1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/vm.h> 45 #include <vm/seg_vn.h> 46 #include <vm/pvn.h> 47 #include <vm/as.h> 48 #include <vm/kpm.h> 49 #include <vm/seg_kpm.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/sa.h> 65 #include <sys/dirent.h> 66 #include <sys/policy.h> 67 #include <sys/sunddi.h> 68 #include <sys/filio.h> 69 #include <sys/sid.h> 70 #include "fs/fs_subr.h" 71 #include <sys/zfs_ctldir.h> 72 #include <sys/zfs_fuid.h> 73 #include <sys/zfs_sa.h> 74 #include <sys/dnlc.h> 75 #include <sys/zfs_rlock.h> 76 #include <sys/extdirent.h> 77 #include <sys/kidmap.h> 78 #include <sys/cred.h> 79 #include <sys/attr.h> 80 81 /* 82 * Programming rules. 83 * 84 * Each vnode op performs some logical unit of work. To do this, the ZPL must 85 * properly lock its in-core state, create a DMU transaction, do the work, 86 * record this work in the intent log (ZIL), commit the DMU transaction, 87 * and wait for the intent log to commit if it is a synchronous operation. 88 * Moreover, the vnode ops must work in both normal and log replay context. 89 * The ordering of events is important to avoid deadlocks and references 90 * to freed memory. The example below illustrates the following Big Rules: 91 * 92 * (1) A check must be made in each zfs thread for a mounted file system. 93 * This is done avoiding races using ZFS_ENTER(zfsvfs). 94 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 95 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 96 * can return EIO from the calling function. 97 * 98 * (2) VN_RELE() should always be the last thing except for zil_commit() 99 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 100 * First, if it's the last reference, the vnode/znode 101 * can be freed, so the zp may point to freed memory. Second, the last 102 * reference will call zfs_zinactive(), which may induce a lot of work -- 103 * pushing cached pages (which acquires range locks) and syncing out 104 * cached atime changes. Third, zfs_zinactive() may require a new tx, 105 * which could deadlock the system if you were already holding one. 106 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 107 * 108 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 109 * as they can span dmu_tx_assign() calls. 110 * 111 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 112 * This is critical because we don't want to block while holding locks. 113 * Note, in particular, that if a lock is sometimes acquired before 114 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 115 * use a non-blocking assign can deadlock the system. The scenario: 116 * 117 * Thread A has grabbed a lock before calling dmu_tx_assign(). 118 * Thread B is in an already-assigned tx, and blocks for this lock. 119 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 120 * forever, because the previous txg can't quiesce until B's tx commits. 121 * 122 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 123 * then drop all locks, call dmu_tx_wait(), and try again. 124 * 125 * (5) If the operation succeeded, generate the intent log entry for it 126 * before dropping locks. This ensures that the ordering of events 127 * in the intent log matches the order in which they actually occurred. 128 * During ZIL replay the zfs_log_* functions will update the sequence 129 * number to indicate the zil transaction has replayed. 130 * 131 * (6) At the end of each vnode op, the DMU tx must always commit, 132 * regardless of whether there were any errors. 133 * 134 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 135 * to ensure that synchronous semantics are provided when necessary. 136 * 137 * In general, this is how things should be ordered in each vnode op: 138 * 139 * ZFS_ENTER(zfsvfs); // exit if unmounted 140 * top: 141 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 142 * rw_enter(...); // grab any other locks you need 143 * tx = dmu_tx_create(...); // get DMU tx 144 * dmu_tx_hold_*(); // hold each object you might modify 145 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 146 * if (error) { 147 * rw_exit(...); // drop locks 148 * zfs_dirent_unlock(dl); // unlock directory entry 149 * VN_RELE(...); // release held vnodes 150 * if (error == ERESTART) { 151 * dmu_tx_wait(tx); 152 * dmu_tx_abort(tx); 153 * goto top; 154 * } 155 * dmu_tx_abort(tx); // abort DMU tx 156 * ZFS_EXIT(zfsvfs); // finished in zfs 157 * return (error); // really out of space 158 * } 159 * error = do_real_work(); // do whatever this VOP does 160 * if (error == 0) 161 * zfs_log_*(...); // on success, make ZIL entry 162 * dmu_tx_commit(tx); // commit DMU tx -- error or not 163 * rw_exit(...); // drop locks 164 * zfs_dirent_unlock(dl); // unlock directory entry 165 * VN_RELE(...); // release held vnodes 166 * zil_commit(zilog, seq, foid); // synchronous when necessary 167 * ZFS_EXIT(zfsvfs); // finished in zfs 168 * return (error); // done, report error 169 */ 170 171 /* ARGSUSED */ 172 static int 173 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 174 { 175 znode_t *zp = VTOZ(*vpp); 176 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 177 178 ZFS_ENTER(zfsvfs); 179 ZFS_VERIFY_ZP(zp); 180 181 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 182 ((flag & FAPPEND) == 0)) { 183 ZFS_EXIT(zfsvfs); 184 return (EPERM); 185 } 186 187 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 188 ZTOV(zp)->v_type == VREG && 189 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 190 if (fs_vscan(*vpp, cr, 0) != 0) { 191 ZFS_EXIT(zfsvfs); 192 return (EACCES); 193 } 194 } 195 196 /* Keep a count of the synchronous opens in the znode */ 197 if (flag & (FSYNC | FDSYNC)) 198 atomic_inc_32(&zp->z_sync_cnt); 199 200 ZFS_EXIT(zfsvfs); 201 return (0); 202 } 203 204 /* ARGSUSED */ 205 static int 206 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 207 caller_context_t *ct) 208 { 209 znode_t *zp = VTOZ(vp); 210 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 211 212 /* 213 * Clean up any locks held by this process on the vp. 214 */ 215 cleanlocks(vp, ddi_get_pid(), 0); 216 cleanshares(vp, ddi_get_pid()); 217 218 ZFS_ENTER(zfsvfs); 219 ZFS_VERIFY_ZP(zp); 220 221 /* Decrement the synchronous opens in the znode */ 222 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 223 atomic_dec_32(&zp->z_sync_cnt); 224 225 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 226 ZTOV(zp)->v_type == VREG && 227 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 228 VERIFY(fs_vscan(vp, cr, 1) == 0); 229 230 ZFS_EXIT(zfsvfs); 231 return (0); 232 } 233 234 /* 235 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 236 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 237 */ 238 static int 239 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 240 { 241 znode_t *zp = VTOZ(vp); 242 uint64_t noff = (uint64_t)*off; /* new offset */ 243 uint64_t file_sz; 244 int error; 245 boolean_t hole; 246 247 file_sz = zp->z_size; 248 if (noff >= file_sz) { 249 return (ENXIO); 250 } 251 252 if (cmd == _FIO_SEEK_HOLE) 253 hole = B_TRUE; 254 else 255 hole = B_FALSE; 256 257 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 258 259 /* end of file? */ 260 if ((error == ESRCH) || (noff > file_sz)) { 261 /* 262 * Handle the virtual hole at the end of file. 263 */ 264 if (hole) { 265 *off = file_sz; 266 return (0); 267 } 268 return (ENXIO); 269 } 270 271 if (noff < *off) 272 return (error); 273 *off = noff; 274 return (error); 275 } 276 277 /* ARGSUSED */ 278 static int 279 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 280 int *rvalp, caller_context_t *ct) 281 { 282 offset_t off; 283 int error; 284 zfsvfs_t *zfsvfs; 285 znode_t *zp; 286 287 switch (com) { 288 case _FIOFFS: 289 return (zfs_sync(vp->v_vfsp, 0, cred)); 290 291 /* 292 * The following two ioctls are used by bfu. Faking out, 293 * necessary to avoid bfu errors. 294 */ 295 case _FIOGDIO: 296 case _FIOSDIO: 297 return (0); 298 299 case _FIO_SEEK_DATA: 300 case _FIO_SEEK_HOLE: 301 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 302 return (EFAULT); 303 304 zp = VTOZ(vp); 305 zfsvfs = zp->z_zfsvfs; 306 ZFS_ENTER(zfsvfs); 307 ZFS_VERIFY_ZP(zp); 308 309 /* offset parameter is in/out */ 310 error = zfs_holey(vp, com, &off); 311 ZFS_EXIT(zfsvfs); 312 if (error) 313 return (error); 314 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 315 return (EFAULT); 316 return (0); 317 } 318 return (ENOTTY); 319 } 320 321 /* 322 * Utility functions to map and unmap a single physical page. These 323 * are used to manage the mappable copies of ZFS file data, and therefore 324 * do not update ref/mod bits. 325 */ 326 caddr_t 327 zfs_map_page(page_t *pp, enum seg_rw rw) 328 { 329 if (kpm_enable) 330 return (hat_kpm_mapin(pp, 0)); 331 ASSERT(rw == S_READ || rw == S_WRITE); 332 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 333 (caddr_t)-1)); 334 } 335 336 void 337 zfs_unmap_page(page_t *pp, caddr_t addr) 338 { 339 if (kpm_enable) { 340 hat_kpm_mapout(pp, 0, addr); 341 } else { 342 ppmapout(addr); 343 } 344 } 345 346 /* 347 * When a file is memory mapped, we must keep the IO data synchronized 348 * between the DMU cache and the memory mapped pages. What this means: 349 * 350 * On Write: If we find a memory mapped page, we write to *both* 351 * the page and the dmu buffer. 352 */ 353 static void 354 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 355 { 356 int64_t off; 357 358 off = start & PAGEOFFSET; 359 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 360 page_t *pp; 361 uint64_t nbytes = MIN(PAGESIZE - off, len); 362 363 if (pp = page_lookup(vp, start, SE_SHARED)) { 364 caddr_t va; 365 366 va = zfs_map_page(pp, S_WRITE); 367 (void) dmu_read(os, oid, start+off, nbytes, va+off, 368 DMU_READ_PREFETCH); 369 zfs_unmap_page(pp, va); 370 page_unlock(pp); 371 } 372 len -= nbytes; 373 off = 0; 374 } 375 } 376 377 /* 378 * When a file is memory mapped, we must keep the IO data synchronized 379 * between the DMU cache and the memory mapped pages. What this means: 380 * 381 * On Read: We "read" preferentially from memory mapped pages, 382 * else we default from the dmu buffer. 383 * 384 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 385 * the file is memory mapped. 386 */ 387 static int 388 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 389 { 390 znode_t *zp = VTOZ(vp); 391 objset_t *os = zp->z_zfsvfs->z_os; 392 int64_t start, off; 393 int len = nbytes; 394 int error = 0; 395 396 start = uio->uio_loffset; 397 off = start & PAGEOFFSET; 398 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 399 page_t *pp; 400 uint64_t bytes = MIN(PAGESIZE - off, len); 401 402 if (pp = page_lookup(vp, start, SE_SHARED)) { 403 caddr_t va; 404 405 va = zfs_map_page(pp, S_READ); 406 error = uiomove(va + off, bytes, UIO_READ, uio); 407 zfs_unmap_page(pp, va); 408 page_unlock(pp); 409 } else { 410 error = dmu_read_uio(os, zp->z_id, uio, bytes); 411 } 412 len -= bytes; 413 off = 0; 414 if (error) 415 break; 416 } 417 return (error); 418 } 419 420 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 421 422 /* 423 * Read bytes from specified file into supplied buffer. 424 * 425 * IN: vp - vnode of file to be read from. 426 * uio - structure supplying read location, range info, 427 * and return buffer. 428 * ioflag - SYNC flags; used to provide FRSYNC semantics. 429 * cr - credentials of caller. 430 * ct - caller context 431 * 432 * OUT: uio - updated offset and range, buffer filled. 433 * 434 * RETURN: 0 if success 435 * error code if failure 436 * 437 * Side Effects: 438 * vp - atime updated if byte count > 0 439 */ 440 /* ARGSUSED */ 441 static int 442 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 443 { 444 znode_t *zp = VTOZ(vp); 445 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 446 objset_t *os; 447 ssize_t n, nbytes; 448 int error; 449 rl_t *rl; 450 xuio_t *xuio = NULL; 451 452 ZFS_ENTER(zfsvfs); 453 ZFS_VERIFY_ZP(zp); 454 os = zfsvfs->z_os; 455 456 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 457 ZFS_EXIT(zfsvfs); 458 return (EACCES); 459 } 460 461 /* 462 * Validate file offset 463 */ 464 if (uio->uio_loffset < (offset_t)0) { 465 ZFS_EXIT(zfsvfs); 466 return (EINVAL); 467 } 468 469 /* 470 * Fasttrack empty reads 471 */ 472 if (uio->uio_resid == 0) { 473 ZFS_EXIT(zfsvfs); 474 return (0); 475 } 476 477 /* 478 * Check for mandatory locks 479 */ 480 if (MANDMODE(zp->z_mode)) { 481 if (error = chklock(vp, FREAD, 482 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 483 ZFS_EXIT(zfsvfs); 484 return (error); 485 } 486 } 487 488 /* 489 * If we're in FRSYNC mode, sync out this znode before reading it. 490 */ 491 if (ioflag & FRSYNC) 492 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 493 494 /* 495 * Lock the range against changes. 496 */ 497 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 498 499 /* 500 * If we are reading past end-of-file we can skip 501 * to the end; but we might still need to set atime. 502 */ 503 if (uio->uio_loffset >= zp->z_size) { 504 error = 0; 505 goto out; 506 } 507 508 ASSERT(uio->uio_loffset < zp->z_size); 509 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 510 511 if ((uio->uio_extflg == UIO_XUIO) && 512 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 513 int nblk; 514 int blksz = zp->z_blksz; 515 uint64_t offset = uio->uio_loffset; 516 517 xuio = (xuio_t *)uio; 518 if ((ISP2(blksz))) { 519 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 520 blksz)) / blksz; 521 } else { 522 ASSERT(offset + n <= blksz); 523 nblk = 1; 524 } 525 (void) dmu_xuio_init(xuio, nblk); 526 527 if (vn_has_cached_data(vp)) { 528 /* 529 * For simplicity, we always allocate a full buffer 530 * even if we only expect to read a portion of a block. 531 */ 532 while (--nblk >= 0) { 533 (void) dmu_xuio_add(xuio, 534 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 535 blksz), 0, blksz); 536 } 537 } 538 } 539 540 while (n > 0) { 541 nbytes = MIN(n, zfs_read_chunk_size - 542 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 543 544 if (vn_has_cached_data(vp)) 545 error = mappedread(vp, nbytes, uio); 546 else 547 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 548 if (error) { 549 /* convert checksum errors into IO errors */ 550 if (error == ECKSUM) 551 error = EIO; 552 break; 553 } 554 555 n -= nbytes; 556 } 557 out: 558 zfs_range_unlock(rl); 559 560 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 561 ZFS_EXIT(zfsvfs); 562 return (error); 563 } 564 565 /* 566 * Write the bytes to a file. 567 * 568 * IN: vp - vnode of file to be written to. 569 * uio - structure supplying write location, range info, 570 * and data buffer. 571 * ioflag - FAPPEND flag set if in append mode. 572 * cr - credentials of caller. 573 * ct - caller context (NFS/CIFS fem monitor only) 574 * 575 * OUT: uio - updated offset and range. 576 * 577 * RETURN: 0 if success 578 * error code if failure 579 * 580 * Timestamps: 581 * vp - ctime|mtime updated if byte count > 0 582 */ 583 584 /* ARGSUSED */ 585 static int 586 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 587 { 588 znode_t *zp = VTOZ(vp); 589 rlim64_t limit = uio->uio_llimit; 590 ssize_t start_resid = uio->uio_resid; 591 ssize_t tx_bytes; 592 uint64_t end_size; 593 dmu_tx_t *tx; 594 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 595 zilog_t *zilog; 596 offset_t woff; 597 ssize_t n, nbytes; 598 rl_t *rl; 599 int max_blksz = zfsvfs->z_max_blksz; 600 int error; 601 arc_buf_t *abuf; 602 iovec_t *aiov; 603 xuio_t *xuio = NULL; 604 int i_iov = 0; 605 int iovcnt = uio->uio_iovcnt; 606 iovec_t *iovp = uio->uio_iov; 607 int write_eof; 608 int count = 0; 609 sa_bulk_attr_t bulk[4]; 610 uint64_t mtime[2], ctime[2]; 611 612 /* 613 * Fasttrack empty write 614 */ 615 n = start_resid; 616 if (n == 0) 617 return (0); 618 619 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 620 limit = MAXOFFSET_T; 621 622 ZFS_ENTER(zfsvfs); 623 ZFS_VERIFY_ZP(zp); 624 625 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 626 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 627 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 628 &zp->z_size, 8); 629 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 630 &zp->z_pflags, 8); 631 632 /* 633 * If immutable or not appending then return EPERM 634 */ 635 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 636 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 637 (uio->uio_loffset < zp->z_size))) { 638 ZFS_EXIT(zfsvfs); 639 return (EPERM); 640 } 641 642 zilog = zfsvfs->z_log; 643 644 /* 645 * Validate file offset 646 */ 647 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 648 if (woff < 0) { 649 ZFS_EXIT(zfsvfs); 650 return (EINVAL); 651 } 652 653 /* 654 * Check for mandatory locks before calling zfs_range_lock() 655 * in order to prevent a deadlock with locks set via fcntl(). 656 */ 657 if (MANDMODE((mode_t)zp->z_mode) && 658 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 659 ZFS_EXIT(zfsvfs); 660 return (error); 661 } 662 663 /* 664 * Pre-fault the pages to ensure slow (eg NFS) pages 665 * don't hold up txg. 666 * Skip this if uio contains loaned arc_buf. 667 */ 668 if ((uio->uio_extflg == UIO_XUIO) && 669 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 670 xuio = (xuio_t *)uio; 671 else 672 uio_prefaultpages(n, uio); 673 674 /* 675 * If in append mode, set the io offset pointer to eof. 676 */ 677 if (ioflag & FAPPEND) { 678 /* 679 * Obtain an appending range lock to guarantee file append 680 * semantics. We reset the write offset once we have the lock. 681 */ 682 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 683 woff = rl->r_off; 684 if (rl->r_len == UINT64_MAX) { 685 /* 686 * We overlocked the file because this write will cause 687 * the file block size to increase. 