xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision 1b8adde7ba7d5e04395c141c5400dc2cffd7d809)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Portions Copyright 2007 Jeremy Teo */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/vnode.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/kmem.h>
40 #include <sys/taskq.h>
41 #include <sys/uio.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <sys/vm.h>
45 #include <vm/seg_vn.h>
46 #include <vm/pvn.h>
47 #include <vm/as.h>
48 #include <vm/kpm.h>
49 #include <vm/seg_kpm.h>
50 #include <sys/mman.h>
51 #include <sys/pathname.h>
52 #include <sys/cmn_err.h>
53 #include <sys/errno.h>
54 #include <sys/unistd.h>
55 #include <sys/zfs_dir.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/dmu.h>
60 #include <sys/spa.h>
61 #include <sys/txg.h>
62 #include <sys/dbuf.h>
63 #include <sys/zap.h>
64 #include <sys/dirent.h>
65 #include <sys/policy.h>
66 #include <sys/sunddi.h>
67 #include <sys/filio.h>
68 #include <sys/sid.h>
69 #include "fs/fs_subr.h"
70 #include <sys/zfs_ctldir.h>
71 #include <sys/zfs_fuid.h>
72 #include <sys/dnlc.h>
73 #include <sys/zfs_rlock.h>
74 #include <sys/extdirent.h>
75 #include <sys/kidmap.h>
76 #include <sys/cred_impl.h>
77 #include <sys/attr.h>
78 
79 /*
80  * Programming rules.
81  *
82  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
83  * properly lock its in-core state, create a DMU transaction, do the work,
84  * record this work in the intent log (ZIL), commit the DMU transaction,
85  * and wait for the intent log to commit if it is a synchronous operation.
86  * Moreover, the vnode ops must work in both normal and log replay context.
87  * The ordering of events is important to avoid deadlocks and references
88  * to freed memory.  The example below illustrates the following Big Rules:
89  *
90  *  (1) A check must be made in each zfs thread for a mounted file system.
91  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
92  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
93  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
94  *      can return EIO from the calling function.
95  *
96  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
97  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
98  *	First, if it's the last reference, the vnode/znode
99  *	can be freed, so the zp may point to freed memory.  Second, the last
100  *	reference will call zfs_zinactive(), which may induce a lot of work --
101  *	pushing cached pages (which acquires range locks) and syncing out
102  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
103  *	which could deadlock the system if you were already holding one.
104  *
105  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
106  *	as they can span dmu_tx_assign() calls.
107  *
108  *  (4)	Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign().
109  *	In normal operation, this will be TXG_NOWAIT.  During ZIL replay,
110  *	it will be a specific txg.  Either way, dmu_tx_assign() never blocks.
111  *	This is critical because we don't want to block while holding locks.
112  *	Note, in particular, that if a lock is sometimes acquired before
113  *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
114  *	use a non-blocking assign can deadlock the system.  The scenario:
115  *
116  *	Thread A has grabbed a lock before calling dmu_tx_assign().
117  *	Thread B is in an already-assigned tx, and blocks for this lock.
118  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
119  *	forever, because the previous txg can't quiesce until B's tx commits.
120  *
121  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
122  *	then drop all locks, call dmu_tx_wait(), and try again.
123  *
124  *  (5)	If the operation succeeded, generate the intent log entry for it
125  *	before dropping locks.  This ensures that the ordering of events
126  *	in the intent log matches the order in which they actually occurred.
127  *
128  *  (6)	At the end of each vnode op, the DMU tx must always commit,
129  *	regardless of whether there were any errors.
130  *
131  *  (7)	After dropping all locks, invoke zil_commit(zilog, seq, foid)
132  *	to ensure that synchronous semantics are provided when necessary.
133  *
134  * In general, this is how things should be ordered in each vnode op:
135  *
136  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
137  * top:
138  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
139  *	rw_enter(...);			// grab any other locks you need
140  *	tx = dmu_tx_create(...);	// get DMU tx
141  *	dmu_tx_hold_*();		// hold each object you might modify
142  *	error = dmu_tx_assign(tx, zfsvfs->z_assign);	// try to assign
143  *	if (error) {
144  *		rw_exit(...);		// drop locks
145  *		zfs_dirent_unlock(dl);	// unlock directory entry
146  *		VN_RELE(...);		// release held vnodes
147  *		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
148  *			dmu_tx_wait(tx);
149  *			dmu_tx_abort(tx);
150  *			goto top;
151  *		}
152  *		dmu_tx_abort(tx);	// abort DMU tx
153  *		ZFS_EXIT(zfsvfs);	// finished in zfs
154  *		return (error);		// really out of space
155  *	}
156  *	error = do_real_work();		// do whatever this VOP does
157  *	if (error == 0)
158  *		zfs_log_*(...);		// on success, make ZIL entry
159  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
160  *	rw_exit(...);			// drop locks
161  *	zfs_dirent_unlock(dl);		// unlock directory entry
162  *	VN_RELE(...);			// release held vnodes
163  *	zil_commit(zilog, seq, foid);	// synchronous when necessary
164  *	ZFS_EXIT(zfsvfs);		// finished in zfs
165  *	return (error);			// done, report error
166  */
167 
168 /* ARGSUSED */
169 static int
170 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
171 {
172 	znode_t	*zp = VTOZ(*vpp);
173 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
174 
175 	ZFS_ENTER(zfsvfs);
176 	ZFS_VERIFY_ZP(zp);
177 
178 	if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) &&
179 	    ((flag & FAPPEND) == 0)) {
180 		ZFS_EXIT(zfsvfs);
181 		return (EPERM);
182 	}
183 
184 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
185 	    ZTOV(zp)->v_type == VREG &&
186 	    !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) &&
187 	    zp->z_phys->zp_size > 0) {
188 		if (fs_vscan(*vpp, cr, 0) != 0) {
189 			ZFS_EXIT(zfsvfs);
190 			return (EACCES);
191 		}
192 	}
193 
194 	/* Keep a count of the synchronous opens in the znode */
195 	if (flag & (FSYNC | FDSYNC))
196 		atomic_inc_32(&zp->z_sync_cnt);
197 
198 	ZFS_EXIT(zfsvfs);
199 	return (0);
200 }
201 
202 /* ARGSUSED */
203 static int
204 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
205     caller_context_t *ct)
206 {
207 	znode_t	*zp = VTOZ(vp);
208 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
209 
210 	ZFS_ENTER(zfsvfs);
211 	ZFS_VERIFY_ZP(zp);
212 
213 	/* Decrement the synchronous opens in the znode */
214 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
215 		atomic_dec_32(&zp->z_sync_cnt);
216 
217 	/*
218 	 * Clean up any locks held by this process on the vp.
219 	 */
220 	cleanlocks(vp, ddi_get_pid(), 0);
221 	cleanshares(vp, ddi_get_pid());
222 
223 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
224 	    ZTOV(zp)->v_type == VREG &&
225 	    !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) &&
226 	    zp->z_phys->zp_size > 0)
227 		VERIFY(fs_vscan(vp, cr, 1) == 0);
228 
229 	ZFS_EXIT(zfsvfs);
230 	return (0);
231 }
232 
233 /*
234  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
235  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
236  */
237 static int
238 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
239 {
240 	znode_t	*zp = VTOZ(vp);
241 	uint64_t noff = (uint64_t)*off; /* new offset */
242 	uint64_t file_sz;
243 	int error;
244 	boolean_t hole;
245 
246 	file_sz = zp->z_phys->zp_size;
247 	if (noff >= file_sz)  {
248 		return (ENXIO);
249 	}
250 
251 	if (cmd == _FIO_SEEK_HOLE)
252 		hole = B_TRUE;
253 	else
254 		hole = B_FALSE;
255 
256 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
257 
258 	/* end of file? */
259 	if ((error == ESRCH) || (noff > file_sz)) {
260 		/*
261 		 * Handle the virtual hole at the end of file.
262 		 */
263 		if (hole) {
264 			*off = file_sz;
265 			return (0);
266 		}
267 		return (ENXIO);
268 	}
269 
270 	if (noff < *off)
271 		return (error);
272 	*off = noff;
273 	return (error);
274 }
275 
276 /* ARGSUSED */
277 static int
278 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
279     int *rvalp, caller_context_t *ct)
280 {
281 	offset_t off;
282 	int error;
283 	zfsvfs_t *zfsvfs;
284 	znode_t *zp;
285 
286 	switch (com) {
287 	case _FIOFFS:
288 		return (zfs_sync(vp->v_vfsp, 0, cred));
289 
290 		/*
291 		 * The following two ioctls are used by bfu.  Faking out,
292 		 * necessary to avoid bfu errors.
293 		 */
294 	case _FIOGDIO:
295 	case _FIOSDIO:
296 		return (0);
297 
298 	case _FIO_SEEK_DATA:
299 	case _FIO_SEEK_HOLE:
300 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
301 			return (EFAULT);
302 
303 		zp = VTOZ(vp);
304 		zfsvfs = zp->z_zfsvfs;
305 		ZFS_ENTER(zfsvfs);
306 		ZFS_VERIFY_ZP(zp);
307 
308 		/* offset parameter is in/out */
309 		error = zfs_holey(vp, com, &off);
310 		ZFS_EXIT(zfsvfs);
311 		if (error)
312 			return (error);
313 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
314 			return (EFAULT);
315 		return (0);
316 	}
317 	return (ENOTTY);
318 }
319 
320 /*
321  * Utility functions to map and unmap a single physical page.  These
322  * are used to manage the mappable copies of ZFS file data, and therefore
323  * do not update ref/mod bits.
324  */
325 caddr_t
326 zfs_map_page(page_t *pp, enum seg_rw rw)
327 {
328 	if (kpm_enable)
329 		return (hat_kpm_mapin(pp, 0));
330 	ASSERT(rw == S_READ || rw == S_WRITE);
331 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
332 	    (caddr_t)-1));
333 }
334 
335 void
336 zfs_unmap_page(page_t *pp, caddr_t addr)
337 {
338 	if (kpm_enable) {
339 		hat_kpm_mapout(pp, 0, addr);
340 	} else {
341 		ppmapout(addr);
342 	}
343 }
344 
345 /*
346  * When a file is memory mapped, we must keep the IO data synchronized
347  * between the DMU cache and the memory mapped pages.  What this means:
348  *
349  * On Write:	If we find a memory mapped page, we write to *both*
350  *		the page and the dmu buffer.
351  *
352  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
353  *	the file is memory mapped.
354  */
355 static int
356 mappedwrite(vnode_t *vp, int nbytes, uio_t *uio, dmu_tx_t *tx)
357 {
358 	znode_t	*zp = VTOZ(vp);
359 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
360 	int64_t	start, off;
361 	int len = nbytes;
362 	int error = 0;
363 
364 	start = uio->uio_loffset;
365 	off = start & PAGEOFFSET;
366 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
367 		page_t *pp;
368 		uint64_t bytes = MIN(PAGESIZE - off, len);
369 		uint64_t woff = uio->uio_loffset;
370 
371 		/*
372 		 * We don't want a new page to "appear" in the middle of
373 		 * the file update (because it may not get the write
374 		 * update data), so we grab a lock to block
375 		 * zfs_getpage().
376 		 */
377 		rw_enter(&zp->z_map_lock, RW_WRITER);
378 		if (pp = page_lookup(vp, start, SE_SHARED)) {
379 			caddr_t va;
380 
381 			rw_exit(&zp->z_map_lock);
382 			va = zfs_map_page(pp, S_WRITE);
383 			error = uiomove(va+off, bytes, UIO_WRITE, uio);
384 			if (error == 0) {
385 				dmu_write(zfsvfs->z_os, zp->z_id,
386 				    woff, bytes, va+off, tx);
387 			}
388 			zfs_unmap_page(pp, va);
389 			page_unlock(pp);
390 		} else {
391 			error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
392 			    uio, bytes, tx);
393 			rw_exit(&zp->z_map_lock);
394 		}
395 		len -= bytes;
396 		off = 0;
397 		if (error)
398 			break;
399 	}
400 	return (error);
401 }
402 
403 /*
404  * When a file is memory mapped, we must keep the IO data synchronized
405  * between the DMU cache and the memory mapped pages.  What this means:
406  *
407  * On Read:	We "read" preferentially from memory mapped pages,
408  *		else we default from the dmu buffer.
409  *
410  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
411  *	the file is memory mapped.
412  */
413 static int
414 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
415 {
416 	znode_t *zp = VTOZ(vp);
417 	objset_t *os = zp->z_zfsvfs->z_os;
418 	int64_t	start, off;
419 	int len = nbytes;
420 	int error = 0;
421 
422 	start = uio->uio_loffset;
423 	off = start & PAGEOFFSET;
424 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
425 		page_t *pp;
426 		uint64_t bytes = MIN(PAGESIZE - off, len);
427 
428 		if (pp = page_lookup(vp, start, SE_SHARED)) {
429 			caddr_t va;
430 
431 			va = zfs_map_page(pp, S_READ);
432 			error = uiomove(va + off, bytes, UIO_READ, uio);
433 			zfs_unmap_page(pp, va);
434 			page_unlock(pp);
435 		} else {
436 			error = dmu_read_uio(os, zp->z_id, uio, bytes);
437 		}
438 		len -= bytes;
439 		off = 0;
440 		if (error)
441 			break;
442 	}
443 	return (error);
444 }
445 
446 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
447 
448 /*
449  * Read bytes from specified file into supplied buffer.
450  *
451  *	IN:	vp	- vnode of file to be read from.
452  *		uio	- structure supplying read location, range info,
453  *			  and return buffer.
454  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
455  *		cr	- credentials of caller.
456  *		ct	- caller context
457  *
458  *	OUT:	uio	- updated offset and range, buffer filled.
459  *
460  *	RETURN:	0 if success
461  *		error code if failure
462  *
463  * Side Effects:
464  *	vp - atime updated if byte count > 0
465  */
466 /* ARGSUSED */
467 static int
468 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
469 {
470 	znode_t		*zp = VTOZ(vp);
471 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
472 	objset_t	*os;
473 	ssize_t		n, nbytes;
474 	int		error;
475 	rl_t		*rl;
476 
477 	ZFS_ENTER(zfsvfs);
478 	ZFS_VERIFY_ZP(zp);
479 	os = zfsvfs->z_os;
480 
481 	if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) {
482 		ZFS_EXIT(zfsvfs);
483 		return (EACCES);
484 	}
485 
486 	/*
487 	 * Validate file offset
488 	 */
489 	if (uio->uio_loffset < (offset_t)0) {
490 		ZFS_EXIT(zfsvfs);
491 		return (EINVAL);
492 	}
493 
494 	/*
495 	 * Fasttrack empty reads
496 	 */
497 	if (uio->uio_resid == 0) {
498 		ZFS_EXIT(zfsvfs);
499 		return (0);
500 	}
501 
502 	/*
503 	 * Check for mandatory locks
504 	 */
505 	if (MANDMODE((mode_t)zp->z_phys->zp_mode)) {
506 		if (error = chklock(vp, FREAD,
507 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
508 			ZFS_EXIT(zfsvfs);
509 			return (error);
510 		}
511 	}
512 
513 	/*
514 	 * If we're in FRSYNC mode, sync out this znode before reading it.
515 	 */
516 	if (ioflag & FRSYNC)
517 		zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
518 
519 	/*
520 	 * Lock the range against changes.
521 	 */
522 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
523 
524 	/*
525 	 * If we are reading past end-of-file we can skip
526 	 * to the end; but we might still need to set atime.
527 	 */
528 	if (uio->uio_loffset >= zp->z_phys->zp_size) {
529 		error = 0;
530 		goto out;
531 	}
532 
533 	ASSERT(uio->uio_loffset < zp->z_phys->zp_size);
534 	n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset);
535 
536 	while (n > 0) {
537 		nbytes = MIN(n, zfs_read_chunk_size -
538 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
539 
540 		if (vn_has_cached_data(vp))
541 			error = mappedread(vp, nbytes, uio);
542 		else
543 			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
544 		if (error) {
545 			/* convert checksum errors into IO errors */
546 			if (error == ECKSUM)
547 				error = EIO;
548 			break;
549 		}
550 
551 		n -= nbytes;
552 	}
553 
554 out:
555 	zfs_range_unlock(rl);
556 
557 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
558 	ZFS_EXIT(zfsvfs);
559 	return (error);
560 }
561 
562 /*
563  * Fault in the pages of the first n bytes specified by the uio structure.
564  * 1 byte in each page is touched and the uio struct is unmodified.
565  * Any error will exit this routine as this is only a best
566  * attempt to get the pages resident. This is a copy of ufs_trans_touch().
567  */
568 static void
569 zfs_prefault_write(ssize_t n, struct uio *uio)
570 {
571 	struct iovec *iov;
572 	ulong_t cnt, incr;
573 	caddr_t p;
574 	uint8_t tmp;
575 
576 	iov = uio->uio_iov;
577 
578 	while (n) {
579 		cnt = MIN(iov->iov_len, n);
580 		if (cnt == 0) {
581 			/* empty iov entry */
582 			iov++;
583 			continue;
584 		}
585 		n -= cnt;
586 		/*
587 		 * touch each page in this segment.
588 		 */
589 		p = iov->iov_base;
590 		while (cnt) {
591 			switch (uio->uio_segflg) {
592 			case UIO_USERSPACE:
593 			case UIO_USERISPACE:
594 				if (fuword8(p, &tmp))
595 					return;
596 				break;
597 			case UIO_SYSSPACE:
598 				if (kcopy(p, &tmp, 1))
599 					return;
600 				break;
601 			}
602 			incr = MIN(cnt, PAGESIZE);
603 			p += incr;
604 			cnt -= incr;
605 		}
606 		/*
607 		 * touch the last byte in case it straddles a page.
608 		 */
609 		p--;
610 		switch (uio->uio_segflg) {
611 		case UIO_USERSPACE:
612 		case UIO_USERISPACE:
613 			if (fuword8(p, &tmp))
614 				return;
615 			break;
616 		case UIO_SYSSPACE:
617 			if (kcopy(p, &tmp, 1))
618 				return;
619 			break;
620 		}
621 		iov++;
622 	}
623 }
624 
625 /*
626  * Write the bytes to a file.
