 3729 static void 3730 zfs_rename_unlock(zfs_zlock_t **zlpp) 3731 { 3732 zfs_zlock_t *zl; 3733 3734 while ((zl = *zlpp) != NULL) { 3735 if (zl->zl_znode != NULL) 3736 VN_RELE(ZTOV(zl->zl_znode)); 3737 rw_exit(zl->zl_rwlock); 3738 *zlpp = zl->zl_next; 3739 kmem_free(zl, sizeof (*zl)); 3740 } 3741 } 3742 3743 /* 3744 * Search back through the directory tree, using the ".." entries. 3745 * Lock each directory in the chain to prevent concurrent renames. 3746 * Fail any attempt to move a directory into one of its own descendants. 3747 * XXX - z_parent_lock can overlap with map or grow locks 3748 */ 3749 static int 3750 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3751 { 3752 zfs_zlock_t *zl; 3753 znode_t *zp = tdzp; 3754 uint64_t rootid = zp->z_zfsvfs->z_root; 3755 uint64_t oidp = zp->z_id; 3756 krwlock_t *rwlp = &szp->z_parent_lock; 3757 krw_t rw = RW_WRITER; 3758 3759 /* 3760 * First pass write-locks szp and compares to zp->z_id. 3761 * Later passes read-lock zp and compare to zp->z_parent. 3762 */ 3763 do { 3764 if (!rw_tryenter(rwlp, rw)) { 3765 /* 3766 * Another thread is renaming in this path. 3767 * Note that if we are a WRITER, we don't have any 3768 * parent_locks held yet. 3769 */ 3770 if (rw == RW_READER && zp->z_id > szp->z_id) { 3771 /* 3772 * Drop our locks and restart 3773 */ 3774 zfs_rename_unlock(&zl); 3775 *zlpp = NULL; 3776 zp = tdzp; 3777 oidp = zp->z_id; 3778 rwlp = &szp->z_parent_lock; 3779 rw = RW_WRITER; 3780 continue; 3781 } else { 3782 /* 3783 * Wait for other thread to drop its locks 3784 */ 3785 rw_enter(rwlp, rw); 3786 } 3787 } 3788 3789 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3790 zl->zl_rwlock = rwlp; 3791 zl->zl_znode = NULL; 3792 zl->zl_next = *zlpp; 3793 *zlpp = zl; 3794 3795 if (oidp == szp->z_id) /* We're a descendant of szp */ 3796 return (SET_ERROR(EINVAL)); 3797 3798 if (oidp == rootid) /* We've hit the top */ 3799 return (0); 3800 3801 if (rw == RW_READER) { /* i.e. not the first pass */ 3802 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3803 if (error) 3804 return (error); 3805 zl->zl_znode = zp; 3806 } 3807 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3808 &oidp, sizeof (oidp)); 3809 rwlp = &zp->z_parent_lock; 3810 rw = RW_READER; 3811 3812 } while (zp->z_id != sdzp->z_id); 3813 3814 return (0); 3815 } 3816 3817 /* 3818 * Move an entry from the provided source directory to the target 3819 * directory. Change the entry name as indicated. 3820 * 3821 * IN: sdvp - Source directory containing the "old entry". 3822 * snm - Old entry name. 3823 * tdvp - Target directory to contain the "new entry". 3824 * tnm - New entry name. 3825 * cr - credentials of caller. 3826 * ct - caller context 3827 * flags - case flags 3828 * 3829 * RETURN: 0 on success, error code on failure. 3830 * 3831 * Timestamps: 3832 * sdvp,tdvp - ctime|mtime updated 3833 */ 3834 /*ARGSUSED*/ 3835 static int 3836 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3837 caller_context_t *ct, int flags) 3838 { 3839 znode_t *tdzp, *szp, *tzp; 3840 znode_t *sdzp = VTOZ(sdvp); 3841 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3842 zilog_t *zilog; 3843 vnode_t *realvp; 3844 zfs_dirlock_t *sdl, *tdl; 3845 dmu_tx_t *tx; 3846 zfs_zlock_t *zl; 3847 int cmp, serr, terr; 3848 int error = 0, rm_err = 0; 3849 int zflg = 0; 3850 boolean_t waited = B_FALSE; 3851 3852 ZFS_ENTER(zfsvfs); 3853 ZFS_VERIFY_ZP(sdzp); 3854 zilog = zfsvfs->z_log; 3855 3856 /* 3857 * Make sure we have the real vp for the target directory. 3858 */ 3859 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3860 tdvp = realvp; 3861 3862 tdzp = VTOZ(tdvp); 3863 ZFS_VERIFY_ZP(tdzp); 3864 3865 /* 3866 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3867 * ctldir appear to have the same v_vfsp. 3868 */ 3869 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3870 ZFS_EXIT(zfsvfs); 3871 return (SET_ERROR(EXDEV)); 3872 } 3873 3874 if (zfsvfs->z_utf8 && u8_validate(tnm, 3875 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3876 ZFS_EXIT(zfsvfs); 3877 return (SET_ERROR(EILSEQ)); 3878 } 3879 3880 if (flags & FIGNORECASE) 3881 zflg |= ZCILOOK; 3882 3883 top: 3884 szp = NULL; 3885 tzp = NULL; 3886 zl = NULL; 3887 3888 /* 3889 * This is to prevent the creation of links into attribute space 3890 * by renaming a linked file into/outof an attribute directory. 3891 * See the comment in zfs_link() for why this is considered bad. 3892 */ 3893 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3894 ZFS_EXIT(zfsvfs); 3895 return (SET_ERROR(EINVAL)); 3896 } 3897 3898 /* 3899 * Lock source and target directory entries. To prevent deadlock, 3900 * a lock ordering must be defined. We lock the directory with 3901 * the smallest object id first, or if it's a tie, the one with 3902 * the lexically first name. 3903 */ 3904 if (sdzp->z_id < tdzp->z_id) { 3905 cmp = -1; 3906 } else if (sdzp->z_id > tdzp->z_id) { 3907 cmp = 1; 3908 } else { 3909 /* 3910 * First compare the two name arguments without 3911 * considering any case folding. 3912 */ 3913 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3914 3915 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3916 ASSERT(error == 0 || !zfsvfs->z_utf8); 3917 if (cmp == 0) { 3918 /* 3919 * POSIX: "If the old argument and the new argument 3920 * both refer to links to the same existing file, 3921 * the rename() function shall return successfully 3922 * and perform no other action." 3923 */ 3924 ZFS_EXIT(zfsvfs); 3925 return (0); 3926 } 3927 /* 3928 * If the file system is case-folding, then we may 3929 * have some more checking to do. A case-folding file 3930 * system is either supporting mixed case sensitivity 3931 * access or is completely case-insensitive. Note 3932 * that the file system is always case preserving. 3933 * 3934 * In mixed sensitivity mode case sensitive behavior 3935 * is the default. FIGNORECASE must be used to 3936 * explicitly request case insensitive behavior. 3937 * 3938 * If the source and target names provided differ only 3939 * by case (e.g., a request to rename 'tim' to 'Tim'), 3940 * we will treat this as a special case in the 3941 * case-insensitive mode: as long as the source name 3942 * is an exact match, we will allow this to proceed as 3943 * a name-change request. 3944 */ 3945 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3946 (zfsvfs->z_case == ZFS_CASE_MIXED && 3947 flags & FIGNORECASE)) && 3948 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3949 &error) == 0) { 3950 /* 3951 * case preserving rename request, require exact 3952 * name matches 3953 */ 3954 zflg |= ZCIEXACT; 3955 zflg &= ~ZCILOOK; 3956 } 3957 } 3958 3959 /* 3960 * If the source and destination directories are the same, we should 3961 * grab the z_name_lock of that directory only once. 3962 */ 3963 if (sdzp == tdzp) { 3964 zflg |= ZHAVELOCK; 3965 rw_enter(&sdzp->z_name_lock, RW_READER); 3966 } 3967 3968 if (cmp < 0) { 3969 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3970 ZEXISTS | zflg, NULL, NULL); 3971 terr = zfs_dirent_lock(&tdl, 3972 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3973 } else { 3974 terr = zfs_dirent_lock(&tdl, 3975 tdzp, tnm, &tzp, zflg, NULL, NULL); 3976 serr = zfs_dirent_lock(&sdl, 3977 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3978 NULL, NULL); 3979 } 3980 3981 if (serr) { 3982 /* 3983 * Source entry invalid or not there. 