xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision 1677a13522f801f59117c9fb50212af5fb87a872)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright 2020 Joyent, Inc.
27  * Copyright 2020 Tintri by DDN, Inc. All rights reserved.
28  */
29 
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/resource.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/stat.h>
44 #include <sys/kmem.h>
45 #include <sys/taskq.h>
46 #include <sys/uio.h>
47 #include <sys/vmsystm.h>
48 #include <sys/atomic.h>
49 #include <sys/vm.h>
50 #include <vm/seg_vn.h>
51 #include <vm/pvn.h>
52 #include <vm/as.h>
53 #include <vm/kpm.h>
54 #include <vm/seg_kpm.h>
55 #include <sys/mman.h>
56 #include <sys/pathname.h>
57 #include <sys/cmn_err.h>
58 #include <sys/errno.h>
59 #include <sys/unistd.h>
60 #include <sys/zfs_dir.h>
61 #include <sys/zfs_acl.h>
62 #include <sys/zfs_ioctl.h>
63 #include <sys/fs/zfs.h>
64 #include <sys/dmu.h>
65 #include <sys/dmu_objset.h>
66 #include <sys/spa.h>
67 #include <sys/txg.h>
68 #include <sys/dbuf.h>
69 #include <sys/zap.h>
70 #include <sys/sa.h>
71 #include <sys/dirent.h>
72 #include <sys/policy.h>
73 #include <sys/sunddi.h>
74 #include <sys/filio.h>
75 #include <sys/sid.h>
76 #include "fs/fs_subr.h"
77 #include <sys/zfs_ctldir.h>
78 #include <sys/zfs_fuid.h>
79 #include <sys/zfs_sa.h>
80 #include <sys/dnlc.h>
81 #include <sys/zfs_rlock.h>
82 #include <sys/extdirent.h>
83 #include <sys/kidmap.h>
84 #include <sys/cred.h>
85 #include <sys/attr.h>
86 #include <sys/zil.h>
87 #include <sys/sa_impl.h>
88 #include <sys/zfs_project.h>
89 
90 /*
91  * Programming rules.
92  *
93  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
94  * properly lock its in-core state, create a DMU transaction, do the work,
95  * record this work in the intent log (ZIL), commit the DMU transaction,
96  * and wait for the intent log to commit if it is a synchronous operation.
97  * Moreover, the vnode ops must work in both normal and log replay context.
98  * The ordering of events is important to avoid deadlocks and references
99  * to freed memory.  The example below illustrates the following Big Rules:
100  *
101  *  (1)	A check must be made in each zfs thread for a mounted file system.
102  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
103  *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
104  *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
105  *	can return EIO from the calling function.
106  *
107  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
108  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
109  *	First, if it's the last reference, the vnode/znode
110  *	can be freed, so the zp may point to freed memory.  Second, the last
111  *	reference will call zfs_zinactive(), which may induce a lot of work --
112  *	pushing cached pages (which acquires range locks) and syncing out
113  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
114  *	which could deadlock the system if you were already holding one.
115  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
116  *
117  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
118  *	as they can span dmu_tx_assign() calls.
119  *
120  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
121  *      dmu_tx_assign().  This is critical because we don't want to block
122  *      while holding locks.
123  *
124  *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
125  *	reduces lock contention and CPU usage when we must wait (note that if
126  *	throughput is constrained by the storage, nearly every transaction
127  *	must wait).
128  *
129  *      Note, in particular, that if a lock is sometimes acquired before
130  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
131  *      to use a non-blocking assign can deadlock the system.  The scenario:
132  *
133  *	Thread A has grabbed a lock before calling dmu_tx_assign().
134  *	Thread B is in an already-assigned tx, and blocks for this lock.
135  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
136  *	forever, because the previous txg can't quiesce until B's tx commits.
137  *
138  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
139  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
140  *	calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
141  *	to indicate that this operation has already called dmu_tx_wait().
142  *	This will ensure that we don't retry forever, waiting a short bit
143  *	each time.
144  *
145  *  (5)	If the operation succeeded, generate the intent log entry for it
146  *	before dropping locks.  This ensures that the ordering of events
147  *	in the intent log matches the order in which they actually occurred.
148  *	During ZIL replay the zfs_log_* functions will update the sequence
149  *	number to indicate the zil transaction has replayed.
150  *
151  *  (6)	At the end of each vnode op, the DMU tx must always commit,
152  *	regardless of whether there were any errors.
153  *
154  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
155  *	to ensure that synchronous semantics are provided when necessary.
156  *
157  * In general, this is how things should be ordered in each vnode op:
158  *
159  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
160  * top:
161  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
162  *	rw_enter(...);			// grab any other locks you need
163  *	tx = dmu_tx_create(...);	// get DMU tx
164  *	dmu_tx_hold_*();		// hold each object you might modify
165  *	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
166  *	if (error) {
167  *		rw_exit(...);		// drop locks
168  *		zfs_dirent_unlock(dl);	// unlock directory entry
169  *		VN_RELE(...);		// release held vnodes
170  *		if (error == ERESTART) {
171  *			waited = B_TRUE;
172  *			dmu_tx_wait(tx);
173  *			dmu_tx_abort(tx);
174  *			goto top;
175  *		}
176  *		dmu_tx_abort(tx);	// abort DMU tx
177  *		ZFS_EXIT(zfsvfs);	// finished in zfs
178  *		return (error);		// really out of space
179  *	}
180  *	error = do_real_work();		// do whatever this VOP does
181  *	if (error == 0)
182  *		zfs_log_*(...);		// on success, make ZIL entry
183  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
184  *	rw_exit(...);			// drop locks
185  *	zfs_dirent_unlock(dl);		// unlock directory entry
186  *	VN_RELE(...);			// release held vnodes
187  *	zil_commit(zilog, foid);	// synchronous when necessary
188  *	ZFS_EXIT(zfsvfs);		// finished in zfs
189  *	return (error);			// done, report error
190  */
191 
192 /* ARGSUSED */
193 static int
194 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
195 {
196 	znode_t	*zp = VTOZ(*vpp);
197 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
198 
199 	ZFS_ENTER(zfsvfs);
200 	ZFS_VERIFY_ZP(zp);
201 
202 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
203 	    ((flag & FAPPEND) == 0)) {
204 		ZFS_EXIT(zfsvfs);
205 		return (SET_ERROR(EPERM));
206 	}
207 
208 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
209 	    ZTOV(zp)->v_type == VREG &&
210 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
211 		if (fs_vscan(*vpp, cr, 0) != 0) {
212 			ZFS_EXIT(zfsvfs);
213 			return (SET_ERROR(EACCES));
214 		}
215 	}
216 
217 	/* Keep a count of the synchronous opens in the znode */
218 	if (flag & (FSYNC | FDSYNC))
219 		atomic_inc_32(&zp->z_sync_cnt);
220 
221 	ZFS_EXIT(zfsvfs);
222 	return (0);
223 }
224 
225 /* ARGSUSED */
226 static int
227 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
228     caller_context_t *ct)
229 {
230 	znode_t	*zp = VTOZ(vp);
231 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
232 
233 	/*
234 	 * Clean up any locks held by this process on the vp.
235 	 */
236 	cleanlocks(vp, ddi_get_pid(), 0);
237 	cleanshares(vp, ddi_get_pid());
238 
239 	ZFS_ENTER(zfsvfs);
240 	ZFS_VERIFY_ZP(zp);
241 
242 	/* Decrement the synchronous opens in the znode */
243 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
244 		atomic_dec_32(&zp->z_sync_cnt);
245 
246 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
247 	    ZTOV(zp)->v_type == VREG &&
248 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
249 		VERIFY(fs_vscan(vp, cr, 1) == 0);
250 
251 	ZFS_EXIT(zfsvfs);
252 	return (0);
253 }
254 
255 /*
256  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
257  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
258  */
259 static int
260 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
261 {
262 	znode_t	*zp = VTOZ(vp);
263 	uint64_t noff = (uint64_t)*off; /* new offset */
264 	uint64_t file_sz;
265 	int error;
266 	boolean_t hole;
267 
268 	file_sz = zp->z_size;
269 	if (noff >= file_sz)  {
270 		return (SET_ERROR(ENXIO));
271 	}
272 
273 	if (cmd == _FIO_SEEK_HOLE)
274 		hole = B_TRUE;
275 	else
276 		hole = B_FALSE;
277 
278 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
279 
280 	if (error == ESRCH)
281 		return (SET_ERROR(ENXIO));
282 
283 	/*
284 	 * We could find a hole that begins after the logical end-of-file,
285 	 * because dmu_offset_next() only works on whole blocks.  If the
286 	 * EOF falls mid-block, then indicate that the "virtual hole"
287 	 * at the end of the file begins at the logical EOF, rather than
288 	 * at the end of the last block.
289 	 */
290 	if (noff > file_sz) {
291 		ASSERT(hole);
292 		noff = file_sz;
293 	}
294 
295 	if (noff < *off)
296 		return (error);
297 	*off = noff;
298 	return (error);
299 }
300 
301 static int
302 zfs_ioctl_getxattr(vnode_t *vp, intptr_t data, int flag, cred_t *cr,
303     caller_context_t *ct)
304 {
305 	zfsxattr_t fsx = { 0 };
306 	znode_t *zp = VTOZ(vp);
307 
308 	if (zp->z_pflags & ZFS_PROJINHERIT)
309 		fsx.fsx_xflags = ZFS_PROJINHERIT_FL;
310 	if (zp->z_pflags & ZFS_PROJID)
311 		fsx.fsx_projid = zp->z_projid;
312 	if (ddi_copyout(&fsx, (void *)data, sizeof (fsx), flag))
313 		return (SET_ERROR(EFAULT));
314 
315 	return (0);
316 }
317 
318 static int zfs_setattr(vnode_t *, vattr_t *, int, cred_t *, caller_context_t *);
319 
320 static int
321 zfs_ioctl_setxattr(vnode_t *vp, intptr_t data, int flags, cred_t *cr,
322     caller_context_t *ct)
323 {
324 	znode_t *zp = VTOZ(vp);
325 	zfsxattr_t fsx;
326 	xvattr_t xva;
327 	xoptattr_t *xoap;
328 	int err;
329 
330 	if (ddi_copyin((void *)data, &fsx, sizeof (fsx), flags))
331 		return (SET_ERROR(EFAULT));
332 
333 	if (!zpl_is_valid_projid(fsx.fsx_projid))
334 		return (SET_ERROR(EINVAL));
335 
336 	if (fsx.fsx_xflags & ~ZFS_PROJINHERIT_FL)
337 		return (SET_ERROR(EOPNOTSUPP));
338 
339 	xva_init(&xva);
340 	xoap = xva_getxoptattr(&xva);
341 
342 	XVA_SET_REQ(&xva, XAT_PROJINHERIT);
343 	if (fsx.fsx_xflags & ZFS_PROJINHERIT_FL)
344 		xoap->xoa_projinherit = B_TRUE;
345 
346 	XVA_SET_REQ(&xva, XAT_PROJID);
347 	xoap->xoa_projid = fsx.fsx_projid;
348 
349 	return (zfs_setattr(vp, (vattr_t *)&xva, flags, cr, ct));
350 }
351 
352 /* ARGSUSED */
353 static int
354 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
355     int *rvalp, caller_context_t *ct)
356 {
357 	offset_t off;
358 	offset_t ndata;
359 	dmu_object_info_t doi;
360 	int error;
361 	zfsvfs_t *zfsvfs;
362 	znode_t *zp;
363 
364 	switch (com) {
365 	case _FIOFFS:
366 	{
367 		return (zfs_sync(vp->v_vfsp, 0, cred));
368 
369 		/*
370 		 * The following two ioctls are used by bfu.  Faking out,
371 		 * necessary to avoid bfu errors.
372 		 */
373 	}
374 	case _FIOGDIO:
375 	case _FIOSDIO:
376 	{
377 		return (0);
378 	}
379 
380 	case _FIODIRECTIO:
381 	{
382 		/*
383 		 * ZFS inherently provides the basic semantics for directio.
384 		 * This is the summary from the ZFS on Linux support for
385 		 * O_DIRECT, which is the common form of directio, and required
386 		 * no changes to ZFS.
387 		 *
388 		 * 1. Minimize cache effects of the I/O.
389 		 *
390 		 *    By design the ARC is already scan-resistant, which helps
391 		 *    mitigate the need for special O_DIRECT handling.
392 		 *
393 		 * 2. O_DIRECT _MAY_ impose restrictions on IO alignment and
394 		 *    length.
395 		 *
396 		 *    No additional alignment or length restrictions are
397 		 *    imposed by ZFS.
398 		 *
399 		 * 3. O_DIRECT _MAY_ perform unbuffered IO operations directly
400 		 *    between user memory and block device.
401 		 *
402 		 *    No unbuffered IO operations are currently supported. In
403 		 *    order to support features such as compression, encryption,
404 		 *    and checksumming a copy must be made to transform the
405 		 *    data.
406 		 *
407 		 * 4. O_DIRECT _MAY_ imply O_DSYNC (XFS).