627  *
628  *	IN:	vp	- vnode of file to be written to.
629  *		uio	- structure supplying write location, range info,
630  *			  and data buffer.
631  *		ioflag	- FAPPEND flag set if in append mode.
632  *		cr	- credentials of caller.
633  *		ct	- caller context (NFS/CIFS fem monitor only)
634  *
635  *	OUT:	uio	- updated offset and range.
636  *
637  *	RETURN:	0 if success
638  *		error code if failure
639  *
640  * Timestamps:
641  *	vp - ctime|mtime updated if byte count > 0
642  */
643 /* ARGSUSED */
644 static int
645 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
646 {
647 	znode_t		*zp = VTOZ(vp);
648 	rlim64_t	limit = uio->uio_llimit;
649 	ssize_t		start_resid = uio->uio_resid;
650 	ssize_t		tx_bytes;
651 	uint64_t	end_size;
652 	dmu_tx_t	*tx;
653 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
654 	zilog_t		*zilog;
655 	offset_t	woff;
656 	ssize_t		n, nbytes;
657 	rl_t		*rl;
658 	int		max_blksz = zfsvfs->z_max_blksz;
659 	uint64_t	pflags;
660 	int		error;
661 
662 	/*
663 	 * Fasttrack empty write
664 	 */
665 	n = start_resid;
666 	if (n == 0)
667 		return (0);
668 
669 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
670 		limit = MAXOFFSET_T;
671 
672 	ZFS_ENTER(zfsvfs);
673 	ZFS_VERIFY_ZP(zp);
674 
675 	/*
676 	 * If immutable or not appending then return EPERM
677 	 */
678 	pflags = zp->z_phys->zp_flags;
679 	if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
680 	    ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
681 	    (uio->uio_loffset < zp->z_phys->zp_size))) {
682 		ZFS_EXIT(zfsvfs);
683 		return (EPERM);
684 	}
685 
686 	zilog = zfsvfs->z_log;
687 
688 	/*
689 	 * Pre-fault the pages to ensure slow (eg NFS) pages
690 	 * don't hold up txg.
691 	 */
692 	zfs_prefault_write(n, uio);
693 
694 	/*
695 	 * If in append mode, set the io offset pointer to eof.
696 	 */
697 	if (ioflag & FAPPEND) {
698 		/*
699 		 * Range lock for a file append:
700 		 * The value for the start of range will be determined by
701 		 * zfs_range_lock() (to guarantee append semantics).
702 		 * If this write will cause the block size to increase,
703 		 * zfs_range_lock() will lock the entire file, so we must
704 		 * later reduce the range after we grow the block size.
705 		 */
706 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
707 		if (rl->r_len == UINT64_MAX) {
708 			/* overlocked, zp_size can't change */
709 			woff = uio->uio_loffset = zp->z_phys->zp_size;
710 		} else {
711 			woff = uio->uio_loffset = rl->r_off;
712 		}
713 	} else {
714 		woff = uio->uio_loffset;
715 		/*
716 		 * Validate file offset
717 		 */
718 		if (woff < 0) {
719 			ZFS_EXIT(zfsvfs);
720 			return (EINVAL);
721 		}
722 
723 		/*
724 		 * If we need to grow the block size then zfs_range_lock()
725 		 * will lock a wider range than we request here.
726 		 * Later after growing the block size we reduce the range.
727 		 */
728 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
729 	}
730 
731 	if (woff >= limit) {
732 		zfs_range_unlock(rl);
733 		ZFS_EXIT(zfsvfs);
734 		return (EFBIG);
735 	}
736 
737 	if ((woff + n) > limit || woff > (limit - n))
738 		n = limit - woff;
739 
740 	/*
741 	 * Check for mandatory locks
742 	 */
743 	if (MANDMODE((mode_t)zp->z_phys->zp_mode) &&
744 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
745 		zfs_range_unlock(rl);
746 		ZFS_EXIT(zfsvfs);
747 		return (error);
748 	}
749 	end_size = MAX(zp->z_phys->zp_size, woff + n);
750 
751 	/*
752 	 * Write the file in reasonable size chunks.  Each chunk is written
753 	 * in a separate transaction; this keeps the intent log records small
754 	 * and allows us to do more fine-grained space accounting.
755 	 */
756 	while (n > 0) {
757 		/*
758 		 * Start a transaction.
759 		 */
760 		woff = uio->uio_loffset;
761 		tx = dmu_tx_create(zfsvfs->z_os);
762 		dmu_tx_hold_bonus(tx, zp->z_id);
763 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
764 		error = dmu_tx_assign(tx, zfsvfs->z_assign);
765 		if (error) {
766 			if (error == ERESTART &&
767 			    zfsvfs->z_assign == TXG_NOWAIT) {
768 				dmu_tx_wait(tx);
769 				dmu_tx_abort(tx);
770 				continue;
771 			}
772 			dmu_tx_abort(tx);
773 			break;
774 		}
775 
776 		/*
777 		 * If zfs_range_lock() over-locked we grow the blocksize
778 		 * and then reduce the lock range.  This will only happen
779 		 * on the first iteration since zfs_range_reduce() will
780 		 * shrink down r_len to the appropriate size.
781 		 */
782 		if (rl->r_len == UINT64_MAX) {
783 			uint64_t new_blksz;
784 
785 			if (zp->z_blksz > max_blksz) {
786 				ASSERT(!ISP2(zp->z_blksz));
787 				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
788 			} else {
789 				new_blksz = MIN(end_size, max_blksz);
790 			}
791 			zfs_grow_blocksize(zp, new_blksz, tx);
792 			zfs_range_reduce(rl, woff, n);
793 		}
794 
795 		/*
796 		 * XXX - should we really limit each write to z_max_blksz?
797 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
798 		 */
799 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
800 		rw_enter(&zp->z_map_lock, RW_READER);
801 
802 		tx_bytes = uio->uio_resid;
803 		if (vn_has_cached_data(vp)) {
804 			rw_exit(&zp->z_map_lock);
805 			error = mappedwrite(vp, nbytes, uio, tx);
806 		} else {
807 			error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
808 			    uio, nbytes, tx);
809 			rw_exit(&zp->z_map_lock);
810 		}
811 		tx_bytes -= uio->uio_resid;
812 
813 		/*
814 		 * If we made no progress, we're done.  If we made even
815 		 * partial progress, update the znode and ZIL accordingly.
816 		 */
817 		if (tx_bytes == 0) {
818 			dmu_tx_commit(tx);
819 			ASSERT(error != 0);
820 			break;
821 		}
822 
823 		/*
824 		 * Clear Set-UID/Set-GID bits on successful write if not
825 		 * privileged and at least one of the excute bits is set.
826 		 *
827 		 * It would be nice to to this after all writes have
828 		 * been done, but that would still expose the ISUID/ISGID
829 		 * to another app after the partial write is committed.
830 		 *
831 		 * Note: we don't call zfs_fuid_map_id() here because
832 		 * user 0 is not an ephemeral uid.
833 		 */
834 		mutex_enter(&zp->z_acl_lock);
835 		if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) |
836 		    (S_IXUSR >> 6))) != 0 &&
837 		    (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 &&
838 		    secpolicy_vnode_setid_retain(cr,
839 		    (zp->z_phys->zp_mode & S_ISUID) != 0 &&
840 		    zp->z_phys->zp_uid == 0) != 0) {
841 			zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID);
842 		}
843 		mutex_exit(&zp->z_acl_lock);
844 
845 		/*
846 		 * Update time stamp.  NOTE: This marks the bonus buffer as
847 		 * dirty, so we don't have to do it again for zp_size.
848 		 */
849 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
850 
851 		/*
852 		 * Update the file size (zp_size) if it has changed;
853 		 * account for possible concurrent updates.
854 		 */
855 		while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset)
856 			(void) atomic_cas_64(&zp->z_phys->zp_size, end_size,
857 			    uio->uio_loffset);
858 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
859 		dmu_tx_commit(tx);
860 
861 		if (error != 0)
862 			break;
863 		ASSERT(tx_bytes == nbytes);
864 		n -= nbytes;
865 	}
866 
867 	zfs_range_unlock(rl);
868 
869 	/*
870 	 * If we're in replay mode, or we made no progress, return error.
871 	 * Otherwise, it's at least a partial write, so it's successful.
872 	 */
873 	if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) {
874 		ZFS_EXIT(zfsvfs);
875 		return (error);
876 	}
877 
878 	if (ioflag & (FSYNC | FDSYNC))
879 		zil_commit(zilog, zp->z_last_itx, zp->z_id);
880 
881 	ZFS_EXIT(zfsvfs);
882 	return (0);
883 }
884 
885 void
886 zfs_get_done(dmu_buf_t *db, void *vzgd)
887 {
888 	zgd_t *zgd = (zgd_t *)vzgd;
889 	rl_t *rl = zgd->zgd_rl;
890 	vnode_t *vp = ZTOV(rl->r_zp);
891 
892 	dmu_buf_rele(db, vzgd);
893 	zfs_range_unlock(rl);
894 	VN_RELE(vp);
895 	zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
896 	kmem_free(zgd, sizeof (zgd_t));
897 }
898 
899 /*
900  * Get data to generate a TX_WRITE intent log record.
901  */
902 int
903 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
904 {
905 	zfsvfs_t *zfsvfs = arg;
906 	objset_t *os = zfsvfs->z_os;
907 	znode_t *zp;
908 	uint64_t off = lr->lr_offset;
909 	dmu_buf_t *db;
910 	rl_t *rl;
911 	zgd_t *zgd;
912 	int dlen = lr->lr_length;		/* length of user data */
913 	int error = 0;
914 
915 	ASSERT(zio);
916 	ASSERT(dlen != 0);
917 
918 	/*
919 	 * Nothing to do if the file has been removed
920 	 */
921 	if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0)
922 		return (ENOENT);
923 	if (zp->z_unlinked) {
924 		VN_RELE(ZTOV(zp));
925 		return (ENOENT);
926 	}
927 
928 	/*
929 	 * Write records come in two flavors: immediate and indirect.
930 	 * For small writes it's cheaper to store the data with the
931 	 * log record (immediate); for large writes it's cheaper to
932 	 * sync the data and get a pointer to it (indirect) so that
933 	 * we don't have to write the data twice.
934 	 */
935 	if (buf != NULL) { /* immediate write */
936 		rl = zfs_range_lock(zp, off, dlen, RL_READER);
937 		/* test for truncation needs to be done while range locked */
938 		if (off >= zp->z_phys->zp_size) {
939 			error = ENOENT;
940 			goto out;
941 		}
942 		VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf));
943 	} else { /* indirect write */
944 		uint64_t boff; /* block starting offset */
945 
946 		/*
947 		 * Have to lock the whole block to ensure when it's
948 		 * written out and it's checksum is being calculated
949 		 * that no one can change the data. We need to re-check
950 		 * blocksize after we get the lock in case it's changed!
951 		 */
952 		for (;;) {
953 			if (ISP2(zp->z_blksz)) {
954 				boff = P2ALIGN_TYPED(off, zp->z_blksz,
955 				    uint64_t);
956 			} else {
957 				boff = 0;
958 			}
959 			dlen = zp->z_blksz;
960 			rl = zfs_range_lock(zp, boff, dlen, RL_READER);
961 			if (zp->z_blksz == dlen)
962 				break;
963 			zfs_range_unlock(rl);
964 		}
965 		/* test for truncation needs to be done while range locked */
966 		if (off >= zp->z_phys->zp_size) {
967 			error = ENOENT;
968 			goto out;
969 		}
970 		zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP);
971 		zgd->zgd_rl = rl;
972 		zgd->zgd_zilog = zfsvfs->z_log;
973 		zgd->zgd_bp = &lr->lr_blkptr;
974 		VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db));
975 		ASSERT(boff == db->db_offset);
976 		lr->lr_blkoff = off - boff;
977 		error = dmu_sync(zio, db, &lr->lr_blkptr,
978 		    lr->lr_common.lrc_txg, zfs_get_done, zgd);
979 		ASSERT((error && error != EINPROGRESS) ||
980 		    lr->lr_length <= zp->z_blksz);
981 		if (error == 0)
982 			zil_add_block(zfsvfs->z_log, &lr->lr_blkptr);
983 		/*
984 		 * If we get EINPROGRESS, then we need to wait for a
985 		 * write IO initiated by dmu_sync() to complete before
986 		 * we can release this dbuf.  We will finish everything
987 		 * up in the zfs_get_done() callback.
988 		 */
989 		if (error == EINPROGRESS)
990 			return (0);
991 		dmu_buf_rele(db, zgd);
992 		kmem_free(zgd, sizeof (zgd_t));
993 	}
994 out:
995 	zfs_range_unlock(rl);
996 	VN_RELE(ZTOV(zp));
997 	return (error);
998 }
999 
1000 /*ARGSUSED*/
1001 static int
1002 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1003     caller_context_t *ct)
1004 {
1005 	znode_t *zp = VTOZ(vp);
1006 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1007 	int error;
1008 
1009 	ZFS_ENTER(zfsvfs);
1010 	ZFS_VERIFY_ZP(zp);
1011 
1012 	if (flag & V_ACE_MASK)
1013 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1014 	else
1015 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1016 
1017 	ZFS_EXIT(zfsvfs);
1018 	return (error);
1019 }
1020 
1021 /*
1022  * Lookup an entry in a directory, or an extended attribute directory.
1023  * If it exists, return a held vnode reference for it.
1024  *
1025  *	IN:	dvp	- vnode of directory to search.
1026  *		nm	- name of entry to lookup.
1027  *		pnp	- full pathname to lookup [UNUSED].
1028  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1029  *		rdir	- root directory vnode [UNUSED].
1030  *		cr	- credentials of caller.
1031  *		ct	- caller context
1032  *		direntflags - directory lookup flags
1033  *		realpnp - returned pathname.
1034  *
1035  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1036  *
1037  *	RETURN:	0 if success
1038  *		error code if failure
1039  *
1040  * Timestamps:
1041  *	NA
1042  */
1043 /* ARGSUSED */
1044 static int
1045 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1046     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1047     int *direntflags, pathname_t *realpnp)
1048 {
1049 	znode_t *zdp = VTOZ(dvp);
1050 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1051 	int	error;
1052 
1053 	ZFS_ENTER(zfsvfs);
1054 	ZFS_VERIFY_ZP(zdp);
1055 
1056 	*vpp = NULL;
1057 
1058 	if (flags & LOOKUP_XATTR) {
1059 		/*
1060 		 * If the xattr property is off, refuse the lookup request.
1061 		 */
1062 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1063 			ZFS_EXIT(zfsvfs);
1064 			return (EINVAL);
1065 		}
1066 
1067 		/*
1068 		 * We don't allow recursive attributes..
1069 		 * Maybe someday we will.
1070 		 */
1071 		if (zdp->z_phys->zp_flags & ZFS_XATTR) {
1072 			ZFS_EXIT(zfsvfs);
1073 			return (EINVAL);
1074 		}
1075 
1076 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1077 			ZFS_EXIT(zfsvfs);
1078 			return (error);
1079 		}
1080 
1081 		/*
1082 		 * Do we have permission to get into attribute directory?
1083 		 */
1084 
1085 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1086 		    B_FALSE, cr)) {
1087 			VN_RELE(*vpp);
1088 			*vpp = NULL;
1089 		}
1090 
1091 		ZFS_EXIT(zfsvfs);
1092 		return (error);
1093 	}
1094 
1095 	if (dvp->v_type != VDIR) {
1096 		ZFS_EXIT(zfsvfs);
1097 		return (ENOTDIR);
1098 	}
1099 
1100 	/*
1101 	 * Check accessibility of directory.
1102 	 */
1103 
1104 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1105 		ZFS_EXIT(zfsvfs);
1106 		return (error);
1107 	}
1108 
1109 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1110 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1111 		ZFS_EXIT(zfsvfs);
1112 		return (EILSEQ);
1113 	}
1114 
1115 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1116 	if (error == 0) {
1117 		/*
1118 		 * Convert device special files
1119 		 */
1120 		if (IS_DEVVP(*vpp)) {
1121 			vnode_t	*svp;
1122 
1123 			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1124 			VN_RELE(*vpp);
1125 			if (svp == NULL)
1126 				error = ENOSYS;
1127 			else
1128 				*vpp = svp;
1129 		}
1130 	}
1131 
1132 	ZFS_EXIT(zfsvfs);
1133 	return (error);
1134 }
1135 
1136 /*
1137  * Attempt to create a new entry in a directory.  If the entry
1138  * already exists, truncate the file if permissible, else return
1139  * an error.  Return the vp of the created or trunc'd file.
1140  *
1141  *	IN:	dvp	- vnode of directory to put new file entry in.
1142  *		name	- name of new file entry.
1143  *		vap	- attributes of new file.
1144  *		excl	- flag indicating exclusive or non-exclusive mode.
1145  *		mode	- mode to open file with.
1146  *		cr	- credentials of caller.
1147  *		flag	- large file flag [UNUSED].
1148  *		ct	- caller context
1149  *		vsecp 	- ACL to be set
1150  *
1151  *	OUT:	vpp	- vnode of created or trunc'd entry.