688 * Note that zp_size cannot change with this lock held. 689 */ 690 woff = zp->z_size; 691 } 692 uio->uio_loffset = woff; 693 } else { 694 /* 695 * Note that if the file block size will change as a result of 696 * this write, then this range lock will lock the entire file 697 * so that we can re-write the block safely. 698 */ 699 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 700 } 701 702 if (woff >= limit) { 703 zfs_range_unlock(rl); 704 ZFS_EXIT(zfsvfs); 705 return (EFBIG); 706 } 707 708 if ((woff + n) > limit || woff > (limit - n)) 709 n = limit - woff; 710 711 /* Will this write extend the file length? */ 712 write_eof = (woff + n > zp->z_size); 713 714 end_size = MAX(zp->z_size, woff + n); 715 716 /* 717 * Write the file in reasonable size chunks. Each chunk is written 718 * in a separate transaction; this keeps the intent log records small 719 * and allows us to do more fine-grained space accounting. 720 */ 721 while (n > 0) { 722 abuf = NULL; 723 woff = uio->uio_loffset; 724 again: 725 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 726 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 727 if (abuf != NULL) 728 dmu_return_arcbuf(abuf); 729 error = EDQUOT; 730 break; 731 } 732 733 if (xuio && abuf == NULL) { 734 ASSERT(i_iov < iovcnt); 735 aiov = &iovp[i_iov]; 736 abuf = dmu_xuio_arcbuf(xuio, i_iov); 737 dmu_xuio_clear(xuio, i_iov); 738 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 739 iovec_t *, aiov, arc_buf_t *, abuf); 740 ASSERT((aiov->iov_base == abuf->b_data) || 741 ((char *)aiov->iov_base - (char *)abuf->b_data + 742 aiov->iov_len == arc_buf_size(abuf))); 743 i_iov++; 744 } else if (abuf == NULL && n >= max_blksz && 745 woff >= zp->z_size && 746 P2PHASE(woff, max_blksz) == 0 && 747 zp->z_blksz == max_blksz) { 748 /* 749 * This write covers a full block. "Borrow" a buffer 750 * from the dmu so that we can fill it before we enter 751 * a transaction. This avoids the possibility of 752 * holding up the transaction if the data copy hangs 753 * up on a pagefault (e.g., from an NFS server mapping). 754 */ 755 size_t cbytes; 756 757 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 758 max_blksz); 759 ASSERT(abuf != NULL); 760 ASSERT(arc_buf_size(abuf) == max_blksz); 761 if (error = uiocopy(abuf->b_data, max_blksz, 762 UIO_WRITE, uio, &cbytes)) { 763 dmu_return_arcbuf(abuf); 764 break; 765 } 766 ASSERT(cbytes == max_blksz); 767 } 768 769 /* 770 * Start a transaction. 771 */ 772 tx = dmu_tx_create(zfsvfs->z_os); 773 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 774 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 775 zfs_sa_upgrade_txholds(tx, zp); 776 error = dmu_tx_assign(tx, TXG_NOWAIT); 777 if (error) { 778 if (error == ERESTART) { 779 dmu_tx_wait(tx); 780 dmu_tx_abort(tx); 781 goto again; 782 } 783 dmu_tx_abort(tx); 784 if (abuf != NULL) 785 dmu_return_arcbuf(abuf); 786 break; 787 } 788 789 /* 790 * If zfs_range_lock() over-locked we grow the blocksize 791 * and then reduce the lock range. This will only happen 792 * on the first iteration since zfs_range_reduce() will 793 * shrink down r_len to the appropriate size. 794 */ 795 if (rl->r_len == UINT64_MAX) { 796 uint64_t new_blksz; 797 798 if (zp->z_blksz > max_blksz) { 799 ASSERT(!ISP2(zp->z_blksz)); 800 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 801 } else { 802 new_blksz = MIN(end_size, max_blksz); 803 } 804 zfs_grow_blocksize(zp, new_blksz, tx); 805 zfs_range_reduce(rl, woff, n); 806 } 807 808 /* 809 * XXX - should we really limit each write to z_max_blksz? 810 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 811 */ 812 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 813 814 if (abuf == NULL) { 815 tx_bytes = uio->uio_resid; 816 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, uio, 817 nbytes, tx); 818 tx_bytes -= uio->uio_resid; 819 } else { 820 tx_bytes = nbytes; 821 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 822 /* 823 * If this is not a full block write, but we are 824 * extending the file past EOF and this data starts 825 * block-aligned, use assign_arcbuf(). Otherwise, 826 * write via dmu_write(). 827 */ 828 if (tx_bytes < max_blksz && (!write_eof || 829 aiov->iov_base != abuf->b_data)) { 830 ASSERT(xuio); 831 dmu_write(zfsvfs->z_os, zp->z_id, woff, 832 aiov->iov_len, aiov->iov_base, tx); 833 dmu_return_arcbuf(abuf); 834 xuio_stat_wbuf_copied(); 835 } else { 836 ASSERT(xuio || tx_bytes == max_blksz); 837 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 838 woff, abuf, tx); 839 } 840 ASSERT(tx_bytes <= uio->uio_resid); 841 uioskip(uio, tx_bytes); 842 } 843 if (tx_bytes && vn_has_cached_data(vp)) { 844 update_pages(vp, woff, 845 tx_bytes, zfsvfs->z_os, zp->z_id); 846 } 847 848 /* 849 * If we made no progress, we're done. If we made even 850 * partial progress, update the znode and ZIL accordingly. 851 */ 852 if (tx_bytes == 0) { 853 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 854 (void *)&zp->z_size, sizeof (uint64_t), tx); 855 dmu_tx_commit(tx); 856 ASSERT(error != 0); 857 break; 858 } 859 860 /* 861 * Clear Set-UID/Set-GID bits on successful write if not 862 * privileged and at least one of the excute bits is set. 863 * 864 * It would be nice to to this after all writes have 865 * been done, but that would still expose the ISUID/ISGID 866 * to another app after the partial write is committed. 867 * 868 */ 869 mutex_enter(&zp->z_acl_lock); 870 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 871 (S_IXUSR >> 6))) != 0 && 872 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 873 secpolicy_vnode_setid_retain(cr, 874 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 875 uint64_t newmode; 876 zp->z_mode &= ~(S_ISUID | S_ISGID); 877 newmode = zp->z_mode; 878 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 879 (void *)&newmode, sizeof (uint64_t), tx); 880 } 881 mutex_exit(&zp->z_acl_lock); 882 883 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 884 B_TRUE); 885 886 /* 887 * Update the file size (zp_size) if it has changed; 888 * account for possible concurrent updates. 889 */ 890 while ((end_size = zp->z_size) < uio->uio_loffset) { 891 (void) atomic_cas_64(&zp->z_size, end_size, 892 uio->uio_loffset); 893 ASSERT(error == 0); 894 } 895 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 896 897 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 898 dmu_tx_commit(tx); 899 900 if (error != 0) 901 break; 902 ASSERT(tx_bytes == nbytes); 903 n -= nbytes; 904 } 905 906 zfs_range_unlock(rl); 907 908 /* 909 * If we're in replay mode, or we made no progress, return error. 910 * Otherwise, it's at least a partial write, so it's successful. 911 */ 912 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 913 ZFS_EXIT(zfsvfs); 914 return (error); 915 } 916 917 if (ioflag & (FSYNC | FDSYNC)) 918 zil_commit(zilog, zp->z_last_itx, zp->z_id); 919 920 ZFS_EXIT(zfsvfs); 921 return (0); 922 } 923 924 void 925 zfs_get_done(zgd_t *zgd, int error) 926 { 927 znode_t *zp = zgd->zgd_private; 928 objset_t *os = zp->z_zfsvfs->z_os; 929 930 if (zgd->zgd_db) 931 dmu_buf_rele(zgd->zgd_db, zgd); 932 933 zfs_range_unlock(zgd->zgd_rl); 934 935 /* 936 * Release the vnode asynchronously as we currently have the 937 * txg stopped from syncing. 938 */ 939 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 940 941 if (error == 0 && zgd->zgd_bp) 942 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 943 944 kmem_free(zgd, sizeof (zgd_t)); 945 } 946 947 #ifdef DEBUG 948 static int zil_fault_io = 0; 949 #endif 950 951 /* 952 * Get data to generate a TX_WRITE intent log record. 953 */ 954 int 955 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 956 { 957 zfsvfs_t *zfsvfs = arg; 958 objset_t *os = zfsvfs->z_os; 959 znode_t *zp; 960 uint64_t object = lr->lr_foid; 961 uint64_t offset = lr->lr_offset; 962 uint64_t size = lr->lr_length; 963 blkptr_t *bp = &lr->lr_blkptr; 964 dmu_buf_t *db; 965 zgd_t *zgd; 966 int error = 0; 967 968 ASSERT(zio != NULL); 969 ASSERT(size != 0); 970 971 /* 972 * Nothing to do if the file has been removed 973 */ 974 if (zfs_zget(zfsvfs, object, &zp) != 0) 975 return (ENOENT); 976 if (zp->z_unlinked) { 977 /* 978 * Release the vnode asynchronously as we currently have the 979 * txg stopped from syncing. 980 */ 981 VN_RELE_ASYNC(ZTOV(zp), 982 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 983 return (ENOENT); 984 } 985 986 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 987 zgd->zgd_zilog = zfsvfs->z_log; 988 zgd->zgd_private = zp; 989 990 /* 991 * Write records come in two flavors: immediate and indirect. 992 * For small writes it's cheaper to store the data with the 993 * log record (immediate); for large writes it's cheaper to 994 * sync the data and get a pointer to it (indirect) so that 995 * we don't have to write the data twice. 996 */ 997 if (buf != NULL) { /* immediate write */ 998 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 999 /* test for truncation needs to be done while range locked */ 1000 if (offset >= zp->z_size) { 1001 error = ENOENT; 1002 } else { 1003 error = dmu_read(os, object, offset, size, buf, 1004 DMU_READ_NO_PREFETCH); 1005 } 1006 ASSERT(error == 0 || error == ENOENT); 1007 } else { /* indirect write */ 1008 /* 1009 * Have to lock the whole block to ensure when it's 1010 * written out and it's checksum is being calculated 1011 * that no one can change the data. We need to re-check 1012 * blocksize after we get the lock in case it's changed! 1013 */ 1014 for (;;) { 1015 uint64_t blkoff; 1016 size = zp->z_blksz; 1017 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1018 offset -= blkoff; 1019 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1020 RL_READER); 1021 if (zp->z_blksz == size) 1022 break; 1023 offset += blkoff; 1024 zfs_range_unlock(zgd->zgd_rl); 1025 } 1026 /* test for truncation needs to be done while range locked */ 1027 if (lr->lr_offset >= zp->z_size) 1028 error = ENOENT; 1029 #ifdef DEBUG 1030 if (zil_fault_io) { 1031 error = EIO; 1032 zil_fault_io = 0; 1033 } 1034 #endif 1035 if (error == 0) 1036 error = dmu_buf_hold(os, object, offset, zgd, &db); 1037 1038 if (error == 0) { 1039 zgd->zgd_db = db; 1040 zgd->zgd_bp = bp; 1041 1042 ASSERT(db->db_offset == offset); 1043 ASSERT(db->db_size == size); 1044 1045 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1046 zfs_get_done, zgd); 1047 ASSERT(error || lr->lr_length <= zp->z_blksz); 1048 1049 /* 1050 * On success, we need to wait for the write I/O 1051 * initiated by dmu_sync() to complete before we can 1052 * release this dbuf. We will finish everything up 1053 * in the zfs_get_done() callback. 1054 */ 1055 if (error == 0) 1056 return (0); 1057 1058 if (error == EALREADY) { 1059 lr->lr_common.lrc_txtype = TX_WRITE2; 1060 error = 0; 1061 } 1062 } 1063 } 1064 1065 zfs_get_done(zgd, error); 1066 1067 return (error); 1068 } 1069 1070 /*ARGSUSED*/ 1071 static int 1072 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1073 caller_context_t *ct) 1074 { 1075 znode_t *zp = VTOZ(vp); 1076 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1077 int error; 1078 1079 ZFS_ENTER(zfsvfs); 1080 ZFS_VERIFY_ZP(zp); 1081 1082 if (flag & V_ACE_MASK) 1083 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1084 else 1085 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1086 1087 ZFS_EXIT(zfsvfs); 1088 return (error); 1089 } 1090 1091 /* 1092 * If vnode is for a device return a specfs vnode instead. 1093 */ 1094 static int 1095 specvp_check(vnode_t **vpp, cred_t *cr) 1096 { 1097 int error = 0; 1098 1099 if (IS_DEVVP(*vpp)) { 1100 struct vnode *svp; 1101 1102 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1103 VN_RELE(*vpp); 1104 if (svp == NULL) 1105 error = ENOSYS; 1106 *vpp = svp; 1107 } 1108 return (error); 1109 } 1110 1111 1112 /* 1113 * Lookup an entry in a directory, or an extended attribute directory. 1114 * If it exists, return a held vnode reference for it. 1115 * 1116 * IN: dvp - vnode of directory to search. 1117 * nm - name of entry to lookup. 1118 * pnp - full pathname to lookup [UNUSED]. 1119 * flags - LOOKUP_XATTR set if looking for an attribute. 1120 * rdir - root directory vnode [UNUSED]. 1121 * cr - credentials of caller. 1122 * ct - caller context 1123 * direntflags - directory lookup flags 1124 * realpnp - returned pathname. 1125 * 1126 * OUT: vpp - vnode of located entry, NULL if not found. 1127 * 1128 * RETURN: 0 if success 1129 * error code if failure 1130 * 1131 * Timestamps: 1132 * NA 1133 */ 1134 /* ARGSUSED */ 1135 static int 1136 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1137 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1138 int *direntflags, pathname_t *realpnp) 1139 { 1140 znode_t *zdp = VTOZ(dvp); 1141 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1142 int error = 0; 1143 1144 /* fast path */ 1145 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1146 1147 if (dvp->v_type != VDIR) { 1148 return (ENOTDIR); 1149 } else if (zdp->z_sa_hdl == NULL) { 1150 return (EIO); 1151 } 1152 1153 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1154 error = zfs_fastaccesschk_execute(zdp, cr); 1155 if (!error) { 1156 *vpp = dvp; 1157 VN_HOLD(*vpp); 1158 return (0); 1159 } 1160 return (error); 1161 } else { 1162 vnode_t *tvp = dnlc_lookup(dvp, nm); 1163 1164 if (tvp) { 1165 error = zfs_fastaccesschk_execute(zdp, cr); 1166 if (error) { 1167 VN_RELE(tvp); 1168 return (error); 1169 } 1170 if (tvp == DNLC_NO_VNODE) { 1171 VN_RELE(tvp); 1172 return (ENOENT); 1173 } else { 1174 *vpp = tvp; 1175 return (specvp_check(vpp, cr)); 1176 } 1177 } 1178 } 1179 } 1180 1181 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1182 1183 ZFS_ENTER(zfsvfs); 1184 ZFS_VERIFY_ZP(zdp); 1185 1186 *vpp = NULL; 1187 1188 if (flags & LOOKUP_XATTR) { 1189 /* 1190 * If the xattr property is off, refuse the lookup request. 1191 */ 1192 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1193 ZFS_EXIT(zfsvfs); 1194 return (EINVAL); 1195 } 1196 1197 /* 1198 * We don't allow recursive attributes.. 1199 * Maybe someday we will. 1200 */ 1201 if (zdp->z_pflags & ZFS_XATTR) { 1202 ZFS_EXIT(zfsvfs); 1203 return (EINVAL); 1204 } 1205 1206 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1207 ZFS_EXIT(zfsvfs); 1208 return (error); 1209 } 1210 1211 /* 1212 * Do we have permission to get into attribute directory? 1213 */ 1214 1215 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1216 B_FALSE, cr)) { 1217 VN_RELE(*vpp); 1218 *vpp = NULL; 1219 } 1220 1221 ZFS_EXIT(zfsvfs); 1222 return (error); 1223 } 1224 1225 if (dvp->v_type != VDIR) { 1226 ZFS_EXIT(zfsvfs); 1227 return (ENOTDIR); 1228 } 1229 1230 /* 1231 * Check accessibility of directory. 1232 */ 1233 1234 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1235 ZFS_EXIT(zfsvfs); 1236 return (error); 1237 } 1238 1239 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1240 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1241 ZFS_EXIT(zfsvfs); 1242 return (EILSEQ); 1243 } 1244 1245 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1246 if (error == 0) 1247 error = specvp_check(vpp, cr); 1248 1249 ZFS_EXIT(zfsvfs); 1250 return (error); 1251 } 1252 1253 /* 1254 * Attempt to create a new entry in a directory. If the entry 1255 * already exists, truncate the file if permissible, else return 1256 * an error. Return the vp of the created or trunc'd file. 1257 * 1258 * IN: dvp - vnode of directory to put new file entry in. 1259 * name - name of new file entry. 1260 * vap - attributes of new file. 1261 * excl - flag indicating exclusive or non-exclusive mode. 1262 * mode - mode to open file with. 1263 * cr - credentials of caller. 1264 * flag - large file flag [UNUSED]. 1265 * ct - caller context 1266 * vsecp - ACL to be set 1267 * 1268 * OUT: vpp - vnode of created or trunc'd entry. 1269 * 1270 * RETURN: 0 if success 1271 * error code if failure 1272 * 1273 * Timestamps: 1274 * dvp - ctime|mtime updated if new entry created 1275 * vp - ctime|mtime always, atime if new 1276 */ 1277 1278 /* ARGSUSED */ 1279 static int 1280 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1281 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1282 vsecattr_t *vsecp) 1283 { 1284 znode_t *zp, *dzp = VTOZ(dvp); 1285 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1286 zilog_t *zilog; 1287 objset_t *os; 1288 zfs_dirlock_t *dl; 1289 dmu_tx_t *tx; 1290 int error; 1291 ksid_t *ksid; 1292 uid_t uid; 1293 gid_t gid = crgetgid(cr); 1294 zfs_acl_ids_t acl_ids; 1295 boolean_t fuid_dirtied; 1296 1297 /* 1298 * If we have an ephemeral id, ACL, or XVATTR then 1299 * make sure file system is at proper version 1300 */ 1301 1302 ksid = crgetsid(cr, KSID_OWNER); 1303 if (ksid) 1304 uid = ksid_getid(ksid); 1305 else 1306 uid = crgetuid(cr); 1307 1308 if (zfsvfs->z_use_fuids == B_FALSE && 1309 (vsecp || (vap->va_mask & AT_XVATTR) || 1310 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1311 return (EINVAL); 1312 1313 ZFS_ENTER(zfsvfs); 1314 ZFS_VERIFY_ZP(dzp); 1315 os = zfsvfs->z_os; 1316 zilog = zfsvfs->z_log; 1317 1318 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1319 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1320 ZFS_EXIT(zfsvfs); 1321 return (EILSEQ); 1322 } 1323 1324 if (vap->va_mask & AT_XVATTR) { 1325 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1326 crgetuid(cr), cr, vap->va_type)) != 0) { 1327 ZFS_EXIT(zfsvfs); 1328 return (error); 1329 } 1330 } 1331 top: 1332 *vpp = NULL; 1333 1334 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1335 vap->va_mode &= ~VSVTX; 1336 1337 if (*name == '\0') { 1338 /* 1339 * Null component name refers to the directory itself. 