408 		 *
409 		 *    O_DIRECT does not imply O_DSYNC for ZFS.
410 		 *
411 		 * 5. O_DIRECT _MAY_ disable file locking that serializes IO
412 		 *    operations.
413 		 *
414 		 *    All I/O in ZFS is locked for correctness and this locking
415 		 *    is not disabled by O_DIRECT.
416 		 */
417 		return (0);
418 	}
419 
420 	case _FIO_SEEK_DATA:
421 	case _FIO_SEEK_HOLE:
422 	{
423 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
424 			return (SET_ERROR(EFAULT));
425 
426 		zp = VTOZ(vp);
427 		zfsvfs = zp->z_zfsvfs;
428 		ZFS_ENTER(zfsvfs);
429 		ZFS_VERIFY_ZP(zp);
430 
431 		/* offset parameter is in/out */
432 		error = zfs_holey(vp, com, &off);
433 		ZFS_EXIT(zfsvfs);
434 		if (error)
435 			return (error);
436 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
437 			return (SET_ERROR(EFAULT));
438 		return (0);
439 	}
440 	case _FIO_COUNT_FILLED:
441 	{
442 		/*
443 		 * _FIO_COUNT_FILLED adds a new ioctl command which
444 		 * exposes the number of filled blocks in a
445 		 * ZFS object.
446 		 */
447 		zp = VTOZ(vp);
448 		zfsvfs = zp->z_zfsvfs;
449 		ZFS_ENTER(zfsvfs);
450 		ZFS_VERIFY_ZP(zp);
451 
452 		/*
453 		 * Wait for all dirty blocks for this object
454 		 * to get synced out to disk, and the DMU info
455 		 * updated.
456 		 */
457 		error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
458 		if (error) {
459 			ZFS_EXIT(zfsvfs);
460 			return (error);
461 		}
462 
463 		/*
464 		 * Retrieve fill count from DMU object.
465 		 */
466 		error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
467 		if (error) {
468 			ZFS_EXIT(zfsvfs);
469 			return (error);
470 		}
471 
472 		ndata = doi.doi_fill_count;
473 
474 		ZFS_EXIT(zfsvfs);
475 		if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
476 			return (SET_ERROR(EFAULT));
477 		return (0);
478 	}
479 	case ZFS_IOC_FSGETXATTR:
480 		return (zfs_ioctl_getxattr(vp, data, flag, cred, ct));
481 	case ZFS_IOC_FSSETXATTR:
482 		return (zfs_ioctl_setxattr(vp, data, flag, cred, ct));
483 	}
484 	return (SET_ERROR(ENOTTY));
485 }
486 
487 /*
488  * Utility functions to map and unmap a single physical page.  These
489  * are used to manage the mappable copies of ZFS file data, and therefore
490  * do not update ref/mod bits.
491  */
492 caddr_t
493 zfs_map_page(page_t *pp, enum seg_rw rw)
494 {
495 	if (kpm_enable)
496 		return (hat_kpm_mapin(pp, 0));
497 	ASSERT(rw == S_READ || rw == S_WRITE);
498 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
499 	    (caddr_t)-1));
500 }
501 
502 void
503 zfs_unmap_page(page_t *pp, caddr_t addr)
504 {
505 	if (kpm_enable) {
506 		hat_kpm_mapout(pp, 0, addr);
507 	} else {
508 		ppmapout(addr);
509 	}
510 }
511 
512 /*
513  * When a file is memory mapped, we must keep the IO data synchronized
514  * between the DMU cache and the memory mapped pages.  What this means:
515  *
516  * On Write:	If we find a memory mapped page, we write to *both*
517  *		the page and the dmu buffer.
518  */
519 static void
520 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
521 {
522 	int64_t	off;
523 
524 	off = start & PAGEOFFSET;
525 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
526 		page_t *pp;
527 		uint64_t nbytes = MIN(PAGESIZE - off, len);
528 
529 		if (pp = page_lookup(vp, start, SE_SHARED)) {
530 			caddr_t va;
531 
532 			va = zfs_map_page(pp, S_WRITE);
533 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
534 			    DMU_READ_PREFETCH);
535 			zfs_unmap_page(pp, va);
536 			page_unlock(pp);
537 		}
538 		len -= nbytes;
539 		off = 0;
540 	}
541 }
542 
543 /*
544  * When a file is memory mapped, we must keep the IO data synchronized
545  * between the DMU cache and the memory mapped pages.  What this means:
546  *
547  * On Read:	We "read" preferentially from memory mapped pages,
548  *		else we default from the dmu buffer.
549  *
550  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
551  *	 the file is memory mapped.
552  */
553 static int
554 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
555 {
556 	znode_t *zp = VTOZ(vp);
557 	int64_t	start, off;
558 	int len = nbytes;
559 	int error = 0;
560 
561 	start = uio->uio_loffset;
562 	off = start & PAGEOFFSET;
563 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
564 		page_t *pp;
565 		uint64_t bytes = MIN(PAGESIZE - off, len);
566 
567 		if (pp = page_lookup(vp, start, SE_SHARED)) {
568 			caddr_t va;
569 
570 			va = zfs_map_page(pp, S_READ);
571 			error = uiomove(va + off, bytes, UIO_READ, uio);
572 			zfs_unmap_page(pp, va);
573 			page_unlock(pp);
574 		} else {
575 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
576 			    uio, bytes);
577 		}
578 		len -= bytes;
579 		off = 0;
580 		if (error)
581 			break;
582 	}
583 	return (error);
584 }
585 
586 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
587 
588 /*
589  * Read bytes from specified file into supplied buffer.
590  *
591  *	IN:	vp	- vnode of file to be read from.
592  *		uio	- structure supplying read location, range info,
593  *			  and return buffer.
594  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
595  *		cr	- credentials of caller.
596  *		ct	- caller context
597  *
598  *	OUT:	uio	- updated offset and range, buffer filled.
599  *
600  *	RETURN:	0 on success, error code on failure.
601  *
602  * Side Effects:
603  *	vp - atime updated if byte count > 0
604  */
605 /* ARGSUSED */
606 static int
607 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
608 {
609 	znode_t		*zp = VTOZ(vp);
610 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
611 	ssize_t		n, nbytes;
612 	int		error = 0;
613 	boolean_t	frsync = B_FALSE;
614 	xuio_t		*xuio = NULL;
615 
616 	ZFS_ENTER(zfsvfs);
617 	ZFS_VERIFY_ZP(zp);
618 
619 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
620 		ZFS_EXIT(zfsvfs);
621 		return (SET_ERROR(EACCES));
622 	}
623 
624 	/*
625 	 * Validate file offset
626 	 */
627 	if (uio->uio_loffset < (offset_t)0) {
628 		ZFS_EXIT(zfsvfs);
629 		return (SET_ERROR(EINVAL));
630 	}
631 
632 	/*
633 	 * Fasttrack empty reads
634 	 */
635 	if (uio->uio_resid == 0) {
636 		ZFS_EXIT(zfsvfs);
637 		return (0);
638 	}
639 
640 	/*
641 	 * Check for mandatory locks
642 	 */
643 	if (MANDMODE(zp->z_mode)) {
644 		if (error = chklock(vp, FREAD,
645 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
646 			ZFS_EXIT(zfsvfs);
647 			return (error);
648 		}
649 	}
650 
651 #ifdef FRSYNC
652 	/*
653 	 * If we're in FRSYNC mode, sync out this znode before reading it.
654 	 * Only do this for non-snapshots.
655 	 *
656 	 * Some platforms do not support FRSYNC and instead map it
657 	 * to FSYNC, which results in unnecessary calls to zil_commit. We
658 	 * only honor FRSYNC requests on platforms which support it.
659 	 */
660 	frsync = !!(ioflag & FRSYNC);
661 #endif
662 
663 	if (zfsvfs->z_log &&
664 	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
665 		zil_commit(zfsvfs->z_log, zp->z_id);
666 
667 	/*
668 	 * Lock the range against changes.
669 	 */
670 	locked_range_t *lr = rangelock_enter(&zp->z_rangelock,
671 	    uio->uio_loffset, uio->uio_resid, RL_READER);
672 
673 	/*
674 	 * If we are reading past end-of-file we can skip
675 	 * to the end; but we might still need to set atime.
676 	 */
677 	if (uio->uio_loffset >= zp->z_size) {
678 		error = 0;
679 		goto out;
680 	}
681 
682 	ASSERT(uio->uio_loffset < zp->z_size);
683 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
684 
685 	if ((uio->uio_extflg == UIO_XUIO) &&
686 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
687 		int nblk;
688 		int blksz = zp->z_blksz;
689 		uint64_t offset = uio->uio_loffset;
690 
691 		xuio = (xuio_t *)uio;
692 		if ((ISP2(blksz))) {
693 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
694 			    blksz)) / blksz;
695 		} else {
696 			ASSERT(offset + n <= blksz);
697 			nblk = 1;
698 		}
699 		(void) dmu_xuio_init(xuio, nblk);
700 
701 		if (vn_has_cached_data(vp)) {
702 			/*
703 			 * For simplicity, we always allocate a full buffer
704 			 * even if we only expect to read a portion of a block.
705 			 */
706 			while (--nblk >= 0) {
707 				(void) dmu_xuio_add(xuio,
708 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
709 				    blksz), 0, blksz);
710 			}
711 		}
712 	}
713 
714 	while (n > 0) {
715 		nbytes = MIN(n, zfs_read_chunk_size -
716 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
717 
718 		if (vn_has_cached_data(vp)) {
719 			error = mappedread(vp, nbytes, uio);
720 		} else {
721 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
722 			    uio, nbytes);
723 		}
724 		if (error) {
725 			/* convert checksum errors into IO errors */
726 			if (error == ECKSUM)
727 				error = SET_ERROR(EIO);
728 			break;
729 		}
730 
731 		n -= nbytes;
732 	}
733 out:
734 	rangelock_exit(lr);
735 
736 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
737 	ZFS_EXIT(zfsvfs);
738 	return (error);
739 }
740 
741 static void
742 zfs_write_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp,
743     cred_t *cr, boolean_t *did_check, dmu_tx_t *tx)
744 {
745 	ASSERT(did_check != NULL);
746 	ASSERT(tx != NULL);
747 
748 	if (*did_check)
749 		return;
750 
751 	zilog_t *zilog = zfsvfs->z_log;
752 
753 	/*
754 	 * Clear Set-UID/Set-GID bits on successful write if not
755 	 * privileged and at least one of the execute bits is set.
756 	 *
757 	 * It would be nice to do this after all writes have
758 	 * been done, but that would still expose the ISUID/ISGID
759 	 * to another app after the partial write is committed.
760 	 *
761 	 * Note: we don't call zfs_fuid_map_id() here because
762 	 * user 0 is not an ephemeral uid.
763 	 */
764 	mutex_enter(&zp->z_acl_lock);
765 	if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
766 	    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
767 	    secpolicy_vnode_setid_retain(cr,
768 	    ((zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0)) != 0) {
769 		uint64_t newmode;
770 		vattr_t va;
771 
772 		zp->z_mode &= ~(S_ISUID | S_ISGID);
773 		newmode = zp->z_mode;
774 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
775 		    (void *)&newmode, sizeof (uint64_t), tx);
776 
777 		/*
778 		 * Make sure SUID/SGID bits will be removed when we replay the
779 		 * log.
780 		 */
781 		bzero(&va, sizeof (va));
782 		va.va_mask = AT_MODE;
783 		va.va_nodeid = zp->z_id;
784 		va.va_mode = newmode;
785 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va, AT_MODE, NULL);
786 	}
787 	mutex_exit(&zp->z_acl_lock);
788 
789 	*did_check = B_TRUE;
790 }
791 
792 /*
793  * Write the bytes to a file.
794  *
795  *	IN:	vp	- vnode of file to be written to.
796  *		uio	- structure supplying write location, range info,
797  *			  and data buffer.
798  *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
799  *			  set if in append mode.
800  *		cr	- credentials of caller.
801  *		ct	- caller context (NFS/CIFS fem monitor only)
802  *
803  *	OUT:	uio	- updated offset and range.
804  *
805  *	RETURN:	0 on success, error code on failure.
806  *
807  * Timestamps:
808  *	vp - ctime|mtime updated if byte count > 0
809  */
810 
811 /* ARGSUSED */
812 static int
813 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
814 {
815 	znode_t		*zp = VTOZ(vp);
816 	rlim64_t	limit = uio->uio_llimit;
817 	ssize_t		start_resid = uio->uio_resid;
818 	ssize_t		tx_bytes;
819 	uint64_t	end_size;
820 	dmu_tx_t	*tx;
821 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
822 	zilog_t		*zilog;
823 	offset_t	woff;
824 	ssize_t		n, nbytes;
825 	int		max_blksz = zfsvfs->z_max_blksz;
826 	int		error = 0;
827 	int		prev_error;
828 	arc_buf_t	*abuf;
829 	iovec_t		*aiov = NULL;
830 	xuio_t		*xuio = NULL;
831 	int		i_iov = 0;
832 	int		iovcnt = uio->uio_iovcnt;
833 	iovec_t		*iovp = uio->uio_iov;
834 	int		write_eof;
835 	int		count = 0;
836 	sa_bulk_attr_t	bulk[4];
837 	uint64_t	mtime[2], ctime[2];
838 	boolean_t	did_clear_setid_bits = B_FALSE;
839 
840 	/*
841 	 * Fasttrack empty write
842 	 */
843 	n = start_resid;
844 	if (n == 0)
845 		return (0);
846 
847 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
848 		limit = MAXOFFSET_T;
849 
850 	ZFS_ENTER(zfsvfs);
851 	ZFS_VERIFY_ZP(zp);
852 
853 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
854 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
855 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
856 	    &zp->z_size, 8);
857 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
858 	    &zp->z_pflags, 8);
859 
860 	/*
861 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
862 	 * callers might not be able to detect properly that we are read-only,
863 	 * so check it explicitly here.