3984 */ 3985 if (!terr) { 3986 zfs_dirent_unlock(tdl); 3987 if (tzp) 3988 VN_RELE(ZTOV(tzp)); 3989 } 3990 3991 if (sdzp == tdzp) 3992 rw_exit(&sdzp->z_name_lock); 3993 3994 if (strcmp(snm, "..") == 0) 3995 serr = SET_ERROR(EINVAL); 3996 ZFS_EXIT(zfsvfs); 3997 return (serr); 3998 } 3999 if (terr) { 4000 zfs_dirent_unlock(sdl); 4001 VN_RELE(ZTOV(szp)); 4002 4003 if (sdzp == tdzp) 4004 rw_exit(&sdzp->z_name_lock); 4005 4006 if (strcmp(tnm, "..") == 0) 4007 terr = SET_ERROR(EINVAL); 4008 ZFS_EXIT(zfsvfs); 4009 return (terr); 4010 } 4011 4012 /* 4013 * If we are using project inheritance, it means if the directory has 4014 * ZFS_PROJINHERIT set, then its descendant directories will inherit 4015 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under 4016 * such case, we only allow renames into our tree when the project 4017 * IDs are the same. 4018 */ 4019 if (tdzp->z_pflags & ZFS_PROJINHERIT && 4020 tdzp->z_projid != szp->z_projid) { 4021 error = SET_ERROR(EXDEV); 4022 goto out; 4023 } 4024 4025 /* 4026 * Must have write access at the source to remove the old entry 4027 * and write access at the target to create the new entry. 4028 * Note that if target and source are the same, this can be 4029 * done in a single check. 4030 */ 4031 4032 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 4033 goto out; 4034 4035 if (ZTOV(szp)->v_type == VDIR) { 4036 /* 4037 * Check to make sure rename is valid. 4038 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 4039 */ 4040 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 4041 goto out; 4042 } 4043 4044 /* 4045 * Does target exist? 4046 */ 4047 if (tzp) { 4048 /* 4049 * Source and target must be the same type. 4050 */ 4051 if (ZTOV(szp)->v_type == VDIR) { 4052 if (ZTOV(tzp)->v_type != VDIR) { 4053 error = SET_ERROR(ENOTDIR); 4054 goto out; 4055 } 4056 } else { 4057 if (ZTOV(tzp)->v_type == VDIR) { 4058 error = SET_ERROR(EISDIR); 4059 goto out; 4060 } 4061 } 4062 /* 4063 * POSIX dictates that when the source and target 4064 * entries refer to the same file object, rename 4065 * must do nothing and exit without error. 4066 */ 4067 if (szp->z_id == tzp->z_id) { 4068 error = 0; 4069 goto out; 4070 } 4071 } 4072 4073 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct); 4074 if (tzp) 4075 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 4076 4077 /* 4078 * notify the target directory if it is not the same 4079 * as source directory. 4080 */ 4081 if (tdvp != sdvp) { 4082 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct); 4083 } 4084 4085 tx = dmu_tx_create(zfsvfs->z_os); 4086 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4087 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 4088 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 4089 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 4090 if (sdzp != tdzp) { 4091 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 4092 zfs_sa_upgrade_txholds(tx, tdzp); 4093 } 4094 if (tzp) { 4095 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 4096 zfs_sa_upgrade_txholds(tx, tzp); 4097 } 4098 4099 zfs_sa_upgrade_txholds(tx, szp); 4100 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 4101 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4102 if (error) { 4103 if (zl != NULL) 4104 zfs_rename_unlock(&zl); 4105 zfs_dirent_unlock(sdl); 4106 zfs_dirent_unlock(tdl); 4107 4108 if (sdzp == tdzp) 4109 rw_exit(&sdzp->z_name_lock); 4110 4111 VN_RELE(ZTOV(szp)); 4112 if (tzp) 4113 VN_RELE(ZTOV(tzp)); 4114 if (error == ERESTART) { 4115 waited = B_TRUE; 4116 dmu_tx_wait(tx); 4117 dmu_tx_abort(tx); 4118 goto top; 4119 } 4120 dmu_tx_abort(tx); 4121 ZFS_EXIT(zfsvfs); 4122 return (error); 4123 } 4124 4125 if (tzp) /* Attempt to remove the existing target */ 4126 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 4127 4128 if (error == 0) { 4129 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 4130 if (error == 0) { 4131 szp->z_pflags |= ZFS_AV_MODIFIED; 4132 if (tdzp->z_pflags & ZFS_PROJINHERIT) 4133 szp->z_pflags |= ZFS_PROJINHERIT; 4134 4135 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 4136 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 4137 ASSERT0(error); 4138 4139 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 4140 if (error == 0) { 4141 zfs_log_rename(zilog, tx, TX_RENAME | 4142 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 4143 sdl->dl_name, tdzp, tdl->dl_name, szp); 4144 4145 /* 4146 * Update path information for the target vnode 4147 */ 4148 vn_renamepath(tdvp, ZTOV(szp), tnm, 4149 strlen(tnm)); 4150 } else { 4151 /* 4152 * At this point, we have successfully created 4153 * the target name, but have failed to remove 4154 * the source name. Since the create was done 4155 * with the ZRENAMING flag, there are 4156 * complications; for one, the link count is 4157 * wrong. The easiest way to deal with this 4158 * is to remove the newly created target, and 4159 * return the original error. This must 4160 * succeed; fortunately, it is very unlikely to 4161 * fail, since we just created it. 4162 */ 4163 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 4164 ZRENAMING, NULL), ==, 0); 4165 } 4166 } 4167 } 4168 4169 dmu_tx_commit(tx); 4170 4171 if (tzp && rm_err == 0) 4172 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 4173 4174 if (error == 0) { 4175 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 4176 /* notify the target dir if it is not the same as source dir */ 4177 if (tdvp != sdvp) 4178 vnevent_rename_dest_dir(tdvp, ct); 4179 } 4180 out: 4181 if (zl != NULL) 4182 zfs_rename_unlock(&zl); 4183 4184 zfs_dirent_unlock(sdl); 4185 zfs_dirent_unlock(tdl); 4186 4187 if (sdzp == tdzp) 4188 rw_exit(&sdzp->z_name_lock); 4189 4190 4191 VN_RELE(ZTOV(szp)); 4192 if (tzp) 4193 VN_RELE(ZTOV(tzp)); 4194 4195 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4196 zil_commit(zilog, 0); 4197 4198 ZFS_EXIT(zfsvfs); 4199 return (error); 4200 } 4201 4202 /* 4203 * Insert the indicated symbolic reference entry into the directory. 4204 * 4205 * IN: dvp - Directory to contain new symbolic link. 4206 * link - Name for new symlink entry. 4207 * vap - Attributes of new entry. 4208 * cr - credentials of caller. 4209 * ct - caller context 4210 * flags - case flags 4211 * 4212 * RETURN: 0 on success, error code on failure. 4213 * 4214 * Timestamps: 4215 * dvp - ctime|mtime updated 4216 */ 4217 /*ARGSUSED*/ 4218 static int 4219 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 4220 caller_context_t *ct, int flags) 4221 { 4222 znode_t *zp, *dzp = VTOZ(dvp); 4223 zfs_dirlock_t *dl; 4224 dmu_tx_t *tx; 4225 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4226 zilog_t *zilog; 4227 uint64_t len = strlen(link); 4228 int error; 4229 int zflg = ZNEW; 4230 zfs_acl_ids_t acl_ids; 4231 boolean_t fuid_dirtied; 4232 uint64_t txtype = TX_SYMLINK; 4233 boolean_t waited = B_FALSE; 4234 4235 ASSERT(vap->va_type == VLNK); 4236 4237 ZFS_ENTER(zfsvfs); 4238 ZFS_VERIFY_ZP(dzp); 4239 zilog = zfsvfs->z_log; 4240 4241 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 4242 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4243 ZFS_EXIT(zfsvfs); 4244 return (SET_ERROR(EILSEQ)); 4245 } 4246 if (flags & FIGNORECASE) 4247 zflg |= ZCILOOK; 4248 4249 if (len > MAXPATHLEN) { 4250 ZFS_EXIT(zfsvfs); 4251 return (SET_ERROR(ENAMETOOLONG)); 4252 } 4253 4254 if ((error = zfs_acl_ids_create(dzp, 0, 4255 vap, cr, NULL, &acl_ids)) != 0) { 4256 ZFS_EXIT(zfsvfs); 4257 return (error); 4258 } 4259 top: 4260 /* 4261 * Attempt to lock directory; fail if entry already exists. 