1340 */ 1341 VN_HOLD(dvp); 1342 zp = dzp; 1343 dl = NULL; 1344 error = 0; 1345 } else { 1346 /* possible VN_HOLD(zp) */ 1347 int zflg = 0; 1348 1349 if (flag & FIGNORECASE) 1350 zflg |= ZCILOOK; 1351 1352 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1353 NULL, NULL); 1354 if (error) { 1355 if (strcmp(name, "..") == 0) 1356 error = EISDIR; 1357 ZFS_EXIT(zfsvfs); 1358 return (error); 1359 } 1360 } 1361 1362 if (zp == NULL) { 1363 uint64_t txtype; 1364 1365 /* 1366 * Create a new file object and update the directory 1367 * to reference it. 1368 */ 1369 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1370 goto out; 1371 } 1372 1373 /* 1374 * We only support the creation of regular files in 1375 * extended attribute directories. 1376 */ 1377 1378 if ((dzp->z_pflags & ZFS_XATTR) && 1379 (vap->va_type != VREG)) { 1380 error = EINVAL; 1381 goto out; 1382 } 1383 1384 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1385 &acl_ids)) != 0) 1386 goto out; 1387 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1388 zfs_acl_ids_free(&acl_ids); 1389 error = EDQUOT; 1390 goto out; 1391 } 1392 1393 tx = dmu_tx_create(os); 1394 1395 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1396 ZFS_SA_BASE_ATTR_SIZE); 1397 1398 fuid_dirtied = zfsvfs->z_fuid_dirty; 1399 if (fuid_dirtied) 1400 zfs_fuid_txhold(zfsvfs, tx); 1401 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1402 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1403 if (!zfsvfs->z_use_sa && 1404 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1405 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1406 0, acl_ids.z_aclp->z_acl_bytes); 1407 } 1408 error = dmu_tx_assign(tx, TXG_NOWAIT); 1409 if (error) { 1410 zfs_acl_ids_free(&acl_ids); 1411 zfs_dirent_unlock(dl); 1412 if (error == ERESTART) { 1413 dmu_tx_wait(tx); 1414 dmu_tx_abort(tx); 1415 goto top; 1416 } 1417 dmu_tx_abort(tx); 1418 ZFS_EXIT(zfsvfs); 1419 return (error); 1420 } 1421 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1422 1423 if (fuid_dirtied) 1424 zfs_fuid_sync(zfsvfs, tx); 1425 1426 (void) zfs_link_create(dl, zp, tx, ZNEW); 1427 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1428 if (flag & FIGNORECASE) 1429 txtype |= TX_CI; 1430 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1431 vsecp, acl_ids.z_fuidp, vap); 1432 zfs_acl_ids_free(&acl_ids); 1433 dmu_tx_commit(tx); 1434 } else { 1435 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1436 1437 /* 1438 * A directory entry already exists for this name. 1439 */ 1440 /* 1441 * Can't truncate an existing file if in exclusive mode. 1442 */ 1443 if (excl == EXCL) { 1444 error = EEXIST; 1445 goto out; 1446 } 1447 /* 1448 * Can't open a directory for writing. 1449 */ 1450 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1451 error = EISDIR; 1452 goto out; 1453 } 1454 /* 1455 * Verify requested access to file. 1456 */ 1457 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1458 goto out; 1459 } 1460 1461 mutex_enter(&dzp->z_lock); 1462 dzp->z_seq++; 1463 mutex_exit(&dzp->z_lock); 1464 1465 /* 1466 * Truncate regular files if requested. 1467 */ 1468 if ((ZTOV(zp)->v_type == VREG) && 1469 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1470 /* we can't hold any locks when calling zfs_freesp() */ 1471 zfs_dirent_unlock(dl); 1472 dl = NULL; 1473 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1474 if (error == 0) { 1475 vnevent_create(ZTOV(zp), ct); 1476 } 1477 } 1478 } 1479 out: 1480 1481 if (dl) 1482 zfs_dirent_unlock(dl); 1483 1484 if (error) { 1485 if (zp) 1486 VN_RELE(ZTOV(zp)); 1487 } else { 1488 *vpp = ZTOV(zp); 1489 error = specvp_check(vpp, cr); 1490 } 1491 1492 ZFS_EXIT(zfsvfs); 1493 return (error); 1494 } 1495 1496 /* 1497 * Remove an entry from a directory. 1498 * 1499 * IN: dvp - vnode of directory to remove entry from. 1500 * name - name of entry to remove. 1501 * cr - credentials of caller. 1502 * ct - caller context 1503 * flags - case flags 1504 * 1505 * RETURN: 0 if success 1506 * error code if failure 1507 * 1508 * Timestamps: 1509 * dvp - ctime|mtime 1510 * vp - ctime (if nlink > 0) 1511 */ 1512 1513 uint64_t null_xattr = 0; 1514 1515 /*ARGSUSED*/ 1516 static int 1517 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1518 int flags) 1519 { 1520 znode_t *zp, *dzp = VTOZ(dvp); 1521 znode_t *xzp = NULL; 1522 vnode_t *vp; 1523 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1524 zilog_t *zilog; 1525 uint64_t acl_obj, xattr_obj = 0; 1526 uint64_t xattr_obj_unlinked = 0; 1527 zfs_dirlock_t *dl; 1528 dmu_tx_t *tx; 1529 boolean_t may_delete_now, delete_now = FALSE; 1530 boolean_t unlinked, toobig = FALSE; 1531 uint64_t txtype; 1532 pathname_t *realnmp = NULL; 1533 pathname_t realnm; 1534 int error; 1535 int zflg = ZEXISTS; 1536 1537 ZFS_ENTER(zfsvfs); 1538 ZFS_VERIFY_ZP(dzp); 1539 zilog = zfsvfs->z_log; 1540 1541 if (flags & FIGNORECASE) { 1542 zflg |= ZCILOOK; 1543 pn_alloc(&realnm); 1544 realnmp = &realnm; 1545 } 1546 1547 top: 1548 /* 1549 * Attempt to lock directory; fail if entry doesn't exist. 1550 */ 1551 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1552 NULL, realnmp)) { 1553 if (realnmp) 1554 pn_free(realnmp); 1555 ZFS_EXIT(zfsvfs); 1556 return (error); 1557 } 1558 1559 vp = ZTOV(zp); 1560 1561 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1562 goto out; 1563 } 1564 1565 /* 1566 * Need to use rmdir for removing directories. 1567 */ 1568 if (vp->v_type == VDIR) { 1569 error = EPERM; 1570 goto out; 1571 } 1572 1573 vnevent_remove(vp, dvp, name, ct); 1574 1575 if (realnmp) 1576 dnlc_remove(dvp, realnmp->pn_buf); 1577 else 1578 dnlc_remove(dvp, name); 1579 1580 mutex_enter(&vp->v_lock); 1581 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1582 mutex_exit(&vp->v_lock); 1583 1584 /* 1585 * We may delete the znode now, or we may put it in the unlinked set; 1586 * it depends on whether we're the last link, and on whether there are 1587 * other holds on the vnode. So we dmu_tx_hold() the right things to 1588 * allow for either case. 1589 */ 1590 tx = dmu_tx_create(zfsvfs->z_os); 1591 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1592 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1593 zfs_sa_upgrade_txholds(tx, zp); 1594 zfs_sa_upgrade_txholds(tx, dzp); 1595 if (may_delete_now) { 1596 toobig = 1597 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1598 /* if the file is too big, only hold_free a token amount */ 1599 dmu_tx_hold_free(tx, zp->z_id, 0, 1600 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1601 } 1602 1603 /* are there any extended attributes? */ 1604 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1605 &xattr_obj, sizeof (xattr_obj)); 1606 if (xattr_obj) { 1607 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1608 ASSERT3U(error, ==, 0); 1609 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1610 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1611 } 1612 1613 /* are there any additional acls */ 1614 if ((acl_obj = ZFS_EXTERNAL_ACL(zp)) != 0 && may_delete_now) 1615 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1616 1617 /* charge as an update -- would be nice not to charge at all */ 1618 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1619 1620 error = dmu_tx_assign(tx, TXG_NOWAIT); 1621 if (error) { 1622 zfs_dirent_unlock(dl); 1623 VN_RELE(vp); 1624 if (error == ERESTART) { 1625 dmu_tx_wait(tx); 1626 dmu_tx_abort(tx); 1627 goto top; 1628 } 1629 if (realnmp) 1630 pn_free(realnmp); 1631 dmu_tx_abort(tx); 1632 ZFS_EXIT(zfsvfs); 1633 return (error); 1634 } 1635 1636 /* 1637 * Remove the directory entry. 1638 */ 1639 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1640 1641 if (error) { 1642 dmu_tx_commit(tx); 1643 goto out; 1644 } 1645 1646 if (unlinked) { 1647 1648 mutex_enter(&vp->v_lock); 1649 1650 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1651 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1652 delete_now = may_delete_now && !toobig && 1653 vp->v_count == 1 && !vn_has_cached_data(vp) && 1654 xattr_obj == xattr_obj_unlinked && ZFS_EXTERNAL_ACL(zp) == 1655 acl_obj; 1656 mutex_exit(&vp->v_lock); 1657 } 1658 1659 if (delete_now) { 1660 if (xattr_obj_unlinked) { 1661 ASSERT3U(xzp->z_links, ==, 2); 1662 mutex_enter(&xzp->z_lock); 1663 xzp->z_unlinked = 1; 1664 xzp->z_links = 0; 1665 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1666 &xzp->z_links, sizeof (xzp->z_links), tx); 1667 ASSERT3U(error, ==, 0); 1668 mutex_exit(&xzp->z_lock); 1669 zfs_unlinked_add(xzp, tx); 1670 if (zp->z_is_sa) 1671 error = sa_remove(zp->z_sa_hdl, 1672 SA_ZPL_XATTR(zfsvfs), tx); 1673 else 1674 error = sa_update(zp->z_sa_hdl, 1675 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1676 sizeof (uint64_t), tx); 1677 ASSERT3U(error, ==, 0); 1678 } 1679 mutex_enter(&zp->z_lock); 1680 mutex_enter(&vp->v_lock); 1681 vp->v_count--; 1682 ASSERT3U(vp->v_count, ==, 0); 1683 mutex_exit(&vp->v_lock); 1684 mutex_exit(&zp->z_lock); 1685 zfs_znode_delete(zp, tx); 1686 } else if (unlinked) { 1687 zfs_unlinked_add(zp, tx); 1688 } 1689 1690 txtype = TX_REMOVE; 1691 if (flags & FIGNORECASE) 1692 txtype |= TX_CI; 1693 zfs_log_remove(zilog, tx, txtype, dzp, name); 1694 1695 dmu_tx_commit(tx); 1696 out: 1697 if (realnmp) 1698 pn_free(realnmp); 1699 1700 zfs_dirent_unlock(dl); 1701 1702 if (!delete_now) { 1703 VN_RELE(vp); 1704 } else if (xzp) { 1705 /* this rele is delayed to prevent nesting transactions */ 1706 VN_RELE(ZTOV(xzp)); 1707 } 1708 1709 ZFS_EXIT(zfsvfs); 1710 return (error); 1711 } 1712 1713 /* 1714 * Create a new directory and insert it into dvp using the name 1715 * provided. Return a pointer to the inserted directory. 1716 * 1717 * IN: dvp - vnode of directory to add subdir to. 1718 * dirname - name of new directory. 1719 * vap - attributes of new directory. 1720 * cr - credentials of caller. 1721 * ct - caller context 1722 * vsecp - ACL to be set 1723 * 1724 * OUT: vpp - vnode of created directory. 1725 * 1726 * RETURN: 0 if success 1727 * error code if failure 1728 * 1729 * Timestamps: 1730 * dvp - ctime|mtime updated 1731 * vp - ctime|mtime|atime updated 1732 */ 1733 /*ARGSUSED*/ 1734 static int 1735 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1736 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1737 { 1738 znode_t *zp, *dzp = VTOZ(dvp); 1739 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1740 zilog_t *zilog; 1741 zfs_dirlock_t *dl; 1742 uint64_t txtype; 1743 dmu_tx_t *tx; 1744 int error; 1745 int zf = ZNEW; 1746 ksid_t *ksid; 1747 uid_t uid; 1748 gid_t gid = crgetgid(cr); 1749 zfs_acl_ids_t acl_ids; 1750 boolean_t fuid_dirtied; 1751 1752 ASSERT(vap->va_type == VDIR); 1753 1754 /* 1755 * If we have an ephemeral id, ACL, or XVATTR then 1756 * make sure file system is at proper version 1757 */ 1758 1759 ksid = crgetsid(cr, KSID_OWNER); 1760 if (ksid) 1761 uid = ksid_getid(ksid); 1762 else 1763 uid = crgetuid(cr); 1764 if (zfsvfs->z_use_fuids == B_FALSE && 1765 (vsecp || (vap->va_mask & AT_XVATTR) || 1766 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1767 return (EINVAL); 1768 1769 ZFS_ENTER(zfsvfs); 1770 ZFS_VERIFY_ZP(dzp); 1771 zilog = zfsvfs->z_log; 1772 1773 if (dzp->z_pflags & ZFS_XATTR) { 1774 ZFS_EXIT(zfsvfs); 1775 return (EINVAL); 1776 } 1777 1778 if (zfsvfs->z_utf8 && u8_validate(dirname, 1779 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1780 ZFS_EXIT(zfsvfs); 1781 return (EILSEQ); 1782 } 1783 if (flags & FIGNORECASE) 1784 zf |= ZCILOOK; 1785 1786 if (vap->va_mask & AT_XVATTR) 1787 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1788 crgetuid(cr), cr, vap->va_type)) != 0) { 1789 ZFS_EXIT(zfsvfs); 1790 return (error); 1791 } 1792 1793 /* 1794 * First make sure the new directory doesn't exist. 1795 */ 1796 top: 1797 *vpp = NULL; 1798 1799 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1800 NULL, NULL)) { 1801 ZFS_EXIT(zfsvfs); 1802 return (error); 1803 } 1804 1805 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1806 zfs_dirent_unlock(dl); 1807 ZFS_EXIT(zfsvfs); 1808 return (error); 1809 } 1810 1811 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1812 &acl_ids)) != 0) { 1813 zfs_dirent_unlock(dl); 1814 ZFS_EXIT(zfsvfs); 1815 return (error); 1816 } 1817 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1818 zfs_acl_ids_free(&acl_ids); 1819 zfs_dirent_unlock(dl); 1820 ZFS_EXIT(zfsvfs); 1821 return (EDQUOT); 1822 } 1823 1824 /* 1825 * Add a new entry to the directory. 1826 */ 1827 tx = dmu_tx_create(zfsvfs->z_os); 1828 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1829 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1830 fuid_dirtied = zfsvfs->z_fuid_dirty; 1831 if (fuid_dirtied) 1832 zfs_fuid_txhold(zfsvfs, tx); 1833 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1834 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1835 acl_ids.z_aclp->z_acl_bytes); 1836 } 1837 1838 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1839 ZFS_SA_BASE_ATTR_SIZE); 1840 1841 error = dmu_tx_assign(tx, TXG_NOWAIT); 1842 if (error) { 1843 zfs_acl_ids_free(&acl_ids); 1844 zfs_dirent_unlock(dl); 1845 if (error == ERESTART) { 1846 dmu_tx_wait(tx); 1847 dmu_tx_abort(tx); 1848 goto top; 1849 } 1850 dmu_tx_abort(tx); 1851 ZFS_EXIT(zfsvfs); 1852 return (error); 1853 } 1854 1855 /* 1856 * Create new node. 1857 */ 1858 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1859 1860 if (fuid_dirtied) 1861 zfs_fuid_sync(zfsvfs, tx); 1862 1863 /* 1864 * Now put new name in parent dir. 1865 */ 1866 (void) zfs_link_create(dl, zp, tx, ZNEW); 1867 1868 *vpp = ZTOV(zp); 1869 1870 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1871 if (flags & FIGNORECASE) 1872 txtype |= TX_CI; 1873 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1874 acl_ids.z_fuidp, vap); 1875 1876 zfs_acl_ids_free(&acl_ids); 1877 1878 dmu_tx_commit(tx); 1879 1880 zfs_dirent_unlock(dl); 1881 1882 ZFS_EXIT(zfsvfs); 1883 return (0); 1884 } 1885 1886 /* 1887 * Remove a directory subdir entry. If the current working 1888 * directory is the same as the subdir to be removed, the 1889 * remove will fail. 1890 * 1891 * IN: dvp - vnode of directory to remove from. 1892 * name - name of directory to be removed. 1893 * cwd - vnode of current working directory. 1894 * cr - credentials of caller. 1895 * ct - caller context 1896 * flags - case flags 1897 * 1898 * RETURN: 0 if success 1899 * error code if failure 1900 * 1901 * Timestamps: 1902 * dvp - ctime|mtime updated 1903 */ 1904 /*ARGSUSED*/ 1905 static int 1906 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1907 caller_context_t *ct, int flags) 1908 { 1909 znode_t *dzp = VTOZ(dvp); 1910 znode_t *zp; 1911 vnode_t *vp; 1912 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1913 zilog_t *zilog; 1914 zfs_dirlock_t *dl; 1915 dmu_tx_t *tx; 1916 int error; 1917 int zflg = ZEXISTS; 1918 1919 ZFS_ENTER(zfsvfs); 1920 ZFS_VERIFY_ZP(dzp); 1921 zilog = zfsvfs->z_log; 1922 1923 if (flags & FIGNORECASE) 1924 zflg |= ZCILOOK; 1925 top: 1926 zp = NULL; 1927 1928 /* 1929 * Attempt to lock directory; fail if entry doesn't exist. 1930 */ 1931 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1932 NULL, NULL)) { 1933 ZFS_EXIT(zfsvfs); 1934 return (error); 1935 } 1936 1937 vp = ZTOV(zp); 1938 1939 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1940 goto out; 1941 } 1942 1943 if (vp->v_type != VDIR) { 1944 error = ENOTDIR; 1945 goto out; 1946 } 1947 1948 if (vp == cwd) { 1949 error = EINVAL; 1950 goto out; 1951 } 1952 1953 vnevent_rmdir(vp, dvp, name, ct); 1954 1955 /* 1956 * Grab a lock on the directory to make sure that noone is 1957 * trying to add (or lookup) entries while we are removing it. 1958 */ 1959 rw_enter(&zp->z_name_lock, RW_WRITER); 1960 1961 /* 1962 * Grab a lock on the parent pointer to make sure we play well 1963 * with the treewalk and directory rename code. 1964 */ 1965 rw_enter(&zp->z_parent_lock, RW_WRITER); 1966 1967 tx = dmu_tx_create(zfsvfs->z_os); 1968 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1969 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1970 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1971 zfs_sa_upgrade_txholds(tx, zp); 1972 zfs_sa_upgrade_txholds(tx, dzp); 1973 error = dmu_tx_assign(tx, TXG_NOWAIT); 1974 if (error) { 1975 rw_exit(&zp->z_parent_lock); 1976 rw_exit(&zp->z_name_lock); 1977 zfs_dirent_unlock(dl); 1978 VN_RELE(vp); 1979 if (error == ERESTART) { 1980 dmu_tx_wait(tx); 1981 dmu_tx_abort(tx); 1982 goto top; 1983 } 1984 dmu_tx_abort(tx); 1985 ZFS_EXIT(zfsvfs); 1986 return (error); 1987 } 1988 1989 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1990 1991 if (error == 0) { 1992 uint64_t txtype = TX_RMDIR; 1993 if (flags & FIGNORECASE) 1994 txtype |= TX_CI; 1995 zfs_log_remove(zilog, tx, txtype, dzp, name); 1996 } 1997 1998 dmu_tx_commit(tx); 1999 2000 rw_exit(&zp->z_parent_lock); 2001 rw_exit(&zp->z_name_lock); 2002 out: 2003 zfs_dirent_unlock(dl); 2004 2005 VN_RELE(vp); 2006 2007 ZFS_EXIT(zfsvfs); 2008 return (error); 2009 } 2010 2011 /* 2012 * Read as many directory entries as will fit into the provided 2013 * buffer from the given directory cursor position (specified in 2014 * the uio structure. 