864 	 */
865 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
866 		ZFS_EXIT(zfsvfs);
867 		return (SET_ERROR(EROFS));
868 	}
869 
870 	/*
871 	 * If immutable or not appending then return EPERM.
872 	 * Intentionally allow ZFS_READONLY through here.
873 	 * See zfs_zaccess_common()
874 	 */
875 	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
876 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
877 	    (uio->uio_loffset < zp->z_size))) {
878 		ZFS_EXIT(zfsvfs);
879 		return (SET_ERROR(EPERM));
880 	}
881 
882 	zilog = zfsvfs->z_log;
883 
884 	/*
885 	 * Validate file offset
886 	 */
887 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
888 	if (woff < 0) {
889 		ZFS_EXIT(zfsvfs);
890 		return (SET_ERROR(EINVAL));
891 	}
892 
893 	/*
894 	 * Check for mandatory locks before calling rangelock_enter()
895 	 * in order to prevent a deadlock with locks set via fcntl().
896 	 */
897 	if (MANDMODE((mode_t)zp->z_mode) &&
898 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
899 		ZFS_EXIT(zfsvfs);
900 		return (error);
901 	}
902 
903 	/*
904 	 * Pre-fault the pages to ensure slow (eg NFS) pages
905 	 * don't hold up txg.
906 	 * Skip this if uio contains loaned arc_buf.
907 	 */
908 	if ((uio->uio_extflg == UIO_XUIO) &&
909 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
910 		xuio = (xuio_t *)uio;
911 	else
912 		uio_prefaultpages(MIN(n, max_blksz), uio);
913 
914 	/*
915 	 * If in append mode, set the io offset pointer to eof.
916 	 */
917 	locked_range_t *lr;
918 	if (ioflag & FAPPEND) {
919 		/*
920 		 * Obtain an appending range lock to guarantee file append
921 		 * semantics.  We reset the write offset once we have the lock.
922 		 */
923 		lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
924 		woff = lr->lr_offset;
925 		if (lr->lr_length == UINT64_MAX) {
926 			/*
927 			 * We overlocked the file because this write will cause
928 			 * the file block size to increase.
929 			 * Note that zp_size cannot change with this lock held.
930 			 */
931 			woff = zp->z_size;
932 		}
933 		uio->uio_loffset = woff;
934 	} else {
935 		/*
936 		 * Note that if the file block size will change as a result of
937 		 * this write, then this range lock will lock the entire file
938 		 * so that we can re-write the block safely.
939 		 */
940 		lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
941 	}
942 
943 	if (woff >= limit) {
944 		rangelock_exit(lr);
945 		ZFS_EXIT(zfsvfs);
946 		return (SET_ERROR(EFBIG));
947 	}
948 
949 	if ((woff + n) > limit || woff > (limit - n))
950 		n = limit - woff;
951 
952 	/* Will this write extend the file length? */
953 	write_eof = (woff + n > zp->z_size);
954 
955 	end_size = MAX(zp->z_size, woff + n);
956 
957 	/*
958 	 * Write the file in reasonable size chunks.  Each chunk is written
959 	 * in a separate transaction; this keeps the intent log records small
960 	 * and allows us to do more fine-grained space accounting.
961 	 */
962 	while (n > 0) {
963 		woff = uio->uio_loffset;
964 
965 		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
966 		    zp->z_uid) ||
967 		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
968 		    zp->z_gid) ||
969 		    (zp->z_projid != ZFS_DEFAULT_PROJID &&
970 		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
971 		    zp->z_projid))) {
972 			error = SET_ERROR(EDQUOT);
973 			break;
974 		}
975 
976 		arc_buf_t *abuf = NULL;
977 		if (xuio) {
978 			ASSERT(i_iov < iovcnt);
979 			aiov = &iovp[i_iov];
980 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
981 			dmu_xuio_clear(xuio, i_iov);
982 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
983 			    iovec_t *, aiov, arc_buf_t *, abuf);
984 			ASSERT((aiov->iov_base == abuf->b_data) ||
985 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
986 			    aiov->iov_len == arc_buf_size(abuf)));
987 			i_iov++;
988 		} else if (n >= max_blksz && woff >= zp->z_size &&
989 		    P2PHASE(woff, max_blksz) == 0 &&
990 		    zp->z_blksz == max_blksz) {
991 			/*
992 			 * This write covers a full block.  "Borrow" a buffer
993 			 * from the dmu so that we can fill it before we enter
994 			 * a transaction.  This avoids the possibility of
995 			 * holding up the transaction if the data copy hangs
996 			 * up on a pagefault (e.g., from an NFS server mapping).
997 			 */
998 			size_t cbytes;
999 
1000 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
1001 			    max_blksz);
1002 			ASSERT(abuf != NULL);
1003 			ASSERT(arc_buf_size(abuf) == max_blksz);
1004 			if (error = uiocopy(abuf->b_data, max_blksz,
1005 			    UIO_WRITE, uio, &cbytes)) {
1006 				dmu_return_arcbuf(abuf);
1007 				break;
1008 			}
1009 			ASSERT(cbytes == max_blksz);
1010 		}
1011 
1012 		/*
1013 		 * Start a transaction.
1014 		 */
1015 		tx = dmu_tx_create(zfsvfs->z_os);
1016 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1017 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
1018 		zfs_sa_upgrade_txholds(tx, zp);
1019 		error = dmu_tx_assign(tx, TXG_WAIT);
1020 		if (error) {
1021 			dmu_tx_abort(tx);
1022 			if (abuf != NULL)
1023 				dmu_return_arcbuf(abuf);
1024 			break;
1025 		}
1026 
1027 		/*
1028 		 * NB: We must call zfs_write_clear_setid_bits_if_necessary
1029 		 * before committing the transaction!
1030 		 */
1031 
1032 		/*
1033 		 * If rangelock_enter() over-locked we grow the blocksize
1034 		 * and then reduce the lock range.  This will only happen
1035 		 * on the first iteration since rangelock_reduce() will
1036 		 * shrink down lr_length to the appropriate size.
1037 		 */
1038 		if (lr->lr_length == UINT64_MAX) {
1039 			uint64_t new_blksz;
1040 
1041 			if (zp->z_blksz > max_blksz) {
1042 				/*
1043 				 * File's blocksize is already larger than the
1044 				 * "recordsize" property.  Only let it grow to
1045 				 * the next power of 2.
1046 				 */
1047 				ASSERT(!ISP2(zp->z_blksz));
1048 				new_blksz = MIN(end_size,
1049 				    1 << highbit64(zp->z_blksz));
1050 			} else {
1051 				new_blksz = MIN(end_size, max_blksz);
1052 			}
1053 			zfs_grow_blocksize(zp, new_blksz, tx);
1054 			rangelock_reduce(lr, woff, n);
1055 		}
1056 
1057 		/*
1058 		 * XXX - should we really limit each write to z_max_blksz?
1059 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
1060 		 */
1061 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
1062 
1063 		if (abuf == NULL) {
1064 			tx_bytes = uio->uio_resid;
1065 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
1066 			    uio, nbytes, tx);
1067 			tx_bytes -= uio->uio_resid;
1068 		} else {
1069 			tx_bytes = nbytes;
1070 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
1071 			/*
1072 			 * If this is not a full block write, but we are
1073 			 * extending the file past EOF and this data starts
1074 			 * block-aligned, use assign_arcbuf().  Otherwise,
1075 			 * write via dmu_write().
1076 			 */
1077 			if (tx_bytes < max_blksz && (!write_eof ||
1078 			    aiov->iov_base != abuf->b_data)) {
1079 				ASSERT(xuio);
1080 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
1081 				    aiov->iov_len, aiov->iov_base, tx);
1082 				dmu_return_arcbuf(abuf);
1083 				xuio_stat_wbuf_copied();
1084 			} else {
1085 				ASSERT(xuio || tx_bytes == max_blksz);
1086 				dmu_assign_arcbuf_by_dbuf(
1087 				    sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
1088 			}
1089 			ASSERT(tx_bytes <= uio->uio_resid);
1090 			uioskip(uio, tx_bytes);
1091 		}
1092 		if (tx_bytes && vn_has_cached_data(vp)) {
1093 			update_pages(vp, woff,
1094 			    tx_bytes, zfsvfs->z_os, zp->z_id);
1095 		}
1096 
1097 		/*
1098 		 * If we made no progress, we're done.  If we made even
1099 		 * partial progress, update the znode and ZIL accordingly.
1100 		 */
1101 		if (tx_bytes == 0) {
1102 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
1103 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
1104 			dmu_tx_commit(tx);
1105 			ASSERT(error != 0);
1106 			break;
1107 		}
1108 
1109 		zfs_write_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
1110 		    &did_clear_setid_bits, tx);
1111 
1112 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
1113 		    B_TRUE);
1114 
1115 		/*
1116 		 * Update the file size (zp_size) if it has changed;
1117 		 * account for possible concurrent updates.
1118 		 */
1119 		while ((end_size = zp->z_size) < uio->uio_loffset) {
1120 			(void) atomic_cas_64(&zp->z_size, end_size,
1121 			    uio->uio_loffset);
1122 		}
1123 		/*
1124 		 * If we are replaying and eof is non zero then force
1125 		 * the file size to the specified eof. Note, there's no
1126 		 * concurrency during replay.
1127 		 */
1128 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1129 			zp->z_size = zfsvfs->z_replay_eof;
1130 
1131 		/*
1132 		 * Keep track of a possible pre-existing error from a partial
1133 		 * write via dmu_write_uio_dbuf above.
1134 		 */
1135 		prev_error = error;
1136 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1137 
1138 		/*
1139 		 * NB: During replay, the TX_SETATTR record logged by
1140 		 * zfs_write_clear_setid_bits_if_necessary must precede
1141 		 * any of the TX_WRITE records logged here.
1142 		 */
1143 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
1144 		dmu_tx_commit(tx);
1145 
1146 		if (prev_error != 0 || error != 0)
1147 			break;
1148 		ASSERT(tx_bytes == nbytes);
1149 		n -= nbytes;
1150 
1151 		if (!xuio && n > 0)
1152 			uio_prefaultpages(MIN(n, max_blksz), uio);
1153 	}
1154 
1155 	rangelock_exit(lr);
1156 
1157 	/*
1158 	 * If we're in replay mode, or we made no progress, return error.
1159 	 * Otherwise, it's at least a partial write, so it's successful.
1160 	 */
1161 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1162 		ZFS_EXIT(zfsvfs);
1163 		return (error);
1164 	}
1165 
1166 	if (ioflag & (FSYNC | FDSYNC) ||
1167 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1168 		zil_commit(zilog, zp->z_id);
1169 
1170 	ZFS_EXIT(zfsvfs);
1171 	return (0);
1172 }
1173 
1174 /* ARGSUSED */
1175 void
1176 zfs_get_done(zgd_t *zgd, int error)
1177 {
1178 	znode_t *zp = zgd->zgd_private;
1179 	objset_t *os = zp->z_zfsvfs->z_os;
1180 
1181 	if (zgd->zgd_db)
1182 		dmu_buf_rele(zgd->zgd_db, zgd);
1183 
1184 	rangelock_exit(zgd->zgd_lr);
1185 
1186 	/*
1187 	 * Release the vnode asynchronously as we currently have the
1188 	 * txg stopped from syncing.
1189 	 */
1190 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1191 
1192 	kmem_free(zgd, sizeof (zgd_t));
1193 }
1194 
1195 #ifdef DEBUG
1196 static int zil_fault_io = 0;
1197 #endif
1198 
1199 /*
1200  * Get data to generate a TX_WRITE intent log record.
1201  */
1202 int
1203 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1204 {
1205 	zfsvfs_t *zfsvfs = arg;
1206 	objset_t *os = zfsvfs->z_os;
1207 	znode_t *zp;
1208 	uint64_t object = lr->lr_foid;
1209 	uint64_t offset = lr->lr_offset;
1210 	uint64_t size = lr->lr_length;
1211 	dmu_buf_t *db;
1212 	zgd_t *zgd;
1213 	int error = 0;
1214 
1215 	ASSERT3P(lwb, !=, NULL);
1216 	ASSERT3P(zio, !=, NULL);
1217 	ASSERT3U(size, !=, 0);
1218 
1219 	/*
1220 	 * Nothing to do if the file has been removed
1221 	 */
1222 	if (zfs_zget(zfsvfs, object, &zp) != 0)
1223 		return (SET_ERROR(ENOENT));
1224 	if (zp->z_unlinked) {
1225 		/*
1226 		 * Release the vnode asynchronously as we currently have the
1227 		 * txg stopped from syncing.