4262 */ 4263 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 4264 if (error) { 4265 zfs_acl_ids_free(&acl_ids); 4266 ZFS_EXIT(zfsvfs); 4267 return (error); 4268 } 4269 4270 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4271 zfs_acl_ids_free(&acl_ids); 4272 zfs_dirent_unlock(dl); 4273 ZFS_EXIT(zfsvfs); 4274 return (error); 4275 } 4276 4277 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) { 4278 zfs_acl_ids_free(&acl_ids); 4279 zfs_dirent_unlock(dl); 4280 ZFS_EXIT(zfsvfs); 4281 return (SET_ERROR(EDQUOT)); 4282 } 4283 tx = dmu_tx_create(zfsvfs->z_os); 4284 fuid_dirtied = zfsvfs->z_fuid_dirty; 4285 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 4286 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4287 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 4288 ZFS_SA_BASE_ATTR_SIZE + len); 4289 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 4290 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 4291 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 4292 acl_ids.z_aclp->z_acl_bytes); 4293 } 4294 if (fuid_dirtied) 4295 zfs_fuid_txhold(zfsvfs, tx); 4296 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4297 if (error) { 4298 zfs_dirent_unlock(dl); 4299 if (error == ERESTART) { 4300 waited = B_TRUE; 4301 dmu_tx_wait(tx); 4302 dmu_tx_abort(tx); 4303 goto top; 4304 } 4305 zfs_acl_ids_free(&acl_ids); 4306 dmu_tx_abort(tx); 4307 ZFS_EXIT(zfsvfs); 4308 return (error); 4309 } 4310 4311 /* 4312 * Create a new object for the symlink. 4313 * for version 4 ZPL datsets the symlink will be an SA attribute 4314 */ 4315 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 4316 4317 if (fuid_dirtied) 4318 zfs_fuid_sync(zfsvfs, tx); 4319 4320 mutex_enter(&zp->z_lock); 4321 if (zp->z_is_sa) 4322 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 4323 link, len, tx); 4324 else 4325 zfs_sa_symlink(zp, link, len, tx); 4326 mutex_exit(&zp->z_lock); 4327 4328 zp->z_size = len; 4329 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 4330 &zp->z_size, sizeof (zp->z_size), tx); 4331 /* 4332 * Insert the new object into the directory. 4333 */ 4334 (void) zfs_link_create(dl, zp, tx, ZNEW); 4335 4336 if (flags & FIGNORECASE) 4337 txtype |= TX_CI; 4338 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 4339 4340 zfs_acl_ids_free(&acl_ids); 4341 4342 dmu_tx_commit(tx); 4343 4344 zfs_dirent_unlock(dl); 4345 4346 VN_RELE(ZTOV(zp)); 4347 4348 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4349 zil_commit(zilog, 0); 4350 4351 ZFS_EXIT(zfsvfs); 4352 return (error); 4353 } 4354 4355 /* 4356 * Return, in the buffer contained in the provided uio structure, 4357 * the symbolic path referred to by vp. 4358 * 4359 * IN: vp - vnode of symbolic link. 4360 * uio - structure to contain the link path. 4361 * cr - credentials of caller. 4362 * ct - caller context 4363 * 4364 * OUT: uio - structure containing the link path. 4365 * 4366 * RETURN: 0 on success, error code on failure. 4367 * 4368 * Timestamps: 4369 * vp - atime updated 4370 */ 4371 /* ARGSUSED */ 4372 static int 4373 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 4374 { 4375 znode_t *zp = VTOZ(vp); 4376 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4377 int error; 4378 4379 ZFS_ENTER(zfsvfs); 4380 ZFS_VERIFY_ZP(zp); 4381 4382 mutex_enter(&zp->z_lock); 4383 if (zp->z_is_sa) 4384 error = sa_lookup_uio(zp->z_sa_hdl, 4385 SA_ZPL_SYMLINK(zfsvfs), uio); 4386 else 4387 error = zfs_sa_readlink(zp, uio); 4388 mutex_exit(&zp->z_lock); 4389 4390 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4391 4392 ZFS_EXIT(zfsvfs); 4393 return (error); 4394 } 4395 4396 /* 4397 * Insert a new entry into directory tdvp referencing svp. 4398 * 4399 * IN: tdvp - Directory to contain new entry. 4400 * svp - vnode of new entry. 4401 * name - name of new entry. 4402 * cr - credentials of caller. 4403 * ct - caller context 4404 * 4405 * RETURN: 0 on success, error code on failure. 4406 * 4407 * Timestamps: 4408 * tdvp - ctime|mtime updated 4409 * svp - ctime updated 4410 */ 4411 /* ARGSUSED */ 4412 static int 4413 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 4414 caller_context_t *ct, int flags) 4415 { 4416 znode_t *dzp = VTOZ(tdvp); 4417 znode_t *tzp, *szp; 4418 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4419 zilog_t *zilog; 4420 zfs_dirlock_t *dl; 4421 dmu_tx_t *tx; 4422 vnode_t *realvp; 4423 int error; 4424 int zf = ZNEW; 4425 uint64_t parent; 4426 uid_t owner; 4427 boolean_t waited = B_FALSE; 4428 4429 ASSERT(tdvp->v_type == VDIR); 4430 4431 ZFS_ENTER(zfsvfs); 4432 ZFS_VERIFY_ZP(dzp); 4433 zilog = zfsvfs->z_log; 4434 4435 if (VOP_REALVP(svp, &realvp, ct) == 0) 4436 svp = realvp; 4437 4438 /* 4439 * POSIX dictates that we return EPERM here. 4440 * Better choices include ENOTSUP or EISDIR. 4441 */ 4442 if (svp->v_type == VDIR) { 4443 ZFS_EXIT(zfsvfs); 4444 return (SET_ERROR(EPERM)); 4445 } 4446 4447 szp = VTOZ(svp); 4448 ZFS_VERIFY_ZP(szp); 4449 4450 /* 4451 * If we are using project inheritance, it means if the directory has 4452 * ZFS_PROJINHERIT set, then its descendant directories will inherit 4453 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under 4454 * such case, we only allow hard link creation in our tree when the 4455 * project IDs are the same. 4456 */ 4457 if (dzp->z_pflags & ZFS_PROJINHERIT && dzp->z_projid != szp->z_projid) { 4458 ZFS_EXIT(zfsvfs); 4459 return (SET_ERROR(EXDEV)); 4460 } 4461 4462 /* 4463 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4464 * ctldir appear to have the same v_vfsp. 4465 */ 4466 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4467 ZFS_EXIT(zfsvfs); 4468 return (SET_ERROR(EXDEV)); 4469 } 4470 4471 /* Prevent links to .zfs/shares files */ 4472 4473 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4474 &parent, sizeof (uint64_t))) != 0) { 4475 ZFS_EXIT(zfsvfs); 4476 return (error); 4477 } 4478 if (parent == zfsvfs->z_shares_dir) { 4479 ZFS_EXIT(zfsvfs); 4480 return (SET_ERROR(EPERM)); 4481 } 4482 4483 if (zfsvfs->z_utf8 && u8_validate(name, 4484 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4485 ZFS_EXIT(zfsvfs); 4486 return (SET_ERROR(EILSEQ)); 4487 } 4488 if (flags & FIGNORECASE) 4489 zf |= ZCILOOK; 4490 4491 /* 4492 * We do not support links between attributes and non-attributes 4493 * because of the potential security risk of creating links 4494 * into "normal" file space in order to circumvent restrictions 4495 * imposed in attribute space. 4496 */ 4497 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4498 ZFS_EXIT(zfsvfs); 4499 return (SET_ERROR(EINVAL)); 4500 } 4501 4502 4503 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4504 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4505 ZFS_EXIT(zfsvfs); 4506 return (SET_ERROR(EPERM)); 4507 } 4508 4509 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4510 ZFS_EXIT(zfsvfs); 4511 return (error); 4512 } 4513 4514 top: 4515 /* 4516 * Attempt to lock directory; fail if entry already exists. 