2015 * 2016 * IN: vp - vnode of directory to read. 2017 * uio - structure supplying read location, range info, 2018 * and return buffer. 2019 * cr - credentials of caller. 2020 * ct - caller context 2021 * flags - case flags 2022 * 2023 * OUT: uio - updated offset and range, buffer filled. 2024 * eofp - set to true if end-of-file detected. 2025 * 2026 * RETURN: 0 if success 2027 * error code if failure 2028 * 2029 * Timestamps: 2030 * vp - atime updated 2031 * 2032 * Note that the low 4 bits of the cookie returned by zap is always zero. 2033 * This allows us to use the low range for "special" directory entries: 2034 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2035 * we use the offset 2 for the '.zfs' directory. 2036 */ 2037 /* ARGSUSED */ 2038 static int 2039 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2040 caller_context_t *ct, int flags) 2041 { 2042 znode_t *zp = VTOZ(vp); 2043 iovec_t *iovp; 2044 edirent_t *eodp; 2045 dirent64_t *odp; 2046 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2047 objset_t *os; 2048 caddr_t outbuf; 2049 size_t bufsize; 2050 zap_cursor_t zc; 2051 zap_attribute_t zap; 2052 uint_t bytes_wanted; 2053 uint64_t offset; /* must be unsigned; checks for < 1 */ 2054 uint64_t parent; 2055 int local_eof; 2056 int outcount; 2057 int error; 2058 uint8_t prefetch; 2059 boolean_t check_sysattrs; 2060 2061 ZFS_ENTER(zfsvfs); 2062 ZFS_VERIFY_ZP(zp); 2063 2064 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2065 &parent, sizeof (parent))) != 0) { 2066 ZFS_EXIT(zfsvfs); 2067 return (error); 2068 } 2069 2070 /* 2071 * If we are not given an eof variable, 2072 * use a local one. 2073 */ 2074 if (eofp == NULL) 2075 eofp = &local_eof; 2076 2077 /* 2078 * Check for valid iov_len. 2079 */ 2080 if (uio->uio_iov->iov_len <= 0) { 2081 ZFS_EXIT(zfsvfs); 2082 return (EINVAL); 2083 } 2084 2085 /* 2086 * Quit if directory has been removed (posix) 2087 */ 2088 if ((*eofp = zp->z_unlinked) != 0) { 2089 ZFS_EXIT(zfsvfs); 2090 return (0); 2091 } 2092 2093 error = 0; 2094 os = zfsvfs->z_os; 2095 offset = uio->uio_loffset; 2096 prefetch = zp->z_zn_prefetch; 2097 2098 /* 2099 * Initialize the iterator cursor. 2100 */ 2101 if (offset <= 3) { 2102 /* 2103 * Start iteration from the beginning of the directory. 2104 */ 2105 zap_cursor_init(&zc, os, zp->z_id); 2106 } else { 2107 /* 2108 * The offset is a serialized cursor. 2109 */ 2110 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2111 } 2112 2113 /* 2114 * Get space to change directory entries into fs independent format. 2115 */ 2116 iovp = uio->uio_iov; 2117 bytes_wanted = iovp->iov_len; 2118 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2119 bufsize = bytes_wanted; 2120 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2121 odp = (struct dirent64 *)outbuf; 2122 } else { 2123 bufsize = bytes_wanted; 2124 odp = (struct dirent64 *)iovp->iov_base; 2125 } 2126 eodp = (struct edirent *)odp; 2127 2128 /* 2129 * If this VFS supports the system attribute view interface; and 2130 * we're looking at an extended attribute directory; and we care 2131 * about normalization conflicts on this vfs; then we must check 2132 * for normalization conflicts with the sysattr name space. 2133 */ 2134 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2135 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2136 (flags & V_RDDIR_ENTFLAGS); 2137 2138 /* 2139 * Transform to file-system independent format 2140 */ 2141 outcount = 0; 2142 while (outcount < bytes_wanted) { 2143 ino64_t objnum; 2144 ushort_t reclen; 2145 off64_t *next; 2146 2147 /* 2148 * Special case `.', `..', and `.zfs'. 2149 */ 2150 if (offset == 0) { 2151 (void) strcpy(zap.za_name, "."); 2152 zap.za_normalization_conflict = 0; 2153 objnum = zp->z_id; 2154 } else if (offset == 1) { 2155 (void) strcpy(zap.za_name, ".."); 2156 zap.za_normalization_conflict = 0; 2157 objnum = parent; 2158 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2159 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2160 zap.za_normalization_conflict = 0; 2161 objnum = ZFSCTL_INO_ROOT; 2162 } else { 2163 /* 2164 * Grab next entry. 2165 */ 2166 if (error = zap_cursor_retrieve(&zc, &zap)) { 2167 if ((*eofp = (error == ENOENT)) != 0) 2168 break; 2169 else 2170 goto update; 2171 } 2172 2173 if (zap.za_integer_length != 8 || 2174 zap.za_num_integers != 1) { 2175 cmn_err(CE_WARN, "zap_readdir: bad directory " 2176 "entry, obj = %lld, offset = %lld\n", 2177 (u_longlong_t)zp->z_id, 2178 (u_longlong_t)offset); 2179 error = ENXIO; 2180 goto update; 2181 } 2182 2183 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2184 /* 2185 * MacOS X can extract the object type here such as: 2186 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2187 */ 2188 2189 if (check_sysattrs && !zap.za_normalization_conflict) { 2190 zap.za_normalization_conflict = 2191 xattr_sysattr_casechk(zap.za_name); 2192 } 2193 } 2194 2195 if (flags & V_RDDIR_ACCFILTER) { 2196 /* 2197 * If we have no access at all, don't include 2198 * this entry in the returned information 2199 */ 2200 znode_t *ezp; 2201 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2202 goto skip_entry; 2203 if (!zfs_has_access(ezp, cr)) { 2204 VN_RELE(ZTOV(ezp)); 2205 goto skip_entry; 2206 } 2207 VN_RELE(ZTOV(ezp)); 2208 } 2209 2210 if (flags & V_RDDIR_ENTFLAGS) 2211 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2212 else 2213 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2214 2215 /* 2216 * Will this entry fit in the buffer? 2217 */ 2218 if (outcount + reclen > bufsize) { 2219 /* 2220 * Did we manage to fit anything in the buffer? 2221 */ 2222 if (!outcount) { 2223 error = EINVAL; 2224 goto update; 2225 } 2226 break; 2227 } 2228 if (flags & V_RDDIR_ENTFLAGS) { 2229 /* 2230 * Add extended flag entry: 2231 */ 2232 eodp->ed_ino = objnum; 2233 eodp->ed_reclen = reclen; 2234 /* NOTE: ed_off is the offset for the *next* entry */ 2235 next = &(eodp->ed_off); 2236 eodp->ed_eflags = zap.za_normalization_conflict ? 2237 ED_CASE_CONFLICT : 0; 2238 (void) strncpy(eodp->ed_name, zap.za_name, 2239 EDIRENT_NAMELEN(reclen)); 2240 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2241 } else { 2242 /* 2243 * Add normal entry: 2244 */ 2245 odp->d_ino = objnum; 2246 odp->d_reclen = reclen; 2247 /* NOTE: d_off is the offset for the *next* entry */ 2248 next = &(odp->d_off); 2249 (void) strncpy(odp->d_name, zap.za_name, 2250 DIRENT64_NAMELEN(reclen)); 2251 odp = (dirent64_t *)((intptr_t)odp + reclen); 2252 } 2253 outcount += reclen; 2254 2255 ASSERT(outcount <= bufsize); 2256 2257 /* Prefetch znode */ 2258 if (prefetch) 2259 dmu_prefetch(os, objnum, 0, 0); 2260 2261 skip_entry: 2262 /* 2263 * Move to the next entry, fill in the previous offset. 2264 */ 2265 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2266 zap_cursor_advance(&zc); 2267 offset = zap_cursor_serialize(&zc); 2268 } else { 2269 offset += 1; 2270 } 2271 *next = offset; 2272 } 2273 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2274 2275 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2276 iovp->iov_base += outcount; 2277 iovp->iov_len -= outcount; 2278 uio->uio_resid -= outcount; 2279 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2280 /* 2281 * Reset the pointer. 2282 */ 2283 offset = uio->uio_loffset; 2284 } 2285 2286 update: 2287 zap_cursor_fini(&zc); 2288 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2289 kmem_free(outbuf, bufsize); 2290 2291 if (error == ENOENT) 2292 error = 0; 2293 2294 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2295 2296 uio->uio_loffset = offset; 2297 ZFS_EXIT(zfsvfs); 2298 return (error); 2299 } 2300 2301 ulong_t zfs_fsync_sync_cnt = 4; 2302 2303 static int 2304 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2305 { 2306 znode_t *zp = VTOZ(vp); 2307 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2308 2309 /* 2310 * Regardless of whether this is required for standards conformance, 2311 * this is the logical behavior when fsync() is called on a file with 2312 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2313 * going to be pushed out as part of the zil_commit(). 2314 */ 2315 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2316 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2317 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2318 2319 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2320 2321 ZFS_ENTER(zfsvfs); 2322 ZFS_VERIFY_ZP(zp); 2323 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2324 ZFS_EXIT(zfsvfs); 2325 return (0); 2326 } 2327 2328 2329 /* 2330 * Get the requested file attributes and place them in the provided 2331 * vattr structure. 2332 * 2333 * IN: vp - vnode of file. 2334 * vap - va_mask identifies requested attributes. 2335 * If AT_XVATTR set, then optional attrs are requested 2336 * flags - ATTR_NOACLCHECK (CIFS server context) 2337 * cr - credentials of caller. 2338 * ct - caller context 2339 * 2340 * OUT: vap - attribute values. 2341 * 2342 * RETURN: 0 (always succeeds) 2343 */ 2344 /* ARGSUSED */ 2345 static int 2346 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2347 caller_context_t *ct) 2348 { 2349 znode_t *zp = VTOZ(vp); 2350 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2351 int error = 0; 2352 uint64_t links; 2353 uint64_t mtime[2], ctime[2]; 2354 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2355 xoptattr_t *xoap = NULL; 2356 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2357 sa_bulk_attr_t bulk[2]; 2358 int count = 0; 2359 2360 ZFS_ENTER(zfsvfs); 2361 ZFS_VERIFY_ZP(zp); 2362 2363 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2364 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2365 2366 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2367 ZFS_EXIT(zfsvfs); 2368 return (error); 2369 } 2370 2371 /* 2372 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2373 * Also, if we are the owner don't bother, since owner should 2374 * always be allowed to read basic attributes of file. 2375 */ 2376 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (zp->z_uid != crgetuid(cr))) { 2377 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2378 skipaclchk, cr)) { 2379 ZFS_EXIT(zfsvfs); 2380 return (error); 2381 } 2382 } 2383 2384 /* 2385 * Return all attributes. It's cheaper to provide the answer 2386 * than to determine whether we were asked the question. 2387 */ 2388 2389 mutex_enter(&zp->z_lock); 2390 vap->va_type = vp->v_type; 2391 vap->va_mode = zp->z_mode & MODEMASK; 2392 vap->va_uid = zp->z_uid; 2393 vap->va_gid = zp->z_gid; 2394 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2395 vap->va_nodeid = zp->z_id; 2396 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2397 links = zp->z_links + 1; 2398 else 2399 links = zp->z_links; 2400 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2401 vap->va_size = zp->z_size; 2402 vap->va_rdev = vp->v_rdev; 2403 vap->va_seq = zp->z_seq; 2404 2405 /* 2406 * Add in any requested optional attributes and the create time. 2407 * Also set the corresponding bits in the returned attribute bitmap. 2408 */ 2409 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2410 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2411 xoap->xoa_archive = 2412 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2413 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2414 } 2415 2416 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2417 xoap->xoa_readonly = 2418 ((zp->z_pflags & ZFS_READONLY) != 0); 2419 XVA_SET_RTN(xvap, XAT_READONLY); 2420 } 2421 2422 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2423 xoap->xoa_system = 2424 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2425 XVA_SET_RTN(xvap, XAT_SYSTEM); 2426 } 2427 2428 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2429 xoap->xoa_hidden = 2430 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2431 XVA_SET_RTN(xvap, XAT_HIDDEN); 2432 } 2433 2434 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2435 xoap->xoa_nounlink = 2436 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2437 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2438 } 2439 2440 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2441 xoap->xoa_immutable = 2442 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2443 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2444 } 2445 2446 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2447 xoap->xoa_appendonly = 2448 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2449 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2450 } 2451 2452 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2453 xoap->xoa_nodump = 2454 ((zp->z_pflags & ZFS_NODUMP) != 0); 2455 XVA_SET_RTN(xvap, XAT_NODUMP); 2456 } 2457 2458 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2459 xoap->xoa_opaque = 2460 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2461 XVA_SET_RTN(xvap, XAT_OPAQUE); 2462 } 2463 2464 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2465 xoap->xoa_av_quarantined = 2466 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2467 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2468 } 2469 2470 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2471 xoap->xoa_av_modified = 2472 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2473 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2474 } 2475 2476 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2477 vp->v_type == VREG) { 2478 zfs_sa_get_scanstamp(zp, xvap); 2479 } 2480 2481 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2482 uint64_t times[2]; 2483 2484 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2485 times, sizeof (times)); 2486 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2487 XVA_SET_RTN(xvap, XAT_CREATETIME); 2488 } 2489 2490 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2491 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2492 XVA_SET_RTN(xvap, XAT_REPARSE); 2493 } 2494 } 2495 2496 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2497 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2498 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2499 2500 mutex_exit(&zp->z_lock); 2501 2502 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2503 2504 if (zp->z_blksz == 0) { 2505 /* 2506 * Block size hasn't been set; suggest maximal I/O transfers. 2507 */ 2508 vap->va_blksize = zfsvfs->z_max_blksz; 2509 } 2510 2511 ZFS_EXIT(zfsvfs); 2512 return (0); 2513 } 2514 2515 /* 2516 * Set the file attributes to the values contained in the 2517 * vattr structure. 2518 * 2519 * IN: vp - vnode of file to be modified. 2520 * vap - new attribute values. 2521 * If AT_XVATTR set, then optional attrs are being set 2522 * flags - ATTR_UTIME set if non-default time values provided. 2523 * - ATTR_NOACLCHECK (CIFS context only). 2524 * cr - credentials of caller. 2525 * ct - caller context 2526 * 2527 * RETURN: 0 if success 2528 * error code if failure 2529 * 2530 * Timestamps: 2531 * vp - ctime updated, mtime updated if size changed. 2532 */ 2533 /* ARGSUSED */ 2534 static int 2535 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2536 caller_context_t *ct) 2537 { 2538 znode_t *zp = VTOZ(vp); 2539 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2540 zilog_t *zilog; 2541 dmu_tx_t *tx; 2542 vattr_t oldva; 2543 xvattr_t tmpxvattr; 2544 uint_t mask = vap->va_mask; 2545 uint_t saved_mask; 2546 int trim_mask = 0; 2547 uint64_t new_mode; 2548 uint64_t new_uid, new_gid; 2549 uint64_t xattr_obj = 0; 2550 uint64_t mtime[2], ctime[2]; 2551 znode_t *attrzp; 2552 int need_policy = FALSE; 2553 int err, err2; 2554 zfs_fuid_info_t *fuidp = NULL; 2555 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2556 xoptattr_t *xoap; 2557 zfs_acl_t *aclp = NULL; 2558 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2559 boolean_t fuid_dirtied = B_FALSE; 2560 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2561 int count = 0, xattr_count = 0; 2562 2563 if (mask == 0) 2564 return (0); 2565 2566 if (mask & AT_NOSET) 2567 return (EINVAL); 2568 2569 ZFS_ENTER(zfsvfs); 2570 ZFS_VERIFY_ZP(zp); 2571 2572 zilog = zfsvfs->z_log; 2573 2574 /* 2575 * Make sure that if we have ephemeral uid/gid or xvattr specified 2576 * that file system is at proper version level 2577 */ 2578 2579 if (zfsvfs->z_use_fuids == B_FALSE && 2580 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2581 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2582 (mask & AT_XVATTR))) { 2583 ZFS_EXIT(zfsvfs); 2584 return (EINVAL); 2585 } 2586 2587 if (mask & AT_SIZE && vp->v_type == VDIR) { 2588 ZFS_EXIT(zfsvfs); 2589 return (EISDIR); 2590 } 2591 2592 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2593 ZFS_EXIT(zfsvfs); 2594 return (EINVAL); 2595 } 2596 2597 /* 2598 * If this is an xvattr_t, then get a pointer to the structure of 2599 * optional attributes. If this is NULL, then we have a vattr_t. 2600 */ 2601 xoap = xva_getxoptattr(xvap); 2602 2603 xva_init(&tmpxvattr); 2604 2605 /* 2606 * Immutable files can only alter immutable bit and atime 2607 */ 2608 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2609 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2610 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2611 ZFS_EXIT(zfsvfs); 2612 return (EPERM); 2613 } 2614 2615 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2616 ZFS_EXIT(zfsvfs); 2617 return (EPERM); 2618 } 2619 2620 /* 2621 * Verify timestamps doesn't overflow 32 bits. 2622 * ZFS can handle large timestamps, but 32bit syscalls can't 2623 * handle times greater than 2039. This check should be removed 2624 * once large timestamps are fully supported. 