1152  *
1153  *	RETURN:	0 if success
1154  *		error code if failure
1155  *
1156  * Timestamps:
1157  *	dvp - ctime|mtime updated if new entry created
1158  *	 vp - ctime|mtime always, atime if new
1159  */
1160 
1161 /* ARGSUSED */
1162 static int
1163 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1164     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1165     vsecattr_t *vsecp)
1166 {
1167 	znode_t		*zp, *dzp = VTOZ(dvp);
1168 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1169 	zilog_t		*zilog;
1170 	objset_t	*os;
1171 	zfs_dirlock_t	*dl;
1172 	dmu_tx_t	*tx;
1173 	int		error;
1174 	zfs_acl_t	*aclp = NULL;
1175 	zfs_fuid_info_t *fuidp = NULL;
1176 	ksid_t		*ksid;
1177 	uid_t		uid;
1178 	gid_t		gid = crgetgid(cr);
1179 
1180 	/*
1181 	 * If we have an ephemeral id, ACL, or XVATTR then
1182 	 * make sure file system is at proper version
1183 	 */
1184 
1185 	ksid = crgetsid(cr, KSID_OWNER);
1186 	if (ksid)
1187 		uid = ksid_getid(ksid);
1188 	else
1189 		uid = crgetuid(cr);
1190 
1191 	if (zfsvfs->z_use_fuids == B_FALSE &&
1192 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1193 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1194 		return (EINVAL);
1195 
1196 	ZFS_ENTER(zfsvfs);
1197 	ZFS_VERIFY_ZP(dzp);
1198 	os = zfsvfs->z_os;
1199 	zilog = zfsvfs->z_log;
1200 
1201 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1202 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1203 		ZFS_EXIT(zfsvfs);
1204 		return (EILSEQ);
1205 	}
1206 
1207 	if (vap->va_mask & AT_XVATTR) {
1208 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1209 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1210 			ZFS_EXIT(zfsvfs);
1211 			return (error);
1212 		}
1213 	}
1214 top:
1215 	*vpp = NULL;
1216 
1217 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1218 		vap->va_mode &= ~VSVTX;
1219 
1220 	if (*name == '\0') {
1221 		/*
1222 		 * Null component name refers to the directory itself.
1223 		 */
1224 		VN_HOLD(dvp);
1225 		zp = dzp;
1226 		dl = NULL;
1227 		error = 0;
1228 	} else {
1229 		/* possible VN_HOLD(zp) */
1230 		int zflg = 0;
1231 
1232 		if (flag & FIGNORECASE)
1233 			zflg |= ZCILOOK;
1234 
1235 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1236 		    NULL, NULL);
1237 		if (error) {
1238 			if (strcmp(name, "..") == 0)
1239 				error = EISDIR;
1240 			ZFS_EXIT(zfsvfs);
1241 			if (aclp)
1242 				zfs_acl_free(aclp);
1243 			return (error);
1244 		}
1245 	}
1246 	if (vsecp && aclp == NULL) {
1247 		error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp);
1248 		if (error) {
1249 			ZFS_EXIT(zfsvfs);
1250 			if (dl)
1251 				zfs_dirent_unlock(dl);
1252 			return (error);
1253 		}
1254 	}
1255 
1256 	if (zp == NULL) {
1257 		uint64_t txtype;
1258 
1259 		/*
1260 		 * Create a new file object and update the directory
1261 		 * to reference it.
1262 		 */
1263 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1264 			goto out;
1265 		}
1266 
1267 		/*
1268 		 * We only support the creation of regular files in
1269 		 * extended attribute directories.
1270 		 */
1271 		if ((dzp->z_phys->zp_flags & ZFS_XATTR) &&
1272 		    (vap->va_type != VREG)) {
1273 			error = EINVAL;
1274 			goto out;
1275 		}
1276 
1277 		tx = dmu_tx_create(os);
1278 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1279 		if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(uid) ||
1280 		    IS_EPHEMERAL(gid)) {
1281 			if (zfsvfs->z_fuid_obj == 0) {
1282 				dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1283 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1284 				    FUID_SIZE_ESTIMATE(zfsvfs));
1285 				dmu_tx_hold_zap(tx, MASTER_NODE_OBJ,
1286 				    FALSE, NULL);
1287 			} else {
1288 				dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
1289 				dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
1290 				    FUID_SIZE_ESTIMATE(zfsvfs));
1291 			}
1292 		}
1293 		dmu_tx_hold_bonus(tx, dzp->z_id);
1294 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1295 		if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) {
1296 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1297 			    0, SPA_MAXBLOCKSIZE);
1298 		}
1299 		error = dmu_tx_assign(tx, zfsvfs->z_assign);
1300 		if (error) {
1301 			zfs_dirent_unlock(dl);
1302 			if (error == ERESTART &&
1303 			    zfsvfs->z_assign == TXG_NOWAIT) {
1304 				dmu_tx_wait(tx);
1305 				dmu_tx_abort(tx);
1306 				goto top;
1307 			}
1308 			dmu_tx_abort(tx);
1309 			ZFS_EXIT(zfsvfs);
1310 			if (aclp)
1311 				zfs_acl_free(aclp);
1312 			return (error);
1313 		}
1314 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp);
1315 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1316 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1317 		if (flag & FIGNORECASE)
1318 			txtype |= TX_CI;
1319 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1320 		    vsecp, fuidp, vap);
1321 		if (fuidp)
1322 			zfs_fuid_info_free(fuidp);
1323 		dmu_tx_commit(tx);
1324 	} else {
1325 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1326 
1327 		/*
1328 		 * A directory entry already exists for this name.
1329 		 */
1330 		/*
1331 		 * Can't truncate an existing file if in exclusive mode.
1332 		 */
1333 		if (excl == EXCL) {
1334 			error = EEXIST;
1335 			goto out;
1336 		}
1337 		/*
1338 		 * Can't open a directory for writing.
1339 		 */
1340 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1341 			error = EISDIR;
1342 			goto out;
1343 		}
1344 		/*
1345 		 * Verify requested access to file.
1346 		 */
1347 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1348 			goto out;
1349 		}
1350 
1351 		mutex_enter(&dzp->z_lock);
1352 		dzp->z_seq++;
1353 		mutex_exit(&dzp->z_lock);
1354 
1355 		/*
1356 		 * Truncate regular files if requested.
1357 		 */
1358 		if ((ZTOV(zp)->v_type == VREG) &&
1359 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1360 			/* we can't hold any locks when calling zfs_freesp() */
1361 			zfs_dirent_unlock(dl);
1362 			dl = NULL;
1363 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1364 			if (error == 0) {
1365 				vnevent_create(ZTOV(zp), ct);
1366 			}
1367 		}
1368 	}
1369 out:
1370 
1371 	if (dl)
1372 		zfs_dirent_unlock(dl);
1373 
1374 	if (error) {
1375 		if (zp)
1376 			VN_RELE(ZTOV(zp));
1377 	} else {
1378 		*vpp = ZTOV(zp);
1379 		/*
1380 		 * If vnode is for a device return a specfs vnode instead.
1381 		 */
1382 		if (IS_DEVVP(*vpp)) {
1383 			struct vnode *svp;
1384 
1385 			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1386 			VN_RELE(*vpp);
1387 			if (svp == NULL) {
1388 				error = ENOSYS;
1389 			}
1390 			*vpp = svp;
1391 		}
1392 	}
1393 	if (aclp)
1394 		zfs_acl_free(aclp);
1395 
1396 	ZFS_EXIT(zfsvfs);
1397 	return (error);
1398 }
1399 
1400 /*
1401  * Remove an entry from a directory.
1402  *
1403  *	IN:	dvp	- vnode of directory to remove entry from.
1404  *		name	- name of entry to remove.
1405  *		cr	- credentials of caller.
1406  *		ct	- caller context
1407  *		flags	- case flags
1408  *
1409  *	RETURN:	0 if success
1410  *		error code if failure
1411  *
1412  * Timestamps:
1413  *	dvp - ctime|mtime
1414  *	 vp - ctime (if nlink > 0)
1415  */
1416 /*ARGSUSED*/
1417 static int
1418 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1419     int flags)
1420 {
1421 	znode_t		*zp, *dzp = VTOZ(dvp);
1422 	znode_t		*xzp = NULL;
1423 	vnode_t		*vp;
1424 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1425 	zilog_t		*zilog;
1426 	uint64_t	acl_obj, xattr_obj;
1427 	zfs_dirlock_t	*dl;
1428 	dmu_tx_t	*tx;
1429 	boolean_t	may_delete_now, delete_now = FALSE;
1430 	boolean_t	unlinked, toobig = FALSE;
1431 	uint64_t	txtype;
1432 	pathname_t	*realnmp = NULL;
1433 	pathname_t	realnm;
1434 	int		error;
1435 	int		zflg = ZEXISTS;
1436 
1437 	ZFS_ENTER(zfsvfs);
1438 	ZFS_VERIFY_ZP(dzp);
1439 	zilog = zfsvfs->z_log;
1440 
1441 	if (flags & FIGNORECASE) {
1442 		zflg |= ZCILOOK;
1443 		pn_alloc(&realnm);
1444 		realnmp = &realnm;
1445 	}
1446 
1447 top:
1448 	/*
1449 	 * Attempt to lock directory; fail if entry doesn't exist.
1450 	 */
1451 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1452 	    NULL, realnmp)) {
1453 		if (realnmp)
1454 			pn_free(realnmp);
1455 		ZFS_EXIT(zfsvfs);
1456 		return (error);
1457 	}
1458 
1459 	vp = ZTOV(zp);
1460 
1461 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1462 		goto out;
1463 	}
1464 
1465 	/*
1466 	 * Need to use rmdir for removing directories.
1467 	 */
1468 	if (vp->v_type == VDIR) {
1469 		error = EPERM;
1470 		goto out;
1471 	}
1472 
1473 	vnevent_remove(vp, dvp, name, ct);
1474 
1475 	if (realnmp)
1476 		dnlc_remove(dvp, realnmp->pn_buf);
1477 	else
1478 		dnlc_remove(dvp, name);
1479 
1480 	mutex_enter(&vp->v_lock);
1481 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1482 	mutex_exit(&vp->v_lock);
1483 
1484 	/*
1485 	 * We may delete the znode now, or we may put it in the unlinked set;
1486 	 * it depends on whether we're the last link, and on whether there are
1487 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1488 	 * allow for either case.
1489 	 */
1490 	tx = dmu_tx_create(zfsvfs->z_os);
1491 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1492 	dmu_tx_hold_bonus(tx, zp->z_id);
1493 	if (may_delete_now) {
1494 		toobig =
1495 		    zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1496 		/* if the file is too big, only hold_free a token amount */
1497 		dmu_tx_hold_free(tx, zp->z_id, 0,
1498 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1499 	}
1500 
1501 	/* are there any extended attributes? */
1502 	if ((xattr_obj = zp->z_phys->zp_xattr) != 0) {
1503 		/* XXX - do we need this if we are deleting? */
1504 		dmu_tx_hold_bonus(tx, xattr_obj);
1505 	}
1506 
1507 	/* are there any additional acls */
1508 	if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 &&
1509 	    may_delete_now)
1510 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1511 
1512 	/* charge as an update -- would be nice not to charge at all */
1513 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1514 
1515 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1516 	if (error) {
1517 		zfs_dirent_unlock(dl);
1518 		VN_RELE(vp);
1519 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1520 			dmu_tx_wait(tx);
1521 			dmu_tx_abort(tx);
1522 			goto top;
1523 		}
1524 		if (realnmp)
1525 			pn_free(realnmp);
1526 		dmu_tx_abort(tx);
1527 		ZFS_EXIT(zfsvfs);
1528 		return (error);
1529 	}
1530 
1531 	/*
1532 	 * Remove the directory entry.
1533 	 */
1534 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1535 
1536 	if (error) {
1537 		dmu_tx_commit(tx);
1538 		goto out;
1539 	}
1540 
1541 	if (unlinked) {
1542 		mutex_enter(&vp->v_lock);
1543 		delete_now = may_delete_now && !toobig &&
1544 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1545 		    zp->z_phys->zp_xattr == xattr_obj &&
1546 		    zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj;
1547 		mutex_exit(&vp->v_lock);
1548 	}
1549 
1550 	if (delete_now) {
1551 		if (zp->z_phys->zp_xattr) {
1552 			error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp);
1553 			ASSERT3U(error, ==, 0);
1554 			ASSERT3U(xzp->z_phys->zp_links, ==, 2);
1555 			dmu_buf_will_dirty(xzp->z_dbuf, tx);
1556 			mutex_enter(&xzp->z_lock);
1557 			xzp->z_unlinked = 1;
1558 			xzp->z_phys->zp_links = 0;
1559 			mutex_exit(&xzp->z_lock);
1560 			zfs_unlinked_add(xzp, tx);
1561 			zp->z_phys->zp_xattr = 0; /* probably unnecessary */
1562 		}
1563 		mutex_enter(&zp->z_lock);
1564 		mutex_enter(&vp->v_lock);
1565 		vp->v_count--;
1566 		ASSERT3U(vp->v_count, ==, 0);
1567 		mutex_exit(&vp->v_lock);
1568 		mutex_exit(&zp->z_lock);
1569 		zfs_znode_delete(zp, tx);
1570 	} else if (unlinked) {
1571 		zfs_unlinked_add(zp, tx);
1572 	}
1573 
1574 	txtype = TX_REMOVE;
1575 	if (flags & FIGNORECASE)
1576 		txtype |= TX_CI;
1577 	zfs_log_remove(zilog, tx, txtype, dzp, name);
1578 
1579 	dmu_tx_commit(tx);
1580 out:
1581 	if (realnmp)
1582 		pn_free(realnmp);
1583 
1584 	zfs_dirent_unlock(dl);
1585 
1586 	if (!delete_now) {
1587 		VN_RELE(vp);
1588 	} else if (xzp) {
1589 		/* this rele is delayed to prevent nesting transactions */
1590 		VN_RELE(ZTOV(xzp));
1591 	}
1592 
1593 	ZFS_EXIT(zfsvfs);
1594 	return (error);
1595 }
1596 
1597 /*
1598  * Create a new directory and insert it into dvp using the name
1599  * provided.  Return a pointer to the inserted directory.
1600  *
1601  *	IN:	dvp	- vnode of directory to add subdir to.
1602  *		dirname	- name of new directory.
1603  *		vap	- attributes of new directory.
1604  *		cr	- credentials of caller.
1605  *		ct	- caller context
1606  *		vsecp	- ACL to be set
1607  *
1608  *	OUT:	vpp	- vnode of created directory.
1609  *
1610  *	RETURN:	0 if success
1611  *		error code if failure
1612  *
1613  * Timestamps:
1614  *	dvp - ctime|mtime updated
1615  *	 vp - ctime|mtime|atime updated
1616  */
1617 /*ARGSUSED*/
1618 static int
1619 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1620     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1621 {
1622 	znode_t		*zp, *dzp = VTOZ(dvp);
1623 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1624 	zilog_t		*zilog;
1625 	zfs_dirlock_t	*dl;
1626 	uint64_t	txtype;
1627 	dmu_tx_t	*tx;
1628 	int		error;
1629 	zfs_acl_t	*aclp = NULL;
1630 	zfs_fuid_info_t	*fuidp = NULL;
1631 	int		zf = ZNEW;
1632 	ksid_t		*ksid;
1633 	uid_t		uid;
1634 	gid_t		gid = crgetgid(cr);
1635 
1636 	ASSERT(vap->va_type == VDIR);
1637 
1638 	/*
1639 	 * If we have an ephemeral id, ACL, or XVATTR then
1640 	 * make sure file system is at proper version
1641 	 */
1642 
1643 	ksid = crgetsid(cr, KSID_OWNER);
1644 	if (ksid)
1645 		uid = ksid_getid(ksid);
1646 	else
1647 		uid = crgetuid(cr);
1648 	if (zfsvfs->z_use_fuids == B_FALSE &&
1649 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1650 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1651 		return (EINVAL);
1652 
1653 	ZFS_ENTER(zfsvfs);
1654 	ZFS_VERIFY_ZP(dzp);
1655 	zilog = zfsvfs->z_log;
1656 
1657 	if (dzp->z_phys->zp_flags & ZFS_XATTR) {
1658 		ZFS_EXIT(zfsvfs);
1659 		return (EINVAL);
1660 	}
1661 
1662 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1663 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1664 		ZFS_EXIT(zfsvfs);
1665 		return (EILSEQ);
1666 	}
1667 	if (flags & FIGNORECASE)
1668 		zf |= ZCILOOK;
1669 
1670 	if (vap->va_mask & AT_XVATTR)
1671 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1672 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1673 			ZFS_EXIT(zfsvfs);
1674 			return (error);
1675 		}
1676 
1677 	/*
1678 	 * First make sure the new directory doesn't exist.
1679 	 */
1680 top:
1681 	*vpp = NULL;
1682 
1683 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1684 	    NULL, NULL)) {
1685 		ZFS_EXIT(zfsvfs);
1686 		return (error);
1687 	}
1688 
1689 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1690 		zfs_dirent_unlock(dl);
1691 		ZFS_EXIT(zfsvfs);
1692 		return (error);
1693 	}
1694 
1695 	if (vsecp && aclp == NULL) {
1696 		error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp);
1697 		if (error) {
1698 			zfs_dirent_unlock(dl);
1699 			ZFS_EXIT(zfsvfs);
1700 			return (error);
1701 		}
1702 	}
1703 	/*
1704 	 * Add a new entry to the directory.
1705 	 */
1706 	tx = dmu_tx_create(zfsvfs->z_os);
1707 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1708 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1709 	if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(uid) ||
1710 	    IS_EPHEMERAL(gid)) {
1711 		if (zfsvfs->z_fuid_obj == 0) {
1712 			dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1713 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1714 			    FUID_SIZE_ESTIMATE(zfsvfs));
1715 			dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
1716 		} else {
1717 			dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
1718 			dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
1719 			    FUID_SIZE_ESTIMATE(zfsvfs));
1720 		}
1721 	}
1722 	if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp)
1723 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1724 		    0, SPA_MAXBLOCKSIZE);
1725 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1726 	if (error) {
1727 		zfs_dirent_unlock(dl);
1728 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1729 			dmu_tx_wait(tx);
1730 			dmu_tx_abort(tx);
1731 			goto top;
1732 		}
1733 		dmu_tx_abort(tx);
1734 		ZFS_EXIT(zfsvfs);
1735 		if (aclp)
1736 			zfs_acl_free(aclp);
1737 		return (error);
1738 	}
1739 
1740 	/*
1741 	 * Create new node.