4517 */ 4518 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4519 if (error) { 4520 ZFS_EXIT(zfsvfs); 4521 return (error); 4522 } 4523 4524 tx = dmu_tx_create(zfsvfs->z_os); 4525 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4526 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4527 zfs_sa_upgrade_txholds(tx, szp); 4528 zfs_sa_upgrade_txholds(tx, dzp); 4529 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 4530 if (error) { 4531 zfs_dirent_unlock(dl); 4532 if (error == ERESTART) { 4533 waited = B_TRUE; 4534 dmu_tx_wait(tx); 4535 dmu_tx_abort(tx); 4536 goto top; 4537 } 4538 dmu_tx_abort(tx); 4539 ZFS_EXIT(zfsvfs); 4540 return (error); 4541 } 4542 4543 error = zfs_link_create(dl, szp, tx, 0); 4544 4545 if (error == 0) { 4546 uint64_t txtype = TX_LINK; 4547 if (flags & FIGNORECASE) 4548 txtype |= TX_CI; 4549 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4550 } 4551 4552 dmu_tx_commit(tx); 4553 4554 zfs_dirent_unlock(dl); 4555 4556 if (error == 0) { 4557 vnevent_link(svp, ct); 4558 } 4559 4560 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4561 zil_commit(zilog, 0); 4562 4563 ZFS_EXIT(zfsvfs); 4564 return (error); 4565 } 4566 4567 /* 4568 * zfs_null_putapage() is used when the file system has been force 4569 * unmounted. It just drops the pages. 4570 */ 4571 /* ARGSUSED */ 4572 static int 4573 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4574 size_t *lenp, int flags, cred_t *cr) 4575 { 4576 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4577 return (0); 4578 } 4579 4580 /* 4581 * Push a page out to disk, klustering if possible. 4582 * 4583 * IN: vp - file to push page to. 4584 * pp - page to push. 4585 * flags - additional flags. 4586 * cr - credentials of caller. 4587 * 4588 * OUT: offp - start of range pushed. 4589 * lenp - len of range pushed. 4590 * 4591 * RETURN: 0 on success, error code on failure. 4592 * 4593 * NOTE: callers must have locked the page to be pushed. On 4594 * exit, the page (and all other pages in the kluster) must be 4595 * unlocked. 4596 */ 4597 /* ARGSUSED */ 4598 static int 4599 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4600 size_t *lenp, int flags, cred_t *cr) 4601 { 4602 znode_t *zp = VTOZ(vp); 4603 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4604 dmu_tx_t *tx; 4605 u_offset_t off, koff; 4606 size_t len, klen; 4607 int err; 4608 4609 off = pp->p_offset; 4610 len = PAGESIZE; 4611 /* 4612 * If our blocksize is bigger than the page size, try to kluster 4613 * multiple pages so that we write a full block (thus avoiding 4614 * a read-modify-write). 4615 */ 4616 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4617 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4618 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4619 ASSERT(koff <= zp->z_size); 4620 if (koff + klen > zp->z_size) 4621 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4622 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4623 } 4624 ASSERT3U(btop(len), ==, btopr(len)); 4625 4626 /* 4627 * Can't push pages past end-of-file. 4628 */ 4629 if (off >= zp->z_size) { 4630 /* ignore all pages */ 4631 err = 0; 4632 goto out; 4633 } else if (off + len > zp->z_size) { 4634 int npages = btopr(zp->z_size - off); 4635 page_t *trunc; 4636 4637 page_list_break(&pp, &trunc, npages); 4638 /* ignore pages past end of file */ 4639 if (trunc) 4640 pvn_write_done(trunc, flags); 4641 len = zp->z_size - off; 4642 } 4643 4644 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, zp->z_uid) || 4645 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, zp->z_gid)) { 4646 err = SET_ERROR(EDQUOT); 4647 goto out; 4648 } 4649 tx = dmu_tx_create(zfsvfs->z_os); 4650 dmu_tx_hold_write(tx, zp->z_id, off, len); 4651 4652 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4653 zfs_sa_upgrade_txholds(tx, zp); 4654 err = dmu_tx_assign(tx, TXG_WAIT); 4655 if (err != 0) { 4656 dmu_tx_abort(tx); 4657 goto out; 4658 } 4659 4660 if (zp->z_blksz <= PAGESIZE) { 4661 caddr_t va = zfs_map_page(pp, S_READ); 4662 ASSERT3U(len, <=, PAGESIZE); 4663 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4664 zfs_unmap_page(pp, va); 4665 } else { 4666 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4667 } 4668 4669 if (err == 0) { 4670 uint64_t mtime[2], ctime[2]; 4671 sa_bulk_attr_t bulk[3]; 4672 int count = 0; 4673 4674 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4675 &mtime, 16); 4676 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4677 &ctime, 16); 4678 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4679 &zp->z_pflags, 8); 4680 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4681 B_TRUE); 4682 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 4683 ASSERT0(err); 4684 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4685 } 4686 dmu_tx_commit(tx); 4687 4688 out: 4689 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4690 if (offp) 4691 *offp = off; 4692 if (lenp) 4693 *lenp = len; 4694 4695 return (err); 4696 } 4697 4698 /* 4699 * Copy the portion of the file indicated from pages into the file. 4700 * The pages are stored in a page list attached to the files vnode. 4701 * 4702 * IN: vp - vnode of file to push page data to. 4703 * off - position in file to put data. 4704 * len - amount of data to write. 4705 * flags - flags to control the operation. 4706 * cr - credentials of caller. 4707 * ct - caller context. 4708 * 4709 * RETURN: 0 on success, error code on failure. 4710 * 4711 * Timestamps: 4712 * vp - ctime|mtime updated 4713 */ 4714 /*ARGSUSED*/ 4715 static int 4716 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4717 caller_context_t *ct) 4718 { 4719 znode_t *zp = VTOZ(vp); 4720 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4721 page_t *pp; 4722 size_t io_len; 4723 u_offset_t io_off; 4724 uint_t blksz; 4725 locked_range_t *lr; 4726 int error = 0; 4727 4728 ZFS_ENTER(zfsvfs); 4729 ZFS_VERIFY_ZP(zp); 4730 4731 /* 4732 * There's nothing to do if no data is cached. 4733 */ 4734 if (!vn_has_cached_data(vp)) { 4735 ZFS_EXIT(zfsvfs); 4736 return (0); 4737 } 4738 4739 /* 4740 * Align this request to the file block size in case we kluster. 4741 * XXX - this can result in pretty aggresive locking, which can 4742 * impact simultanious read/write access. One option might be 4743 * to break up long requests (len == 0) into block-by-block 4744 * operations to get narrower locking. 4745 */ 4746 blksz = zp->z_blksz; 4747 if (ISP2(blksz)) 4748 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4749 else 4750 io_off = 0; 4751 if (len > 0 && ISP2(blksz)) 4752 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4753 else 4754 io_len = 0; 4755 4756 if (io_len == 0) { 4757 /* 4758 * Search the entire vp list for pages >= io_off. 4759 */ 4760 lr = rangelock_enter(&zp->z_rangelock, 4761 io_off, UINT64_MAX, RL_WRITER); 4762 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4763 goto out; 4764 } 4765 lr = rangelock_enter(&zp->z_rangelock, io_off, io_len, RL_WRITER); 4766 4767 if (off > zp->z_size) { 4768 /* past end of file */ 4769 rangelock_exit(lr); 4770 ZFS_EXIT(zfsvfs); 4771 return (0); 4772 } 4773 4774 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4775 4776 for (off = io_off; io_off < off + len; io_off += io_len) { 4777 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4778 pp = page_lookup(vp, io_off, 4779 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4780 } else { 4781 pp = page_lookup_nowait(vp, io_off, 4782 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4783 } 4784 4785 if (pp != NULL && pvn_getdirty(pp, flags)) { 4786 int err; 4787 4788 /* 4789 * Found a dirty page to push 4790 */ 4791 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4792 if (err) 4793 error = err; 4794 } else { 4795 io_len = PAGESIZE; 4796 } 4797 } 4798 out: 4799 rangelock_exit(lr); 4800 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4801 zil_commit(zfsvfs->z_log, zp->z_id); 4802 ZFS_EXIT(zfsvfs); 4803 return (error); 4804 } 4805 4806 /*ARGSUSED*/ 4807 void 4808 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4809 { 4810 znode_t *zp = VTOZ(vp); 4811 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4812 int error; 4813 4814 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4815 if (zp->z_sa_hdl == NULL) { 4816 /* 4817 * The fs has been unmounted, or we did a 4818 * suspend/resume and this file no longer exists. 