2625 */ 2626 if (mask & (AT_ATIME | AT_MTIME)) { 2627 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2628 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2629 ZFS_EXIT(zfsvfs); 2630 return (EOVERFLOW); 2631 } 2632 } 2633 2634 top: 2635 attrzp = NULL; 2636 2637 /* Can this be moved to before the top label? */ 2638 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2639 ZFS_EXIT(zfsvfs); 2640 return (EROFS); 2641 } 2642 2643 /* 2644 * First validate permissions 2645 */ 2646 2647 if (mask & AT_SIZE) { 2648 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2649 if (err) { 2650 ZFS_EXIT(zfsvfs); 2651 return (err); 2652 } 2653 /* 2654 * XXX - Note, we are not providing any open 2655 * mode flags here (like FNDELAY), so we may 2656 * block if there are locks present... this 2657 * should be addressed in openat(). 2658 */ 2659 /* XXX - would it be OK to generate a log record here? */ 2660 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2661 if (err) { 2662 ZFS_EXIT(zfsvfs); 2663 return (err); 2664 } 2665 } 2666 2667 if (mask & (AT_ATIME|AT_MTIME) || 2668 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2669 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2670 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2671 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2672 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2673 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2674 skipaclchk, cr); 2675 } 2676 2677 if (mask & (AT_UID|AT_GID)) { 2678 int idmask = (mask & (AT_UID|AT_GID)); 2679 int take_owner; 2680 int take_group; 2681 2682 /* 2683 * NOTE: even if a new mode is being set, 2684 * we may clear S_ISUID/S_ISGID bits. 2685 */ 2686 2687 if (!(mask & AT_MODE)) 2688 vap->va_mode = zp->z_mode; 2689 2690 /* 2691 * Take ownership or chgrp to group we are a member of 2692 */ 2693 2694 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2695 take_group = (mask & AT_GID) && 2696 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2697 2698 /* 2699 * If both AT_UID and AT_GID are set then take_owner and 2700 * take_group must both be set in order to allow taking 2701 * ownership. 2702 * 2703 * Otherwise, send the check through secpolicy_vnode_setattr() 2704 * 2705 */ 2706 2707 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2708 ((idmask == AT_UID) && take_owner) || 2709 ((idmask == AT_GID) && take_group)) { 2710 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2711 skipaclchk, cr) == 0) { 2712 /* 2713 * Remove setuid/setgid for non-privileged users 2714 */ 2715 secpolicy_setid_clear(vap, cr); 2716 trim_mask = (mask & (AT_UID|AT_GID)); 2717 } else { 2718 need_policy = TRUE; 2719 } 2720 } else { 2721 need_policy = TRUE; 2722 } 2723 } 2724 2725 mutex_enter(&zp->z_lock); 2726 oldva.va_mode = zp->z_mode; 2727 oldva.va_uid = zp->z_uid; 2728 oldva.va_gid = zp->z_gid; 2729 if (mask & AT_XVATTR) { 2730 /* 2731 * Update xvattr mask to include only those attributes 2732 * that are actually changing. 2733 * 2734 * the bits will be restored prior to actually setting 2735 * the attributes so the caller thinks they were set. 2736 */ 2737 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2738 if (xoap->xoa_appendonly != 2739 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2740 need_policy = TRUE; 2741 } else { 2742 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2743 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2744 } 2745 } 2746 2747 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2748 if (xoap->xoa_nounlink != 2749 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2750 need_policy = TRUE; 2751 } else { 2752 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2753 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2754 } 2755 } 2756 2757 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2758 if (xoap->xoa_immutable != 2759 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2760 need_policy = TRUE; 2761 } else { 2762 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2763 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2764 } 2765 } 2766 2767 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2768 if (xoap->xoa_nodump != 2769 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2770 need_policy = TRUE; 2771 } else { 2772 XVA_CLR_REQ(xvap, XAT_NODUMP); 2773 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2774 } 2775 } 2776 2777 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2778 if (xoap->xoa_av_modified != 2779 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2780 need_policy = TRUE; 2781 } else { 2782 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2783 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2784 } 2785 } 2786 2787 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2788 if ((vp->v_type != VREG && 2789 xoap->xoa_av_quarantined) || 2790 xoap->xoa_av_quarantined != 2791 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2792 need_policy = TRUE; 2793 } else { 2794 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2795 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2796 } 2797 } 2798 2799 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2800 mutex_exit(&zp->z_lock); 2801 ZFS_EXIT(zfsvfs); 2802 return (EPERM); 2803 } 2804 2805 if (need_policy == FALSE && 2806 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2807 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2808 need_policy = TRUE; 2809 } 2810 } 2811 2812 mutex_exit(&zp->z_lock); 2813 2814 if (mask & AT_MODE) { 2815 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2816 err = secpolicy_setid_setsticky_clear(vp, vap, 2817 &oldva, cr); 2818 if (err) { 2819 ZFS_EXIT(zfsvfs); 2820 return (err); 2821 } 2822 trim_mask |= AT_MODE; 2823 } else { 2824 need_policy = TRUE; 2825 } 2826 } 2827 2828 if (need_policy) { 2829 /* 2830 * If trim_mask is set then take ownership 2831 * has been granted or write_acl is present and user 2832 * has the ability to modify mode. In that case remove 2833 * UID|GID and or MODE from mask so that 2834 * secpolicy_vnode_setattr() doesn't revoke it. 2835 */ 2836 2837 if (trim_mask) { 2838 saved_mask = vap->va_mask; 2839 vap->va_mask &= ~trim_mask; 2840 } 2841 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2842 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2843 if (err) { 2844 ZFS_EXIT(zfsvfs); 2845 return (err); 2846 } 2847 2848 if (trim_mask) 2849 vap->va_mask |= saved_mask; 2850 } 2851 2852 /* 2853 * secpolicy_vnode_setattr, or take ownership may have 2854 * changed va_mask 2855 */ 2856 mask = vap->va_mask; 2857 2858 if ((mask & (AT_UID | AT_GID))) { 2859 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj, 2860 sizeof (xattr_obj)); 2861 2862 if (xattr_obj) { 2863 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 2864 if (err) 2865 goto out2; 2866 } 2867 if (mask & AT_UID) { 2868 new_uid = zfs_fuid_create(zfsvfs, 2869 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2870 if (vap->va_uid != zp->z_uid && 2871 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 2872 err = EDQUOT; 2873 goto out2; 2874 } 2875 } 2876 2877 if (mask & AT_GID) { 2878 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2879 cr, ZFS_GROUP, &fuidp); 2880 if (new_gid != zp->z_gid && 2881 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 2882 err = EDQUOT; 2883 goto out2; 2884 } 2885 } 2886 } 2887 tx = dmu_tx_create(zfsvfs->z_os); 2888 2889 if (mask & AT_MODE) { 2890 uint64_t pmode = zp->z_mode; 2891 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2892 2893 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2894 goto out; 2895 2896 if (!zp->z_is_sa && ZFS_EXTERNAL_ACL(zp)) { 2897 /* 2898 * Are we upgrading ACL from old V0 format 2899 * to V1 format? 2900 */ 2901 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2902 ZNODE_ACL_VERSION(zp) == 2903 ZFS_ACL_VERSION_INITIAL) { 2904 dmu_tx_hold_free(tx, 2905 ZFS_EXTERNAL_ACL(zp), 0, 2906 DMU_OBJECT_END); 2907 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2908 0, aclp->z_acl_bytes); 2909 } else { 2910 dmu_tx_hold_write(tx, ZFS_EXTERNAL_ACL(zp), 0, 2911 aclp->z_acl_bytes); 2912 } 2913 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2914 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2915 0, aclp->z_acl_bytes); 2916 } 2917 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2918 } else { 2919 if ((mask & AT_XVATTR) && 2920 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 2921 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2922 else 2923 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2924 } 2925 2926 if (attrzp) { 2927 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 2928 } 2929 2930 fuid_dirtied = zfsvfs->z_fuid_dirty; 2931 if (fuid_dirtied) 2932 zfs_fuid_txhold(zfsvfs, tx); 2933 2934 zfs_sa_upgrade_txholds(tx, zp); 2935 2936 err = dmu_tx_assign(tx, TXG_NOWAIT); 2937 if (err) { 2938 if (err == ERESTART) 2939 dmu_tx_wait(tx); 2940 goto out; 2941 } 2942 2943 count = 0; 2944 /* 2945 * Set each attribute requested. 2946 * We group settings according to the locks they need to acquire. 2947 * 2948 * Note: you cannot set ctime directly, although it will be 2949 * updated as a side-effect of calling this function. 2950 */ 2951 2952 mutex_enter(&zp->z_lock); 2953 2954 if (attrzp) 2955 mutex_enter(&attrzp->z_lock); 2956 2957 if (mask & AT_UID) { 2958 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 2959 &new_uid, sizeof (new_uid)); 2960 zp->z_uid = zfs_fuid_map_id(zfsvfs, new_uid, cr, ZFS_OWNER); 2961 if (attrzp) { 2962 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2963 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 2964 sizeof (new_uid)); 2965 attrzp->z_gid = zp->z_uid; 2966 } 2967 } 2968 2969 if (mask & AT_GID) { 2970 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 2971 &new_gid, sizeof (new_gid)); 2972 zp->z_gid = zfs_fuid_map_id(zfsvfs, new_gid, cr, ZFS_GROUP); 2973 if (attrzp) { 2974 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2975 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 2976 sizeof (new_gid)); 2977 attrzp->z_gid = zp->z_gid; 2978 } 2979 } 2980 2981 if (mask & AT_MODE) { 2982 mutex_enter(&zp->z_acl_lock); 2983 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 2984 &new_mode, sizeof (new_mode)); 2985 zp->z_mode = new_mode; 2986 err = zfs_aclset_common(zp, aclp, cr, tx); 2987 ASSERT3U(err, ==, 0); 2988 zp->z_acl_cached = aclp; 2989 aclp = NULL; 2990 mutex_exit(&zp->z_acl_lock); 2991 } 2992 2993 if (attrzp) 2994 mutex_exit(&attrzp->z_lock); 2995 2996 if (mask & AT_ATIME) { 2997 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 2998 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 2999 &zp->z_atime, sizeof (zp->z_atime)); 3000 } 3001 3002 if (mask & AT_MTIME) { 3003 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3004 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3005 mtime, sizeof (mtime)); 3006 } 3007 3008 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3009 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3010 if (!(mask & AT_MTIME)) 3011 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3012 NULL, mtime, sizeof (mtime)); 3013 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3014 &ctime, sizeof (ctime)); 3015 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3016 B_TRUE); 3017 } else if (mask != 0) { 3018 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3019 &ctime, sizeof (ctime)); 3020 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3021 B_TRUE); 3022 if (attrzp) { 3023 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3024 SA_ZPL_CTIME(zfsvfs), NULL, 3025 &ctime, sizeof (ctime)); 3026 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3027 mtime, ctime, B_TRUE); 3028 } 3029 } 3030 /* 3031 * Do this after setting timestamps to prevent timestamp 3032 * update from toggling bit 3033 */ 3034 3035 if (xoap && (mask & AT_XVATTR)) { 3036 3037 /* 3038 * restore trimmed off masks 3039 * so that return masks can be set for caller. 3040 */ 3041 3042 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3043 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3044 } 3045 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3046 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3047 } 3048 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3049 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3050 } 3051 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3052 XVA_SET_REQ(xvap, XAT_NODUMP); 3053 } 3054 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3055 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3056 } 3057 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3058 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3059 } 3060 3061 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3062 ASSERT(vp->v_type == VREG); 3063 3064 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3065 &zp->z_pflags, sizeof (zp->z_pflags)); 3066 zfs_xvattr_set(zp, xvap, tx); 3067 } 3068 3069 if (fuid_dirtied) 3070 zfs_fuid_sync(zfsvfs, tx); 3071 3072 if (mask != 0) 3073 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3074 3075 mutex_exit(&zp->z_lock); 3076 3077 out: 3078 if (err == 0 && attrzp) { 3079 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3080 xattr_count, tx); 3081 ASSERT(err2 == 0); 3082 } 3083 3084 if (attrzp) 3085 VN_RELE(ZTOV(attrzp)); 3086 if (aclp) 3087 zfs_acl_free(aclp); 3088 3089 if (fuidp) { 3090 zfs_fuid_info_free(fuidp); 3091 fuidp = NULL; 3092 } 3093 3094 if (err) { 3095 dmu_tx_abort(tx); 3096 if (err == ERESTART) 3097 goto top; 3098 } else { 3099 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3100 dmu_tx_commit(tx); 3101 } 3102 3103 3104 out2: 3105 ZFS_EXIT(zfsvfs); 3106 return (err); 3107 } 3108 3109 typedef struct zfs_zlock { 3110 krwlock_t *zl_rwlock; /* lock we acquired */ 3111 znode_t *zl_znode; /* znode we held */ 3112 struct zfs_zlock *zl_next; /* next in list */ 3113 } zfs_zlock_t; 3114 3115 /* 3116 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3117 */ 3118 static void 3119 zfs_rename_unlock(zfs_zlock_t **zlpp) 3120 { 3121 zfs_zlock_t *zl; 3122 3123 while ((zl = *zlpp) != NULL) { 3124 if (zl->zl_znode != NULL) 3125 VN_RELE(ZTOV(zl->zl_znode)); 3126 rw_exit(zl->zl_rwlock); 3127 *zlpp = zl->zl_next; 3128 kmem_free(zl, sizeof (*zl)); 3129 } 3130 } 3131 3132 /* 3133 * Search back through the directory tree, using the ".." entries. 3134 * Lock each directory in the chain to prevent concurrent renames. 3135 * Fail any attempt to move a directory into one of its own descendants. 3136 * XXX - z_parent_lock can overlap with map or grow locks 3137 */ 3138 static int 3139 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3140 { 3141 zfs_zlock_t *zl; 3142 znode_t *zp = tdzp; 3143 uint64_t rootid = zp->z_zfsvfs->z_root; 3144 uint64_t oidp = zp->z_id; 3145 krwlock_t *rwlp = &szp->z_parent_lock; 3146 krw_t rw = RW_WRITER; 3147 3148 /* 3149 * First pass write-locks szp and compares to zp->z_id. 3150 * Later passes read-lock zp and compare to zp->z_parent. 3151 */ 3152 do { 3153 if (!rw_tryenter(rwlp, rw)) { 3154 /* 3155 * Another thread is renaming in this path. 3156 * Note that if we are a WRITER, we don't have any 3157 * parent_locks held yet. 3158 */ 3159 if (rw == RW_READER && zp->z_id > szp->z_id) { 3160 /* 3161 * Drop our locks and restart 3162 */ 3163 zfs_rename_unlock(&zl); 3164 *zlpp = NULL; 3165 zp = tdzp; 3166 oidp = zp->z_id; 3167 rwlp = &szp->z_parent_lock; 3168 rw = RW_WRITER; 3169 continue; 3170 } else { 3171 /* 3172 * Wait for other thread to drop its locks 3173 */ 3174 rw_enter(rwlp, rw); 3175 } 3176 } 3177 3178 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3179 zl->zl_rwlock = rwlp; 3180 zl->zl_znode = NULL; 3181 zl->zl_next = *zlpp; 3182 *zlpp = zl; 3183 3184 if (oidp == szp->z_id) /* We're a descendant of szp */ 3185 return (EINVAL); 3186 3187 if (oidp == rootid) /* We've hit the top */ 3188 return (0); 3189 3190 if (rw == RW_READER) { /* i.e. not the first pass */ 3191 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3192 if (error) 3193 return (error); 3194 zl->zl_znode = zp; 3195 } 3196 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3197 &oidp, sizeof (oidp)); 3198 rwlp = &zp->z_parent_lock; 3199 rw = RW_READER; 3200 3201 } while (zp->z_id != sdzp->z_id); 3202 3203 return (0); 3204 } 3205 3206 /* 3207 * Move an entry from the provided source directory to the target 3208 * directory. Change the entry name as indicated. 3209 * 3210 * IN: sdvp - Source directory containing the "old entry". 3211 * snm - Old entry name. 3212 * tdvp - Target directory to contain the "new entry". 3213 * tnm - New entry name. 3214 * cr - credentials of caller. 