1228 		 */
1229 		VN_RELE_ASYNC(ZTOV(zp),
1230 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1231 		return (SET_ERROR(ENOENT));
1232 	}
1233 
1234 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1235 	zgd->zgd_lwb = lwb;
1236 	zgd->zgd_private = zp;
1237 
1238 	/*
1239 	 * Write records come in two flavors: immediate and indirect.
1240 	 * For small writes it's cheaper to store the data with the
1241 	 * log record (immediate); for large writes it's cheaper to
1242 	 * sync the data and get a pointer to it (indirect) so that
1243 	 * we don't have to write the data twice.
1244 	 */
1245 	if (buf != NULL) { /* immediate write */
1246 		zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1247 		    offset, size, RL_READER);
1248 		/* test for truncation needs to be done while range locked */
1249 		if (offset >= zp->z_size) {
1250 			error = SET_ERROR(ENOENT);
1251 		} else {
1252 			error = dmu_read(os, object, offset, size, buf,
1253 			    DMU_READ_NO_PREFETCH);
1254 		}
1255 		ASSERT(error == 0 || error == ENOENT);
1256 	} else { /* indirect write */
1257 		/*
1258 		 * Have to lock the whole block to ensure when it's
1259 		 * written out and its checksum is being calculated
1260 		 * that no one can change the data. We need to re-check
1261 		 * blocksize after we get the lock in case it's changed!
1262 		 */
1263 		for (;;) {
1264 			uint64_t blkoff;
1265 			size = zp->z_blksz;
1266 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1267 			offset -= blkoff;
1268 			zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1269 			    offset, size, RL_READER);
1270 			if (zp->z_blksz == size)
1271 				break;
1272 			offset += blkoff;
1273 			rangelock_exit(zgd->zgd_lr);
1274 		}
1275 		/* test for truncation needs to be done while range locked */
1276 		if (lr->lr_offset >= zp->z_size)
1277 			error = SET_ERROR(ENOENT);
1278 #ifdef DEBUG
1279 		if (zil_fault_io) {
1280 			error = SET_ERROR(EIO);
1281 			zil_fault_io = 0;
1282 		}
1283 #endif
1284 		if (error == 0)
1285 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1286 			    DMU_READ_NO_PREFETCH);
1287 
1288 		if (error == 0) {
1289 			blkptr_t *bp = &lr->lr_blkptr;
1290 
1291 			zgd->zgd_db = db;
1292 			zgd->zgd_bp = bp;
1293 
1294 			ASSERT(db->db_offset == offset);
1295 			ASSERT(db->db_size == size);
1296 
1297 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1298 			    zfs_get_done, zgd);
1299 			ASSERT(error || lr->lr_length <= size);
1300 
1301 			/*
1302 			 * On success, we need to wait for the write I/O
1303 			 * initiated by dmu_sync() to complete before we can
1304 			 * release this dbuf.  We will finish everything up
1305 			 * in the zfs_get_done() callback.
1306 			 */
1307 			if (error == 0)
1308 				return (0);
1309 
1310 			if (error == EALREADY) {
1311 				lr->lr_common.lrc_txtype = TX_WRITE2;
1312 				/*
1313 				 * TX_WRITE2 relies on the data previously
1314 				 * written by the TX_WRITE that caused
1315 				 * EALREADY.  We zero out the BP because
1316 				 * it is the old, currently-on-disk BP.
1317 				 */
1318 				zgd->zgd_bp = NULL;
1319 				BP_ZERO(bp);
1320 				error = 0;
1321 			}
1322 		}
1323 	}
1324 
1325 	zfs_get_done(zgd, error);
1326 
1327 	return (error);
1328 }
1329 
1330 /*ARGSUSED*/
1331 static int
1332 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1333     caller_context_t *ct)
1334 {
1335 	znode_t *zp = VTOZ(vp);
1336 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1337 	int error;
1338 
1339 	ZFS_ENTER(zfsvfs);
1340 	ZFS_VERIFY_ZP(zp);
1341 
1342 	if (flag & V_ACE_MASK)
1343 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1344 	else
1345 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1346 
1347 	ZFS_EXIT(zfsvfs);
1348 	return (error);
1349 }
1350 
1351 /*
1352  * If vnode is for a device return a specfs vnode instead.
1353  */
1354 static int
1355 specvp_check(vnode_t **vpp, cred_t *cr)
1356 {
1357 	int error = 0;
1358 
1359 	if (IS_DEVVP(*vpp)) {
1360 		struct vnode *svp;
1361 
1362 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1363 		VN_RELE(*vpp);
1364 		if (svp == NULL)
1365 			error = SET_ERROR(ENOSYS);
1366 		*vpp = svp;
1367 	}
1368 	return (error);
1369 }
1370 
1371 
1372 /*
1373  * Lookup an entry in a directory, or an extended attribute directory.
1374  * If it exists, return a held vnode reference for it.
1375  *
1376  *	IN:	dvp	- vnode of directory to search.
1377  *		nm	- name of entry to lookup.
1378  *		pnp	- full pathname to lookup [UNUSED].
1379  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1380  *		rdir	- root directory vnode [UNUSED].
1381  *		cr	- credentials of caller.
1382  *		ct	- caller context
1383  *		direntflags - directory lookup flags
1384  *		realpnp - returned pathname.
1385  *
1386  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1387  *
1388  *	RETURN:	0 on success, error code on failure.
1389  *
1390  * Timestamps:
1391  *	NA
1392  */
1393 /* ARGSUSED */
1394 static int
1395 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1396     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1397     int *direntflags, pathname_t *realpnp)
1398 {
1399 	znode_t *zdp = VTOZ(dvp);
1400 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1401 	int	error = 0;
1402 	boolean_t skipaclchk = ((flags & ATTR_NOACLCHECK) != 0);
1403 
1404 	/*
1405 	 * ATTR_NOACLCHECK is specified to skip EXECUTE checks for
1406 	 * consumers (like SMB) that bypass traverse checking.
1407 	 * Turn it off here so it can't accidentally be used
1408 	 * for other checks.
1409 	 */
1410 	flags &= ~ATTR_NOACLCHECK;
1411 
1412 	/*
1413 	 * Fast path lookup, however we must skip DNLC lookup
1414 	 * for case folding or normalizing lookups because the
1415 	 * DNLC code only stores the passed in name.  This means
1416 	 * creating 'a' and removing 'A' on a case insensitive
1417 	 * file system would work, but DNLC still thinks 'a'
1418 	 * exists and won't let you create it again on the next
1419 	 * pass through fast path.
1420 	 */
1421 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1422 
1423 		if (dvp->v_type != VDIR) {
1424 			return (SET_ERROR(ENOTDIR));
1425 		} else if (zdp->z_sa_hdl == NULL) {
1426 			return (SET_ERROR(EIO));
1427 		}
1428 
1429 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1430 			error = zfs_fastaccesschk_execute(zdp, cr, skipaclchk);
1431 			if (!error) {
1432 				*vpp = dvp;
1433 				VN_HOLD(*vpp);
1434 				return (0);
1435 			}
1436 			return (error);
1437 		} else if (!zdp->z_zfsvfs->z_norm &&
1438 		    (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1439 
1440 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1441 
1442 			if (tvp) {
1443 				error = zfs_fastaccesschk_execute(zdp, cr,
1444 				    skipaclchk);
1445 				if (error) {
1446 					VN_RELE(tvp);
1447 					return (error);
1448 				}
1449 				if (tvp == DNLC_NO_VNODE) {
1450 					VN_RELE(tvp);
1451 					return (SET_ERROR(ENOENT));
1452 				} else {
1453 					*vpp = tvp;
1454 					return (specvp_check(vpp, cr));
1455 				}
1456 			}
1457 		}
1458 	}
1459 
1460 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1461 
1462 	ZFS_ENTER(zfsvfs);
1463 	ZFS_VERIFY_ZP(zdp);
1464 
1465 	*vpp = NULL;
1466 
1467 	if (flags & LOOKUP_XATTR) {
1468 		/*
1469 		 * If the xattr property is off, refuse the lookup request.
1470 		 */
1471 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1472 			ZFS_EXIT(zfsvfs);
1473 			return (SET_ERROR(EINVAL));
1474 		}
1475 
1476 		/*
1477 		 * We don't allow recursive attributes..
1478 		 * Maybe someday we will.
1479 		 */
1480 		if (zdp->z_pflags & ZFS_XATTR) {
1481 			ZFS_EXIT(zfsvfs);
1482 			return (SET_ERROR(EINVAL));
1483 		}
1484 
1485 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1486 			ZFS_EXIT(zfsvfs);
1487 			return (error);
1488 		}
1489 
1490 		/*
1491 		 * Do we have permission to get into attribute directory?
1492 		 */
1493 
1494 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1495 		    skipaclchk, cr)) {
1496 			VN_RELE(*vpp);
1497 			*vpp = NULL;
1498 		}
1499 
1500 		ZFS_EXIT(zfsvfs);
1501 		return (error);
1502 	}
1503 
1504 	if (dvp->v_type != VDIR) {
1505 		ZFS_EXIT(zfsvfs);
1506 		return (SET_ERROR(ENOTDIR));
1507 	}
1508 
1509 	/*
1510 	 * Check accessibility of directory.
1511 	 */
1512 
1513 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, skipaclchk, cr)) {
1514 		ZFS_EXIT(zfsvfs);
1515 		return (error);
1516 	}
1517 
1518 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1519 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1520 		ZFS_EXIT(zfsvfs);
1521 		return (SET_ERROR(EILSEQ));
1522 	}
1523 
1524 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1525 	if (error == 0)
1526 		error = specvp_check(vpp, cr);
1527 
1528 	ZFS_EXIT(zfsvfs);
1529 	return (error);
1530 }
1531 
1532 /*
1533  * Attempt to create a new entry in a directory.  If the entry
1534  * already exists, truncate the file if permissible, else return
1535  * an error.  Return the vp of the created or trunc'd file.
1536  *
1537  *	IN:	dvp	- vnode of directory to put new file entry in.
1538  *		name	- name of new file entry.
1539  *		vap	- attributes of new file.
1540  *		excl	- flag indicating exclusive or non-exclusive mode.
1541  *		mode	- mode to open file with.
1542  *		cr	- credentials of caller.
1543  *		flag	- large file flag [UNUSED].
1544  *		ct	- caller context
1545  *		vsecp	- ACL to be set
1546  *
1547  *	OUT:	vpp	- vnode of created or trunc'd entry.
1548  *
1549  *	RETURN:	0 on success, error code on failure.
1550  *
1551  * Timestamps:
1552  *	dvp - ctime|mtime updated if new entry created
1553  *	 vp - ctime|mtime always, atime if new
1554  */
1555 
1556 /* ARGSUSED */
1557 static int
1558 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1559     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1560     vsecattr_t *vsecp)
1561 {
1562 	znode_t		*zp, *dzp = VTOZ(dvp);
1563 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1564 	zilog_t		*zilog;
1565 	objset_t	*os;
1566 	zfs_dirlock_t	*dl;
1567 	dmu_tx_t	*tx;
1568 	int		error;
1569 	ksid_t		*ksid;
1570 	uid_t		uid;
1571 	gid_t		gid = crgetgid(cr);
1572 	zfs_acl_ids_t   acl_ids;
1573 	boolean_t	fuid_dirtied;
1574 	boolean_t	have_acl = B_FALSE;
1575 	boolean_t	waited = B_FALSE;
1576 
1577 	/*
1578 	 * If we have an ephemeral id, ACL, or XVATTR then
1579 	 * make sure file system is at proper version
1580 	 */
1581 
1582 	ksid = crgetsid(cr, KSID_OWNER);
1583 	if (ksid)
1584 		uid = ksid_getid(ksid);
1585 	else
1586 		uid = crgetuid(cr);
1587 
1588 	if (zfsvfs->z_use_fuids == B_FALSE &&
1589 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1590 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1591 		return (SET_ERROR(EINVAL));
1592 
1593 	ZFS_ENTER(zfsvfs);
1594 	ZFS_VERIFY_ZP(dzp);
1595 	os = zfsvfs->z_os;
1596 	zilog = zfsvfs->z_log;
1597 
1598 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1599 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1600 		ZFS_EXIT(zfsvfs);
1601 		return (SET_ERROR(EILSEQ));
1602 	}
1603 
1604 	if (vap->va_mask & AT_XVATTR) {
1605 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1606 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1607 			ZFS_EXIT(zfsvfs);
1608 			return (error);
1609 		}
1610 	}
1611 top:
1612 	*vpp = NULL;
1613 
1614 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1615 		vap->va_mode &= ~VSVTX;
1616 
1617 	if (*name == '\0') {
1618 		/*
1619 		 * Null component name refers to the directory itself.