4819 */ 4820 if (vn_has_cached_data(vp)) { 4821 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4822 B_INVAL, cr); 4823 } 4824 4825 mutex_enter(&zp->z_lock); 4826 mutex_enter(&vp->v_lock); 4827 ASSERT(vp->v_count == 1); 4828 VN_RELE_LOCKED(vp); 4829 mutex_exit(&vp->v_lock); 4830 mutex_exit(&zp->z_lock); 4831 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4832 zfs_znode_free(zp); 4833 return; 4834 } 4835 4836 /* 4837 * Attempt to push any data in the page cache. If this fails 4838 * we will get kicked out later in zfs_zinactive(). 4839 */ 4840 if (vn_has_cached_data(vp)) { 4841 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4842 cr); 4843 } 4844 4845 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4846 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4847 4848 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4849 zfs_sa_upgrade_txholds(tx, zp); 4850 error = dmu_tx_assign(tx, TXG_WAIT); 4851 if (error) { 4852 dmu_tx_abort(tx); 4853 } else { 4854 mutex_enter(&zp->z_lock); 4855 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4856 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4857 zp->z_atime_dirty = 0; 4858 mutex_exit(&zp->z_lock); 4859 dmu_tx_commit(tx); 4860 } 4861 } 4862 4863 zfs_zinactive(zp); 4864 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4865 } 4866 4867 /* 4868 * Bounds-check the seek operation. 4869 * 4870 * IN: vp - vnode seeking within 4871 * ooff - old file offset 4872 * noffp - pointer to new file offset 4873 * ct - caller context 4874 * 4875 * RETURN: 0 on success, EINVAL if new offset invalid. 4876 */ 4877 /* ARGSUSED */ 4878 static int 4879 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4880 caller_context_t *ct) 4881 { 4882 if (vp->v_type == VDIR) 4883 return (0); 4884 return ((*noffp < 0) ? EINVAL : 0); 4885 } 4886 4887 /* 4888 * Pre-filter the generic locking function to trap attempts to place 4889 * a mandatory lock on a memory mapped file. 4890 */ 4891 static int 4892 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4893 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4894 { 4895 znode_t *zp = VTOZ(vp); 4896 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4897 4898 ZFS_ENTER(zfsvfs); 4899 ZFS_VERIFY_ZP(zp); 4900 4901 /* 4902 * We are following the UFS semantics with respect to mapcnt 4903 * here: If we see that the file is mapped already, then we will 4904 * return an error, but we don't worry about races between this 4905 * function and zfs_map(). 4906 */ 4907 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4908 ZFS_EXIT(zfsvfs); 4909 return (SET_ERROR(EAGAIN)); 4910 } 4911 ZFS_EXIT(zfsvfs); 4912 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4913 } 4914 4915 /* 4916 * If we can't find a page in the cache, we will create a new page 4917 * and fill it with file data. For efficiency, we may try to fill 4918 * multiple pages at once (klustering) to fill up the supplied page 4919 * list. Note that the pages to be filled are held with an exclusive 4920 * lock to prevent access by other threads while they are being filled. 4921 */ 4922 static int 4923 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4924 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4925 { 4926 znode_t *zp = VTOZ(vp); 4927 page_t *pp, *cur_pp; 4928 objset_t *os = zp->z_zfsvfs->z_os; 4929 u_offset_t io_off, total; 4930 size_t io_len; 4931 int err; 4932 4933 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4934 /* 4935 * We only have a single page, don't bother klustering 4936 */ 4937 io_off = off; 4938 io_len = PAGESIZE; 4939 pp = page_create_va(vp, io_off, io_len, 4940 PG_EXCL | PG_WAIT, seg, addr); 4941 } else { 4942 /* 4943 * Try to find enough pages to fill the page list 4944 */ 4945 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4946 &io_len, off, plsz, 0); 4947 } 4948 if (pp == NULL) { 4949 /* 4950 * The page already exists, nothing to do here. 4951 */ 4952 *pl = NULL; 4953 return (0); 4954 } 4955 4956 /* 4957 * Fill the pages in the kluster. 4958 */ 4959 cur_pp = pp; 4960 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4961 caddr_t va; 4962 4963 ASSERT3U(io_off, ==, cur_pp->p_offset); 4964 va = zfs_map_page(cur_pp, S_WRITE); 4965 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4966 DMU_READ_PREFETCH); 4967 zfs_unmap_page(cur_pp, va); 4968 if (err) { 4969 /* On error, toss the entire kluster */ 4970 pvn_read_done(pp, B_ERROR); 4971 /* convert checksum errors into IO errors */ 4972 if (err == ECKSUM) 4973 err = SET_ERROR(EIO); 4974 return (err); 4975 } 4976 cur_pp = cur_pp->p_next; 4977 } 4978 4979 /* 4980 * Fill in the page list array from the kluster starting 4981 * from the desired offset `off'. 4982 * NOTE: the page list will always be null terminated. 4983 */ 4984 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4985 ASSERT(pl == NULL || (*pl)->p_offset == off); 4986 4987 return (0); 4988 } 4989 4990 /* 4991 * Return pointers to the pages for the file region [off, off + len] 4992 * in the pl array. If plsz is greater than len, this function may 4993 * also return page pointers from after the specified region 4994 * (i.e. the region [off, off + plsz]). These additional pages are 4995 * only returned if they are already in the cache, or were created as 4996 * part of a klustered read. 4997 * 4998 * IN: vp - vnode of file to get data from. 4999 * off - position in file to get data from. 5000 * len - amount of data to retrieve. 5001 * plsz - length of provided page list. 5002 * seg - segment to obtain pages for. 5003 * addr - virtual address of fault. 5004 * rw - mode of created pages. 5005 * cr - credentials of caller. 5006 * ct - caller context. 5007 * 5008 * OUT: protp - protection mode of created pages. 5009 * pl - list of pages created. 5010 * 5011 * RETURN: 0 on success, error code on failure. 