3215 * ct - caller context 3216 * flags - case flags 3217 * 3218 * RETURN: 0 if success 3219 * error code if failure 3220 * 3221 * Timestamps: 3222 * sdvp,tdvp - ctime|mtime updated 3223 */ 3224 /*ARGSUSED*/ 3225 static int 3226 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3227 caller_context_t *ct, int flags) 3228 { 3229 znode_t *tdzp, *szp, *tzp; 3230 znode_t *sdzp = VTOZ(sdvp); 3231 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3232 zilog_t *zilog; 3233 vnode_t *realvp; 3234 zfs_dirlock_t *sdl, *tdl; 3235 dmu_tx_t *tx; 3236 zfs_zlock_t *zl; 3237 int cmp, serr, terr; 3238 int error = 0; 3239 int zflg = 0; 3240 3241 ZFS_ENTER(zfsvfs); 3242 ZFS_VERIFY_ZP(sdzp); 3243 zilog = zfsvfs->z_log; 3244 3245 /* 3246 * Make sure we have the real vp for the target directory. 3247 */ 3248 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3249 tdvp = realvp; 3250 3251 if (tdvp->v_vfsp != sdvp->v_vfsp) { 3252 ZFS_EXIT(zfsvfs); 3253 return (EXDEV); 3254 } 3255 3256 tdzp = VTOZ(tdvp); 3257 ZFS_VERIFY_ZP(tdzp); 3258 if (zfsvfs->z_utf8 && u8_validate(tnm, 3259 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3260 ZFS_EXIT(zfsvfs); 3261 return (EILSEQ); 3262 } 3263 3264 if (flags & FIGNORECASE) 3265 zflg |= ZCILOOK; 3266 3267 top: 3268 szp = NULL; 3269 tzp = NULL; 3270 zl = NULL; 3271 3272 /* 3273 * This is to prevent the creation of links into attribute space 3274 * by renaming a linked file into/outof an attribute directory. 3275 * See the comment in zfs_link() for why this is considered bad. 3276 */ 3277 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3278 ZFS_EXIT(zfsvfs); 3279 return (EINVAL); 3280 } 3281 3282 /* 3283 * Lock source and target directory entries. To prevent deadlock, 3284 * a lock ordering must be defined. We lock the directory with 3285 * the smallest object id first, or if it's a tie, the one with 3286 * the lexically first name. 3287 */ 3288 if (sdzp->z_id < tdzp->z_id) { 3289 cmp = -1; 3290 } else if (sdzp->z_id > tdzp->z_id) { 3291 cmp = 1; 3292 } else { 3293 /* 3294 * First compare the two name arguments without 3295 * considering any case folding. 3296 */ 3297 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3298 3299 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3300 ASSERT(error == 0 || !zfsvfs->z_utf8); 3301 if (cmp == 0) { 3302 /* 3303 * POSIX: "If the old argument and the new argument 3304 * both refer to links to the same existing file, 3305 * the rename() function shall return successfully 3306 * and perform no other action." 3307 */ 3308 ZFS_EXIT(zfsvfs); 3309 return (0); 3310 } 3311 /* 3312 * If the file system is case-folding, then we may 3313 * have some more checking to do. A case-folding file 3314 * system is either supporting mixed case sensitivity 3315 * access or is completely case-insensitive. Note 3316 * that the file system is always case preserving. 3317 * 3318 * In mixed sensitivity mode case sensitive behavior 3319 * is the default. FIGNORECASE must be used to 3320 * explicitly request case insensitive behavior. 3321 * 3322 * If the source and target names provided differ only 3323 * by case (e.g., a request to rename 'tim' to 'Tim'), 3324 * we will treat this as a special case in the 3325 * case-insensitive mode: as long as the source name 3326 * is an exact match, we will allow this to proceed as 3327 * a name-change request. 3328 */ 3329 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3330 (zfsvfs->z_case == ZFS_CASE_MIXED && 3331 flags & FIGNORECASE)) && 3332 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3333 &error) == 0) { 3334 /* 3335 * case preserving rename request, require exact 3336 * name matches 3337 */ 3338 zflg |= ZCIEXACT; 3339 zflg &= ~ZCILOOK; 3340 } 3341 } 3342 3343 /* 3344 * If the source and destination directories are the same, we should 3345 * grab the z_name_lock of that directory only once. 3346 */ 3347 if (sdzp == tdzp) { 3348 zflg |= ZHAVELOCK; 3349 rw_enter(&sdzp->z_name_lock, RW_READER); 3350 } 3351 3352 if (cmp < 0) { 3353 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3354 ZEXISTS | zflg, NULL, NULL); 3355 terr = zfs_dirent_lock(&tdl, 3356 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3357 } else { 3358 terr = zfs_dirent_lock(&tdl, 3359 tdzp, tnm, &tzp, zflg, NULL, NULL); 3360 serr = zfs_dirent_lock(&sdl, 3361 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3362 NULL, NULL); 3363 } 3364 3365 if (serr) { 3366 /* 3367 * Source entry invalid or not there. 3368 */ 3369 if (!terr) { 3370 zfs_dirent_unlock(tdl); 3371 if (tzp) 3372 VN_RELE(ZTOV(tzp)); 3373 } 3374 3375 if (sdzp == tdzp) 3376 rw_exit(&sdzp->z_name_lock); 3377 3378 if (strcmp(snm, "..") == 0) 3379 serr = EINVAL; 3380 ZFS_EXIT(zfsvfs); 3381 return (serr); 3382 } 3383 if (terr) { 3384 zfs_dirent_unlock(sdl); 3385 VN_RELE(ZTOV(szp)); 3386 3387 if (sdzp == tdzp) 3388 rw_exit(&sdzp->z_name_lock); 3389 3390 if (strcmp(tnm, "..") == 0) 3391 terr = EINVAL; 3392 ZFS_EXIT(zfsvfs); 3393 return (terr); 3394 } 3395 3396 /* 3397 * Must have write access at the source to remove the old entry 3398 * and write access at the target to create the new entry. 3399 * Note that if target and source are the same, this can be 3400 * done in a single check. 3401 */ 3402 3403 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3404 goto out; 3405 3406 if (ZTOV(szp)->v_type == VDIR) { 3407 /* 3408 * Check to make sure rename is valid. 3409 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3410 */ 3411 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3412 goto out; 3413 } 3414 3415 /* 3416 * Does target exist? 3417 */ 3418 if (tzp) { 3419 /* 3420 * Source and target must be the same type. 3421 */ 3422 if (ZTOV(szp)->v_type == VDIR) { 3423 if (ZTOV(tzp)->v_type != VDIR) { 3424 error = ENOTDIR; 3425 goto out; 3426 } 3427 } else { 3428 if (ZTOV(tzp)->v_type == VDIR) { 3429 error = EISDIR; 3430 goto out; 3431 } 3432 } 3433 /* 3434 * POSIX dictates that when the source and target 3435 * entries refer to the same file object, rename 3436 * must do nothing and exit without error. 3437 */ 3438 if (szp->z_id == tzp->z_id) { 3439 error = 0; 3440 goto out; 3441 } 3442 } 3443 3444 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3445 if (tzp) 3446 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3447 3448 /* 3449 * notify the target directory if it is not the same 3450 * as source directory. 3451 */ 3452 if (tdvp != sdvp) { 3453 vnevent_rename_dest_dir(tdvp, ct); 3454 } 3455 3456 tx = dmu_tx_create(zfsvfs->z_os); 3457 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3458 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3459 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3460 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3461 if (sdzp != tdzp) { 3462 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3463 zfs_sa_upgrade_txholds(tx, tdzp); 3464 } 3465 if (tzp) { 3466 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3467 zfs_sa_upgrade_txholds(tx, tzp); 3468 } 3469 3470 zfs_sa_upgrade_txholds(tx, szp); 3471 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3472 error = dmu_tx_assign(tx, TXG_NOWAIT); 3473 if (error) { 3474 if (zl != NULL) 3475 zfs_rename_unlock(&zl); 3476 zfs_dirent_unlock(sdl); 3477 zfs_dirent_unlock(tdl); 3478 3479 if (sdzp == tdzp) 3480 rw_exit(&sdzp->z_name_lock); 3481 3482 VN_RELE(ZTOV(szp)); 3483 if (tzp) 3484 VN_RELE(ZTOV(tzp)); 3485 if (error == ERESTART) { 3486 dmu_tx_wait(tx); 3487 dmu_tx_abort(tx); 3488 goto top; 3489 } 3490 dmu_tx_abort(tx); 3491 ZFS_EXIT(zfsvfs); 3492 return (error); 3493 } 3494 3495 if (tzp) /* Attempt to remove the existing target */ 3496 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3497 3498 if (error == 0) { 3499 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3500 if (error == 0) { 3501 szp->z_pflags |= ZFS_AV_MODIFIED; 3502 3503 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3504 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3505 ASSERT3U(error, ==, 0); 3506 3507 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3508 ASSERT3U(error, ==, 0); 3509 3510 zfs_log_rename(zilog, tx, 3511 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3512 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3513 3514 /* Update path information for the target vnode */ 3515 vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm)); 3516 } 3517 } 3518 3519 dmu_tx_commit(tx); 3520 out: 3521 if (zl != NULL) 3522 zfs_rename_unlock(&zl); 3523 3524 zfs_dirent_unlock(sdl); 3525 zfs_dirent_unlock(tdl); 3526 3527 if (sdzp == tdzp) 3528 rw_exit(&sdzp->z_name_lock); 3529 3530 3531 VN_RELE(ZTOV(szp)); 3532 if (tzp) 3533 VN_RELE(ZTOV(tzp)); 3534 3535 ZFS_EXIT(zfsvfs); 3536 return (error); 3537 } 3538 3539 /* 3540 * Insert the indicated symbolic reference entry into the directory. 3541 * 3542 * IN: dvp - Directory to contain new symbolic link. 3543 * link - Name for new symlink entry. 3544 * vap - Attributes of new entry. 3545 * target - Target path of new symlink. 3546 * cr - credentials of caller. 3547 * ct - caller context 3548 * flags - case flags 3549 * 3550 * RETURN: 0 if success 3551 * error code if failure 3552 * 3553 * Timestamps: 3554 * dvp - ctime|mtime updated 3555 */ 3556 /*ARGSUSED*/ 3557 static int 3558 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3559 caller_context_t *ct, int flags) 3560 { 3561 znode_t *zp, *dzp = VTOZ(dvp); 3562 zfs_dirlock_t *dl; 3563 dmu_tx_t *tx; 3564 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3565 zilog_t *zilog; 3566 uint64_t len = strlen(link); 3567 int error; 3568 int zflg = ZNEW; 3569 zfs_acl_ids_t acl_ids; 3570 boolean_t fuid_dirtied; 3571 uint64_t txtype = TX_SYMLINK; 3572 3573 ASSERT(vap->va_type == VLNK); 3574 3575 ZFS_ENTER(zfsvfs); 3576 ZFS_VERIFY_ZP(dzp); 3577 zilog = zfsvfs->z_log; 3578 3579 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3580 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3581 ZFS_EXIT(zfsvfs); 3582 return (EILSEQ); 3583 } 3584 if (flags & FIGNORECASE) 3585 zflg |= ZCILOOK; 3586 top: 3587 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3588 ZFS_EXIT(zfsvfs); 3589 return (error); 3590 } 3591 3592 if (len > MAXPATHLEN) { 3593 ZFS_EXIT(zfsvfs); 3594 return (ENAMETOOLONG); 3595 } 3596 3597 /* 3598 * Attempt to lock directory; fail if entry already exists. 3599 */ 3600 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3601 if (error) { 3602 ZFS_EXIT(zfsvfs); 3603 return (error); 3604 } 3605 3606 VERIFY(0 == zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids)); 3607 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3608 zfs_acl_ids_free(&acl_ids); 3609 zfs_dirent_unlock(dl); 3610 ZFS_EXIT(zfsvfs); 3611 return (EDQUOT); 3612 } 3613 tx = dmu_tx_create(zfsvfs->z_os); 3614 fuid_dirtied = zfsvfs->z_fuid_dirty; 3615 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3616 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3617 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3618 ZFS_SA_BASE_ATTR_SIZE + len); 3619 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3620 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3621 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3622 acl_ids.z_aclp->z_acl_bytes); 3623 } 3624 if (fuid_dirtied) 3625 zfs_fuid_txhold(zfsvfs, tx); 3626 error = dmu_tx_assign(tx, TXG_NOWAIT); 3627 if (error) { 3628 zfs_acl_ids_free(&acl_ids); 3629 zfs_dirent_unlock(dl); 3630 if (error == ERESTART) { 3631 dmu_tx_wait(tx); 3632 dmu_tx_abort(tx); 3633 goto top; 3634 } 3635 dmu_tx_abort(tx); 3636 ZFS_EXIT(zfsvfs); 3637 return (error); 3638 } 3639 3640 /* 3641 * Create a new object for the symlink. 3642 * for version 4 ZPL datsets the symlink will be an SA attribute 3643 */ 3644 3645 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3646 3647 if (fuid_dirtied) 3648 zfs_fuid_sync(zfsvfs, tx); 3649 3650 if (zp->z_is_sa) 3651 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3652 link, len, tx); 3653 else 3654 zfs_sa_symlink(zp, link, len, tx); 3655 3656 zp->z_size = len; 3657 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3658 &zp->z_size, sizeof (zp->z_size), tx); 3659 /* 3660 * Insert the new object into the directory. 3661 */ 3662 (void) zfs_link_create(dl, zp, tx, ZNEW); 3663 3664 if (flags & FIGNORECASE) 3665 txtype |= TX_CI; 3666 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3667 3668 zfs_acl_ids_free(&acl_ids); 3669 3670 dmu_tx_commit(tx); 3671 3672 zfs_dirent_unlock(dl); 3673 3674 VN_RELE(ZTOV(zp)); 3675 3676 ZFS_EXIT(zfsvfs); 3677 return (error); 3678 } 3679 3680 /* 3681 * Return, in the buffer contained in the provided uio structure, 3682 * the symbolic path referred to by vp. 3683 * 3684 * IN: vp - vnode of symbolic link. 3685 * uoip - structure to contain the link path. 3686 * cr - credentials of caller. 3687 * ct - caller context 3688 * 3689 * OUT: uio - structure to contain the link path. 3690 * 3691 * RETURN: 0 if success 3692 * error code if failure 3693 * 3694 * Timestamps: 3695 * vp - atime updated 3696 */ 3697 /* ARGSUSED */ 3698 static int 3699 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3700 { 3701 znode_t *zp = VTOZ(vp); 3702 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3703 int error; 3704 3705 ZFS_ENTER(zfsvfs); 3706 ZFS_VERIFY_ZP(zp); 3707 3708 if (zp->z_is_sa) 3709 error = sa_lookup_uio(zp->z_sa_hdl, 3710 SA_ZPL_SYMLINK(zfsvfs), uio); 3711 else 3712 error = zfs_sa_readlink(zp, uio); 3713 3714 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3715 3716 ZFS_EXIT(zfsvfs); 3717 return (error); 3718 } 3719 3720 /* 3721 * Insert a new entry into directory tdvp referencing svp. 3722 * 3723 * IN: tdvp - Directory to contain new entry. 3724 * svp - vnode of new entry. 3725 * name - name of new entry. 3726 * cr - credentials of caller. 3727 * ct - caller context 3728 * 3729 * RETURN: 0 if success 3730 * error code if failure 3731 * 3732 * Timestamps: 3733 * tdvp - ctime|mtime updated 3734 * svp - ctime updated 3735 */ 3736 /* ARGSUSED */ 3737 static int 3738 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3739 caller_context_t *ct, int flags) 3740 { 3741 znode_t *dzp = VTOZ(tdvp); 3742 znode_t *tzp, *szp; 3743 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3744 zilog_t *zilog; 3745 zfs_dirlock_t *dl; 3746 dmu_tx_t *tx; 3747 vnode_t *realvp; 3748 int error; 3749 int zf = ZNEW; 3750 3751 ASSERT(tdvp->v_type == VDIR); 3752 3753 ZFS_ENTER(zfsvfs); 3754 ZFS_VERIFY_ZP(dzp); 3755 zilog = zfsvfs->z_log; 3756 3757 if (VOP_REALVP(svp, &realvp, ct) == 0) 3758 svp = realvp; 3759 3760 if (svp->v_vfsp != tdvp->v_vfsp) { 3761 ZFS_EXIT(zfsvfs); 3762 return (EXDEV); 3763 } 3764 szp = VTOZ(svp); 3765 ZFS_VERIFY_ZP(szp); 3766 3767 if (zfsvfs->z_utf8 && u8_validate(name, 3768 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3769 ZFS_EXIT(zfsvfs); 3770 return (EILSEQ); 3771 } 3772 if (flags & FIGNORECASE) 3773 zf |= ZCILOOK; 3774 3775 top: 3776 /* 3777 * We do not support links between attributes and non-attributes 3778 * because of the potential security risk of creating links 3779 * into "normal" file space in order to circumvent restrictions 3780 * imposed in attribute space. 3781 */ 3782 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 3783 ZFS_EXIT(zfsvfs); 3784 return (EINVAL); 3785 } 3786 3787 /* 3788 * POSIX dictates that we return EPERM here. 3789 * Better choices include ENOTSUP or EISDIR. 3790 */ 3791 if (svp->v_type == VDIR) { 3792 ZFS_EXIT(zfsvfs); 3793 return (EPERM); 3794 } 3795 3796 if (szp->z_uid != crgetuid(cr) && 3797 secpolicy_basic_link(cr) != 0) { 3798 ZFS_EXIT(zfsvfs); 3799 return (EPERM); 3800 } 3801 3802 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3803 ZFS_EXIT(zfsvfs); 3804 return (error); 3805 } 3806 3807 /* 3808 * Attempt to lock directory; fail if entry already exists. 3809 */ 3810 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3811 if (error) { 3812 ZFS_EXIT(zfsvfs); 3813 return (error); 3814 } 3815 3816 tx = dmu_tx_create(zfsvfs->z_os); 3817 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3818 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3819 zfs_sa_upgrade_txholds(tx, szp); 3820 zfs_sa_upgrade_txholds(tx, dzp); 3821 error = dmu_tx_assign(tx, TXG_NOWAIT); 3822 if (error) { 3823 zfs_dirent_unlock(dl); 3824 if (error == ERESTART) { 3825 dmu_tx_wait(tx); 3826 dmu_tx_abort(tx); 3827 goto top; 3828 } 3829 dmu_tx_abort(tx); 3830 ZFS_EXIT(zfsvfs); 3831 return (error); 3832 } 3833 3834 error = zfs_link_create(dl, szp, tx, 0); 3835 3836 if (error == 0) { 3837 uint64_t txtype = TX_LINK; 3838 if (flags & FIGNORECASE) 3839 txtype |= TX_CI; 3840 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3841 } 3842 3843 dmu_tx_commit(tx); 3844 3845 zfs_dirent_unlock(dl); 3846 3847 if (error == 0) { 3848 vnevent_link(svp, ct); 3849 } 3850 3851 ZFS_EXIT(zfsvfs); 3852 return (error); 3853 } 3854 3855 /* 3856 * zfs_null_putapage() is used when the file system has been force 3857 * unmounted. It just drops the pages. 3858 */ 3859 /* ARGSUSED */ 3860 static int 3861 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3862 size_t *lenp, int flags, cred_t *cr) 3863 { 3864 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3865 return (0); 3866 } 3867 3868 /* 3869 * Push a page out to disk, klustering if possible. 3870 * 3871 * IN: vp - file to push page to. 3872 * pp - page to push. 3873 * flags - additional flags. 3874 * cr - credentials of caller. 3875 * 3876 * OUT: offp - start of range pushed. 3877 * lenp - len of range pushed. 3878 * 3879 * RETURN: 0 if success 3880 * error code if failure 3881 * 3882 * NOTE: callers must have locked the page to be pushed. On 3883 * exit, the page (and all other pages in the kluster) must be 3884 * unlocked. 