1620 		 */
1621 		VN_HOLD(dvp);
1622 		zp = dzp;
1623 		dl = NULL;
1624 		error = 0;
1625 	} else {
1626 		/* possible VN_HOLD(zp) */
1627 		int zflg = 0;
1628 
1629 		if (flag & FIGNORECASE)
1630 			zflg |= ZCILOOK;
1631 
1632 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1633 		    NULL, NULL);
1634 		if (error) {
1635 			if (have_acl)
1636 				zfs_acl_ids_free(&acl_ids);
1637 			if (strcmp(name, "..") == 0)
1638 				error = SET_ERROR(EISDIR);
1639 			ZFS_EXIT(zfsvfs);
1640 			return (error);
1641 		}
1642 	}
1643 
1644 	if (zp == NULL) {
1645 		uint64_t txtype;
1646 		uint64_t projid = ZFS_DEFAULT_PROJID;
1647 
1648 		/*
1649 		 * Create a new file object and update the directory
1650 		 * to reference it.
1651 		 */
1652 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1653 			if (have_acl)
1654 				zfs_acl_ids_free(&acl_ids);
1655 			goto out;
1656 		}
1657 
1658 		/*
1659 		 * We only support the creation of regular files in
1660 		 * extended attribute directories.
1661 		 */
1662 
1663 		if ((dzp->z_pflags & ZFS_XATTR) &&
1664 		    (vap->va_type != VREG)) {
1665 			if (have_acl)
1666 				zfs_acl_ids_free(&acl_ids);
1667 			error = SET_ERROR(EINVAL);
1668 			goto out;
1669 		}
1670 
1671 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1672 		    cr, vsecp, &acl_ids)) != 0)
1673 			goto out;
1674 		have_acl = B_TRUE;
1675 
1676 		if (vap->va_type == VREG || vap->va_type == VDIR)
1677 			projid = zfs_inherit_projid(dzp);
1678 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
1679 			zfs_acl_ids_free(&acl_ids);
1680 			error = SET_ERROR(EDQUOT);
1681 			goto out;
1682 		}
1683 
1684 		tx = dmu_tx_create(os);
1685 
1686 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1687 		    ZFS_SA_BASE_ATTR_SIZE);
1688 
1689 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1690 		if (fuid_dirtied)
1691 			zfs_fuid_txhold(zfsvfs, tx);
1692 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1693 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1694 		if (!zfsvfs->z_use_sa &&
1695 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1696 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1697 			    0, acl_ids.z_aclp->z_acl_bytes);
1698 		}
1699 		error = dmu_tx_assign(tx,
1700 		    (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1701 		if (error) {
1702 			zfs_dirent_unlock(dl);
1703 			if (error == ERESTART) {
1704 				waited = B_TRUE;
1705 				dmu_tx_wait(tx);
1706 				dmu_tx_abort(tx);
1707 				goto top;
1708 			}
1709 			zfs_acl_ids_free(&acl_ids);
1710 			dmu_tx_abort(tx);
1711 			ZFS_EXIT(zfsvfs);
1712 			return (error);
1713 		}
1714 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1715 
1716 		if (fuid_dirtied)
1717 			zfs_fuid_sync(zfsvfs, tx);
1718 
1719 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1720 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1721 		if (flag & FIGNORECASE)
1722 			txtype |= TX_CI;
1723 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1724 		    vsecp, acl_ids.z_fuidp, vap);
1725 		zfs_acl_ids_free(&acl_ids);
1726 		dmu_tx_commit(tx);
1727 	} else {
1728 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1729 
1730 		if (have_acl)
1731 			zfs_acl_ids_free(&acl_ids);
1732 		have_acl = B_FALSE;
1733 
1734 		/*
1735 		 * A directory entry already exists for this name.
1736 		 */
1737 		/*
1738 		 * Can't truncate an existing file if in exclusive mode.
1739 		 */
1740 		if (excl == EXCL) {
1741 			error = SET_ERROR(EEXIST);
1742 			goto out;
1743 		}
1744 		/*
1745 		 * Can't open a directory for writing.
1746 		 */
1747 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1748 			error = SET_ERROR(EISDIR);
1749 			goto out;
1750 		}
1751 		/*
1752 		 * Verify requested access to file.
1753 		 */
1754 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1755 			goto out;
1756 		}
1757 
1758 		mutex_enter(&dzp->z_lock);
1759 		dzp->z_seq++;
1760 		mutex_exit(&dzp->z_lock);
1761 
1762 		/*
1763 		 * Truncate regular files if requested.
1764 		 */
1765 		if ((ZTOV(zp)->v_type == VREG) &&
1766 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1767 			/* we can't hold any locks when calling zfs_freesp() */
1768 			zfs_dirent_unlock(dl);
1769 			dl = NULL;
1770 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1771 			if (error == 0) {
1772 				vnevent_create(ZTOV(zp), ct);
1773 			}
1774 		}
1775 	}
1776 out:
1777 
1778 	if (dl)
1779 		zfs_dirent_unlock(dl);
1780 
1781 	if (error) {
1782 		if (zp)
1783 			VN_RELE(ZTOV(zp));
1784 	} else {
1785 		*vpp = ZTOV(zp);
1786 		error = specvp_check(vpp, cr);
1787 	}
1788 
1789 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1790 		zil_commit(zilog, 0);
1791 
1792 	ZFS_EXIT(zfsvfs);
1793 	return (error);
1794 }
1795 
1796 /*
1797  * Remove an entry from a directory.
1798  *
1799  *	IN:	dvp	- vnode of directory to remove entry from.
1800  *		name	- name of entry to remove.
1801  *		cr	- credentials of caller.
1802  *		ct	- caller context
1803  *		flags	- case flags
1804  *
1805  *	RETURN:	0 on success, error code on failure.
1806  *
1807  * Timestamps:
1808  *	dvp - ctime|mtime
1809  *	 vp - ctime (if nlink > 0)
1810  */
1811 
1812 uint64_t null_xattr = 0;
1813 
1814 /*ARGSUSED*/
1815 static int
1816 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1817     int flags)
1818 {
1819 	znode_t		*zp, *dzp = VTOZ(dvp);
1820 	znode_t		*xzp;
1821 	vnode_t		*vp;
1822 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1823 	zilog_t		*zilog;
1824 	uint64_t	acl_obj, xattr_obj;
1825 	uint64_t	xattr_obj_unlinked = 0;
1826 	uint64_t	obj = 0;
1827 	zfs_dirlock_t	*dl;
1828 	dmu_tx_t	*tx;
1829 	boolean_t	may_delete_now, delete_now = FALSE;
1830 	boolean_t	unlinked, toobig = FALSE;
1831 	uint64_t	txtype;
1832 	pathname_t	*realnmp = NULL;
1833 	pathname_t	realnm;
1834 	int		error;
1835 	int		zflg = ZEXISTS;
1836 	boolean_t	waited = B_FALSE;
1837 
1838 	ZFS_ENTER(zfsvfs);
1839 	ZFS_VERIFY_ZP(dzp);
1840 	zilog = zfsvfs->z_log;
1841 
1842 	if (flags & FIGNORECASE) {
1843 		zflg |= ZCILOOK;
1844 		pn_alloc(&realnm);
1845 		realnmp = &realnm;
1846 	}
1847 
1848 top:
1849 	xattr_obj = 0;
1850 	xzp = NULL;
1851 	/*
1852 	 * Attempt to lock directory; fail if entry doesn't exist.
1853 	 */
1854 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1855 	    NULL, realnmp)) {
1856 		if (realnmp)
1857 			pn_free(realnmp);
1858 		ZFS_EXIT(zfsvfs);
1859 		return (error);
1860 	}
1861 
1862 	vp = ZTOV(zp);
1863 
1864 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1865 		goto out;
1866 	}
1867 
1868 	/*
1869 	 * Need to use rmdir for removing directories.
1870 	 */
1871 	if (vp->v_type == VDIR) {
1872 		error = SET_ERROR(EPERM);
1873 		goto out;
1874 	}
1875 
1876 	vnevent_remove(vp, dvp, name, ct);
1877 
1878 	if (realnmp)
1879 		dnlc_remove(dvp, realnmp->pn_buf);
1880 	else
1881 		dnlc_remove(dvp, name);
1882 
1883 	mutex_enter(&vp->v_lock);
1884 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1885 	mutex_exit(&vp->v_lock);
1886 
1887 	/*
1888 	 * We may delete the znode now, or we may put it in the unlinked set;
1889 	 * it depends on whether we're the last link, and on whether there are
1890 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1891 	 * allow for either case.
1892 	 */
1893 	obj = zp->z_id;
1894 	tx = dmu_tx_create(zfsvfs->z_os);
1895 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1896 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1897 	zfs_sa_upgrade_txholds(tx, zp);
1898 	zfs_sa_upgrade_txholds(tx, dzp);
1899 	if (may_delete_now) {
1900 		toobig =
1901 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1902 		/* if the file is too big, only hold_free a token amount */
1903 		dmu_tx_hold_free(tx, zp->z_id, 0,
1904 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1905 	}
1906 
1907 	/* are there any extended attributes? */
1908 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1909 	    &xattr_obj, sizeof (xattr_obj));
1910 	if (error == 0 && xattr_obj) {
1911 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1912 		ASSERT0(error);
1913 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1914 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1915 	}
1916 
1917 	mutex_enter(&zp->z_lock);
1918 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1919 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1920 	mutex_exit(&zp->z_lock);
1921 
1922 	/* charge as an update -- would be nice not to charge at all */
1923 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1924 
1925 	/*
1926 	 * Mark this transaction as typically resulting in a net free of space
1927 	 */
1928 	dmu_tx_mark_netfree(tx);
1929 
1930 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1931 	if (error) {
1932 		zfs_dirent_unlock(dl);
1933 		VN_RELE(vp);
1934 		if (xzp)
1935 			VN_RELE(ZTOV(xzp));
1936 		if (error == ERESTART) {
1937 			waited = B_TRUE;
1938 			dmu_tx_wait(tx);
1939 			dmu_tx_abort(tx);
1940 			goto top;
1941 		}
1942 		if (realnmp)
1943 			pn_free(realnmp);
1944 		dmu_tx_abort(tx);
1945 		ZFS_EXIT(zfsvfs);
1946 		return (error);
1947 	}
1948 
1949 	/*
1950 	 * Remove the directory entry.
1951 	 */
1952 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1953 
1954 	if (error) {
1955 		dmu_tx_commit(tx);
1956 		goto out;
1957 	}
1958 
1959 	if (unlinked) {
1960 		/*
1961 		 * Hold z_lock so that we can make sure that the ACL obj
1962 		 * hasn't changed.  Could have been deleted due to
1963 		 * zfs_sa_upgrade().
1964 		 */
1965 		mutex_enter(&zp->z_lock);
1966 		mutex_enter(&vp->v_lock);
1967 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1968 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1969 		delete_now = may_delete_now && !toobig &&
1970 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1971 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1972 		    acl_obj;
1973 		mutex_exit(&vp->v_lock);
1974 	}
1975 
1976 	if (delete_now) {
1977 		if (xattr_obj_unlinked) {
1978 			ASSERT3U(xzp->z_links, ==, 2);
1979 			mutex_enter(&xzp->z_lock);
1980 			xzp->z_unlinked = 1;
1981 			xzp->z_links = 0;
1982 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1983 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1984 			ASSERT3U(error,  ==,  0);
1985 			mutex_exit(&xzp->z_lock);
1986 			zfs_unlinked_add(xzp, tx);
1987 
1988 			if (zp->z_is_sa)
1989 				error = sa_remove(zp->z_sa_hdl,
1990 				    SA_ZPL_XATTR(zfsvfs), tx);
1991 			else
1992 				error = sa_update(zp->z_sa_hdl,
1993 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1994 				    sizeof (uint64_t), tx);
1995 			ASSERT0(error);
1996 		}
1997 		mutex_enter(&vp->v_lock);
1998 		VN_RELE_LOCKED(vp);
1999 		ASSERT0(vp->v_count);
2000 		mutex_exit(&vp->v_lock);
2001 		mutex_exit(&zp->z_lock);
2002 		zfs_znode_delete(zp, tx);
2003 	} else if (unlinked) {
2004 		mutex_exit(&zp->z_lock);
2005 		zfs_unlinked_add(zp, tx);
2006 	}
2007 
2008 	txtype = TX_REMOVE;
2009 	if (flags & FIGNORECASE)
2010 		txtype |= TX_CI;
2011 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
2012 
2013 	dmu_tx_commit(tx);
2014 out:
2015 	if (realnmp)
2016 		pn_free(realnmp);
2017 
2018 	zfs_dirent_unlock(dl);
2019 
2020 	if (!delete_now)
2021 		VN_RELE(vp);
2022 	if (xzp)
2023 		VN_RELE(ZTOV(xzp));
2024 
2025 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2026 		zil_commit(zilog, 0);
2027 
2028 	ZFS_EXIT(zfsvfs);
2029 	return (error);
2030 }
2031 
2032 /*
2033  * Create a new directory and insert it into dvp using the name
2034  * provided.  Return a pointer to the inserted directory.