1742 	 */
1743 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp);
1744 
1745 	if (aclp)
1746 		zfs_acl_free(aclp);
1747 
1748 	/*
1749 	 * Now put new name in parent dir.
1750 	 */
1751 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1752 
1753 	*vpp = ZTOV(zp);
1754 
1755 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1756 	if (flags & FIGNORECASE)
1757 		txtype |= TX_CI;
1758 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, fuidp, vap);
1759 
1760 	if (fuidp)
1761 		zfs_fuid_info_free(fuidp);
1762 	dmu_tx_commit(tx);
1763 
1764 	zfs_dirent_unlock(dl);
1765 
1766 	ZFS_EXIT(zfsvfs);
1767 	return (0);
1768 }
1769 
1770 /*
1771  * Remove a directory subdir entry.  If the current working
1772  * directory is the same as the subdir to be removed, the
1773  * remove will fail.
1774  *
1775  *	IN:	dvp	- vnode of directory to remove from.
1776  *		name	- name of directory to be removed.
1777  *		cwd	- vnode of current working directory.
1778  *		cr	- credentials of caller.
1779  *		ct	- caller context
1780  *		flags	- case flags
1781  *
1782  *	RETURN:	0 if success
1783  *		error code if failure
1784  *
1785  * Timestamps:
1786  *	dvp - ctime|mtime updated
1787  */
1788 /*ARGSUSED*/
1789 static int
1790 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1791     caller_context_t *ct, int flags)
1792 {
1793 	znode_t		*dzp = VTOZ(dvp);
1794 	znode_t		*zp;
1795 	vnode_t		*vp;
1796 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1797 	zilog_t		*zilog;
1798 	zfs_dirlock_t	*dl;
1799 	dmu_tx_t	*tx;
1800 	int		error;
1801 	int		zflg = ZEXISTS;
1802 
1803 	ZFS_ENTER(zfsvfs);
1804 	ZFS_VERIFY_ZP(dzp);
1805 	zilog = zfsvfs->z_log;
1806 
1807 	if (flags & FIGNORECASE)
1808 		zflg |= ZCILOOK;
1809 top:
1810 	zp = NULL;
1811 
1812 	/*
1813 	 * Attempt to lock directory; fail if entry doesn't exist.
1814 	 */
1815 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1816 	    NULL, NULL)) {
1817 		ZFS_EXIT(zfsvfs);
1818 		return (error);
1819 	}
1820 
1821 	vp = ZTOV(zp);
1822 
1823 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1824 		goto out;
1825 	}
1826 
1827 	if (vp->v_type != VDIR) {
1828 		error = ENOTDIR;
1829 		goto out;
1830 	}
1831 
1832 	if (vp == cwd) {
1833 		error = EINVAL;
1834 		goto out;
1835 	}
1836 
1837 	vnevent_rmdir(vp, dvp, name, ct);
1838 
1839 	/*
1840 	 * Grab a lock on the directory to make sure that noone is
1841 	 * trying to add (or lookup) entries while we are removing it.
1842 	 */
1843 	rw_enter(&zp->z_name_lock, RW_WRITER);
1844 
1845 	/*
1846 	 * Grab a lock on the parent pointer to make sure we play well
1847 	 * with the treewalk and directory rename code.
1848 	 */
1849 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1850 
1851 	tx = dmu_tx_create(zfsvfs->z_os);
1852 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1853 	dmu_tx_hold_bonus(tx, zp->z_id);
1854 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1855 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1856 	if (error) {
1857 		rw_exit(&zp->z_parent_lock);
1858 		rw_exit(&zp->z_name_lock);
1859 		zfs_dirent_unlock(dl);
1860 		VN_RELE(vp);
1861 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1862 			dmu_tx_wait(tx);
1863 			dmu_tx_abort(tx);
1864 			goto top;
1865 		}
1866 		dmu_tx_abort(tx);
1867 		ZFS_EXIT(zfsvfs);
1868 		return (error);
1869 	}
1870 
1871 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1872 
1873 	if (error == 0) {
1874 		uint64_t txtype = TX_RMDIR;
1875 		if (flags & FIGNORECASE)
1876 			txtype |= TX_CI;
1877 		zfs_log_remove(zilog, tx, txtype, dzp, name);
1878 	}
1879 
1880 	dmu_tx_commit(tx);
1881 
1882 	rw_exit(&zp->z_parent_lock);
1883 	rw_exit(&zp->z_name_lock);
1884 out:
1885 	zfs_dirent_unlock(dl);
1886 
1887 	VN_RELE(vp);
1888 
1889 	ZFS_EXIT(zfsvfs);
1890 	return (error);
1891 }
1892 
1893 /*
1894  * Read as many directory entries as will fit into the provided
1895  * buffer from the given directory cursor position (specified in
1896  * the uio structure.
1897  *
1898  *	IN:	vp	- vnode of directory to read.
1899  *		uio	- structure supplying read location, range info,
1900  *			  and return buffer.
1901  *		cr	- credentials of caller.
1902  *		ct	- caller context
1903  *		flags	- case flags
1904  *
1905  *	OUT:	uio	- updated offset and range, buffer filled.
1906  *		eofp	- set to true if end-of-file detected.
1907  *
1908  *	RETURN:	0 if success
1909  *		error code if failure
1910  *
1911  * Timestamps:
1912  *	vp - atime updated
1913  *
1914  * Note that the low 4 bits of the cookie returned by zap is always zero.
1915  * This allows us to use the low range for "special" directory entries:
1916  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1917  * we use the offset 2 for the '.zfs' directory.
1918  */
1919 /* ARGSUSED */
1920 static int
1921 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
1922     caller_context_t *ct, int flags)
1923 {
1924 	znode_t		*zp = VTOZ(vp);
1925 	iovec_t		*iovp;
1926 	edirent_t	*eodp;
1927 	dirent64_t	*odp;
1928 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
1929 	objset_t	*os;
1930 	caddr_t		outbuf;
1931 	size_t		bufsize;
1932 	zap_cursor_t	zc;
1933 	zap_attribute_t	zap;
1934 	uint_t		bytes_wanted;
1935 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1936 	int		local_eof;
1937 	int		outcount;
1938 	int		error;
1939 	uint8_t		prefetch;
1940 	boolean_t	check_sysattrs;
1941 
1942 	ZFS_ENTER(zfsvfs);
1943 	ZFS_VERIFY_ZP(zp);
1944 
1945 	/*
1946 	 * If we are not given an eof variable,
1947 	 * use a local one.
1948 	 */
1949 	if (eofp == NULL)
1950 		eofp = &local_eof;
1951 
1952 	/*
1953 	 * Check for valid iov_len.
1954 	 */
1955 	if (uio->uio_iov->iov_len <= 0) {
1956 		ZFS_EXIT(zfsvfs);
1957 		return (EINVAL);
1958 	}
1959 
1960 	/*
1961 	 * Quit if directory has been removed (posix)
1962 	 */
1963 	if ((*eofp = zp->z_unlinked) != 0) {
1964 		ZFS_EXIT(zfsvfs);
1965 		return (0);
1966 	}
1967 
1968 	error = 0;
1969 	os = zfsvfs->z_os;
1970 	offset = uio->uio_loffset;
1971 	prefetch = zp->z_zn_prefetch;
1972 
1973 	/*
1974 	 * Initialize the iterator cursor.
1975 	 */
1976 	if (offset <= 3) {
1977 		/*
1978 		 * Start iteration from the beginning of the directory.
1979 		 */
1980 		zap_cursor_init(&zc, os, zp->z_id);
1981 	} else {
1982 		/*
1983 		 * The offset is a serialized cursor.
1984 		 */
1985 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1986 	}
1987 
1988 	/*
1989 	 * Get space to change directory entries into fs independent format.
1990 	 */
1991 	iovp = uio->uio_iov;
1992 	bytes_wanted = iovp->iov_len;
1993 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
1994 		bufsize = bytes_wanted;
1995 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
1996 		odp = (struct dirent64 *)outbuf;
1997 	} else {
1998 		bufsize = bytes_wanted;
1999 		odp = (struct dirent64 *)iovp->iov_base;
2000 	}
2001 	eodp = (struct edirent *)odp;
2002 
2003 	/*
2004 	 * If this VFS supports the system attribute view interface; and
2005 	 * we're looking at an extended attribute directory; and we care
2006 	 * about normalization conflicts on this vfs; then we must check
2007 	 * for normalization conflicts with the sysattr name space.
2008 	 */
2009 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2010 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2011 	    (flags & V_RDDIR_ENTFLAGS);
2012 
2013 	/*
2014 	 * Transform to file-system independent format
2015 	 */
2016 	outcount = 0;
2017 	while (outcount < bytes_wanted) {
2018 		ino64_t objnum;
2019 		ushort_t reclen;
2020 		off64_t *next;
2021 
2022 		/*
2023 		 * Special case `.', `..', and `.zfs'.
2024 		 */
2025 		if (offset == 0) {
2026 			(void) strcpy(zap.za_name, ".");
2027 			zap.za_normalization_conflict = 0;
2028 			objnum = zp->z_id;
2029 		} else if (offset == 1) {
2030 			(void) strcpy(zap.za_name, "..");
2031 			zap.za_normalization_conflict = 0;
2032 			objnum = zp->z_phys->zp_parent;
2033 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2034 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2035 			zap.za_normalization_conflict = 0;
2036 			objnum = ZFSCTL_INO_ROOT;
2037 		} else {
2038 			/*
2039 			 * Grab next entry.
2040 			 */
2041 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2042 				if ((*eofp = (error == ENOENT)) != 0)
2043 					break;
2044 				else
2045 					goto update;
2046 			}
2047 
2048 			if (zap.za_integer_length != 8 ||
2049 			    zap.za_num_integers != 1) {
2050 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2051 				    "entry, obj = %lld, offset = %lld\n",
2052 				    (u_longlong_t)zp->z_id,
2053 				    (u_longlong_t)offset);
2054 				error = ENXIO;
2055 				goto update;
2056 			}
2057 
2058 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2059 			/*
2060 			 * MacOS X can extract the object type here such as:
2061 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2062 			 */
2063 
2064 			if (check_sysattrs && !zap.za_normalization_conflict) {
2065 				zap.za_normalization_conflict =
2066 				    xattr_sysattr_casechk(zap.za_name);
2067 			}
2068 		}
2069 
2070 		if (flags & V_RDDIR_ENTFLAGS)
2071 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2072 		else
2073 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2074 
2075 		/*
2076 		 * Will this entry fit in the buffer?
2077 		 */
2078 		if (outcount + reclen > bufsize) {
2079 			/*
2080 			 * Did we manage to fit anything in the buffer?
2081 			 */
2082 			if (!outcount) {
2083 				error = EINVAL;
2084 				goto update;
2085 			}
2086 			break;
2087 		}
2088 		if (flags & V_RDDIR_ENTFLAGS) {
2089 			/*
2090 			 * Add extended flag entry:
2091 			 */
2092 			eodp->ed_ino = objnum;
2093 			eodp->ed_reclen = reclen;
2094 			/* NOTE: ed_off is the offset for the *next* entry */
2095 			next = &(eodp->ed_off);
2096 			eodp->ed_eflags = zap.za_normalization_conflict ?
2097 			    ED_CASE_CONFLICT : 0;
2098 			(void) strncpy(eodp->ed_name, zap.za_name,
2099 			    EDIRENT_NAMELEN(reclen));
2100 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2101 		} else {
2102 			/*
2103 			 * Add normal entry:
2104 			 */
2105 			odp->d_ino = objnum;
2106 			odp->d_reclen = reclen;
2107 			/* NOTE: d_off is the offset for the *next* entry */
2108 			next = &(odp->d_off);
2109 			(void) strncpy(odp->d_name, zap.za_name,
2110 			    DIRENT64_NAMELEN(reclen));
2111 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2112 		}
2113 		outcount += reclen;
2114 
2115 		ASSERT(outcount <= bufsize);
2116 
2117 		/* Prefetch znode */
2118 		if (prefetch)
2119 			dmu_prefetch(os, objnum, 0, 0);
2120 
2121 		/*
2122 		 * Move to the next entry, fill in the previous offset.
2123 		 */
2124 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2125 			zap_cursor_advance(&zc);
2126 			offset = zap_cursor_serialize(&zc);
2127 		} else {
2128 			offset += 1;
2129 		}
2130 		*next = offset;
2131 	}
2132 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2133 
2134 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2135 		iovp->iov_base += outcount;
2136 		iovp->iov_len -= outcount;
2137 		uio->uio_resid -= outcount;
2138 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2139 		/*
2140 		 * Reset the pointer.
2141 		 */
2142 		offset = uio->uio_loffset;
2143 	}
2144 
2145 update:
2146 	zap_cursor_fini(&zc);
2147 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2148 		kmem_free(outbuf, bufsize);
2149 
2150 	if (error == ENOENT)
2151 		error = 0;
2152 
2153 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2154 
2155 	uio->uio_loffset = offset;
2156 	ZFS_EXIT(zfsvfs);
2157 	return (error);
2158 }
2159 
2160 ulong_t zfs_fsync_sync_cnt = 4;
2161 
2162 static int
2163 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2164 {
2165 	znode_t	*zp = VTOZ(vp);
2166 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2167 
2168 	/*
2169 	 * Regardless of whether this is required for standards conformance,
2170 	 * this is the logical behavior when fsync() is called on a file with
2171 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2172 	 * going to be pushed out as part of the zil_commit().
2173 	 */
2174 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2175 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2176 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2177 
2178 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2179 
2180 	ZFS_ENTER(zfsvfs);
2181 	ZFS_VERIFY_ZP(zp);
2182 	zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
2183 	ZFS_EXIT(zfsvfs);
2184 	return (0);
2185 }
2186 
2187 
2188 /*
2189  * Get the requested file attributes and place them in the provided
2190  * vattr structure.
2191  *
2192  *	IN:	vp	- vnode of file.
2193  *		vap	- va_mask identifies requested attributes.
2194  *			  If AT_XVATTR set, then optional attrs are requested
2195  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2196  *		cr	- credentials of caller.
2197  *		ct	- caller context
2198  *
2199  *	OUT:	vap	- attribute values.
2200  *
2201  *	RETURN:	0 (always succeeds)
2202  */
2203 /* ARGSUSED */
2204 static int
2205 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2206     caller_context_t *ct)
2207 {
2208 	znode_t *zp = VTOZ(vp);
2209 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2210 	znode_phys_t *pzp;
2211 	int	error = 0;
2212 	uint64_t links;
2213 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2214 	xoptattr_t *xoap = NULL;
2215 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2216 
2217 	ZFS_ENTER(zfsvfs);
2218 	ZFS_VERIFY_ZP(zp);
2219 	pzp = zp->z_phys;
2220 
2221 	mutex_enter(&zp->z_lock);
2222 
2223 	/*
2224 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2225 	 * Also, if we are the owner don't bother, since owner should
2226 	 * always be allowed to read basic attributes of file.
2227 	 */
2228 	if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) &&
2229 	    (pzp->zp_uid != crgetuid(cr))) {
2230 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2231 		    skipaclchk, cr)) {
2232 			mutex_exit(&zp->z_lock);
2233 			ZFS_EXIT(zfsvfs);
2234 			return (error);
2235 		}
2236 	}
2237 
2238 	/*
2239 	 * Return all attributes.  It's cheaper to provide the answer
2240 	 * than to determine whether we were asked the question.
2241 	 */
2242 
2243 	vap->va_type = vp->v_type;
2244 	vap->va_mode = pzp->zp_mode & MODEMASK;
2245 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2246 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2247 	vap->va_nodeid = zp->z_id;
2248 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2249 		links = pzp->zp_links + 1;
2250 	else
2251 		links = pzp->zp_links;
2252 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2253 	vap->va_size = pzp->zp_size;
2254 	vap->va_rdev = vp->v_rdev;
2255 	vap->va_seq = zp->z_seq;
2256 
2257 	/*
2258 	 * Add in any requested optional attributes and the create time.
2259 	 * Also set the corresponding bits in the returned attribute bitmap.
2260 	 */
2261 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2262 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2263 			xoap->xoa_archive =
2264 			    ((pzp->zp_flags & ZFS_ARCHIVE) != 0);
2265 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2266 		}
2267 
2268 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2269 			xoap->xoa_readonly =
2270 			    ((pzp->zp_flags & ZFS_READONLY) != 0);
2271 			XVA_SET_RTN(xvap, XAT_READONLY);
2272 		}
2273 
2274 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2275 			xoap->xoa_system =
2276 			    ((pzp->zp_flags & ZFS_SYSTEM) != 0);
2277 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2278 		}
2279 
2280 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2281 			xoap->xoa_hidden =
2282 			    ((pzp->zp_flags & ZFS_HIDDEN) != 0);
2283 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2284 		}
2285 
2286 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2287 			xoap->xoa_nounlink =
2288 			    ((pzp->zp_flags & ZFS_NOUNLINK) != 0);
2289 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2290 		}
2291 
2292 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2293 			xoap->xoa_immutable =
2294 			    ((pzp->zp_flags & ZFS_IMMUTABLE) != 0);
2295 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2296 		}
2297 
2298 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2299 			xoap->xoa_appendonly =
2300 			    ((pzp->zp_flags & ZFS_APPENDONLY) != 0);
2301 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2302 		}
2303 
2304 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2305 			xoap->xoa_nodump =
2306 			    ((pzp->zp_flags & ZFS_NODUMP) != 0);
2307 			XVA_SET_RTN(xvap, XAT_NODUMP);
2308 		}
2309 
2310 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2311 			xoap->xoa_opaque =
2312 			    ((pzp->zp_flags & ZFS_OPAQUE) != 0);
2313 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2314 		}
2315 
2316 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2317 			xoap->xoa_av_quarantined =
2318 			    ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0);
2319 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2320 		}
2321 
2322 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2323 			xoap->xoa_av_modified =
2324 			    ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0);
2325 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2326 		}
2327 
2328 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2329 		    vp->v_type == VREG &&
2330 		    (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) {
2331 			size_t len;
2332 			dmu_object_info_t doi;
2333 
2334 			/*
2335 			 * Only VREG files have anti-virus scanstamps, so we
2336 			 * won't conflict with symlinks in the bonus buffer.