5012 * 5013 * Timestamps: 5014 * vp - atime updated 5015 */ 5016 /* ARGSUSED */ 5017 static int 5018 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 5019 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 5020 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 5021 { 5022 znode_t *zp = VTOZ(vp); 5023 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5024 page_t **pl0 = pl; 5025 int err = 0; 5026 5027 /* we do our own caching, faultahead is unnecessary */ 5028 if (pl == NULL) 5029 return (0); 5030 else if (len > plsz) 5031 len = plsz; 5032 else 5033 len = P2ROUNDUP(len, PAGESIZE); 5034 ASSERT(plsz >= len); 5035 5036 ZFS_ENTER(zfsvfs); 5037 ZFS_VERIFY_ZP(zp); 5038 5039 if (protp) 5040 *protp = PROT_ALL; 5041 5042 /* 5043 * Loop through the requested range [off, off + len) looking 5044 * for pages. If we don't find a page, we will need to create 5045 * a new page and fill it with data from the file. 5046 */ 5047 while (len > 0) { 5048 if (*pl = page_lookup(vp, off, SE_SHARED)) 5049 *(pl+1) = NULL; 5050 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 5051 goto out; 5052 while (*pl) { 5053 ASSERT3U((*pl)->p_offset, ==, off); 5054 off += PAGESIZE; 5055 addr += PAGESIZE; 5056 if (len > 0) { 5057 ASSERT3U(len, >=, PAGESIZE); 5058 len -= PAGESIZE; 5059 } 5060 ASSERT3U(plsz, >=, PAGESIZE); 5061 plsz -= PAGESIZE; 5062 pl++; 5063 } 5064 } 5065 5066 /* 5067 * Fill out the page array with any pages already in the cache. 5068 */ 5069 while (plsz > 0 && 5070 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 5071 off += PAGESIZE; 5072 plsz -= PAGESIZE; 5073 } 5074 out: 5075 if (err) { 5076 /* 5077 * Release any pages we have previously locked. 5078 */ 5079 while (pl > pl0) 5080 page_unlock(*--pl); 5081 } else { 5082 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 5083 } 5084 5085 *pl = NULL; 5086 5087 ZFS_EXIT(zfsvfs); 5088 return (err); 5089 } 5090 5091 /* 5092 * Request a memory map for a section of a file. This code interacts 5093 * with common code and the VM system as follows: 5094 * 5095 * - common code calls mmap(), which ends up in smmap_common() 5096 * - this calls VOP_MAP(), which takes you into (say) zfs 5097 * - zfs_map() calls as_map(), passing segvn_create() as the callback 5098 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 5099 * - zfs_addmap() updates z_mapcnt 5100 */ 5101 /*ARGSUSED*/ 5102 static int 5103 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5104 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 5105 caller_context_t *ct) 5106 { 5107 znode_t *zp = VTOZ(vp); 5108 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5109 segvn_crargs_t vn_a; 5110 int error; 5111 5112 ZFS_ENTER(zfsvfs); 5113 ZFS_VERIFY_ZP(zp); 5114 5115 /* 5116 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 5117 */ 5118 5119 if ((prot & PROT_WRITE) && (zp->z_pflags & 5120 (ZFS_IMMUTABLE | ZFS_APPENDONLY))) { 5121 ZFS_EXIT(zfsvfs); 5122 return (SET_ERROR(EPERM)); 5123 } 5124 5125 if ((prot & (PROT_READ | PROT_EXEC)) && 5126 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 5127 ZFS_EXIT(zfsvfs); 5128 return (SET_ERROR(EACCES)); 5129 } 5130 5131 if (vp->v_flag & VNOMAP) { 5132 ZFS_EXIT(zfsvfs); 5133 return (SET_ERROR(ENOSYS)); 5134 } 5135 5136 if (off < 0 || len > MAXOFFSET_T - off) { 5137 ZFS_EXIT(zfsvfs); 5138 return (SET_ERROR(ENXIO)); 5139 } 5140 5141 if (vp->v_type != VREG) { 5142 ZFS_EXIT(zfsvfs); 5143 return (SET_ERROR(ENODEV)); 5144 } 5145 5146 /* 5147 * If file is locked, disallow mapping. 5148 */ 5149 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 5150 ZFS_EXIT(zfsvfs); 5151 return (SET_ERROR(EAGAIN)); 5152 } 5153 5154 as_rangelock(as); 5155 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5156 if (error != 0) { 5157 as_rangeunlock(as); 5158 ZFS_EXIT(zfsvfs); 5159 return (error); 5160 } 5161 5162 vn_a.vp = vp; 5163 vn_a.offset = (u_offset_t)off; 5164 vn_a.type = flags & MAP_TYPE; 5165 vn_a.prot = prot; 5166 vn_a.maxprot = maxprot; 5167 vn_a.cred = cr; 5168 vn_a.amp = NULL; 5169 vn_a.flags = flags & ~MAP_TYPE; 5170 vn_a.szc = 0; 5171 vn_a.lgrp_mem_policy_flags = 0; 5172 5173 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5174 5175 as_rangeunlock(as); 5176 ZFS_EXIT(zfsvfs); 5177 return (error); 5178 } 5179 5180 /* ARGSUSED */ 5181 static int 5182 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5183 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 5184 caller_context_t *ct) 5185 { 5186 uint64_t pages = btopr(len); 5187 5188 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 5189 return (0); 5190 } 5191 5192 /* ARGSUSED */ 5193 static int 5194 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5195 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 5196 caller_context_t *ct) 5197 { 5198 uint64_t pages = btopr(len); 5199 5200 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 5201 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 5202 5203 return (0); 5204 } 5205 5206 /* 5207 * Free or allocate space in a file. Currently, this function only 5208 * supports the `F_FREESP' command. However, this command is somewhat 5209 * misnamed, as its functionality includes the ability to allocate as 5210 * well as free space. 5211 * 5212 * IN: vp - vnode of file to free data in. 5213 * cmd - action to take (only F_FREESP supported). 5214 * bfp - section of file to free/alloc. 5215 * flag - current file open mode flags. 5216 * offset - current file offset. 5217 * cr - credentials of caller [UNUSED]. 5218 * ct - caller context. 5219 * 5220 * RETURN: 0 on success, error code on failure. 5221 * 5222 * Timestamps: 5223 * vp - ctime|mtime updated 5224 */ 5225 /* ARGSUSED */ 5226 static int 5227 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 5228 offset_t offset, cred_t *cr, caller_context_t *ct) 5229 { 5230 znode_t *zp = VTOZ(vp); 5231 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5232 uint64_t off, len; 5233 int error; 5234 5235 ZFS_ENTER(zfsvfs); 5236 ZFS_VERIFY_ZP(zp); 5237 5238 if (cmd != F_FREESP) { 5239 ZFS_EXIT(zfsvfs); 5240 return (SET_ERROR(EINVAL)); 5241 } 5242 5243 /* 5244 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 5245 * callers might not be able to detect properly that we are read-only, 5246 * so check it explicitly here. 5247 */ 5248 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 5249 ZFS_EXIT(zfsvfs); 5250 return (SET_ERROR(EROFS)); 5251 } 5252 5253 if (error = convoff(vp, bfp, 0, offset)) { 5254 ZFS_EXIT(zfsvfs); 5255 return (error); 5256 } 5257 5258 if (bfp->l_len < 0) { 5259 ZFS_EXIT(zfsvfs); 5260 return (SET_ERROR(EINVAL)); 5261 } 5262 5263 off = bfp->l_start; 5264 len = bfp->l_len; /* 0 means from off to end of file */ 5265 5266 error = zfs_freesp(zp, off, len, flag, TRUE); 5267 5268 if (error == 0 && off == 0 && len == 0) 5269 vnevent_truncate(ZTOV(zp), ct); 5270 5271 ZFS_EXIT(zfsvfs); 5272 return (error); 5273 } 5274 5275 /*ARGSUSED*/ 5276 static int 5277 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 5278 { 5279 znode_t *zp = VTOZ(vp); 5280 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5281 uint32_t gen; 5282 uint64_t gen64; 5283 uint64_t object = zp->z_id; 5284 zfid_short_t *zfid; 5285 int size, i, error; 5286 5287 ZFS_ENTER(zfsvfs); 5288 ZFS_VERIFY_ZP(zp); 5289 5290 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 5291 &gen64, sizeof (uint64_t))) != 0) { 5292 ZFS_EXIT(zfsvfs); 5293 return (error); 5294 } 5295 5296 gen = (uint32_t)gen64; 5297 5298 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 5299 if (fidp->fid_len < size) { 5300 fidp->fid_len = size; 5301 ZFS_EXIT(zfsvfs); 5302 return (SET_ERROR(ENOSPC)); 5303 } 5304 5305 zfid = (zfid_short_t *)fidp; 5306 5307 zfid->zf_len = size; 5308 5309 for (i = 0; i < sizeof (zfid->zf_object); i++) 5310 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 5311 5312 /* Must have a non-zero generation number to distinguish from .zfs */ 5313 if (gen == 0) 5314 gen = 1; 5315 for (i = 0; i < sizeof (zfid->zf_gen); i++) 5316 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 5317 5318 if (size == LONG_FID_LEN) { 5319 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 5320 zfid_long_t *zlfid; 5321 5322 zlfid = (zfid_long_t *)fidp; 5323 5324 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 5325 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 5326 5327 /* XXX - this should be the generation number for the objset */ 5328 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 5329 zlfid->zf_setgen[i] = 0; 5330 } 5331 5332 ZFS_EXIT(zfsvfs); 5333 return (0); 5334 } 5335 5336 static int 5337 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 5338 caller_context_t *ct) 5339 { 5340 znode_t *zp, *xzp; 5341 zfsvfs_t *zfsvfs; 5342 zfs_dirlock_t *dl; 5343 int error; 5344 5345 switch (cmd) { 5346 case _PC_LINK_MAX: 5347 *valp = ULONG_MAX; 5348 return (0); 5349 5350 case _PC_FILESIZEBITS: 5351 *valp = 64; 5352 return (0); 5353 5354 case _PC_XATTR_EXISTS: 5355 zp = VTOZ(vp); 5356 zfsvfs = zp->z_zfsvfs; 5357 ZFS_ENTER(zfsvfs); 5358 ZFS_VERIFY_ZP(zp); 5359 *valp = 0; 5360 error = zfs_dirent_lock(&dl, zp, "", &xzp, 5361 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 5362 if (error == 0) { 5363 zfs_dirent_unlock(dl); 5364 if (!zfs_dirempty(xzp)) 5365 *valp = 1; 5366 VN_RELE(ZTOV(xzp)); 5367 } else if (error == ENOENT) { 5368 /* 5369 * If there aren't extended attributes, it's the 5370 * same as having zero of them. 5371 */ 5372 error = 0; 5373 } 5374 ZFS_EXIT(zfsvfs); 5375 return (error); 5376 5377 case _PC_SATTR_ENABLED: 5378 case _PC_SATTR_EXISTS: 5379 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 5380 (vp->v_type == VREG || vp->v_type == VDIR); 5381 return (0); 5382 5383 case _PC_ACCESS_FILTERING: 5384 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 5385 vp->v_type == VDIR; 5386 return (0); 5387 5388 case _PC_ACL_ENABLED: 5389 *valp = _ACL_ACE_ENABLED; 5390 return (0); 5391 5392 case _PC_MIN_HOLE_SIZE: 5393 *valp = (ulong_t)SPA_MINBLOCKSIZE; 5394 return (0); 5395 5396 case _PC_TIMESTAMP_RESOLUTION: 5397 /* nanosecond timestamp resolution */ 5398 *valp = 1L; 5399 return (0); 5400 5401 default: 5402 return (fs_pathconf(vp, cmd, valp, cr, ct)); 5403 } 5404 } 5405 5406 /*ARGSUSED*/ 5407 static int 5408 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5409 caller_context_t *ct) 5410 { 5411 znode_t *zp = VTOZ(vp); 5412 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5413 int error; 5414 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5415 5416 ZFS_ENTER(zfsvfs); 5417 ZFS_VERIFY_ZP(zp); 5418 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5419 ZFS_EXIT(zfsvfs); 5420 5421 return (error); 5422 } 5423 5424 /*ARGSUSED*/ 5425 static int 5426 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5427 caller_context_t *ct) 5428 { 5429 znode_t *zp = VTOZ(vp); 5430 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5431 int error; 5432 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5433 zilog_t *zilog = zfsvfs->z_log; 5434 5435 ZFS_ENTER(zfsvfs); 5436 ZFS_VERIFY_ZP(zp); 5437 5438 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5439 5440 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5441 zil_commit(zilog, 0); 5442 5443 ZFS_EXIT(zfsvfs); 5444 return (error); 5445 } 5446 5447 /* 5448 * The smallest read we may consider to loan out an arcbuf. 5449 * This must be a power of 2. 5450 */ 5451 int zcr_blksz_min = (1 << 10); /* 1K */ 5452 /* 5453 * If set to less than the file block size, allow loaning out of an 5454 * arcbuf for a partial block read. This must be a power of 2. 5455 */ 5456 int zcr_blksz_max = (1 << 17); /* 128K */ 5457 5458 /*ARGSUSED*/ 5459 static int 5460 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5461 caller_context_t *ct) 5462 { 5463 znode_t *zp = VTOZ(vp); 5464 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5465 int max_blksz = zfsvfs->z_max_blksz; 5466 uio_t *uio = &xuio->xu_uio; 5467 ssize_t size = uio->uio_resid; 5468 offset_t offset = uio->uio_loffset; 5469 int blksz; 5470 int fullblk, i; 5471 arc_buf_t *abuf; 5472 ssize_t maxsize; 5473 int preamble, postamble; 5474 5475 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5476 return (SET_ERROR(EINVAL)); 5477 5478 ZFS_ENTER(zfsvfs); 5479 ZFS_VERIFY_ZP(zp); 5480 switch (ioflag) { 5481 case UIO_WRITE: 5482 /* 5483 * Loan out an arc_buf for write if write size is bigger than 5484 * max_blksz, and the file's block size is also max_blksz. 5485 */ 5486 blksz = max_blksz; 5487 if (size < blksz || zp->z_blksz != blksz) { 5488 ZFS_EXIT(zfsvfs); 5489 return (SET_ERROR(EINVAL)); 5490 } 5491 /* 5492 * Caller requests buffers for write before knowing where the 5493 * write offset might be (e.g. NFS TCP write). 5494 */ 5495 if (offset == -1) { 5496 preamble = 0; 5497 } else { 5498 preamble = P2PHASE(offset, blksz); 5499 if (preamble) { 5500 preamble = blksz - preamble; 5501 size -= preamble; 5502 } 5503 } 5504 5505 postamble = P2PHASE(size, blksz); 5506 size -= postamble; 5507 5508 fullblk = size / blksz; 5509 (void) dmu_xuio_init(xuio, 5510 (preamble != 0) + fullblk + (postamble != 0)); 5511 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5512 int, postamble, int, 5513 (preamble != 0) + fullblk + (postamble != 0)); 5514 5515 /* 5516 * Have to fix iov base/len for partial buffers. They 5517 * currently represent full arc_buf's. 5518 */ 5519 if (preamble) { 5520 /* data begins in the middle of the arc_buf */ 5521 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5522 blksz); 5523 ASSERT(abuf); 5524 (void) dmu_xuio_add(xuio, abuf, 5525 blksz - preamble, preamble); 5526 } 5527 5528 for (i = 0; i < fullblk; i++) { 5529 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5530 blksz); 5531 ASSERT(abuf); 5532 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5533 } 5534 5535 if (postamble) { 5536 /* data ends in the middle of the arc_buf */ 5537 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5538 blksz); 5539 ASSERT(abuf); 5540 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5541 } 5542 break; 5543 case UIO_READ: 5544 /* 5545 * Loan out an arc_buf for read if the read size is larger than 5546 * the current file block size. Block alignment is not 5547 * considered. Partial arc_buf will be loaned out for read. 5548 */ 5549 blksz = zp->z_blksz; 5550 if (blksz < zcr_blksz_min) 5551 blksz = zcr_blksz_min; 5552 if (blksz > zcr_blksz_max) 5553 blksz = zcr_blksz_max; 5554 /* avoid potential complexity of dealing with it */ 5555 if (blksz > max_blksz) { 5556 ZFS_EXIT(zfsvfs); 5557 return (SET_ERROR(EINVAL)); 5558 } 5559 5560 maxsize = zp->z_size - uio->uio_loffset; 5561 if (size > maxsize) 5562 size = maxsize; 5563 5564 if (size < blksz || vn_has_cached_data(vp)) { 5565 ZFS_EXIT(zfsvfs); 5566 return (SET_ERROR(EINVAL)); 5567 } 5568 break; 5569 default: 5570 ZFS_EXIT(zfsvfs); 5571 return (SET_ERROR(EINVAL)); 5572 } 5573 5574 uio->uio_extflg = UIO_XUIO; 5575 XUIO_XUZC_RW(xuio) = ioflag; 5576 ZFS_EXIT(zfsvfs); 5577 return (0); 5578 } 5579 5580 /*ARGSUSED*/ 5581 static int 5582 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5583 { 5584 int i; 5585 arc_buf_t *abuf; 5586 int ioflag = XUIO_XUZC_RW(xuio); 5587 5588 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5589 5590 i = dmu_xuio_cnt(xuio); 5591 while (i-- > 0) { 5592 abuf = dmu_xuio_arcbuf(xuio, i); 5593 /* 5594 * if abuf == NULL, it must be a write buffer 5595 * that has been returned in zfs_write(). 