2035  *
2036  *	IN:	dvp	- vnode of directory to add subdir to.
2037  *		dirname	- name of new directory.
2038  *		vap	- attributes of new directory.
2039  *		cr	- credentials of caller.
2040  *		ct	- caller context
2041  *		flags	- case flags
2042  *		vsecp	- ACL to be set
2043  *
2044  *	OUT:	vpp	- vnode of created directory.
2045  *
2046  *	RETURN:	0 on success, error code on failure.
2047  *
2048  * Timestamps:
2049  *	dvp - ctime|mtime updated
2050  *	 vp - ctime|mtime|atime updated
2051  */
2052 /*ARGSUSED*/
2053 static int
2054 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
2055     caller_context_t *ct, int flags, vsecattr_t *vsecp)
2056 {
2057 	znode_t		*zp, *dzp = VTOZ(dvp);
2058 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2059 	zilog_t		*zilog;
2060 	zfs_dirlock_t	*dl;
2061 	uint64_t	txtype;
2062 	dmu_tx_t	*tx;
2063 	int		error;
2064 	int		zf = ZNEW;
2065 	ksid_t		*ksid;
2066 	uid_t		uid;
2067 	gid_t		gid = crgetgid(cr);
2068 	zfs_acl_ids_t   acl_ids;
2069 	boolean_t	fuid_dirtied;
2070 	boolean_t	waited = B_FALSE;
2071 
2072 	ASSERT(vap->va_type == VDIR);
2073 
2074 	/*
2075 	 * If we have an ephemeral id, ACL, or XVATTR then
2076 	 * make sure file system is at proper version
2077 	 */
2078 
2079 	ksid = crgetsid(cr, KSID_OWNER);
2080 	if (ksid)
2081 		uid = ksid_getid(ksid);
2082 	else
2083 		uid = crgetuid(cr);
2084 	if (zfsvfs->z_use_fuids == B_FALSE &&
2085 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
2086 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
2087 		return (SET_ERROR(EINVAL));
2088 
2089 	ZFS_ENTER(zfsvfs);
2090 	ZFS_VERIFY_ZP(dzp);
2091 	zilog = zfsvfs->z_log;
2092 
2093 	if (dzp->z_pflags & ZFS_XATTR) {
2094 		ZFS_EXIT(zfsvfs);
2095 		return (SET_ERROR(EINVAL));
2096 	}
2097 
2098 	if (zfsvfs->z_utf8 && u8_validate(dirname,
2099 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2100 		ZFS_EXIT(zfsvfs);
2101 		return (SET_ERROR(EILSEQ));
2102 	}
2103 	if (flags & FIGNORECASE)
2104 		zf |= ZCILOOK;
2105 
2106 	if (vap->va_mask & AT_XVATTR) {
2107 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
2108 		    crgetuid(cr), cr, vap->va_type)) != 0) {
2109 			ZFS_EXIT(zfsvfs);
2110 			return (error);
2111 		}
2112 	}
2113 
2114 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
2115 	    vsecp, &acl_ids)) != 0) {
2116 		ZFS_EXIT(zfsvfs);
2117 		return (error);
2118 	}
2119 	/*
2120 	 * First make sure the new directory doesn't exist.
2121 	 *
2122 	 * Existence is checked first to make sure we don't return
2123 	 * EACCES instead of EEXIST which can cause some applications
2124 	 * to fail.
2125 	 */
2126 top:
2127 	*vpp = NULL;
2128 
2129 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
2130 	    NULL, NULL)) {
2131 		zfs_acl_ids_free(&acl_ids);
2132 		ZFS_EXIT(zfsvfs);
2133 		return (error);
2134 	}
2135 
2136 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
2137 		zfs_acl_ids_free(&acl_ids);
2138 		zfs_dirent_unlock(dl);
2139 		ZFS_EXIT(zfsvfs);
2140 		return (error);
2141 	}
2142 
2143 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
2144 		zfs_acl_ids_free(&acl_ids);
2145 		zfs_dirent_unlock(dl);
2146 		ZFS_EXIT(zfsvfs);
2147 		return (SET_ERROR(EDQUOT));
2148 	}
2149 
2150 	/*
2151 	 * Add a new entry to the directory.
2152 	 */
2153 	tx = dmu_tx_create(zfsvfs->z_os);
2154 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2155 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2156 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2157 	if (fuid_dirtied)
2158 		zfs_fuid_txhold(zfsvfs, tx);
2159 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2160 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2161 		    acl_ids.z_aclp->z_acl_bytes);
2162 	}
2163 
2164 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2165 	    ZFS_SA_BASE_ATTR_SIZE);
2166 
2167 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2168 	if (error) {
2169 		zfs_dirent_unlock(dl);
2170 		if (error == ERESTART) {
2171 			waited = B_TRUE;
2172 			dmu_tx_wait(tx);
2173 			dmu_tx_abort(tx);
2174 			goto top;
2175 		}
2176 		zfs_acl_ids_free(&acl_ids);
2177 		dmu_tx_abort(tx);
2178 		ZFS_EXIT(zfsvfs);
2179 		return (error);
2180 	}
2181 
2182 	/*
2183 	 * Create new node.
2184 	 */
2185 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2186 
2187 	if (fuid_dirtied)
2188 		zfs_fuid_sync(zfsvfs, tx);
2189 
2190 	/*
2191 	 * Now put new name in parent dir.
2192 	 */
2193 	(void) zfs_link_create(dl, zp, tx, ZNEW);
2194 
2195 	*vpp = ZTOV(zp);
2196 
2197 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2198 	if (flags & FIGNORECASE)
2199 		txtype |= TX_CI;
2200 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2201 	    acl_ids.z_fuidp, vap);
2202 
2203 	zfs_acl_ids_free(&acl_ids);
2204 
2205 	dmu_tx_commit(tx);
2206 
2207 	zfs_dirent_unlock(dl);
2208 
2209 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2210 		zil_commit(zilog, 0);
2211 
2212 	ZFS_EXIT(zfsvfs);
2213 	return (0);
2214 }
2215 
2216 /*
2217  * Remove a directory subdir entry.  If the current working
2218  * directory is the same as the subdir to be removed, the
2219  * remove will fail.
2220  *
2221  *	IN:	dvp	- vnode of directory to remove from.
2222  *		name	- name of directory to be removed.
2223  *		cwd	- vnode of current working directory.
2224  *		cr	- credentials of caller.
2225  *		ct	- caller context
2226  *		flags	- case flags
2227  *
2228  *	RETURN:	0 on success, error code on failure.
2229  *
2230  * Timestamps:
2231  *	dvp - ctime|mtime updated
2232  */
2233 /*ARGSUSED*/
2234 static int
2235 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2236     caller_context_t *ct, int flags)
2237 {
2238 	znode_t		*dzp = VTOZ(dvp);
2239 	znode_t		*zp;
2240 	vnode_t		*vp;
2241 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2242 	zilog_t		*zilog;
2243 	zfs_dirlock_t	*dl;
2244 	dmu_tx_t	*tx;
2245 	int		error;
2246 	int		zflg = ZEXISTS;
2247 	boolean_t	waited = B_FALSE;
2248 
2249 	ZFS_ENTER(zfsvfs);
2250 	ZFS_VERIFY_ZP(dzp);
2251 	zilog = zfsvfs->z_log;
2252 
2253 	if (flags & FIGNORECASE)
2254 		zflg |= ZCILOOK;
2255 top:
2256 	zp = NULL;
2257 
2258 	/*
2259 	 * Attempt to lock directory; fail if entry doesn't exist.
2260 	 */
2261 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2262 	    NULL, NULL)) {
2263 		ZFS_EXIT(zfsvfs);
2264 		return (error);
2265 	}
2266 
2267 	vp = ZTOV(zp);
2268 
2269 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2270 		goto out;
2271 	}
2272 
2273 	if (vp->v_type != VDIR) {
2274 		error = SET_ERROR(ENOTDIR);
2275 		goto out;
2276 	}
2277 
2278 	if (vp == cwd) {
2279 		error = SET_ERROR(EINVAL);
2280 		goto out;
2281 	}
2282 
2283 	vnevent_rmdir(vp, dvp, name, ct);
2284 
2285 	/*
2286 	 * Grab a lock on the directory to make sure that noone is
2287 	 * trying to add (or lookup) entries while we are removing it.
2288 	 */
2289 	rw_enter(&zp->z_name_lock, RW_WRITER);
2290 
2291 	/*
2292 	 * Grab a lock on the parent pointer to make sure we play well
2293 	 * with the treewalk and directory rename code.
2294 	 */
2295 	rw_enter(&zp->z_parent_lock, RW_WRITER);
2296 
2297 	tx = dmu_tx_create(zfsvfs->z_os);
2298 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2299 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2300 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2301 	zfs_sa_upgrade_txholds(tx, zp);
2302 	zfs_sa_upgrade_txholds(tx, dzp);
2303 	dmu_tx_mark_netfree(tx);
2304 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2305 	if (error) {
2306 		rw_exit(&zp->z_parent_lock);
2307 		rw_exit(&zp->z_name_lock);
2308 		zfs_dirent_unlock(dl);
2309 		VN_RELE(vp);
2310 		if (error == ERESTART) {
2311 			waited = B_TRUE;
2312 			dmu_tx_wait(tx);
2313 			dmu_tx_abort(tx);
2314 			goto top;
2315 		}
2316 		dmu_tx_abort(tx);
2317 		ZFS_EXIT(zfsvfs);
2318 		return (error);
2319 	}
2320 
2321 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2322 
2323 	if (error == 0) {
2324 		uint64_t txtype = TX_RMDIR;
2325 		if (flags & FIGNORECASE)
2326 			txtype |= TX_CI;
2327 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
2328 		    B_FALSE);
2329 	}
2330 
2331 	dmu_tx_commit(tx);
2332 
2333 	rw_exit(&zp->z_parent_lock);
2334 	rw_exit(&zp->z_name_lock);
2335 out:
2336 	zfs_dirent_unlock(dl);
2337 
2338 	VN_RELE(vp);
2339 
2340 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2341 		zil_commit(zilog, 0);
2342 
2343 	ZFS_EXIT(zfsvfs);
2344 	return (error);
2345 }
2346 
2347 /*
2348  * Read as many directory entries as will fit into the provided
2349  * buffer from the given directory cursor position (specified in
2350  * the uio structure).
2351  *
2352  *	IN:	vp	- vnode of directory to read.
2353  *		uio	- structure supplying read location, range info,
2354  *			  and return buffer.
2355  *		cr	- credentials of caller.
2356  *		ct	- caller context
2357  *		flags	- case flags
2358  *
2359  *	OUT:	uio	- updated offset and range, buffer filled.
2360  *		eofp	- set to true if end-of-file detected.
2361  *
2362  *	RETURN:	0 on success, error code on failure.
2363  *
2364  * Timestamps:
2365  *	vp - atime updated
2366  *
2367  * Note that the low 4 bits of the cookie returned by zap is always zero.
2368  * This allows us to use the low range for "special" directory entries:
2369  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2370  * we use the offset 2 for the '.zfs' directory.
2371  */
2372 /* ARGSUSED */
2373 static int
2374 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2375     caller_context_t *ct, int flags)
2376 {
2377 	znode_t		*zp = VTOZ(vp);
2378 	iovec_t		*iovp;
2379 	edirent_t	*eodp;
2380 	dirent64_t	*odp;
2381 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2382 	objset_t	*os;
2383 	caddr_t		outbuf;
2384 	size_t		bufsize;
2385 	zap_cursor_t	zc;
2386 	zap_attribute_t	zap;
2387 	uint_t		bytes_wanted;
2388 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2389 	uint64_t	parent;
2390 	int		local_eof;
2391 	int		outcount;
2392 	int		error;
2393 	uint8_t		prefetch;
2394 	boolean_t	check_sysattrs;
2395 
2396 	ZFS_ENTER(zfsvfs);
2397 	ZFS_VERIFY_ZP(zp);
2398 
2399 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2400 	    &parent, sizeof (parent))) != 0) {
2401 		ZFS_EXIT(zfsvfs);
2402 		return (error);
2403 	}
2404 
2405 	/*
2406 	 * If we are not given an eof variable,
2407 	 * use a local one.
2408 	 */
2409 	if (eofp == NULL)
2410 		eofp = &local_eof;
2411 
2412 	/*
2413 	 * Check for valid iov_len.
2414 	 */
2415 	if (uio->uio_iov->iov_len <= 0) {
2416 		ZFS_EXIT(zfsvfs);
2417 		return (SET_ERROR(EINVAL));
2418 	}
2419 
2420 	/*
2421 	 * Quit if directory has been removed (posix)
2422 	 */
2423 	if ((*eofp = zp->z_unlinked) != 0) {
2424 		ZFS_EXIT(zfsvfs);
2425 		return (0);
2426 	}
2427 
2428 	error = 0;
2429 	os = zfsvfs->z_os;
2430 	offset = uio->uio_loffset;
2431 	prefetch = zp->z_zn_prefetch;
2432 
2433 	/*
2434 	 * Initialize the iterator cursor.