2337 			 */
2338 			dmu_object_info_from_db(zp->z_dbuf, &doi);
2339 			len = sizeof (xoap->xoa_av_scanstamp) +
2340 			    sizeof (znode_phys_t);
2341 			if (len <= doi.doi_bonus_size) {
2342 				/*
2343 				 * pzp points to the start of the
2344 				 * znode_phys_t. pzp + 1 points to the
2345 				 * first byte after the znode_phys_t.
2346 				 */
2347 				(void) memcpy(xoap->xoa_av_scanstamp,
2348 				    pzp + 1,
2349 				    sizeof (xoap->xoa_av_scanstamp));
2350 				XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
2351 			}
2352 		}
2353 
2354 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2355 			ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime);
2356 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2357 		}
2358 	}
2359 
2360 	ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime);
2361 	ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime);
2362 	ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime);
2363 
2364 	mutex_exit(&zp->z_lock);
2365 
2366 	dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks);
2367 
2368 	if (zp->z_blksz == 0) {
2369 		/*
2370 		 * Block size hasn't been set; suggest maximal I/O transfers.
2371 		 */
2372 		vap->va_blksize = zfsvfs->z_max_blksz;
2373 	}
2374 
2375 	ZFS_EXIT(zfsvfs);
2376 	return (0);
2377 }
2378 
2379 /*
2380  * Set the file attributes to the values contained in the
2381  * vattr structure.
2382  *
2383  *	IN:	vp	- vnode of file to be modified.
2384  *		vap	- new attribute values.
2385  *			  If AT_XVATTR set, then optional attrs are being set
2386  *		flags	- ATTR_UTIME set if non-default time values provided.
2387  *			- ATTR_NOACLCHECK (CIFS context only).
2388  *		cr	- credentials of caller.
2389  *		ct	- caller context
2390  *
2391  *	RETURN:	0 if success
2392  *		error code if failure
2393  *
2394  * Timestamps:
2395  *	vp - ctime updated, mtime updated if size changed.
2396  */
2397 /* ARGSUSED */
2398 static int
2399 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2400 	caller_context_t *ct)
2401 {
2402 	znode_t		*zp = VTOZ(vp);
2403 	znode_phys_t	*pzp;
2404 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2405 	zilog_t		*zilog;
2406 	dmu_tx_t	*tx;
2407 	vattr_t		oldva;
2408 	uint_t		mask = vap->va_mask;
2409 	uint_t		saved_mask;
2410 	int		trim_mask = 0;
2411 	uint64_t	new_mode;
2412 	znode_t		*attrzp;
2413 	int		need_policy = FALSE;
2414 	int		err;
2415 	zfs_fuid_info_t *fuidp = NULL;
2416 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2417 	xoptattr_t	*xoap;
2418 	zfs_acl_t	*aclp = NULL;
2419 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2420 
2421 	if (mask == 0)
2422 		return (0);
2423 
2424 	if (mask & AT_NOSET)
2425 		return (EINVAL);
2426 
2427 	ZFS_ENTER(zfsvfs);
2428 	ZFS_VERIFY_ZP(zp);
2429 
2430 	pzp = zp->z_phys;
2431 	zilog = zfsvfs->z_log;
2432 
2433 	/*
2434 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2435 	 * that file system is at proper version level
2436 	 */
2437 
2438 	if (zfsvfs->z_use_fuids == B_FALSE &&
2439 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2440 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2441 	    (mask & AT_XVATTR))) {
2442 		ZFS_EXIT(zfsvfs);
2443 		return (EINVAL);
2444 	}
2445 
2446 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2447 		ZFS_EXIT(zfsvfs);
2448 		return (EISDIR);
2449 	}
2450 
2451 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2452 		ZFS_EXIT(zfsvfs);
2453 		return (EINVAL);
2454 	}
2455 
2456 	/*
2457 	 * If this is an xvattr_t, then get a pointer to the structure of
2458 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2459 	 */
2460 	xoap = xva_getxoptattr(xvap);
2461 
2462 	/*
2463 	 * Immutable files can only alter immutable bit and atime
2464 	 */
2465 	if ((pzp->zp_flags & ZFS_IMMUTABLE) &&
2466 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2467 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2468 		ZFS_EXIT(zfsvfs);
2469 		return (EPERM);
2470 	}
2471 
2472 	if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) {
2473 		ZFS_EXIT(zfsvfs);
2474 		return (EPERM);
2475 	}
2476 
2477 	/*
2478 	 * Verify timestamps doesn't overflow 32 bits.
2479 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2480 	 * handle times greater than 2039.  This check should be removed
2481 	 * once large timestamps are fully supported.
2482 	 */
2483 	if (mask & (AT_ATIME | AT_MTIME)) {
2484 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2485 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2486 			ZFS_EXIT(zfsvfs);
2487 			return (EOVERFLOW);
2488 		}
2489 	}
2490 
2491 top:
2492 	attrzp = NULL;
2493 
2494 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2495 		ZFS_EXIT(zfsvfs);
2496 		return (EROFS);
2497 	}
2498 
2499 	/*
2500 	 * First validate permissions
2501 	 */
2502 
2503 	if (mask & AT_SIZE) {
2504 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2505 		if (err) {
2506 			ZFS_EXIT(zfsvfs);
2507 			return (err);
2508 		}
2509 		/*
2510 		 * XXX - Note, we are not providing any open
2511 		 * mode flags here (like FNDELAY), so we may
2512 		 * block if there are locks present... this
2513 		 * should be addressed in openat().
2514 		 */
2515 		/* XXX - would it be OK to generate a log record here? */
2516 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2517 		if (err) {
2518 			ZFS_EXIT(zfsvfs);
2519 			return (err);
2520 		}
2521 	}
2522 
2523 	if (mask & (AT_ATIME|AT_MTIME) ||
2524 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2525 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2526 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2527 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2528 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM))))
2529 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2530 		    skipaclchk, cr);
2531 
2532 	if (mask & (AT_UID|AT_GID)) {
2533 		int	idmask = (mask & (AT_UID|AT_GID));
2534 		int	take_owner;
2535 		int	take_group;
2536 
2537 		/*
2538 		 * NOTE: even if a new mode is being set,
2539 		 * we may clear S_ISUID/S_ISGID bits.
2540 		 */
2541 
2542 		if (!(mask & AT_MODE))
2543 			vap->va_mode = pzp->zp_mode;
2544 
2545 		/*
2546 		 * Take ownership or chgrp to group we are a member of
2547 		 */
2548 
2549 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2550 		take_group = (mask & AT_GID) &&
2551 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2552 
2553 		/*
2554 		 * If both AT_UID and AT_GID are set then take_owner and
2555 		 * take_group must both be set in order to allow taking
2556 		 * ownership.
2557 		 *
2558 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2559 		 *
2560 		 */
2561 
2562 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2563 		    ((idmask == AT_UID) && take_owner) ||
2564 		    ((idmask == AT_GID) && take_group)) {
2565 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2566 			    skipaclchk, cr) == 0) {
2567 				/*
2568 				 * Remove setuid/setgid for non-privileged users
2569 				 */
2570 				secpolicy_setid_clear(vap, cr);
2571 				trim_mask = (mask & (AT_UID|AT_GID));
2572 			} else {
2573 				need_policy =  TRUE;
2574 			}
2575 		} else {
2576 			need_policy =  TRUE;
2577 		}
2578 	}
2579 
2580 	mutex_enter(&zp->z_lock);
2581 	oldva.va_mode = pzp->zp_mode;
2582 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2583 	if (mask & AT_XVATTR) {
2584 		if ((need_policy == FALSE) &&
2585 		    (XVA_ISSET_REQ(xvap, XAT_APPENDONLY) &&
2586 		    xoap->xoa_appendonly !=
2587 		    ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) ||
2588 		    (XVA_ISSET_REQ(xvap, XAT_NOUNLINK) &&
2589 		    xoap->xoa_nounlink !=
2590 		    ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) ||
2591 		    (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE) &&
2592 		    xoap->xoa_immutable !=
2593 		    ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) ||
2594 		    (XVA_ISSET_REQ(xvap, XAT_NODUMP) &&
2595 		    xoap->xoa_nodump !=
2596 		    ((pzp->zp_flags & ZFS_NODUMP) != 0)) ||
2597 		    (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED) &&
2598 		    xoap->xoa_av_modified !=
2599 		    ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) ||
2600 		    ((XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED) &&
2601 		    ((vp->v_type != VREG && xoap->xoa_av_quarantined) ||
2602 		    xoap->xoa_av_quarantined !=
2603 		    ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)))) ||
2604 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2605 		    (XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2606 			need_policy = TRUE;
2607 		}
2608 	}
2609 
2610 	mutex_exit(&zp->z_lock);
2611 
2612 	if (mask & AT_MODE) {
2613 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2614 			err = secpolicy_setid_setsticky_clear(vp, vap,
2615 			    &oldva, cr);
2616 			if (err) {
2617 				ZFS_EXIT(zfsvfs);
2618 				return (err);
2619 			}
2620 			trim_mask |= AT_MODE;
2621 		} else {
2622 			need_policy = TRUE;
2623 		}
2624 	}
2625 
2626 	if (need_policy) {
2627 		/*
2628 		 * If trim_mask is set then take ownership
2629 		 * has been granted or write_acl is present and user
2630 		 * has the ability to modify mode.  In that case remove
2631 		 * UID|GID and or MODE from mask so that
2632 		 * secpolicy_vnode_setattr() doesn't revoke it.
2633 		 */
2634 
2635 		if (trim_mask) {
2636 			saved_mask = vap->va_mask;
2637 			vap->va_mask &= ~trim_mask;
2638 		}
2639 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2640 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2641 		if (err) {
2642 			ZFS_EXIT(zfsvfs);
2643 			return (err);
2644 		}
2645 
2646 		if (trim_mask)
2647 			vap->va_mask |= saved_mask;
2648 	}
2649 
2650 	/*
2651 	 * secpolicy_vnode_setattr, or take ownership may have
2652 	 * changed va_mask
2653 	 */
2654 	mask = vap->va_mask;
2655 
2656 	tx = dmu_tx_create(zfsvfs->z_os);
2657 	dmu_tx_hold_bonus(tx, zp->z_id);
2658 	if (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2659 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid))) {
2660 		if (zfsvfs->z_fuid_obj == 0) {
2661 			dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2662 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2663 			    FUID_SIZE_ESTIMATE(zfsvfs));
2664 			dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
2665 		} else {
2666 			dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
2667 			dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
2668 			    FUID_SIZE_ESTIMATE(zfsvfs));
2669 		}
2670 	}
2671 
2672 	if (mask & AT_MODE) {
2673 		uint64_t pmode = pzp->zp_mode;
2674 
2675 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2676 
2677 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) {
2678 			dmu_tx_abort(tx);
2679 			ZFS_EXIT(zfsvfs);
2680 			return (err);
2681 		}
2682 		if (pzp->zp_acl.z_acl_extern_obj) {
2683 			/* Are we upgrading ACL from old V0 format to new V1 */
2684 			if (zfsvfs->z_version <= ZPL_VERSION_FUID &&
2685 			    pzp->zp_acl.z_acl_version ==
2686 			    ZFS_ACL_VERSION_INITIAL) {
2687 				dmu_tx_hold_free(tx,
2688 				    pzp->zp_acl.z_acl_extern_obj, 0,
2689 				    DMU_OBJECT_END);
2690 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2691 				    0, aclp->z_acl_bytes);
2692 			} else {
2693 				dmu_tx_hold_write(tx,
2694 				    pzp->zp_acl.z_acl_extern_obj, 0,
2695 				    aclp->z_acl_bytes);
2696 			}
2697 		} else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2698 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2699 			    0, aclp->z_acl_bytes);
2700 		}
2701 	}
2702 
2703 	if ((mask & (AT_UID | AT_GID)) && pzp->zp_xattr != 0) {
2704 		err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp);
2705 		if (err) {
2706 			dmu_tx_abort(tx);
2707 			ZFS_EXIT(zfsvfs);
2708 			if (aclp)
2709 				zfs_acl_free(aclp);
2710 			return (err);
2711 		}
2712 		dmu_tx_hold_bonus(tx, attrzp->z_id);
2713 	}
2714 
2715 	err = dmu_tx_assign(tx, zfsvfs->z_assign);
2716 	if (err) {
2717 		if (attrzp)
2718 			VN_RELE(ZTOV(attrzp));
2719 
2720 		if (aclp) {
2721 			zfs_acl_free(aclp);
2722 			aclp = NULL;
2723 		}
2724 
2725 		if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2726 			dmu_tx_wait(tx);
2727 			dmu_tx_abort(tx);
2728 			goto top;
2729 		}
2730 		dmu_tx_abort(tx);
2731 		ZFS_EXIT(zfsvfs);
2732 		return (err);
2733 	}
2734 
2735 	dmu_buf_will_dirty(zp->z_dbuf, tx);
2736 
2737 	/*
2738 	 * Set each attribute requested.
2739 	 * We group settings according to the locks they need to acquire.
2740 	 *
2741 	 * Note: you cannot set ctime directly, although it will be
2742 	 * updated as a side-effect of calling this function.
2743 	 */
2744 
2745 	mutex_enter(&zp->z_lock);
2746 
2747 	if (mask & AT_MODE) {
2748 		mutex_enter(&zp->z_acl_lock);
2749 		zp->z_phys->zp_mode = new_mode;
2750 		err = zfs_aclset_common(zp, aclp, cr, &fuidp, tx);
2751 		ASSERT3U(err, ==, 0);
2752 		mutex_exit(&zp->z_acl_lock);
2753 	}
2754 
2755 	if (attrzp)
2756 		mutex_enter(&attrzp->z_lock);
2757 
2758 	if (mask & AT_UID) {
2759 		pzp->zp_uid = zfs_fuid_create(zfsvfs,
2760 		    vap->va_uid, cr, ZFS_OWNER, tx, &fuidp);
2761 		if (attrzp) {
2762 			attrzp->z_phys->zp_uid = zfs_fuid_create(zfsvfs,
2763 			    vap->va_uid,  cr, ZFS_OWNER, tx, &fuidp);
2764 		}
2765 	}
2766 
2767 	if (mask & AT_GID) {
2768 		pzp->zp_gid = zfs_fuid_create(zfsvfs, vap->va_gid,
2769 		    cr, ZFS_GROUP, tx, &fuidp);
2770 		if (attrzp)
2771 			attrzp->z_phys->zp_gid = zfs_fuid_create(zfsvfs,
2772 			    vap->va_gid, cr, ZFS_GROUP, tx, &fuidp);
2773 	}
2774 
2775 	if (aclp)
2776 		zfs_acl_free(aclp);
2777 
2778 	if (attrzp)
2779 		mutex_exit(&attrzp->z_lock);
2780 
2781 	if (mask & AT_ATIME)
2782 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
2783 
2784 	if (mask & AT_MTIME)
2785 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
2786 
2787 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
2788 	if (mask & AT_SIZE)
2789 		zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx);
2790 	else if (mask != 0)
2791 		zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
2792 	/*
2793 	 * Do this after setting timestamps to prevent timestamp
2794 	 * update from toggling bit
2795 	 */
2796 
2797 	if (xoap && (mask & AT_XVATTR)) {
2798 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
2799 			size_t len;
2800 			dmu_object_info_t doi;
2801 
2802 			ASSERT(vp->v_type == VREG);
2803 
2804 			/* Grow the bonus buffer if necessary. */
2805 			dmu_object_info_from_db(zp->z_dbuf, &doi);
2806 			len = sizeof (xoap->xoa_av_scanstamp) +
2807 			    sizeof (znode_phys_t);
2808 			if (len > doi.doi_bonus_size)
2809 				VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0);
2810 		}
2811 		zfs_xvattr_set(zp, xvap);
2812 	}
2813 
2814 	if (mask != 0)
2815 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2816 
2817 	if (fuidp)
2818 		zfs_fuid_info_free(fuidp);
2819 	mutex_exit(&zp->z_lock);
2820 
2821 	if (attrzp)
2822 		VN_RELE(ZTOV(attrzp));
2823 
2824 	dmu_tx_commit(tx);
2825 
2826 	ZFS_EXIT(zfsvfs);
2827 	return (err);
2828 }
2829 
2830 typedef struct zfs_zlock {
2831 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2832 	znode_t		*zl_znode;	/* znode we held */
2833 	struct zfs_zlock *zl_next;	/* next in list */
2834 } zfs_zlock_t;
2835 
2836 /*
2837  * Drop locks and release vnodes that were held by zfs_rename_lock().
2838  */
2839 static void
2840 zfs_rename_unlock(zfs_zlock_t **zlpp)
2841 {
2842 	zfs_zlock_t *zl;
2843 
2844 	while ((zl = *zlpp) != NULL) {
2845 		if (zl->zl_znode != NULL)
2846 			VN_RELE(ZTOV(zl->zl_znode));
2847 		rw_exit(zl->zl_rwlock);
2848 		*zlpp = zl->zl_next;
2849 		kmem_free(zl, sizeof (*zl));
2850 	}
2851 }
2852 
2853 /*
2854  * Search back through the directory tree, using the ".." entries.
2855  * Lock each directory in the chain to prevent concurrent renames.
2856  * Fail any attempt to move a directory into one of its own descendants.
2857  * XXX - z_parent_lock can overlap with map or grow locks
2858  */
2859 static int
2860 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2861 {
2862 	zfs_zlock_t	*zl;
2863 	znode_t		*zp = tdzp;
2864 	uint64_t	rootid = zp->z_zfsvfs->z_root;
2865 	uint64_t	*oidp = &zp->z_id;
2866 	krwlock_t	*rwlp = &szp->z_parent_lock;
2867 	krw_t		rw = RW_WRITER;
2868 
2869 	/*
2870 	 * First pass write-locks szp and compares to zp->z_id.
2871 	 * Later passes read-lock zp and compare to zp->z_parent.