3885 */ 3886 /* ARGSUSED */ 3887 static int 3888 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3889 size_t *lenp, int flags, cred_t *cr) 3890 { 3891 znode_t *zp = VTOZ(vp); 3892 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3893 dmu_tx_t *tx; 3894 u_offset_t off, koff; 3895 size_t len, klen; 3896 int err; 3897 3898 off = pp->p_offset; 3899 len = PAGESIZE; 3900 /* 3901 * If our blocksize is bigger than the page size, try to kluster 3902 * multiple pages so that we write a full block (thus avoiding 3903 * a read-modify-write). 3904 */ 3905 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 3906 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3907 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 3908 ASSERT(koff <= zp->z_size); 3909 if (koff + klen > zp->z_size) 3910 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 3911 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3912 } 3913 ASSERT3U(btop(len), ==, btopr(len)); 3914 3915 /* 3916 * Can't push pages past end-of-file. 3917 */ 3918 if (off >= zp->z_size) { 3919 /* ignore all pages */ 3920 err = 0; 3921 goto out; 3922 } else if (off + len > zp->z_size) { 3923 int npages = btopr(zp->z_size - off); 3924 page_t *trunc; 3925 3926 page_list_break(&pp, &trunc, npages); 3927 /* ignore pages past end of file */ 3928 if (trunc) 3929 pvn_write_done(trunc, flags); 3930 len = zp->z_size - off; 3931 } 3932 3933 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 3934 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 3935 err = EDQUOT; 3936 goto out; 3937 } 3938 top: 3939 tx = dmu_tx_create(zfsvfs->z_os); 3940 dmu_tx_hold_write(tx, zp->z_id, off, len); 3941 3942 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3943 zfs_sa_upgrade_txholds(tx, zp); 3944 err = dmu_tx_assign(tx, TXG_NOWAIT); 3945 if (err != 0) { 3946 if (err == ERESTART) { 3947 dmu_tx_wait(tx); 3948 dmu_tx_abort(tx); 3949 goto top; 3950 } 3951 dmu_tx_abort(tx); 3952 goto out; 3953 } 3954 3955 if (zp->z_blksz <= PAGESIZE) { 3956 caddr_t va = zfs_map_page(pp, S_READ); 3957 ASSERT3U(len, <=, PAGESIZE); 3958 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3959 zfs_unmap_page(pp, va); 3960 } else { 3961 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3962 } 3963 3964 if (err == 0) { 3965 uint64_t mtime[2], ctime[2]; 3966 sa_bulk_attr_t bulk[2]; 3967 int count = 0; 3968 3969 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3970 &mtime, 16); 3971 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3972 &ctime, 16); 3973 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3974 B_TRUE); 3975 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 3976 } 3977 dmu_tx_commit(tx); 3978 3979 out: 3980 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3981 if (offp) 3982 *offp = off; 3983 if (lenp) 3984 *lenp = len; 3985 3986 return (err); 3987 } 3988 3989 /* 3990 * Copy the portion of the file indicated from pages into the file. 3991 * The pages are stored in a page list attached to the files vnode. 3992 * 3993 * IN: vp - vnode of file to push page data to. 3994 * off - position in file to put data. 3995 * len - amount of data to write. 3996 * flags - flags to control the operation. 3997 * cr - credentials of caller. 3998 * ct - caller context. 3999 * 4000 * RETURN: 0 if success 4001 * error code if failure 4002 * 4003 * Timestamps: 4004 * vp - ctime|mtime updated 4005 */ 4006 /*ARGSUSED*/ 4007 static int 4008 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4009 caller_context_t *ct) 4010 { 4011 znode_t *zp = VTOZ(vp); 4012 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4013 page_t *pp; 4014 size_t io_len; 4015 u_offset_t io_off; 4016 uint_t blksz; 4017 rl_t *rl; 4018 int error = 0; 4019 4020 ZFS_ENTER(zfsvfs); 4021 ZFS_VERIFY_ZP(zp); 4022 4023 /* 4024 * Align this request to the file block size in case we kluster. 4025 * XXX - this can result in pretty aggresive locking, which can 4026 * impact simultanious read/write access. One option might be 4027 * to break up long requests (len == 0) into block-by-block 4028 * operations to get narrower locking. 4029 */ 4030 blksz = zp->z_blksz; 4031 if (ISP2(blksz)) 4032 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4033 else 4034 io_off = 0; 4035 if (len > 0 && ISP2(blksz)) 4036 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4037 else 4038 io_len = 0; 4039 4040 if (io_len == 0) { 4041 /* 4042 * Search the entire vp list for pages >= io_off. 4043 */ 4044 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4045 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4046 goto out; 4047 } 4048 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4049 4050 if (off > zp->z_size) { 4051 /* past end of file */ 4052 zfs_range_unlock(rl); 4053 ZFS_EXIT(zfsvfs); 4054 return (0); 4055 } 4056 4057 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4058 4059 for (off = io_off; io_off < off + len; io_off += io_len) { 4060 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4061 pp = page_lookup(vp, io_off, 4062 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4063 } else { 4064 pp = page_lookup_nowait(vp, io_off, 4065 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4066 } 4067 4068 if (pp != NULL && pvn_getdirty(pp, flags)) { 4069 int err; 4070 4071 /* 4072 * Found a dirty page to push 4073 */ 4074 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4075 if (err) 4076 error = err; 4077 } else { 4078 io_len = PAGESIZE; 4079 } 4080 } 4081 out: 4082 zfs_range_unlock(rl); 4083 if ((flags & B_ASYNC) == 0) 4084 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 4085 ZFS_EXIT(zfsvfs); 4086 return (error); 4087 } 4088 4089 /*ARGSUSED*/ 4090 void 4091 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4092 { 4093 znode_t *zp = VTOZ(vp); 4094 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4095 int error; 4096 4097 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4098 if (zp->z_sa_hdl == NULL) { 4099 /* 4100 * The fs has been unmounted, or we did a 4101 * suspend/resume and this file no longer exists. 4102 */ 4103 if (vn_has_cached_data(vp)) { 4104 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4105 B_INVAL, cr); 4106 } 4107 4108 mutex_enter(&zp->z_lock); 4109 mutex_enter(&vp->v_lock); 4110 ASSERT(vp->v_count == 1); 4111 vp->v_count = 0; 4112 mutex_exit(&vp->v_lock); 4113 mutex_exit(&zp->z_lock); 4114 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4115 zfs_znode_free(zp); 4116 return; 4117 } 4118 4119 /* 4120 * Attempt to push any data in the page cache. If this fails 4121 * we will get kicked out later in zfs_zinactive(). 4122 */ 4123 if (vn_has_cached_data(vp)) { 4124 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4125 cr); 4126 } 4127 4128 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4129 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4130 4131 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4132 zfs_sa_upgrade_txholds(tx, zp); 4133 error = dmu_tx_assign(tx, TXG_WAIT); 4134 if (error) { 4135 dmu_tx_abort(tx); 4136 } else { 4137 mutex_enter(&zp->z_lock); 4138 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4139 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4140 zp->z_atime_dirty = 0; 4141 mutex_exit(&zp->z_lock); 4142 dmu_tx_commit(tx); 4143 } 4144 } 4145 4146 zfs_zinactive(zp); 4147 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4148 } 4149 4150 /* 4151 * Bounds-check the seek operation. 4152 * 4153 * IN: vp - vnode seeking within 4154 * ooff - old file offset 4155 * noffp - pointer to new file offset 4156 * ct - caller context 4157 * 4158 * RETURN: 0 if success 4159 * EINVAL if new offset invalid 4160 */ 4161 /* ARGSUSED */ 4162 static int 4163 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4164 caller_context_t *ct) 4165 { 4166 if (vp->v_type == VDIR) 4167 return (0); 4168 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4169 } 4170 4171 /* 4172 * Pre-filter the generic locking function to trap attempts to place 4173 * a mandatory lock on a memory mapped file. 4174 */ 4175 static int 4176 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4177 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4178 { 4179 znode_t *zp = VTOZ(vp); 4180 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4181 4182 ZFS_ENTER(zfsvfs); 4183 ZFS_VERIFY_ZP(zp); 4184 4185 /* 4186 * We are following the UFS semantics with respect to mapcnt 4187 * here: If we see that the file is mapped already, then we will 4188 * return an error, but we don't worry about races between this 4189 * function and zfs_map(). 4190 */ 4191 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4192 ZFS_EXIT(zfsvfs); 4193 return (EAGAIN); 4194 } 4195 ZFS_EXIT(zfsvfs); 4196 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4197 } 4198 4199 /* 4200 * If we can't find a page in the cache, we will create a new page 4201 * and fill it with file data. For efficiency, we may try to fill 4202 * multiple pages at once (klustering) to fill up the supplied page 4203 * list. Note that the pages to be filled are held with an exclusive 4204 * lock to prevent access by other threads while they are being filled. 4205 */ 4206 static int 4207 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4208 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4209 { 4210 znode_t *zp = VTOZ(vp); 4211 page_t *pp, *cur_pp; 4212 objset_t *os = zp->z_zfsvfs->z_os; 4213 u_offset_t io_off, total; 4214 size_t io_len; 4215 int err; 4216 4217 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4218 /* 4219 * We only have a single page, don't bother klustering 4220 */ 4221 io_off = off; 4222 io_len = PAGESIZE; 4223 pp = page_create_va(vp, io_off, io_len, 4224 PG_EXCL | PG_WAIT, seg, addr); 4225 } else { 4226 /* 4227 * Try to find enough pages to fill the page list 4228 */ 4229 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4230 &io_len, off, plsz, 0); 4231 } 4232 if (pp == NULL) { 4233 /* 4234 * The page already exists, nothing to do here. 4235 */ 4236 *pl = NULL; 4237 return (0); 4238 } 4239 4240 /* 4241 * Fill the pages in the kluster. 4242 */ 4243 cur_pp = pp; 4244 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4245 caddr_t va; 4246 4247 ASSERT3U(io_off, ==, cur_pp->p_offset); 4248 va = zfs_map_page(cur_pp, S_WRITE); 4249 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4250 DMU_READ_PREFETCH); 4251 zfs_unmap_page(cur_pp, va); 4252 if (err) { 4253 /* On error, toss the entire kluster */ 4254 pvn_read_done(pp, B_ERROR); 4255 /* convert checksum errors into IO errors */ 4256 if (err == ECKSUM) 4257 err = EIO; 4258 return (err); 4259 } 4260 cur_pp = cur_pp->p_next; 4261 } 4262 4263 /* 4264 * Fill in the page list array from the kluster starting 4265 * from the desired offset `off'. 4266 * NOTE: the page list will always be null terminated. 4267 */ 4268 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4269 ASSERT(pl == NULL || (*pl)->p_offset == off); 4270 4271 return (0); 4272 } 4273 4274 /* 4275 * Return pointers to the pages for the file region [off, off + len] 4276 * in the pl array. If plsz is greater than len, this function may 4277 * also return page pointers from after the specified region 4278 * (i.e. the region [off, off + plsz]). These additional pages are 4279 * only returned if they are already in the cache, or were created as 4280 * part of a klustered read. 4281 * 4282 * IN: vp - vnode of file to get data from. 4283 * off - position in file to get data from. 4284 * len - amount of data to retrieve. 4285 * plsz - length of provided page list. 4286 * seg - segment to obtain pages for. 4287 * addr - virtual address of fault. 4288 * rw - mode of created pages. 4289 * cr - credentials of caller. 4290 * ct - caller context. 4291 * 4292 * OUT: protp - protection mode of created pages. 4293 * pl - list of pages created. 4294 * 4295 * RETURN: 0 if success 4296 * error code if failure 4297 * 4298 * Timestamps: 4299 * vp - atime updated 4300 */ 4301 /* ARGSUSED */ 4302 static int 4303 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4304 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4305 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4306 { 4307 znode_t *zp = VTOZ(vp); 4308 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4309 page_t **pl0 = pl; 4310 int err = 0; 4311 4312 /* we do our own caching, faultahead is unnecessary */ 4313 if (pl == NULL) 4314 return (0); 4315 else if (len > plsz) 4316 len = plsz; 4317 else 4318 len = P2ROUNDUP(len, PAGESIZE); 4319 ASSERT(plsz >= len); 4320 4321 ZFS_ENTER(zfsvfs); 4322 ZFS_VERIFY_ZP(zp); 4323 4324 if (protp) 4325 *protp = PROT_ALL; 4326 4327 /* 4328 * Loop through the requested range [off, off + len) looking 4329 * for pages. If we don't find a page, we will need to create 4330 * a new page and fill it with data from the file. 4331 */ 4332 while (len > 0) { 4333 if (*pl = page_lookup(vp, off, SE_SHARED)) 4334 *(pl+1) = NULL; 4335 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4336 goto out; 4337 while (*pl) { 4338 ASSERT3U((*pl)->p_offset, ==, off); 4339 off += PAGESIZE; 4340 addr += PAGESIZE; 4341 if (len > 0) { 4342 ASSERT3U(len, >=, PAGESIZE); 4343 len -= PAGESIZE; 4344 } 4345 ASSERT3U(plsz, >=, PAGESIZE); 4346 plsz -= PAGESIZE; 4347 pl++; 4348 } 4349 } 4350 4351 /* 4352 * Fill out the page array with any pages already in the cache. 4353 */ 4354 while (plsz > 0 && 4355 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4356 off += PAGESIZE; 4357 plsz -= PAGESIZE; 4358 } 4359 out: 4360 if (err) { 4361 /* 4362 * Release any pages we have previously locked. 4363 */ 4364 while (pl > pl0) 4365 page_unlock(*--pl); 4366 } else { 4367 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4368 } 4369 4370 *pl = NULL; 4371 4372 ZFS_EXIT(zfsvfs); 4373 return (err); 4374 } 4375 4376 /* 4377 * Request a memory map for a section of a file. This code interacts 4378 * with common code and the VM system as follows: 4379 * 4380 * common code calls mmap(), which ends up in smmap_common() 4381 * 4382 * this calls VOP_MAP(), which takes you into (say) zfs 4383 * 4384 * zfs_map() calls as_map(), passing segvn_create() as the callback 4385 * 4386 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4387 * 4388 * zfs_addmap() updates z_mapcnt 4389 */ 4390 /*ARGSUSED*/ 4391 static int 4392 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4393 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4394 caller_context_t *ct) 4395 { 4396 znode_t *zp = VTOZ(vp); 4397 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4398 segvn_crargs_t vn_a; 4399 int error; 4400 4401 ZFS_ENTER(zfsvfs); 4402 ZFS_VERIFY_ZP(zp); 4403 4404 if ((prot & PROT_WRITE) && (zp->z_pflags & 4405 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4406 ZFS_EXIT(zfsvfs); 4407 return (EPERM); 4408 } 4409 4410 if ((prot & (PROT_READ | PROT_EXEC)) && 4411 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4412 ZFS_EXIT(zfsvfs); 4413 return (EACCES); 4414 } 4415 4416 if (vp->v_flag & VNOMAP) { 4417 ZFS_EXIT(zfsvfs); 4418 return (ENOSYS); 4419 } 4420 4421 if (off < 0 || len > MAXOFFSET_T - off) { 4422 ZFS_EXIT(zfsvfs); 4423 return (ENXIO); 4424 } 4425 4426 if (vp->v_type != VREG) { 4427 ZFS_EXIT(zfsvfs); 4428 return (ENODEV); 4429 } 4430 4431 /* 4432 * If file is locked, disallow mapping. 4433 */ 4434 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4435 ZFS_EXIT(zfsvfs); 4436 return (EAGAIN); 4437 } 4438 4439 as_rangelock(as); 4440 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4441 if (error != 0) { 4442 as_rangeunlock(as); 4443 ZFS_EXIT(zfsvfs); 4444 return (error); 4445 } 4446 4447 vn_a.vp = vp; 4448 vn_a.offset = (u_offset_t)off; 4449 vn_a.type = flags & MAP_TYPE; 4450 vn_a.prot = prot; 4451 vn_a.maxprot = maxprot; 4452 vn_a.cred = cr; 4453 vn_a.amp = NULL; 4454 vn_a.flags = flags & ~MAP_TYPE; 4455 vn_a.szc = 0; 4456 vn_a.lgrp_mem_policy_flags = 0; 4457 4458 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4459 4460 as_rangeunlock(as); 4461 ZFS_EXIT(zfsvfs); 4462 return (error); 4463 } 4464 4465 /* ARGSUSED */ 4466 static int 4467 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4468 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4469 caller_context_t *ct) 4470 { 4471 uint64_t pages = btopr(len); 4472 4473 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4474 return (0); 4475 } 4476 4477 /* 4478 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4479 * more accurate mtime for the associated file. Since we don't have a way of 4480 * detecting when the data was actually modified, we have to resort to 4481 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4482 * last page is pushed. The problem occurs when the msync() call is omitted, 4483 * which by far the most common case: 4484 * 4485 * open() 4486 * mmap() 4487 * <modify memory> 4488 * munmap() 4489 * close() 4490 * <time lapse> 4491 * putpage() via fsflush 4492 * 4493 * If we wait until fsflush to come along, we can have a modification time that 4494 * is some arbitrary point in the future. In order to prevent this in the 4495 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4496 * torn down. 4497 */ 4498 /* ARGSUSED */ 4499 static int 4500 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4501 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4502 caller_context_t *ct) 4503 { 4504 uint64_t pages = btopr(len); 4505 4506 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4507 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4508 4509 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4510 vn_has_cached_data(vp)) 4511 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4512 4513 return (0); 4514 } 4515 4516 /* 4517 * Free or allocate space in a file. Currently, this function only 4518 * supports the `F_FREESP' command. However, this command is somewhat 4519 * misnamed, as its functionality includes the ability to allocate as 4520 * well as free space. 