2435 	 */
2436 	if (offset <= 3) {
2437 		/*
2438 		 * Start iteration from the beginning of the directory.
2439 		 */
2440 		zap_cursor_init(&zc, os, zp->z_id);
2441 	} else {
2442 		/*
2443 		 * The offset is a serialized cursor.
2444 		 */
2445 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2446 	}
2447 
2448 	/*
2449 	 * Get space to change directory entries into fs independent format.
2450 	 */
2451 	iovp = uio->uio_iov;
2452 	bytes_wanted = iovp->iov_len;
2453 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2454 		bufsize = bytes_wanted;
2455 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2456 		odp = (struct dirent64 *)outbuf;
2457 	} else {
2458 		bufsize = bytes_wanted;
2459 		outbuf = NULL;
2460 		odp = (struct dirent64 *)iovp->iov_base;
2461 	}
2462 	eodp = (struct edirent *)odp;
2463 
2464 	/*
2465 	 * If this VFS supports the system attribute view interface; and
2466 	 * we're looking at an extended attribute directory; and we care
2467 	 * about normalization conflicts on this vfs; then we must check
2468 	 * for normalization conflicts with the sysattr name space.
2469 	 */
2470 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2471 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2472 	    (flags & V_RDDIR_ENTFLAGS);
2473 
2474 	/*
2475 	 * Transform to file-system independent format
2476 	 */
2477 	outcount = 0;
2478 	while (outcount < bytes_wanted) {
2479 		ino64_t objnum;
2480 		ushort_t reclen;
2481 		off64_t *next = NULL;
2482 
2483 		/*
2484 		 * Special case `.', `..', and `.zfs'.
2485 		 */
2486 		if (offset == 0) {
2487 			(void) strcpy(zap.za_name, ".");
2488 			zap.za_normalization_conflict = 0;
2489 			objnum = zp->z_id;
2490 		} else if (offset == 1) {
2491 			(void) strcpy(zap.za_name, "..");
2492 			zap.za_normalization_conflict = 0;
2493 			objnum = parent;
2494 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2495 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2496 			zap.za_normalization_conflict = 0;
2497 			objnum = ZFSCTL_INO_ROOT;
2498 		} else {
2499 			/*
2500 			 * Grab next entry.
2501 			 */
2502 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2503 				if ((*eofp = (error == ENOENT)) != 0)
2504 					break;
2505 				else
2506 					goto update;
2507 			}
2508 
2509 			if (zap.za_integer_length != 8 ||
2510 			    zap.za_num_integers != 1) {
2511 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2512 				    "entry, obj = %lld, offset = %lld\n",
2513 				    (u_longlong_t)zp->z_id,
2514 				    (u_longlong_t)offset);
2515 				error = SET_ERROR(ENXIO);
2516 				goto update;
2517 			}
2518 
2519 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2520 			/*
2521 			 * MacOS X can extract the object type here such as:
2522 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2523 			 */
2524 
2525 			if (check_sysattrs && !zap.za_normalization_conflict) {
2526 				zap.za_normalization_conflict =
2527 				    xattr_sysattr_casechk(zap.za_name);
2528 			}
2529 		}
2530 
2531 		if (flags & V_RDDIR_ACCFILTER) {
2532 			/*
2533 			 * If we have no access at all, don't include
2534 			 * this entry in the returned information
2535 			 */
2536 			znode_t	*ezp;
2537 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2538 				goto skip_entry;
2539 			if (!zfs_has_access(ezp, cr)) {
2540 				VN_RELE(ZTOV(ezp));
2541 				goto skip_entry;
2542 			}
2543 			VN_RELE(ZTOV(ezp));
2544 		}
2545 
2546 		if (flags & V_RDDIR_ENTFLAGS)
2547 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2548 		else
2549 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2550 
2551 		/*
2552 		 * Will this entry fit in the buffer?
2553 		 */
2554 		if (outcount + reclen > bufsize) {
2555 			/*
2556 			 * Did we manage to fit anything in the buffer?
2557 			 */
2558 			if (!outcount) {
2559 				error = SET_ERROR(EINVAL);
2560 				goto update;
2561 			}
2562 			break;
2563 		}
2564 		if (flags & V_RDDIR_ENTFLAGS) {
2565 			/*
2566 			 * Add extended flag entry:
2567 			 */
2568 			eodp->ed_ino = objnum;
2569 			eodp->ed_reclen = reclen;
2570 			/* NOTE: ed_off is the offset for the *next* entry */
2571 			next = &(eodp->ed_off);
2572 			eodp->ed_eflags = zap.za_normalization_conflict ?
2573 			    ED_CASE_CONFLICT : 0;
2574 			(void) strncpy(eodp->ed_name, zap.za_name,
2575 			    EDIRENT_NAMELEN(reclen));
2576 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2577 		} else {
2578 			/*
2579 			 * Add normal entry:
2580 			 */
2581 			odp->d_ino = objnum;
2582 			odp->d_reclen = reclen;
2583 			/* NOTE: d_off is the offset for the *next* entry */
2584 			next = &(odp->d_off);
2585 			(void) strncpy(odp->d_name, zap.za_name,
2586 			    DIRENT64_NAMELEN(reclen));
2587 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2588 		}
2589 		outcount += reclen;
2590 
2591 		ASSERT(outcount <= bufsize);
2592 
2593 		/* Prefetch znode */
2594 		if (prefetch)
2595 			dmu_prefetch(os, objnum, 0, 0, 0,
2596 			    ZIO_PRIORITY_SYNC_READ);
2597 
2598 	skip_entry:
2599 		/*
2600 		 * Move to the next entry, fill in the previous offset.
2601 		 */
2602 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2603 			zap_cursor_advance(&zc);
2604 			offset = zap_cursor_serialize(&zc);
2605 		} else {
2606 			offset += 1;
2607 		}
2608 		if (next)
2609 			*next = offset;
2610 	}
2611 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2612 
2613 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2614 		iovp->iov_base += outcount;
2615 		iovp->iov_len -= outcount;
2616 		uio->uio_resid -= outcount;
2617 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2618 		/*
2619 		 * Reset the pointer.
2620 		 */
2621 		offset = uio->uio_loffset;
2622 	}
2623 
2624 update:
2625 	zap_cursor_fini(&zc);
2626 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2627 		kmem_free(outbuf, bufsize);
2628 
2629 	if (error == ENOENT)
2630 		error = 0;
2631 
2632 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2633 
2634 	uio->uio_loffset = offset;
2635 	ZFS_EXIT(zfsvfs);
2636 	return (error);
2637 }
2638 
2639 ulong_t zfs_fsync_sync_cnt = 4;
2640 
2641 static int
2642 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2643 {
2644 	znode_t	*zp = VTOZ(vp);
2645 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2646 
2647 	/*
2648 	 * Regardless of whether this is required for standards conformance,
2649 	 * this is the logical behavior when fsync() is called on a file with
2650 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2651 	 * going to be pushed out as part of the zil_commit().
2652 	 */
2653 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2654 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2655 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2656 
2657 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2658 
2659 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2660 		ZFS_ENTER(zfsvfs);
2661 		ZFS_VERIFY_ZP(zp);
2662 		zil_commit(zfsvfs->z_log, zp->z_id);
2663 		ZFS_EXIT(zfsvfs);
2664 	}
2665 	return (0);
2666 }
2667 
2668 
2669 /*
2670  * Get the requested file attributes and place them in the provided
2671  * vattr structure.
2672  *
2673  *	IN:	vp	- vnode of file.
2674  *		vap	- va_mask identifies requested attributes.
2675  *			  If AT_XVATTR set, then optional attrs are requested
2676  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2677  *		cr	- credentials of caller.
2678  *		ct	- caller context
2679  *
2680  *	OUT:	vap	- attribute values.
2681  *
2682  *	RETURN:	0 (always succeeds).
2683  */
2684 /* ARGSUSED */
2685 static int
2686 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2687     caller_context_t *ct)
2688 {
2689 	znode_t *zp = VTOZ(vp);
2690 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2691 	int	error = 0;
2692 	uint64_t links;
2693 	uint64_t mtime[2], ctime[2];
2694 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2695 	xoptattr_t *xoap = NULL;
2696 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2697 	sa_bulk_attr_t bulk[2];
2698 	int count = 0;
2699 
2700 	ZFS_ENTER(zfsvfs);
2701 	ZFS_VERIFY_ZP(zp);
2702 
2703 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2704 
2705 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2706 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2707 
2708 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2709 		ZFS_EXIT(zfsvfs);
2710 		return (error);
2711 	}
2712 
2713 	/*
2714 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2715 	 * Also, if we are the owner don't bother, since owner should
2716 	 * always be allowed to read basic attributes of file.
2717 	 */
2718 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2719 	    (vap->va_uid != crgetuid(cr))) {
2720 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2721 		    skipaclchk, cr)) {
2722 			ZFS_EXIT(zfsvfs);
2723 			return (error);
2724 		}
2725 	}
2726 
2727 	/*
2728 	 * Return all attributes.  It's cheaper to provide the answer
2729 	 * than to determine whether we were asked the question.
2730 	 */
2731 
2732 	mutex_enter(&zp->z_lock);
2733 	vap->va_type = vp->v_type;
2734 	vap->va_mode = zp->z_mode & MODEMASK;
2735 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2736 	vap->va_nodeid = zp->z_id;
2737 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2738 		links = zp->z_links + 1;
2739 	else
2740 		links = zp->z_links;
2741 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2742 	vap->va_size = zp->z_size;
2743 	vap->va_rdev = vp->v_rdev;
2744 	vap->va_seq = zp->z_seq;
2745 
2746 	/*
2747 	 * Add in any requested optional attributes and the create time.
2748 	 * Also set the corresponding bits in the returned attribute bitmap.
2749 	 */
2750 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2751 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2752 			xoap->xoa_archive =
2753 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2754 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2755 		}
2756 
2757 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2758 			xoap->xoa_readonly =
2759 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2760 			XVA_SET_RTN(xvap, XAT_READONLY);
2761 		}
2762 
2763 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2764 			xoap->xoa_system =
2765 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2766 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2767 		}
2768 
2769 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2770 			xoap->xoa_hidden =
2771 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2772 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2773 		}
2774 
2775 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2776 			xoap->xoa_nounlink =
2777 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2778 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2779 		}
2780 
2781 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2782 			xoap->xoa_immutable =
2783 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2784 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2785 		}
2786 
2787 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2788 			xoap->xoa_appendonly =
2789 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2790 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2791 		}
2792 
2793 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2794 			xoap->xoa_nodump =
2795 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2796 			XVA_SET_RTN(xvap, XAT_NODUMP);
2797 		}
2798 
2799 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2800 			xoap->xoa_opaque =
2801 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2802 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2803 		}
2804 
2805 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2806 			xoap->xoa_av_quarantined =
2807 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2808 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2809 		}
2810 
2811 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2812 			xoap->xoa_av_modified =
2813 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2814 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2815 		}
2816 
2817 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2818 		    vp->v_type == VREG) {
2819 			zfs_sa_get_scanstamp(zp, xvap);
2820 		}
2821 
2822 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2823 			uint64_t times[2];
2824 
2825 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2826 			    times, sizeof (times));
2827 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2828 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2829 		}
2830 
2831 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2832 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2833 			XVA_SET_RTN(xvap, XAT_REPARSE);
2834 		}
2835 		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2836 			xoap->xoa_generation = zp->z_gen;
2837 			XVA_SET_RTN(xvap, XAT_GEN);
2838 		}
2839 
2840 		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2841 			xoap->xoa_offline =
2842 			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2843 			XVA_SET_RTN(xvap, XAT_OFFLINE);
2844 		}
2845 
2846 		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2847 			xoap->xoa_sparse =
2848 			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2849 			XVA_SET_RTN(xvap, XAT_SPARSE);
2850 		}
2851 
2852 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2853 			xoap->xoa_projinherit =
2854 			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0);
2855 			XVA_SET_RTN(xvap, XAT_PROJINHERIT);
2856 		}
2857 
2858 		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
2859 			xoap->xoa_projid = zp->z_projid;
2860 			XVA_SET_RTN(xvap, XAT_PROJID);
2861 		}
2862 	}
2863 
2864 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2865 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2866 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2867 
2868 	mutex_exit(&zp->z_lock);
2869 
2870 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2871 
2872 	if (zp->z_blksz == 0) {
2873 		/*
2874 		 * Block size hasn't been set; suggest maximal I/O transfers.
2875 		 */
2876 		vap->va_blksize = zfsvfs->z_max_blksz;
2877 	}
2878 
2879 	ZFS_EXIT(zfsvfs);
2880 	return (0);
2881 }
2882 
2883 /*
2884  * For the operation of changing file's user/group/project, we need to
2885  * handle not only the main object that is assigned to the file directly,
2886  * but also the ones that are used by the file via hidden xattr directory.
2887  *
2888  * Because the xattr directory may contain many EA entries, it may be
2889  * impossible to change all of them in the same transaction as changing the
2890  * main object's user/group/project attributes. If so, we have to change them
2891  * via other multiple independent transactions one by one. It may be not a good
2892  * solution, but we have no better idea yet.