2872 	 */
2873 	do {
2874 		if (!rw_tryenter(rwlp, rw)) {
2875 			/*
2876 			 * Another thread is renaming in this path.
2877 			 * Note that if we are a WRITER, we don't have any
2878 			 * parent_locks held yet.
2879 			 */
2880 			if (rw == RW_READER && zp->z_id > szp->z_id) {
2881 				/*
2882 				 * Drop our locks and restart
2883 				 */
2884 				zfs_rename_unlock(&zl);
2885 				*zlpp = NULL;
2886 				zp = tdzp;
2887 				oidp = &zp->z_id;
2888 				rwlp = &szp->z_parent_lock;
2889 				rw = RW_WRITER;
2890 				continue;
2891 			} else {
2892 				/*
2893 				 * Wait for other thread to drop its locks
2894 				 */
2895 				rw_enter(rwlp, rw);
2896 			}
2897 		}
2898 
2899 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2900 		zl->zl_rwlock = rwlp;
2901 		zl->zl_znode = NULL;
2902 		zl->zl_next = *zlpp;
2903 		*zlpp = zl;
2904 
2905 		if (*oidp == szp->z_id)		/* We're a descendant of szp */
2906 			return (EINVAL);
2907 
2908 		if (*oidp == rootid)		/* We've hit the top */
2909 			return (0);
2910 
2911 		if (rw == RW_READER) {		/* i.e. not the first pass */
2912 			int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp);
2913 			if (error)
2914 				return (error);
2915 			zl->zl_znode = zp;
2916 		}
2917 		oidp = &zp->z_phys->zp_parent;
2918 		rwlp = &zp->z_parent_lock;
2919 		rw = RW_READER;
2920 
2921 	} while (zp->z_id != sdzp->z_id);
2922 
2923 	return (0);
2924 }
2925 
2926 /*
2927  * Move an entry from the provided source directory to the target
2928  * directory.  Change the entry name as indicated.
2929  *
2930  *	IN:	sdvp	- Source directory containing the "old entry".
2931  *		snm	- Old entry name.
2932  *		tdvp	- Target directory to contain the "new entry".
2933  *		tnm	- New entry name.
2934  *		cr	- credentials of caller.
2935  *		ct	- caller context
2936  *		flags	- case flags
2937  *
2938  *	RETURN:	0 if success
2939  *		error code if failure
2940  *
2941  * Timestamps:
2942  *	sdvp,tdvp - ctime|mtime updated
2943  */
2944 /*ARGSUSED*/
2945 static int
2946 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
2947     caller_context_t *ct, int flags)
2948 {
2949 	znode_t		*tdzp, *szp, *tzp;
2950 	znode_t		*sdzp = VTOZ(sdvp);
2951 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
2952 	zilog_t		*zilog;
2953 	vnode_t		*realvp;
2954 	zfs_dirlock_t	*sdl, *tdl;
2955 	dmu_tx_t	*tx;
2956 	zfs_zlock_t	*zl;
2957 	int		cmp, serr, terr;
2958 	int		error = 0;
2959 	int		zflg = 0;
2960 
2961 	ZFS_ENTER(zfsvfs);
2962 	ZFS_VERIFY_ZP(sdzp);
2963 	zilog = zfsvfs->z_log;
2964 
2965 	/*
2966 	 * Make sure we have the real vp for the target directory.
2967 	 */
2968 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
2969 		tdvp = realvp;
2970 
2971 	if (tdvp->v_vfsp != sdvp->v_vfsp) {
2972 		ZFS_EXIT(zfsvfs);
2973 		return (EXDEV);
2974 	}
2975 
2976 	tdzp = VTOZ(tdvp);
2977 	ZFS_VERIFY_ZP(tdzp);
2978 	if (zfsvfs->z_utf8 && u8_validate(tnm,
2979 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2980 		ZFS_EXIT(zfsvfs);
2981 		return (EILSEQ);
2982 	}
2983 
2984 	if (flags & FIGNORECASE)
2985 		zflg |= ZCILOOK;
2986 
2987 top:
2988 	szp = NULL;
2989 	tzp = NULL;
2990 	zl = NULL;
2991 
2992 	/*
2993 	 * This is to prevent the creation of links into attribute space
2994 	 * by renaming a linked file into/outof an attribute directory.
2995 	 * See the comment in zfs_link() for why this is considered bad.
2996 	 */
2997 	if ((tdzp->z_phys->zp_flags & ZFS_XATTR) !=
2998 	    (sdzp->z_phys->zp_flags & ZFS_XATTR)) {
2999 		ZFS_EXIT(zfsvfs);
3000 		return (EINVAL);
3001 	}
3002 
3003 	/*
3004 	 * Lock source and target directory entries.  To prevent deadlock,
3005 	 * a lock ordering must be defined.  We lock the directory with
3006 	 * the smallest object id first, or if it's a tie, the one with
3007 	 * the lexically first name.
3008 	 */
3009 	if (sdzp->z_id < tdzp->z_id) {
3010 		cmp = -1;
3011 	} else if (sdzp->z_id > tdzp->z_id) {
3012 		cmp = 1;
3013 	} else {
3014 		/*
3015 		 * First compare the two name arguments without
3016 		 * considering any case folding.
3017 		 */
3018 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3019 
3020 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3021 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3022 		if (cmp == 0) {
3023 			/*
3024 			 * POSIX: "If the old argument and the new argument
3025 			 * both refer to links to the same existing file,
3026 			 * the rename() function shall return successfully
3027 			 * and perform no other action."
3028 			 */
3029 			ZFS_EXIT(zfsvfs);
3030 			return (0);
3031 		}
3032 		/*
3033 		 * If the file system is case-folding, then we may
3034 		 * have some more checking to do.  A case-folding file
3035 		 * system is either supporting mixed case sensitivity
3036 		 * access or is completely case-insensitive.  Note
3037 		 * that the file system is always case preserving.
3038 		 *
3039 		 * In mixed sensitivity mode case sensitive behavior
3040 		 * is the default.  FIGNORECASE must be used to
3041 		 * explicitly request case insensitive behavior.
3042 		 *
3043 		 * If the source and target names provided differ only
3044 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3045 		 * we will treat this as a special case in the
3046 		 * case-insensitive mode: as long as the source name
3047 		 * is an exact match, we will allow this to proceed as
3048 		 * a name-change request.
3049 		 */
3050 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3051 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3052 		    flags & FIGNORECASE)) &&
3053 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3054 		    &error) == 0) {
3055 			/*
3056 			 * case preserving rename request, require exact
3057 			 * name matches
3058 			 */
3059 			zflg |= ZCIEXACT;
3060 			zflg &= ~ZCILOOK;
3061 		}
3062 	}
3063 
3064 	if (cmp < 0) {
3065 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3066 		    ZEXISTS | zflg, NULL, NULL);
3067 		terr = zfs_dirent_lock(&tdl,
3068 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3069 	} else {
3070 		terr = zfs_dirent_lock(&tdl,
3071 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3072 		serr = zfs_dirent_lock(&sdl,
3073 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3074 		    NULL, NULL);
3075 	}
3076 
3077 	if (serr) {
3078 		/*
3079 		 * Source entry invalid or not there.
3080 		 */
3081 		if (!terr) {
3082 			zfs_dirent_unlock(tdl);
3083 			if (tzp)
3084 				VN_RELE(ZTOV(tzp));
3085 		}
3086 		if (strcmp(snm, "..") == 0)
3087 			serr = EINVAL;
3088 		ZFS_EXIT(zfsvfs);
3089 		return (serr);
3090 	}
3091 	if (terr) {
3092 		zfs_dirent_unlock(sdl);
3093 		VN_RELE(ZTOV(szp));
3094 		if (strcmp(tnm, "..") == 0)
3095 			terr = EINVAL;
3096 		ZFS_EXIT(zfsvfs);
3097 		return (terr);
3098 	}
3099 
3100 	/*
3101 	 * Must have write access at the source to remove the old entry
3102 	 * and write access at the target to create the new entry.
3103 	 * Note that if target and source are the same, this can be
3104 	 * done in a single check.
3105 	 */
3106 
3107 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3108 		goto out;
3109 
3110 	if (ZTOV(szp)->v_type == VDIR) {
3111 		/*
3112 		 * Check to make sure rename is valid.
3113 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3114 		 */
3115 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3116 			goto out;
3117 	}
3118 
3119 	/*
3120 	 * Does target exist?
3121 	 */
3122 	if (tzp) {
3123 		/*
3124 		 * Source and target must be the same type.
3125 		 */
3126 		if (ZTOV(szp)->v_type == VDIR) {
3127 			if (ZTOV(tzp)->v_type != VDIR) {
3128 				error = ENOTDIR;
3129 				goto out;
3130 			}
3131 		} else {
3132 			if (ZTOV(tzp)->v_type == VDIR) {
3133 				error = EISDIR;
3134 				goto out;
3135 			}
3136 		}
3137 		/*
3138 		 * POSIX dictates that when the source and target
3139 		 * entries refer to the same file object, rename
3140 		 * must do nothing and exit without error.
3141 		 */
3142 		if (szp->z_id == tzp->z_id) {
3143 			error = 0;
3144 			goto out;
3145 		}
3146 	}
3147 
3148 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3149 	if (tzp)
3150 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3151 
3152 	/*
3153 	 * notify the target directory if it is not the same
3154 	 * as source directory.
3155 	 */
3156 	if (tdvp != sdvp) {
3157 		vnevent_rename_dest_dir(tdvp, ct);
3158 	}
3159 
3160 	tx = dmu_tx_create(zfsvfs->z_os);
3161 	dmu_tx_hold_bonus(tx, szp->z_id);	/* nlink changes */
3162 	dmu_tx_hold_bonus(tx, sdzp->z_id);	/* nlink changes */
3163 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3164 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3165 	if (sdzp != tdzp)
3166 		dmu_tx_hold_bonus(tx, tdzp->z_id);	/* nlink changes */
3167 	if (tzp)
3168 		dmu_tx_hold_bonus(tx, tzp->z_id);	/* parent changes */
3169 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3170 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
3171 	if (error) {
3172 		if (zl != NULL)
3173 			zfs_rename_unlock(&zl);
3174 		zfs_dirent_unlock(sdl);
3175 		zfs_dirent_unlock(tdl);
3176 		VN_RELE(ZTOV(szp));
3177 		if (tzp)
3178 			VN_RELE(ZTOV(tzp));
3179 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
3180 			dmu_tx_wait(tx);
3181 			dmu_tx_abort(tx);
3182 			goto top;
3183 		}
3184 		dmu_tx_abort(tx);
3185 		ZFS_EXIT(zfsvfs);
3186 		return (error);
3187 	}
3188 
3189 	if (tzp)	/* Attempt to remove the existing target */
3190 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3191 
3192 	if (error == 0) {
3193 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3194 		if (error == 0) {
3195 			szp->z_phys->zp_flags |= ZFS_AV_MODIFIED;
3196 
3197 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3198 			ASSERT(error == 0);
3199 
3200 			zfs_log_rename(zilog, tx,
3201 			    TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0),
3202 			    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3203 
3204 			/* Update path information for the target vnode */
3205 			vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm));
3206 		}
3207 	}
3208 
3209 	dmu_tx_commit(tx);
3210 out:
3211 	if (zl != NULL)
3212 		zfs_rename_unlock(&zl);
3213 
3214 	zfs_dirent_unlock(sdl);
3215 	zfs_dirent_unlock(tdl);
3216 
3217 	VN_RELE(ZTOV(szp));
3218 	if (tzp)
3219 		VN_RELE(ZTOV(tzp));
3220 
3221 	ZFS_EXIT(zfsvfs);
3222 	return (error);
3223 }
3224 
3225 /*
3226  * Insert the indicated symbolic reference entry into the directory.
3227  *
3228  *	IN:	dvp	- Directory to contain new symbolic link.
3229  *		link	- Name for new symlink entry.
3230  *		vap	- Attributes of new entry.
3231  *		target	- Target path of new symlink.
3232  *		cr	- credentials of caller.
3233  *		ct	- caller context
3234  *		flags	- case flags
3235  *
3236  *	RETURN:	0 if success
3237  *		error code if failure
3238  *
3239  * Timestamps:
3240  *	dvp - ctime|mtime updated
3241  */
3242 /*ARGSUSED*/
3243 static int
3244 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3245     caller_context_t *ct, int flags)
3246 {
3247 	znode_t		*zp, *dzp = VTOZ(dvp);
3248 	zfs_dirlock_t	*dl;
3249 	dmu_tx_t	*tx;
3250 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3251 	zilog_t		*zilog;
3252 	int		len = strlen(link);
3253 	int		error;
3254 	int		zflg = ZNEW;
3255 	zfs_fuid_info_t *fuidp = NULL;
3256 
3257 	ASSERT(vap->va_type == VLNK);
3258 
3259 	ZFS_ENTER(zfsvfs);
3260 	ZFS_VERIFY_ZP(dzp);
3261 	zilog = zfsvfs->z_log;
3262 
3263 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3264 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3265 		ZFS_EXIT(zfsvfs);
3266 		return (EILSEQ);
3267 	}
3268 	if (flags & FIGNORECASE)
3269 		zflg |= ZCILOOK;
3270 top:
3271 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3272 		ZFS_EXIT(zfsvfs);
3273 		return (error);
3274 	}
3275 
3276 	if (len > MAXPATHLEN) {
3277 		ZFS_EXIT(zfsvfs);
3278 		return (ENAMETOOLONG);
3279 	}
3280 
3281 	/*
3282 	 * Attempt to lock directory; fail if entry already exists.
3283 	 */
3284 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3285 	if (error) {
3286 		ZFS_EXIT(zfsvfs);
3287 		return (error);
3288 	}
3289 
3290 	tx = dmu_tx_create(zfsvfs->z_os);
3291 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3292 	dmu_tx_hold_bonus(tx, dzp->z_id);
3293 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3294 	if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
3295 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE);
3296 	if (IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))) {
3297 		if (zfsvfs->z_fuid_obj == 0) {
3298 			dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
3299 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3300 			    FUID_SIZE_ESTIMATE(zfsvfs));
3301 			dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
3302 		} else {
3303 			dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
3304 			dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
3305 			    FUID_SIZE_ESTIMATE(zfsvfs));
3306 		}
3307 	}
3308 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
3309 	if (error) {
3310 		zfs_dirent_unlock(dl);
3311 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
3312 			dmu_tx_wait(tx);
3313 			dmu_tx_abort(tx);
3314 			goto top;
3315 		}
3316 		dmu_tx_abort(tx);
3317 		ZFS_EXIT(zfsvfs);
3318 		return (error);
3319 	}
3320 
3321 	dmu_buf_will_dirty(dzp->z_dbuf, tx);
3322 
3323 	/*
3324 	 * Create a new object for the symlink.
3325 	 * Put the link content into bonus buffer if it will fit;
3326 	 * otherwise, store it just like any other file data.
3327 	 */
3328 	if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) {
3329 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, NULL, &fuidp);
3330 		if (len != 0)
3331 			bcopy(link, zp->z_phys + 1, len);
3332 	} else {
3333 		dmu_buf_t *dbp;
3334 
3335 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, NULL, &fuidp);
3336 		/*
3337 		 * Nothing can access the znode yet so no locking needed
3338 		 * for growing the znode's blocksize.
3339 		 */
3340 		zfs_grow_blocksize(zp, len, tx);
3341 
3342 		VERIFY(0 == dmu_buf_hold(zfsvfs->z_os,
3343 		    zp->z_id, 0, FTAG, &dbp));
3344 		dmu_buf_will_dirty(dbp, tx);
3345 
3346 		ASSERT3U(len, <=, dbp->db_size);
3347 		bcopy(link, dbp->db_data, len);
3348 		dmu_buf_rele(dbp, FTAG);
3349 	}
3350 	zp->z_phys->zp_size = len;
3351 
3352 	/*
3353 	 * Insert the new object into the directory.
3354 	 */
3355 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3356 out:
3357 	if (error == 0) {
3358 		uint64_t txtype = TX_SYMLINK;
3359 		if (flags & FIGNORECASE)
3360 			txtype |= TX_CI;
3361 		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3362 	}
3363 	if (fuidp)
3364 		zfs_fuid_info_free(fuidp);
3365 
3366 	dmu_tx_commit(tx);
3367 
3368 	zfs_dirent_unlock(dl);
3369 
3370 	VN_RELE(ZTOV(zp));
3371 
3372 	ZFS_EXIT(zfsvfs);
3373 	return (error);
3374 }
3375 
3376 /*
3377  * Return, in the buffer contained in the provided uio structure,
3378  * the symbolic path referred to by vp.
3379  *
3380  *	IN:	vp	- vnode of symbolic link.
3381  *		uoip	- structure to contain the link path.
3382  *		cr	- credentials of caller.
3383  *		ct	- caller context
3384  *
3385  *	OUT:	uio	- structure to contain the link path.
3386  *
3387  *	RETURN:	0 if success
3388  *		error code if failure
3389  *
3390  * Timestamps:
3391  *	vp - atime updated
3392  */
3393 /* ARGSUSED */
3394 static int
3395 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3396 {
3397 	znode_t		*zp = VTOZ(vp);
3398 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3399 	size_t		bufsz;
3400 	int		error;
3401 
3402 	ZFS_ENTER(zfsvfs);
3403 	ZFS_VERIFY_ZP(zp);
3404 
3405 	bufsz = (size_t)zp->z_phys->zp_size;
3406 	if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) {
3407 		error = uiomove(zp->z_phys + 1,
3408 		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
3409 	} else {
3410 		dmu_buf_t *dbp;
3411 		error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp);
3412 		if (error) {
3413 			ZFS_EXIT(zfsvfs);
3414 			return (error);
3415 		}
3416 		error = uiomove(dbp->db_data,
3417 		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
3418 		dmu_buf_rele(dbp, FTAG);
3419 	}
3420 
3421 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3422 	ZFS_EXIT(zfsvfs);
3423 	return (error);
3424 }
3425 
3426 /*
3427  * Insert a new entry into directory tdvp referencing svp.