4521 * 4522 * IN: vp - vnode of file to free data in. 4523 * cmd - action to take (only F_FREESP supported). 4524 * bfp - section of file to free/alloc. 4525 * flag - current file open mode flags. 4526 * offset - current file offset. 4527 * cr - credentials of caller [UNUSED]. 4528 * ct - caller context. 4529 * 4530 * RETURN: 0 if success 4531 * error code if failure 4532 * 4533 * Timestamps: 4534 * vp - ctime|mtime updated 4535 */ 4536 /* ARGSUSED */ 4537 static int 4538 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4539 offset_t offset, cred_t *cr, caller_context_t *ct) 4540 { 4541 znode_t *zp = VTOZ(vp); 4542 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4543 uint64_t off, len; 4544 int error; 4545 4546 ZFS_ENTER(zfsvfs); 4547 ZFS_VERIFY_ZP(zp); 4548 4549 if (cmd != F_FREESP) { 4550 ZFS_EXIT(zfsvfs); 4551 return (EINVAL); 4552 } 4553 4554 if (error = convoff(vp, bfp, 0, offset)) { 4555 ZFS_EXIT(zfsvfs); 4556 return (error); 4557 } 4558 4559 if (bfp->l_len < 0) { 4560 ZFS_EXIT(zfsvfs); 4561 return (EINVAL); 4562 } 4563 4564 off = bfp->l_start; 4565 len = bfp->l_len; /* 0 means from off to end of file */ 4566 4567 error = zfs_freesp(zp, off, len, flag, TRUE); 4568 4569 ZFS_EXIT(zfsvfs); 4570 return (error); 4571 } 4572 4573 /*ARGSUSED*/ 4574 static int 4575 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4576 { 4577 znode_t *zp = VTOZ(vp); 4578 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4579 uint32_t gen; 4580 uint64_t gen64; 4581 uint64_t object = zp->z_id; 4582 zfid_short_t *zfid; 4583 int size, i, error; 4584 4585 ZFS_ENTER(zfsvfs); 4586 ZFS_VERIFY_ZP(zp); 4587 4588 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4589 &gen64, sizeof (uint64_t))) != 0) 4590 return (error); 4591 4592 gen = (uint32_t)gen64; 4593 4594 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4595 if (fidp->fid_len < size) { 4596 fidp->fid_len = size; 4597 ZFS_EXIT(zfsvfs); 4598 return (ENOSPC); 4599 } 4600 4601 zfid = (zfid_short_t *)fidp; 4602 4603 zfid->zf_len = size; 4604 4605 for (i = 0; i < sizeof (zfid->zf_object); i++) 4606 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4607 4608 /* Must have a non-zero generation number to distinguish from .zfs */ 4609 if (gen == 0) 4610 gen = 1; 4611 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4612 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4613 4614 if (size == LONG_FID_LEN) { 4615 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4616 zfid_long_t *zlfid; 4617 4618 zlfid = (zfid_long_t *)fidp; 4619 4620 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4621 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4622 4623 /* XXX - this should be the generation number for the objset */ 4624 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4625 zlfid->zf_setgen[i] = 0; 4626 } 4627 4628 ZFS_EXIT(zfsvfs); 4629 return (0); 4630 } 4631 4632 static int 4633 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4634 caller_context_t *ct) 4635 { 4636 znode_t *zp, *xzp; 4637 zfsvfs_t *zfsvfs; 4638 zfs_dirlock_t *dl; 4639 int error; 4640 4641 switch (cmd) { 4642 case _PC_LINK_MAX: 4643 *valp = ULONG_MAX; 4644 return (0); 4645 4646 case _PC_FILESIZEBITS: 4647 *valp = 64; 4648 return (0); 4649 4650 case _PC_XATTR_EXISTS: 4651 zp = VTOZ(vp); 4652 zfsvfs = zp->z_zfsvfs; 4653 ZFS_ENTER(zfsvfs); 4654 ZFS_VERIFY_ZP(zp); 4655 *valp = 0; 4656 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4657 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4658 if (error == 0) { 4659 zfs_dirent_unlock(dl); 4660 if (!zfs_dirempty(xzp)) 4661 *valp = 1; 4662 VN_RELE(ZTOV(xzp)); 4663 } else if (error == ENOENT) { 4664 /* 4665 * If there aren't extended attributes, it's the 4666 * same as having zero of them. 4667 */ 4668 error = 0; 4669 } 4670 ZFS_EXIT(zfsvfs); 4671 return (error); 4672 4673 case _PC_SATTR_ENABLED: 4674 case _PC_SATTR_EXISTS: 4675 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4676 (vp->v_type == VREG || vp->v_type == VDIR); 4677 return (0); 4678 4679 case _PC_ACCESS_FILTERING: 4680 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4681 vp->v_type == VDIR; 4682 return (0); 4683 4684 case _PC_ACL_ENABLED: 4685 *valp = _ACL_ACE_ENABLED; 4686 return (0); 4687 4688 case _PC_MIN_HOLE_SIZE: 4689 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4690 return (0); 4691 4692 case _PC_TIMESTAMP_RESOLUTION: 4693 /* nanosecond timestamp resolution */ 4694 *valp = 1L; 4695 return (0); 4696 4697 default: 4698 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4699 } 4700 } 4701 4702 /*ARGSUSED*/ 4703 static int 4704 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4705 caller_context_t *ct) 4706 { 4707 znode_t *zp = VTOZ(vp); 4708 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4709 int error; 4710 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4711 4712 ZFS_ENTER(zfsvfs); 4713 ZFS_VERIFY_ZP(zp); 4714 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4715 ZFS_EXIT(zfsvfs); 4716 4717 return (error); 4718 } 4719 4720 /*ARGSUSED*/ 4721 static int 4722 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4723 caller_context_t *ct) 4724 { 4725 znode_t *zp = VTOZ(vp); 4726 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4727 int error; 4728 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4729 4730 ZFS_ENTER(zfsvfs); 4731 ZFS_VERIFY_ZP(zp); 4732 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4733 ZFS_EXIT(zfsvfs); 4734 return (error); 4735 } 4736 4737 /* 4738 * Tunable, both must be a power of 2. 4739 * 4740 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf 4741 * zcr_blksz_max: if set to less than the file block size, allow loaning out of 4742 * an arcbuf for a partial block read 4743 */ 4744 int zcr_blksz_min = (1 << 10); /* 1K */ 4745 int zcr_blksz_max = (1 << 17); /* 128K */ 4746 4747 /*ARGSUSED*/ 4748 static int 4749 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 4750 caller_context_t *ct) 4751 { 4752 znode_t *zp = VTOZ(vp); 4753 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4754 int max_blksz = zfsvfs->z_max_blksz; 4755 uio_t *uio = &xuio->xu_uio; 4756 ssize_t size = uio->uio_resid; 4757 offset_t offset = uio->uio_loffset; 4758 int blksz; 4759 int fullblk, i; 4760 arc_buf_t *abuf; 4761 ssize_t maxsize; 4762 int preamble, postamble; 4763 4764 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 4765 return (EINVAL); 4766 4767 ZFS_ENTER(zfsvfs); 4768 ZFS_VERIFY_ZP(zp); 4769 switch (ioflag) { 4770 case UIO_WRITE: 4771 /* 4772 * Loan out an arc_buf for write if write size is bigger than 4773 * max_blksz, and the file's block size is also max_blksz. 4774 */ 4775 blksz = max_blksz; 4776 if (size < blksz || zp->z_blksz != blksz) { 4777 ZFS_EXIT(zfsvfs); 4778 return (EINVAL); 4779 } 4780 /* 4781 * Caller requests buffers for write before knowing where the 4782 * write offset might be (e.g. NFS TCP write). 4783 */ 4784 if (offset == -1) { 4785 preamble = 0; 4786 } else { 4787 preamble = P2PHASE(offset, blksz); 4788 if (preamble) { 4789 preamble = blksz - preamble; 4790 size -= preamble; 4791 } 4792 } 4793 4794 postamble = P2PHASE(size, blksz); 4795 size -= postamble; 4796 4797 fullblk = size / blksz; 4798 (void) dmu_xuio_init(xuio, 4799 (preamble != 0) + fullblk + (postamble != 0)); 4800 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 4801 int, postamble, int, 4802 (preamble != 0) + fullblk + (postamble != 0)); 4803 4804 /* 4805 * Have to fix iov base/len for partial buffers. They 4806 * currently represent full arc_buf's. 4807 */ 4808 if (preamble) { 4809 /* data begins in the middle of the arc_buf */ 4810 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4811 blksz); 4812 ASSERT(abuf); 4813 (void) dmu_xuio_add(xuio, abuf, 4814 blksz - preamble, preamble); 4815 } 4816 4817 for (i = 0; i < fullblk; i++) { 4818 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4819 blksz); 4820 ASSERT(abuf); 4821 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 4822 } 4823 4824 if (postamble) { 4825 /* data ends in the middle of the arc_buf */ 4826 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4827 blksz); 4828 ASSERT(abuf); 4829 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 4830 } 4831 break; 4832 case UIO_READ: 4833 /* 4834 * Loan out an arc_buf for read if the read size is larger than 4835 * the current file block size. Block alignment is not 4836 * considered. Partial arc_buf will be loaned out for read. 4837 */ 4838 blksz = zp->z_blksz; 4839 if (blksz < zcr_blksz_min) 4840 blksz = zcr_blksz_min; 4841 if (blksz > zcr_blksz_max) 4842 blksz = zcr_blksz_max; 4843 /* avoid potential complexity of dealing with it */ 4844 if (blksz > max_blksz) { 4845 ZFS_EXIT(zfsvfs); 4846 return (EINVAL); 4847 } 4848 4849 maxsize = zp->z_size - uio->uio_loffset; 4850 if (size > maxsize) 4851 size = maxsize; 4852 4853 if (size < blksz || vn_has_cached_data(vp)) { 4854 ZFS_EXIT(zfsvfs); 4855 return (EINVAL); 4856 } 4857 break; 4858 default: 4859 ZFS_EXIT(zfsvfs); 4860 return (EINVAL); 4861 } 4862 4863 uio->uio_extflg = UIO_XUIO; 4864 XUIO_XUZC_RW(xuio) = ioflag; 4865 ZFS_EXIT(zfsvfs); 4866 return (0); 4867 } 4868 4869 /*ARGSUSED*/ 4870 static int 4871 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 4872 { 4873 int i; 4874 arc_buf_t *abuf; 4875 int ioflag = XUIO_XUZC_RW(xuio); 4876 4877 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 4878 4879 i = dmu_xuio_cnt(xuio); 4880 while (i-- > 0) { 4881 abuf = dmu_xuio_arcbuf(xuio, i); 4882 /* 4883 * if abuf == NULL, it must be a write buffer 4884 * that has been returned in zfs_write(). 4885 */ 4886 if (abuf) 4887 dmu_return_arcbuf(abuf); 4888 ASSERT(abuf || ioflag == UIO_WRITE); 4889 } 4890 4891 dmu_xuio_fini(xuio); 4892 return (0); 4893 } 4894 4895 /* 4896 * Predeclare these here so that the compiler assumes that 4897 * this is an "old style" function declaration that does 4898 * not include arguments => we won't get type mismatch errors 4899 * in the initializations that follow. 4900 */ 4901 static int zfs_inval(); 4902 static int zfs_isdir(); 4903 4904 static int 4905 zfs_inval() 4906 { 4907 return (EINVAL); 4908 } 4909 4910 static int 4911 zfs_isdir() 4912 { 4913 return (EISDIR); 4914 } 4915 /* 4916 * Directory vnode operations template 4917 */ 4918 vnodeops_t *zfs_dvnodeops; 4919 const fs_operation_def_t zfs_dvnodeops_template[] = { 4920 VOPNAME_OPEN, { .vop_open = zfs_open }, 4921 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4922 VOPNAME_READ, { .error = zfs_isdir }, 4923 VOPNAME_WRITE, { .error = zfs_isdir }, 4924 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4925 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4926 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4927 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4928 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4929 VOPNAME_CREATE, { .vop_create = zfs_create }, 4930 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4931 VOPNAME_LINK, { .vop_link = zfs_link }, 4932 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4933 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4934 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4935 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4936 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4937 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4938 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4939 VOPNAME_FID, { .vop_fid = zfs_fid }, 4940 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4941 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4942 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4943 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4944 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4945 NULL, NULL 4946 }; 4947 4948 /* 4949 * Regular file vnode operations template 4950 */ 4951 vnodeops_t *zfs_fvnodeops; 4952 const fs_operation_def_t zfs_fvnodeops_template[] = { 4953 VOPNAME_OPEN, { .vop_open = zfs_open }, 4954 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4955 VOPNAME_READ, { .vop_read = zfs_read }, 4956 VOPNAME_WRITE, { .vop_write = zfs_write }, 4957 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4958 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4959 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4960 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4961 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4962 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4963 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4964 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4965 VOPNAME_FID, { .vop_fid = zfs_fid }, 4966 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4967 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4968 VOPNAME_SPACE, { .vop_space = zfs_space }, 4969 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4970 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4971 VOPNAME_MAP, { .vop_map = zfs_map }, 4972 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4973 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4974 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4975 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4976 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4977 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4978 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 4979 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 4980 NULL, NULL 4981 }; 4982 4983 /* 4984 * Symbolic link vnode operations template 4985 */ 4986 vnodeops_t *zfs_symvnodeops; 4987 const fs_operation_def_t zfs_symvnodeops_template[] = { 4988 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4989 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4990 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4991 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4992 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4993 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4994 VOPNAME_FID, { .vop_fid = zfs_fid }, 4995 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4996 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4997 NULL, NULL 4998 }; 4999 5000 /* 5001 * special share hidden files vnode operations template 5002 */ 5003 vnodeops_t *zfs_sharevnodeops; 5004 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5005 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5006 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5007 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5008 VOPNAME_FID, { .vop_fid = zfs_fid }, 5009 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5010 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5011 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5012 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5013 NULL, NULL 5014 }; 5015 5016 /* 5017 * Extended attribute directory vnode operations template 5018 * This template is identical to the directory vnodes 5019 * operation template except for restricted operations: 5020 * VOP_MKDIR() 5021 * VOP_SYMLINK() 5022 * Note that there are other restrictions embedded in: 5023 * zfs_create() - restrict type to VREG 5024 * zfs_link() - no links into/out of attribute space 5025 * zfs_rename() - no moves into/out of attribute space 5026 */ 5027 vnodeops_t *zfs_xdvnodeops; 5028 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5029 VOPNAME_OPEN, { .vop_open = zfs_open }, 5030 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5031 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5032 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5033 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5034 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5035 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5036 VOPNAME_CREATE, { .vop_create = zfs_create }, 5037 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5038 VOPNAME_LINK, { .vop_link = zfs_link }, 5039 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5040 VOPNAME_MKDIR, { .error = zfs_inval }, 5041 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5042 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5043 VOPNAME_SYMLINK, { .error = zfs_inval }, 5044 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5045 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5046 VOPNAME_FID, { .vop_fid = zfs_fid }, 5047 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5048 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5049 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5050 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5051 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5052 NULL, NULL 5053 }; 5054 5055 /* 5056 * Error vnode operations template 5057 */ 5058 vnodeops_t *zfs_evnodeops; 5059 const fs_operation_def_t zfs_evnodeops_template[] = { 5060 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5061 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5062 NULL, NULL 5063 }; 5064