5596 */ 5597 if (abuf) 5598 dmu_return_arcbuf(abuf); 5599 ASSERT(abuf || ioflag == UIO_WRITE); 5600 } 5601 5602 dmu_xuio_fini(xuio); 5603 return (0); 5604 } 5605 5606 /* 5607 * Predeclare these here so that the compiler assumes that 5608 * this is an "old style" function declaration that does 5609 * not include arguments => we won't get type mismatch errors 5610 * in the initializations that follow. 5611 */ 5612 static int zfs_inval(); 5613 static int zfs_isdir(); 5614 5615 static int 5616 zfs_inval() 5617 { 5618 return (SET_ERROR(EINVAL)); 5619 } 5620 5621 static int 5622 zfs_isdir() 5623 { 5624 return (SET_ERROR(EISDIR)); 5625 } 5626 /* 5627 * Directory vnode operations template 5628 */ 5629 const fs_operation_def_t zfs_dvnodeops_template[] = { 5630 VOPNAME_OPEN, { .vop_open = zfs_open }, 5631 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5632 VOPNAME_READ, { .error = zfs_isdir }, 5633 VOPNAME_WRITE, { .error = zfs_isdir }, 5634 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5635 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5636 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5637 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5638 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5639 VOPNAME_CREATE, { .vop_create = zfs_create }, 5640 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5641 VOPNAME_LINK, { .vop_link = zfs_link }, 5642 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5643 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5644 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5645 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5646 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5647 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5648 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5649 VOPNAME_FID, { .vop_fid = zfs_fid }, 5650 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5651 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5652 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5653 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5654 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5655 NULL, NULL 5656 }; 5657 5658 /* 5659 * Regular file vnode operations template 5660 */ 5661 const fs_operation_def_t zfs_fvnodeops_template[] = { 5662 VOPNAME_OPEN, { .vop_open = zfs_open }, 5663 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5664 VOPNAME_READ, { .vop_read = zfs_read }, 5665 VOPNAME_WRITE, { .vop_write = zfs_write }, 5666 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5667 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5668 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5669 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5670 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5671 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5672 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5673 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5674 VOPNAME_FID, { .vop_fid = zfs_fid }, 5675 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5676 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5677 VOPNAME_SPACE, { .vop_space = zfs_space }, 5678 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5679 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5680 VOPNAME_MAP, { .vop_map = zfs_map }, 5681 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5682 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5683 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5684 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5685 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5686 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5687 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5688 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5689 NULL, NULL 5690 }; 5691 5692 /* 5693 * Symbolic link vnode operations template 5694 */ 5695 const fs_operation_def_t zfs_symvnodeops_template[] = { 5696 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5697 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5698 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5699 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5700 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5701 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5702 VOPNAME_FID, { .vop_fid = zfs_fid }, 5703 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5704 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5705 NULL, NULL 5706 }; 5707 5708 /* 5709 * special share hidden files vnode operations template 5710 */ 5711 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5712 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5713 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5714 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5715 VOPNAME_FID, { .vop_fid = zfs_fid }, 5716 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5717 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5718 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5719 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5720 NULL, NULL 5721 }; 5722 5723 /* 5724 * Extended attribute directory vnode operations template 5725 * 5726 * This template is identical to the directory vnodes 5727 * operation template except for restricted operations: 5728 * VOP_MKDIR() 5729 * VOP_SYMLINK() 5730 * 5731 * Note that there are other restrictions embedded in: 5732 * zfs_create() - restrict type to VREG 5733 * zfs_link() - no links into/out of attribute space 5734 * zfs_rename() - no moves into/out of attribute space 5735 */ 5736 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5737 VOPNAME_OPEN, { .vop_open = zfs_open }, 5738 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5739 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5740 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5741 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5742 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5743 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5744 VOPNAME_CREATE, { .vop_create = zfs_create }, 5745 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5746 VOPNAME_LINK, { .vop_link = zfs_link }, 5747 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5748 VOPNAME_MKDIR, { .error = zfs_inval }, 5749 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5750 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5751 VOPNAME_SYMLINK, { .error = zfs_inval }, 5752 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5753 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5754 VOPNAME_FID, { .vop_fid = zfs_fid }, 5755 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5756 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5757 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5758 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5759 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5760 NULL, NULL 5761 }; 5762 5763 /* 5764 * Error vnode operations template 5765 */ 5766 const fs_operation_def_t zfs_evnodeops_template[] = { 5767 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5768 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5769 NULL, NULL 5770 }; 5771