3428  *
3429  *	IN:	tdvp	- Directory to contain new entry.
3430  *		svp	- vnode of new entry.
3431  *		name	- name of new entry.
3432  *		cr	- credentials of caller.
3433  *		ct	- caller context
3434  *
3435  *	RETURN:	0 if success
3436  *		error code if failure
3437  *
3438  * Timestamps:
3439  *	tdvp - ctime|mtime updated
3440  *	 svp - ctime updated
3441  */
3442 /* ARGSUSED */
3443 static int
3444 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3445     caller_context_t *ct, int flags)
3446 {
3447 	znode_t		*dzp = VTOZ(tdvp);
3448 	znode_t		*tzp, *szp;
3449 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3450 	zilog_t		*zilog;
3451 	zfs_dirlock_t	*dl;
3452 	dmu_tx_t	*tx;
3453 	vnode_t		*realvp;
3454 	int		error;
3455 	int		zf = ZNEW;
3456 	uid_t		owner;
3457 
3458 	ASSERT(tdvp->v_type == VDIR);
3459 
3460 	ZFS_ENTER(zfsvfs);
3461 	ZFS_VERIFY_ZP(dzp);
3462 	zilog = zfsvfs->z_log;
3463 
3464 	if (VOP_REALVP(svp, &realvp, ct) == 0)
3465 		svp = realvp;
3466 
3467 	if (svp->v_vfsp != tdvp->v_vfsp) {
3468 		ZFS_EXIT(zfsvfs);
3469 		return (EXDEV);
3470 	}
3471 	szp = VTOZ(svp);
3472 	ZFS_VERIFY_ZP(szp);
3473 
3474 	if (zfsvfs->z_utf8 && u8_validate(name,
3475 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3476 		ZFS_EXIT(zfsvfs);
3477 		return (EILSEQ);
3478 	}
3479 	if (flags & FIGNORECASE)
3480 		zf |= ZCILOOK;
3481 
3482 top:
3483 	/*
3484 	 * We do not support links between attributes and non-attributes
3485 	 * because of the potential security risk of creating links
3486 	 * into "normal" file space in order to circumvent restrictions
3487 	 * imposed in attribute space.
3488 	 */
3489 	if ((szp->z_phys->zp_flags & ZFS_XATTR) !=
3490 	    (dzp->z_phys->zp_flags & ZFS_XATTR)) {
3491 		ZFS_EXIT(zfsvfs);
3492 		return (EINVAL);
3493 	}
3494 
3495 	/*
3496 	 * POSIX dictates that we return EPERM here.
3497 	 * Better choices include ENOTSUP or EISDIR.
3498 	 */
3499 	if (svp->v_type == VDIR) {
3500 		ZFS_EXIT(zfsvfs);
3501 		return (EPERM);
3502 	}
3503 
3504 	owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER);
3505 	if (owner != crgetuid(cr) &&
3506 	    secpolicy_basic_link(cr) != 0) {
3507 		ZFS_EXIT(zfsvfs);
3508 		return (EPERM);
3509 	}
3510 
3511 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3512 		ZFS_EXIT(zfsvfs);
3513 		return (error);
3514 	}
3515 
3516 	/*
3517 	 * Attempt to lock directory; fail if entry already exists.
3518 	 */
3519 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3520 	if (error) {
3521 		ZFS_EXIT(zfsvfs);
3522 		return (error);
3523 	}
3524 
3525 	tx = dmu_tx_create(zfsvfs->z_os);
3526 	dmu_tx_hold_bonus(tx, szp->z_id);
3527 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3528 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
3529 	if (error) {
3530 		zfs_dirent_unlock(dl);
3531 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
3532 			dmu_tx_wait(tx);
3533 			dmu_tx_abort(tx);
3534 			goto top;
3535 		}
3536 		dmu_tx_abort(tx);
3537 		ZFS_EXIT(zfsvfs);
3538 		return (error);
3539 	}
3540 
3541 	error = zfs_link_create(dl, szp, tx, 0);
3542 
3543 	if (error == 0) {
3544 		uint64_t txtype = TX_LINK;
3545 		if (flags & FIGNORECASE)
3546 			txtype |= TX_CI;
3547 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
3548 	}
3549 
3550 	dmu_tx_commit(tx);
3551 
3552 	zfs_dirent_unlock(dl);
3553 
3554 	if (error == 0) {
3555 		vnevent_link(svp, ct);
3556 	}
3557 
3558 	ZFS_EXIT(zfsvfs);
3559 	return (error);
3560 }
3561 
3562 /*
3563  * zfs_null_putapage() is used when the file system has been force
3564  * unmounted. It just drops the pages.
3565  */
3566 /* ARGSUSED */
3567 static int
3568 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3569 		size_t *lenp, int flags, cred_t *cr)
3570 {
3571 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
3572 	return (0);
3573 }
3574 
3575 /*
3576  * Push a page out to disk, klustering if possible.
3577  *
3578  *	IN:	vp	- file to push page to.
3579  *		pp	- page to push.
3580  *		flags	- additional flags.
3581  *		cr	- credentials of caller.
3582  *
3583  *	OUT:	offp	- start of range pushed.
3584  *		lenp	- len of range pushed.
3585  *
3586  *	RETURN:	0 if success
3587  *		error code if failure
3588  *
3589  * NOTE: callers must have locked the page to be pushed.  On
3590  * exit, the page (and all other pages in the kluster) must be
3591  * unlocked.
3592  */
3593 /* ARGSUSED */
3594 static int
3595 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3596 		size_t *lenp, int flags, cred_t *cr)
3597 {
3598 	znode_t		*zp = VTOZ(vp);
3599 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3600 	zilog_t		*zilog = zfsvfs->z_log;
3601 	dmu_tx_t	*tx;
3602 	rl_t		*rl;
3603 	u_offset_t	off, koff;
3604 	size_t		len, klen;
3605 	uint64_t	filesz;
3606 	int		err;
3607 
3608 	filesz = zp->z_phys->zp_size;
3609 	off = pp->p_offset;
3610 	len = PAGESIZE;
3611 	/*
3612 	 * If our blocksize is bigger than the page size, try to kluster
3613 	 * muiltiple pages so that we write a full block (thus avoiding
3614 	 * a read-modify-write).
3615 	 */
3616 	if (off < filesz && zp->z_blksz > PAGESIZE) {
3617 		if (!ISP2(zp->z_blksz)) {
3618 			/* Only one block in the file. */
3619 			klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
3620 			koff = 0;
3621 		} else {
3622 			klen = zp->z_blksz;
3623 			koff = P2ALIGN(off, (u_offset_t)klen);
3624 		}
3625 		ASSERT(koff <= filesz);
3626 		if (koff + klen > filesz)
3627 			klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE);
3628 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
3629 	}
3630 	ASSERT3U(btop(len), ==, btopr(len));
3631 top:
3632 	rl = zfs_range_lock(zp, off, len, RL_WRITER);
3633 	/*
3634 	 * Can't push pages past end-of-file.
3635 	 */
3636 	filesz = zp->z_phys->zp_size;
3637 	if (off >= filesz) {
3638 		/* ignore all pages */
3639 		err = 0;
3640 		goto out;
3641 	} else if (off + len > filesz) {
3642 		int npages = btopr(filesz - off);
3643 		page_t *trunc;
3644 
3645 		page_list_break(&pp, &trunc, npages);
3646 		/* ignore pages past end of file */
3647 		if (trunc)
3648 			pvn_write_done(trunc, flags);
3649 		len = filesz - off;
3650 	}
3651 
3652 	tx = dmu_tx_create(zfsvfs->z_os);
3653 	dmu_tx_hold_write(tx, zp->z_id, off, len);
3654 	dmu_tx_hold_bonus(tx, zp->z_id);
3655 	err = dmu_tx_assign(tx, zfsvfs->z_assign);
3656 	if (err != 0) {
3657 		if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
3658 			zfs_range_unlock(rl);
3659 			dmu_tx_wait(tx);
3660 			dmu_tx_abort(tx);
3661 			err = 0;
3662 			goto top;
3663 		}
3664 		dmu_tx_abort(tx);
3665 		goto out;
3666 	}
3667 
3668 	if (zp->z_blksz <= PAGESIZE) {
3669 		caddr_t va = zfs_map_page(pp, S_READ);
3670 		ASSERT3U(len, <=, PAGESIZE);
3671 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
3672 		zfs_unmap_page(pp, va);
3673 	} else {
3674 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
3675 	}
3676 
3677 	if (err == 0) {
3678 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
3679 		zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0);
3680 		dmu_tx_commit(tx);
3681 	}
3682 
3683 out:
3684 	zfs_range_unlock(rl);
3685 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
3686 	if (offp)
3687 		*offp = off;
3688 	if (lenp)
3689 		*lenp = len;
3690 
3691 	return (err);
3692 }
3693 
3694 /*
3695  * Copy the portion of the file indicated from pages into the file.
3696  * The pages are stored in a page list attached to the files vnode.
3697  *
3698  *	IN:	vp	- vnode of file to push page data to.
3699  *		off	- position in file to put data.
3700  *		len	- amount of data to write.
3701  *		flags	- flags to control the operation.
3702  *		cr	- credentials of caller.
3703  *		ct	- caller context.
3704  *
3705  *	RETURN:	0 if success
3706  *		error code if failure
3707  *
3708  * Timestamps:
3709  *	vp - ctime|mtime updated
3710  */
3711 /*ARGSUSED*/
3712 static int
3713 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
3714     caller_context_t *ct)
3715 {
3716 	znode_t		*zp = VTOZ(vp);
3717 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3718 	page_t		*pp;
3719 	size_t		io_len;
3720 	u_offset_t	io_off;
3721 	uint64_t	filesz;
3722 	int		error = 0;
3723 
3724 	ZFS_ENTER(zfsvfs);
3725 	ZFS_VERIFY_ZP(zp);
3726 
3727 	if (len == 0) {
3728 		/*
3729 		 * Search the entire vp list for pages >= off.
3730 		 */
3731 		error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage,
3732 		    flags, cr);
3733 		goto out;
3734 	}
3735 
3736 	filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */
3737 	if (off > filesz) {
3738 		/* past end of file */
3739 		ZFS_EXIT(zfsvfs);
3740 		return (0);
3741 	}
3742 
3743 	len = MIN(len, filesz - off);
3744 
3745 	for (io_off = off; io_off < off + len; io_off += io_len) {
3746 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
3747 			pp = page_lookup(vp, io_off,
3748 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
3749 		} else {
3750 			pp = page_lookup_nowait(vp, io_off,
3751 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
3752 		}
3753 
3754 		if (pp != NULL && pvn_getdirty(pp, flags)) {
3755 			int err;
3756 
3757 			/*
3758 			 * Found a dirty page to push
3759 			 */
3760 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
3761 			if (err)
3762 				error = err;
3763 		} else {
3764 			io_len = PAGESIZE;
3765 		}
3766 	}
3767 out:
3768 	if ((flags & B_ASYNC) == 0)
3769 		zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id);
3770 	ZFS_EXIT(zfsvfs);
3771 	return (error);
3772 }
3773 
3774 /*ARGSUSED*/
3775 void
3776 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
3777 {
3778 	znode_t	*zp = VTOZ(vp);
3779 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3780 	int error;
3781 
3782 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3783 	if (zp->z_dbuf == NULL) {
3784 		/*
3785 		 * The fs has been unmounted, or we did a
3786 		 * suspend/resume and this file no longer exists.
3787 		 */
3788 		if (vn_has_cached_data(vp)) {
3789 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
3790 			    B_INVAL, cr);
3791 		}
3792 
3793 		mutex_enter(&zp->z_lock);
3794 		vp->v_count = 0; /* count arrives as 1 */
3795 		mutex_exit(&zp->z_lock);
3796 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
3797 		zfs_znode_free(zp);
3798 		return;
3799 	}
3800 
3801 	/*
3802 	 * Attempt to push any data in the page cache.  If this fails
3803 	 * we will get kicked out later in zfs_zinactive().
3804 	 */
3805 	if (vn_has_cached_data(vp)) {
3806 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
3807 		    cr);
3808 	}
3809 
3810 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
3811 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3812 
3813 		dmu_tx_hold_bonus(tx, zp->z_id);
3814 		error = dmu_tx_assign(tx, TXG_WAIT);
3815 		if (error) {
3816 			dmu_tx_abort(tx);
3817 		} else {
3818 			dmu_buf_will_dirty(zp->z_dbuf, tx);
3819 			mutex_enter(&zp->z_lock);
3820 			zp->z_atime_dirty = 0;
3821 			mutex_exit(&zp->z_lock);
3822 			dmu_tx_commit(tx);
3823 		}
3824 	}
3825 
3826 	zfs_zinactive(zp);
3827 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
3828 }
3829 
3830 /*
3831  * Bounds-check the seek operation.
3832  *
3833  *	IN:	vp	- vnode seeking within
3834  *		ooff	- old file offset
3835  *		noffp	- pointer to new file offset
3836  *		ct	- caller context
3837  *
3838  *	RETURN:	0 if success
3839  *		EINVAL if new offset invalid
3840  */
3841 /* ARGSUSED */
3842 static int
3843 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
3844     caller_context_t *ct)
3845 {
3846 	if (vp->v_type == VDIR)
3847 		return (0);
3848 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
3849 }
3850 
3851 /*
3852  * Pre-filter the generic locking function to trap attempts to place
3853  * a mandatory lock on a memory mapped file.
3854  */
3855 static int
3856 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
3857     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
3858 {
3859 	znode_t *zp = VTOZ(vp);
3860 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3861 	int error;
3862 
3863 	ZFS_ENTER(zfsvfs);
3864 	ZFS_VERIFY_ZP(zp);
3865 
3866 	/*
3867 	 * We are following the UFS semantics with respect to mapcnt
3868 	 * here: If we see that the file is mapped already, then we will
3869 	 * return an error, but we don't worry about races between this
3870 	 * function and zfs_map().
3871 	 */
3872 	if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) {
3873 		ZFS_EXIT(zfsvfs);
3874 		return (EAGAIN);
3875 	}
3876 	error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct);
3877 	ZFS_EXIT(zfsvfs);
3878 	return (error);
3879 }
3880 
3881 /*
3882  * If we can't find a page in the cache, we will create a new page
3883  * and fill it with file data.  For efficiency, we may try to fill
3884  * multiple pages at once (klustering).
3885  */
3886 static int
3887 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
3888     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
3889 {
3890 	znode_t *zp = VTOZ(vp);
3891 	page_t *pp, *cur_pp;
3892 	objset_t *os = zp->z_zfsvfs->z_os;
3893 	caddr_t va;
3894 	u_offset_t io_off, total;
3895 	uint64_t oid = zp->z_id;
3896 	size_t io_len;
3897 	uint64_t filesz;
3898 	int err;
3899 
3900 	/*
3901 	 * If we are only asking for a single page don't bother klustering.
3902 	 */
3903 	filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */
3904 	if (off >= filesz)
3905 		return (EFAULT);
3906 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
3907 		io_off = off;
3908 		io_len = PAGESIZE;
3909 		pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr);
3910 	} else {
3911 		/*
3912 		 * Try to fill a kluster of pages (a blocks worth).
3913 		 */
3914 		size_t klen;
3915 		u_offset_t koff;
3916 
3917 		if (!ISP2(zp->z_blksz)) {
3918 			/* Only one block in the file. */
3919 			klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
3920 			koff = 0;
3921 		} else {
3922 			/*
3923 			 * It would be ideal to align our offset to the
3924 			 * blocksize but doing so has resulted in some
3925 			 * strange application crashes. For now, we
3926 			 * leave the offset as is and only adjust the
3927 			 * length if we are off the end of the file.
3928 			 */
3929 			koff = off;
3930 			klen = plsz;
3931 		}
3932 		ASSERT(koff <= filesz);
3933 		if (koff + klen > filesz)
3934 			klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff;
3935 		ASSERT3U(off, >=, koff);
3936 		ASSERT3U(off, <, koff + klen);
3937 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
3938 		    &io_len, koff, klen, 0);
3939 	}
3940 	if (pp == NULL) {
3941 		/*
3942 		 * Some other thread entered the page before us.
3943 		 * Return to zfs_getpage to retry the lookup.
3944 		 */
3945 		*pl = NULL;
3946 		return (0);
3947 	}
3948 
3949 	/*
3950 	 * Fill the pages in the kluster.
3951 	 */
3952 	cur_pp = pp;
3953 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
3954 		ASSERT3U(io_off, ==, cur_pp->p_offset);
3955 		va = zfs_map_page(cur_pp, S_WRITE);
3956 		err = dmu_read(os, oid, io_off, PAGESIZE, va);
3957 		zfs_unmap_page(cur_pp, va);
3958 		if (err) {
3959 			/* On error, toss the entire kluster */
3960 			pvn_read_done(pp, B_ERROR);
3961 			/* convert checksum errors into IO errors */
3962 			if (err == ECKSUM)
3963 				err = EIO;
3964 			return (err);
3965 		}
3966 		cur_pp = cur_pp->p_next;
3967 	}
3968 out:
3969 	/*
3970 	 * Fill in the page list array from the kluster.  If
3971 	 * there are too many pages in the kluster, return
3972 	 * as many pages as possible starting from the desired
3973 	 * offset `off'.
3974 	 * NOTE: the page list will always be null terminated.
3975 	 */
3976 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
3977 
3978 	return (0);
3979 }
3980 
3981 /*
3982  * Return pointers to the pages for the file region [off, off + len]
3983  * in the pl array.  If plsz is greater than len, this function may
3984  * also return page pointers from before or after the specified
3985  * region (i.e. some region [off', off' + plsz]).  These additional
3986  * pages are only returned if they are already in the cache, or were
3987  * created as part of a klustered read.
3988  *
3989  *	IN:	vp	- vnode of file to get data from.
3990  *		off	- position in file to get data from.
3991  *		len	- amount of data to retrieve.
3992  *		plsz	- length of provided page list.
3993  *		seg	- segment to obtain pages for.
3994  *		addr	- virtual address of fault.
3995  *		rw	- mode of created pages.
3996  *		cr	- credentials of caller.
3997  *		ct	- caller context.
3998  *
3999  *	OUT:	protp	- protection mode of created pages.
4000  *		pl	- list of pages created.
4001  *
4002  *	RETURN:	0 if success
4003  *		error code if failure
4004  *
4005  * Timestamps:
4006  *	vp - atime updated
4007  */
4008 /* ARGSUSED */
4009 static int
4010 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4011 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4012 	enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4013 {
4014 	znode_t		*zp = VTOZ(vp);
4015 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4016 	page_t		*pp, **pl0 = pl;
4017 	int		need_unlock = 0, err = 0;
4018 	offset_t	orig_off;
4019 
4020 	ZFS_ENTER(zfsvfs);
4021 	ZFS_VERIFY_ZP(zp);
4022 
4023 	if (protp)
4024 		*protp = PROT_ALL;
4025 
4026 	/* no faultahead (for now) */
4027 	if (pl == NULL) {
4028 		ZFS_EXIT(zfsvfs);
4029 		return (0);
4030 	}
4031 
4032 	/* can't fault past EOF */
4033 	if (off >= zp->z_phys->zp_size) {
4034 		ZFS_EXIT(zfsvfs);
4035 		return (EFAULT);
4036 	}
4037 	orig_off = off;
4038 
4039 	/*
4040 	 * If we already own the lock, then we must be page faulting
4041 	 * in the middle of a write to this file (i.e., we are writing
4042 	 * to this file using data from a mapped region of the file).
4043 	 */
4044 	if (rw_owner(&zp->z_map_lock) != curthread) {
4045 		rw_enter(&zp->z_map_lock, RW_WRITER);
4046 		need_unlock = TRUE;
4047 	}
4048 
4049 	/*
4050 	 * Loop through the requested range [off, off + len] looking
4051 	 * for pages.  If we don't find a page, we will need to create
4052 	 * a new page and fill it with data from the file.
4053 	 */
4054 	while (len > 0) {
4055 		if (plsz < PAGESIZE)
4056 			break;
4057 		if (pp = page_lookup(vp, off, SE_SHARED)) {
4058 			*pl++ = pp;
4059 			off += PAGESIZE;
4060 			addr += PAGESIZE;
4061 			len -= PAGESIZE;
4062 			plsz -= PAGESIZE;
4063 		} else {
4064 			err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw);
4065 			if (err)
4066 				goto out;
4067 			/*
4068 			 * klustering may have changed our region
4069 			 * to be block aligned.
4070 			 */
4071 			if (((pp = *pl) != 0) && (off != pp->p_offset)) {
4072 				int delta = off - pp->p_offset;
4073 				len += delta;
4074 				off -= delta;
4075 				addr -= delta;
4076 			}
4077 			while (*pl) {
4078 				pl++;
4079 				off += PAGESIZE;
4080 				addr += PAGESIZE;
4081 				plsz -= PAGESIZE;
4082 				if (len > PAGESIZE)
4083 					len -= PAGESIZE;
4084 				else
4085 					len = 0;
4086 			}
4087 		}
4088 	}
4089 
4090 	/*
4091 	 * Fill out the page array with any pages already in the cache.
4092 	 */
4093 	while (plsz > 0) {
4094 		pp = page_lookup_nowait(vp, off, SE_SHARED);
4095 		if (pp == NULL)
4096 			break;
4097 		*pl++ = pp;
4098 		off += PAGESIZE;
4099 		plsz -= PAGESIZE;
4100 	}
4101 
4102 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4103 out:
4104 	/*
4105 	 * We can't grab the range lock for the page as reader which would
4106 	 * stop truncation as this leads to deadlock. So we need to recheck
4107 	 * the file size.
4108 	 */
4109 	if (orig_off >= zp->z_phys->zp_size)
4110 		err = EFAULT;
4111 	if (err) {
4112 		/*
4113 		 * Release any pages we have previously locked.
4114 		 */
4115 		while (pl > pl0)
4116 			page_unlock(*--pl);
4117 	}
4118 
4119 	*pl = NULL;
4120 
4121 	if (need_unlock)
4122 		rw_exit(&zp->z_map_lock);
4123 
4124 	ZFS_EXIT(zfsvfs);
4125 	return (err);
4126 }
4127 
4128 /*
4129  * Request a memory map for a section of a file.  This code interacts
4130  * with common code and the VM system as follows:
4131  *
4132  *	common code calls mmap(), which ends up in smmap_common()
4133  *
4134  *	this calls VOP_MAP(), which takes you into (say) zfs
4135  *
4136  *	zfs_map() calls as_map(), passing segvn_create() as the callback
4137  *
4138  *	segvn_create() creates the new segment and calls VOP_ADDMAP()
4139  *
4140  *	zfs_addmap() updates z_mapcnt
4141  */
4142 /*ARGSUSED*/
4143 static int
4144 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4145     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4146     caller_context_t *ct)
4147 {
4148 	znode_t *zp = VTOZ(vp);
4149 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4150 	segvn_crargs_t	vn_a;
4151 	int		error;
4152 
4153 	ZFS_ENTER(zfsvfs);
4154 	ZFS_VERIFY_ZP(zp);
4155 
4156 	if ((prot & PROT_WRITE) &&
4157 	    (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY |
4158 	    ZFS_APPENDONLY))) {
4159 		ZFS_EXIT(zfsvfs);
4160 		return (EPERM);
4161 	}
4162 
4163 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4164 	    (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) {
4165 		ZFS_EXIT(zfsvfs);
4166 		return (EACCES);
4167 	}
4168 
4169 	if (vp->v_flag & VNOMAP) {
4170 		ZFS_EXIT(zfsvfs);
4171 		return (ENOSYS);
4172 	}
4173 
4174 	if (off < 0 || len > MAXOFFSET_T - off) {
4175 		ZFS_EXIT(zfsvfs);
4176 		return (ENXIO);
4177 	}
4178 
4179 	if (vp->v_type != VREG) {
4180 		ZFS_EXIT(zfsvfs);
4181 		return (ENODEV);
4182 	}
4183 
4184 	/*
4185 	 * If file is locked, disallow mapping.
4186 	 */
4187 	if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) {
4188 		ZFS_EXIT(zfsvfs);
4189 		return (EAGAIN);
4190 	}
4191 
4192 	as_rangelock(as);
4193 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4194 	if (error != 0) {
4195 		as_rangeunlock(as);
4196 		ZFS_EXIT(zfsvfs);
4197 		return (error);
4198 	}
4199 
4200 	vn_a.vp = vp;
4201 	vn_a.offset = (u_offset_t)off;
4202 	vn_a.type = flags & MAP_TYPE;
4203 	vn_a.prot = prot;
4204 	vn_a.maxprot = maxprot;
4205 	vn_a.cred = cr;
4206 	vn_a.amp = NULL;
4207 	vn_a.flags = flags & ~MAP_TYPE;
4208 	vn_a.szc = 0;
4209 	vn_a.lgrp_mem_policy_flags = 0;
4210 
4211 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4212 
4213 	as_rangeunlock(as);
4214 	ZFS_EXIT(zfsvfs);
4215 	return (error);
4216 }
4217 
4218 /* ARGSUSED */
4219 static int
4220 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4221     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4222     caller_context_t *ct)
4223 {
4224 	uint64_t pages = btopr(len);
4225 
4226 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4227 	return (0);
4228 }
4229 
4230 /*
4231  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4232  * more accurate mtime for the associated file.  Since we don't have a way of
4233  * detecting when the data was actually modified, we have to resort to
4234  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4235  * last page is pushed.  The problem occurs when the msync() call is omitted,
4236  * which by far the most common case:
4237  *
4238  * 	open()
4239  * 	mmap()
4240  * 	<modify memory>
4241  * 	munmap()
4242  * 	close()
4243  * 	<time lapse>
4244  * 	putpage() via fsflush
4245  *
4246  * If we wait until fsflush to come along, we can have a modification time that
4247  * is some arbitrary point in the future.  In order to prevent this in the
4248  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4249  * torn down.
4250  */
4251 /* ARGSUSED */
4252 static int
4253 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4254     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4255     caller_context_t *ct)
4256 {
4257 	uint64_t pages = btopr(len);
4258 
4259 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4260 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4261 
4262 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4263 	    vn_has_cached_data(vp))
4264 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4265 
4266 	return (0);
4267 }
4268 
4269 /*
4270  * Free or allocate space in a file.  Currently, this function only
4271  * supports the `F_FREESP' command.  However, this command is somewhat
4272  * misnamed, as its functionality includes the ability to allocate as
4273  * well as free space.
4274  *
4275  *	IN:	vp	- vnode of file to free data in.
4276  *		cmd	- action to take (only F_FREESP supported).
4277  *		bfp	- section of file to free/alloc.
4278  *		flag	- current file open mode flags.
4279  *		offset	- current file offset.
4280  *		cr	- credentials of caller [UNUSED].
4281  *		ct	- caller context.
4282  *
4283  *	RETURN:	0 if success
4284  *		error code if failure
4285  *
4286  * Timestamps:
4287  *	vp - ctime|mtime updated
4288  */
4289 /* ARGSUSED */
4290 static int
4291 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4292     offset_t offset, cred_t *cr, caller_context_t *ct)
4293 {
4294 	znode_t		*zp = VTOZ(vp);
4295 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4296 	uint64_t	off, len;
4297 	int		error;
4298 
4299 	ZFS_ENTER(zfsvfs);
4300 	ZFS_VERIFY_ZP(zp);
4301 
4302 	if (cmd != F_FREESP) {
4303 		ZFS_EXIT(zfsvfs);
4304 		return (EINVAL);
4305 	}
4306 
4307 	if (error = convoff(vp, bfp, 0, offset)) {
4308 		ZFS_EXIT(zfsvfs);
4309 		return (error);
4310 	}
4311 
4312 	if (bfp->l_len < 0) {
4313 		ZFS_EXIT(zfsvfs);
4314 		return (EINVAL);
4315 	}
4316 
4317 	off = bfp->l_start;
4318 	len = bfp->l_len; /* 0 means from off to end of file */
4319 
4320 	error = zfs_freesp(zp, off, len, flag, TRUE);
4321 
4322 	ZFS_EXIT(zfsvfs);
4323 	return (error);
4324 }
4325 
4326 /*ARGSUSED*/
4327 static int
4328 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4329 {
4330 	znode_t		*zp = VTOZ(vp);
4331 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4332 	uint32_t	gen;
4333 	uint64_t	object = zp->z_id;
4334 	zfid_short_t	*zfid;
4335 	int		size, i;
4336 
4337 	ZFS_ENTER(zfsvfs);
4338 	ZFS_VERIFY_ZP(zp);
4339 	gen = (uint32_t)zp->z_gen;
4340 
4341 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4342 	if (fidp->fid_len < size) {
4343 		fidp->fid_len = size;
4344 		ZFS_EXIT(zfsvfs);
4345 		return (ENOSPC);
4346 	}
4347 
4348 	zfid = (zfid_short_t *)fidp;
4349 
4350 	zfid->zf_len = size;
4351 
4352 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4353 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4354 
4355 	/* Must have a non-zero generation number to distinguish from .zfs */
4356 	if (gen == 0)
4357 		gen = 1;
4358 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4359 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4360 
4361 	if (size == LONG_FID_LEN) {
4362 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4363 		zfid_long_t	*zlfid;
4364 
4365 		zlfid = (zfid_long_t *)fidp;
4366 
4367 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4368 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4369 
4370 		/* XXX - this should be the generation number for the objset */
4371 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4372 			zlfid->zf_setgen[i] = 0;
4373 	}
4374 
4375 	ZFS_EXIT(zfsvfs);
4376 	return (0);
4377 }
4378 
4379 static int
4380 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4381     caller_context_t *ct)
4382 {
4383 	znode_t		*zp, *xzp;
4384 	zfsvfs_t	*zfsvfs;
4385 	zfs_dirlock_t	*dl;
4386 	int		error;
4387 
4388 	switch (cmd) {
4389 	case _PC_LINK_MAX:
4390 		*valp = ULONG_MAX;
4391 		return (0);
4392 
4393 	case _PC_FILESIZEBITS:
4394 		*valp = 64;
4395 		return (0);
4396 
4397 	case _PC_XATTR_EXISTS:
4398 		zp = VTOZ(vp);
4399 		zfsvfs = zp->z_zfsvfs;
4400 		ZFS_ENTER(zfsvfs);
4401 		ZFS_VERIFY_ZP(zp);
4402 		*valp = 0;
4403 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4404 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4405 		if (error == 0) {
4406 			zfs_dirent_unlock(dl);
4407 			if (!zfs_dirempty(xzp))
4408 				*valp = 1;
4409 			VN_RELE(ZTOV(xzp));
4410 		} else if (error == ENOENT) {
4411 			/*
4412 			 * If there aren't extended attributes, it's the
4413 			 * same as having zero of them.
4414 			 */
4415 			error = 0;
4416 		}
4417 		ZFS_EXIT(zfsvfs);
4418 		return (error);
4419 
4420 	case _PC_SATTR_ENABLED:
4421 	case _PC_SATTR_EXISTS:
4422 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4423 		    (vp->v_type == VREG || vp->v_type == VDIR);
4424 		return (0);
4425 
4426 	case _PC_ACL_ENABLED:
4427 		*valp = _ACL_ACE_ENABLED;
4428 		return (0);
4429 
4430 	case _PC_MIN_HOLE_SIZE:
4431 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4432 		return (0);
4433 
4434 	default:
4435 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4436 	}
4437 }
4438 
4439 /*ARGSUSED*/
4440 static int
4441 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4442     caller_context_t *ct)
4443 {
4444 	znode_t *zp = VTOZ(vp);
4445 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4446 	int error;
4447 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4448 
4449 	ZFS_ENTER(zfsvfs);
4450 	ZFS_VERIFY_ZP(zp);
4451 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4452 	ZFS_EXIT(zfsvfs);
4453 
4454 	return (error);
4455 }
4456 
4457 /*ARGSUSED*/
4458 static int
4459 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4460     caller_context_t *ct)
4461 {
4462 	znode_t *zp = VTOZ(vp);
4463 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4464 	int error;
4465 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4466 
4467 	ZFS_ENTER(zfsvfs);
4468 	ZFS_VERIFY_ZP(zp);
4469 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4470 	ZFS_EXIT(zfsvfs);
4471 	return (error);
4472 }
4473 
4474 /*
4475  * Predeclare these here so that the compiler assumes that
4476  * this is an "old style" function declaration that does
4477  * not include arguments => we won't get type mismatch errors
4478  * in the initializations that follow.
4479  */
4480 static int zfs_inval();
4481 static int zfs_isdir();
4482 
4483 static int
4484 zfs_inval()
4485 {
4486 	return (EINVAL);
4487 }
4488 
4489 static int
4490 zfs_isdir()
4491 {
4492 	return (EISDIR);
4493 }
4494 /*
4495  * Directory vnode operations template
4496  */
4497 vnodeops_t *zfs_dvnodeops;
4498 const fs_operation_def_t zfs_dvnodeops_template[] = {
4499 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
4500 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
4501 	VOPNAME_READ,		{ .error = zfs_isdir },
4502 	VOPNAME_WRITE,		{ .error = zfs_isdir },
4503 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
4504 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4505 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4506 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4507 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
4508 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
4509 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
4510 	VOPNAME_LINK,		{ .vop_link = zfs_link },
4511 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4512 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
4513 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
4514 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
4515 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
4516 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
4517 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4518 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4519 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
4520 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4521 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
4522 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
4523 	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
4524 	NULL,			NULL
4525 };
4526 
4527 /*
4528  * Regular file vnode operations template
4529  */
4530 vnodeops_t *zfs_fvnodeops;
4531 const fs_operation_def_t zfs_fvnodeops_template[] = {
4532 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
4533 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
4534 	VOPNAME_READ,		{ .vop_read = zfs_read },
4535 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
4536 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
4537 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4538 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4539 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4540 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
4541 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4542 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
4543 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4544 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4545 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
4546 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
4547 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
4548 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
4549 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
4550 	VOPNAME_MAP,		{ .vop_map = zfs_map },
4551 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
4552 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
4553 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4554 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
4555 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
4556 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
4557 	NULL,			NULL
4558 };
4559 
4560 /*
4561  * Symbolic link vnode operations template
4562  */
4563 vnodeops_t *zfs_symvnodeops;
4564 const fs_operation_def_t zfs_symvnodeops_template[] = {
4565 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4566 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4567 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4568 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4569 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
4570 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4571 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4572 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4573 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
4574 	NULL,			NULL
4575 };
4576 
4577 /*
4578  * Extended attribute directory vnode operations template
4579  *	This template is identical to the directory vnodes
4580  *	operation template except for restricted operations:
4581  *		VOP_MKDIR()
4582  *		VOP_SYMLINK()
4583  * Note that there are other restrictions embedded in:
4584  *	zfs_create()	- restrict type to VREG
4585  *	zfs_link()	- no links into/out of attribute space
4586  *	zfs_rename()	- no moves into/out of attribute space
4587  */
4588 vnodeops_t *zfs_xdvnodeops;
4589 const fs_operation_def_t zfs_xdvnodeops_template[] = {
4590 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
4591 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
4592 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
4593 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4594 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4595 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4596 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
4597 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
4598 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
4599 	VOPNAME_LINK,		{ .vop_link = zfs_link },
4600 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4601 	VOPNAME_MKDIR,		{ .error = zfs_inval },
4602 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
4603 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
4604 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
4605 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
4606 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4607 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4608 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
4609 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4610 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
4611 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
4612 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
4613 	NULL,			NULL
4614 };
4615 
4616 /*
4617  * Error vnode operations template
4618  */
4619 vnodeops_t *zfs_evnodeops;
4620 const fs_operation_def_t zfs_evnodeops_template[] = {
4621 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4622 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4623 	NULL,			NULL
4624 };
4625