2893  */
2894 static int
2895 zfs_setattr_dir(znode_t *dzp)
2896 {
2897 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2898 	objset_t	*os = zfsvfs->z_os;
2899 	zap_cursor_t	zc;
2900 	zap_attribute_t	zap;
2901 	zfs_dirlock_t	*dl;
2902 	znode_t		*zp = NULL;
2903 	dmu_tx_t	*tx = NULL;
2904 	sa_bulk_attr_t	bulk[4];
2905 	int		count;
2906 	int		err;
2907 
2908 	zap_cursor_init(&zc, os, dzp->z_id);
2909 	while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
2910 		count = 0;
2911 		if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
2912 			err = ENXIO;
2913 			break;
2914 		}
2915 
2916 		err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
2917 		    ZEXISTS, NULL, NULL);
2918 		if (err == ENOENT)
2919 			goto next;
2920 		if (err)
2921 			break;
2922 
2923 		if (zp->z_uid == dzp->z_uid &&
2924 		    zp->z_gid == dzp->z_gid &&
2925 		    zp->z_projid == dzp->z_projid)
2926 			goto next;
2927 
2928 		tx = dmu_tx_create(os);
2929 		if (!(zp->z_pflags & ZFS_PROJID))
2930 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2931 		else
2932 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2933 
2934 		err = dmu_tx_assign(tx, TXG_WAIT);
2935 		if (err)
2936 			break;
2937 
2938 		mutex_enter(&dzp->z_lock);
2939 
2940 		if (zp->z_uid != dzp->z_uid) {
2941 			zp->z_uid = dzp->z_uid;
2942 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2943 			    &dzp->z_uid, sizeof (dzp->z_uid));
2944 		}
2945 
2946 		if (zp->z_gid != dzp->z_gid) {
2947 			zp->z_gid = dzp->z_gid;
2948 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
2949 			    &dzp->z_gid, sizeof (dzp->z_gid));
2950 		}
2951 
2952 		if (zp->z_projid != dzp->z_projid) {
2953 			if (!(zp->z_pflags & ZFS_PROJID)) {
2954 				zp->z_pflags |= ZFS_PROJID;
2955 				SA_ADD_BULK_ATTR(bulk, count,
2956 				    SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
2957 				    sizeof (zp->z_pflags));
2958 			}
2959 
2960 			zp->z_projid = dzp->z_projid;
2961 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
2962 			    NULL, &zp->z_projid, sizeof (zp->z_projid));
2963 		}
2964 
2965 		mutex_exit(&dzp->z_lock);
2966 
2967 		if (likely(count > 0)) {
2968 			err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2969 			dmu_tx_commit(tx);
2970 		} else {
2971 			dmu_tx_abort(tx);
2972 		}
2973 		tx = NULL;
2974 		if (err != 0 && err != ENOENT)
2975 			break;
2976 
2977 next:
2978 		if (zp) {
2979 			VN_RELE(ZTOV(zp));
2980 			zp = NULL;
2981 			zfs_dirent_unlock(dl);
2982 		}
2983 		zap_cursor_advance(&zc);
2984 	}
2985 
2986 	if (tx)
2987 		dmu_tx_abort(tx);
2988 	if (zp) {
2989 		VN_RELE(ZTOV(zp));
2990 		zfs_dirent_unlock(dl);
2991 	}
2992 	zap_cursor_fini(&zc);
2993 
2994 	return (err == ENOENT ? 0 : err);
2995 }
2996 
2997 /*
2998  * Set the file attributes to the values contained in the
2999  * vattr structure.
3000  *
3001  *	IN:	vp	- vnode of file to be modified.
3002  *		vap	- new attribute values.
3003  *			  If AT_XVATTR set, then optional attrs are being set
3004  *		flags	- ATTR_UTIME set if non-default time values provided.
3005  *			- ATTR_NOACLCHECK (CIFS context only).
3006  *		cr	- credentials of caller.
3007  *		ct	- caller context
3008  *
3009  *	RETURN:	0 on success, error code on failure.
3010  *
3011  * Timestamps:
3012  *	vp - ctime updated, mtime updated if size changed.
3013  */
3014 /* ARGSUSED */
3015 static int
3016 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
3017     caller_context_t *ct)
3018 {
3019 	znode_t		*zp = VTOZ(vp);
3020 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3021 	objset_t	*os = zfsvfs->z_os;
3022 	zilog_t		*zilog;
3023 	dmu_tx_t	*tx;
3024 	vattr_t		oldva;
3025 	xvattr_t	tmpxvattr;
3026 	uint_t		mask = vap->va_mask;
3027 	uint_t		saved_mask = 0;
3028 	int		trim_mask = 0;
3029 	uint64_t	new_mode;
3030 	uint64_t	new_uid, new_gid;
3031 	uint64_t	xattr_obj;
3032 	uint64_t	mtime[2], ctime[2];
3033 	uint64_t	projid = ZFS_INVALID_PROJID;
3034 	znode_t		*attrzp;
3035 	int		need_policy = FALSE;
3036 	int		err, err2 = 0;
3037 	zfs_fuid_info_t *fuidp = NULL;
3038 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
3039 	xoptattr_t	*xoap;
3040 	zfs_acl_t	*aclp;
3041 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
3042 	boolean_t	fuid_dirtied = B_FALSE;
3043 	boolean_t	handle_eadir = B_FALSE;
3044 	sa_bulk_attr_t	bulk[8], xattr_bulk[8];
3045 	int		count = 0, xattr_count = 0;
3046 
3047 	if (mask == 0)
3048 		return (0);
3049 
3050 	if (mask & AT_NOSET)
3051 		return (SET_ERROR(EINVAL));
3052 
3053 	ZFS_ENTER(zfsvfs);
3054 	ZFS_VERIFY_ZP(zp);
3055 
3056 	/*
3057 	 * If this is a xvattr_t, then get a pointer to the structure of
3058 	 * optional attributes.  If this is NULL, then we have a vattr_t.
3059 	 */
3060 	xoap = xva_getxoptattr(xvap);
3061 	if (xoap != NULL && (mask & AT_XVATTR)) {
3062 		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
3063 			if (!dmu_objset_projectquota_enabled(os) ||
3064 			    (vp->v_type != VREG && vp->v_type != VDIR)) {
3065 				ZFS_EXIT(zfsvfs);
3066 				return (SET_ERROR(ENOTSUP));
3067 			}
3068 
3069 			projid = xoap->xoa_projid;
3070 			if (unlikely(projid == ZFS_INVALID_PROJID)) {
3071 				ZFS_EXIT(zfsvfs);
3072 				return (SET_ERROR(EINVAL));
3073 			}
3074 
3075 			if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
3076 				projid = ZFS_INVALID_PROJID;
3077 			else
3078 				need_policy = TRUE;
3079 		}
3080 
3081 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
3082 		    (!dmu_objset_projectquota_enabled(os) ||
3083 		    (vp->v_type != VREG && vp->v_type != VDIR))) {
3084 				ZFS_EXIT(zfsvfs);
3085 				return (SET_ERROR(ENOTSUP));
3086 		}
3087 	}
3088 
3089 	zilog = zfsvfs->z_log;
3090 
3091 	/*
3092 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
3093 	 * that file system is at proper version level
3094 	 */
3095 
3096 	if (zfsvfs->z_use_fuids == B_FALSE &&
3097 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
3098 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
3099 	    (mask & AT_XVATTR))) {
3100 		ZFS_EXIT(zfsvfs);
3101 		return (SET_ERROR(EINVAL));
3102 	}
3103 
3104 	if (mask & AT_SIZE && vp->v_type == VDIR) {
3105 		ZFS_EXIT(zfsvfs);
3106 		return (SET_ERROR(EISDIR));
3107 	}
3108 
3109 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
3110 		ZFS_EXIT(zfsvfs);
3111 		return (SET_ERROR(EINVAL));
3112 	}
3113 
3114 	xva_init(&tmpxvattr);
3115 
3116 	/*
3117 	 * Immutable files can only alter immutable bit and atime
3118 	 */
3119 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
3120 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
3121 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
3122 		ZFS_EXIT(zfsvfs);
3123 		return (SET_ERROR(EPERM));
3124 	}
3125 
3126 	/*
3127 	 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
3128 	 */
3129 
3130 	/*
3131 	 * Verify timestamps doesn't overflow 32 bits.
3132 	 * ZFS can handle large timestamps, but 32bit syscalls can't
3133 	 * handle times greater than 2039.  This check should be removed
3134 	 * once large timestamps are fully supported.
3135 	 */
3136 	if (mask & (AT_ATIME | AT_MTIME)) {
3137 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
3138 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
3139 			ZFS_EXIT(zfsvfs);
3140 			return (SET_ERROR(EOVERFLOW));
3141 		}
3142 	}
3143 
3144 top:
3145 	attrzp = NULL;
3146 	aclp = NULL;
3147 
3148 	/* Can this be moved to before the top label? */
3149 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
3150 		ZFS_EXIT(zfsvfs);
3151 		return (SET_ERROR(EROFS));
3152 	}
3153 
3154 	/*
3155 	 * First validate permissions
3156 	 */
3157 
3158 	if (mask & AT_SIZE) {
3159 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
3160 		if (err) {
3161 			ZFS_EXIT(zfsvfs);
3162 			return (err);
3163 		}
3164 		/*
3165 		 * XXX - Note, we are not providing any open
3166 		 * mode flags here (like FNDELAY), so we may
3167 		 * block if there are locks present... this
3168 		 * should be addressed in openat().
3169 		 */
3170 		/* XXX - would it be OK to generate a log record here? */
3171 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
3172 		if (err) {
3173 			ZFS_EXIT(zfsvfs);
3174 			return (err);
3175 		}
3176 
3177 		if (vap->va_size == 0)
3178 			vnevent_truncate(ZTOV(zp), ct);
3179 	}
3180 
3181 	if (mask & (AT_ATIME|AT_MTIME) ||
3182 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
3183 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
3184 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
3185 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
3186 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
3187 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
3188 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
3189 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
3190 		    skipaclchk, cr);
3191 	}
3192 
3193 	if (mask & (AT_UID|AT_GID)) {
3194 		int	idmask = (mask & (AT_UID|AT_GID));
3195 		int	take_owner;
3196 		int	take_group;
3197 
3198 		/*
3199 		 * NOTE: even if a new mode is being set,
3200 		 * we may clear S_ISUID/S_ISGID bits.
3201 		 */
3202 
3203 		if (!(mask & AT_MODE))
3204 			vap->va_mode = zp->z_mode;
3205 
3206 		/*
3207 		 * Take ownership or chgrp to group we are a member of
3208 		 */
3209 
3210 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
3211 		take_group = (mask & AT_GID) &&
3212 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
3213 
3214 		/*
3215 		 * If both AT_UID and AT_GID are set then take_owner and
3216 		 * take_group must both be set in order to allow taking
3217 		 * ownership.
3218 		 *
3219 		 * Otherwise, send the check through secpolicy_vnode_setattr()
3220 		 *
3221 		 */
3222 
3223 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
3224 		    ((idmask == AT_UID) && take_owner) ||
3225 		    ((idmask == AT_GID) && take_group)) {
3226 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3227 			    skipaclchk, cr) == 0) {
3228 				/*
3229 				 * Remove setuid/setgid for non-privileged users
3230 				 */
3231 				secpolicy_setid_clear(vap, cr);
3232 				trim_mask = (mask & (AT_UID|AT_GID));
3233 			} else {
3234 				need_policy =  TRUE;
3235 			}
3236 		} else {
3237 			need_policy =  TRUE;
3238 		}
3239 	}
3240 
3241 	mutex_enter(&zp->z_lock);
3242 	oldva.va_mode = zp->z_mode;
3243 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3244 	if (mask & AT_XVATTR) {
3245 		/*
3246 		 * Update xvattr mask to include only those attributes
3247 		 * that are actually changing.
3248 		 *
3249 		 * the bits will be restored prior to actually setting
3250 		 * the attributes so the caller thinks they were set.
3251 		 */
3252 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3253 			if (xoap->xoa_appendonly !=
3254 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3255 				need_policy = TRUE;
3256 			} else {
3257 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3258 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
3259 			}
3260 		}
3261 
3262 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
3263 			if (xoap->xoa_projinherit !=
3264 			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
3265 				need_policy = TRUE;
3266 			} else {
3267 				XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
3268 				XVA_SET_REQ(&tmpxvattr, XAT_PROJINHERIT);
3269 			}
3270 		}
3271 
3272 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3273 			if (xoap->xoa_nounlink !=
3274 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3275 				need_policy = TRUE;
3276 			} else {
3277 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3278 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
3279 			}
3280 		}
3281 
3282 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3283 			if (xoap->xoa_immutable !=
3284 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3285 				need_policy = TRUE;
3286 			} else {
3287 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3288 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
3289 			}
3290 		}
3291 
3292 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3293 			if (xoap->xoa_nodump !=
3294 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3295 				need_policy = TRUE;
3296 			} else {
3297 				XVA_CLR_REQ(xvap, XAT_NODUMP);
3298 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
3299 			}
3300 		}
3301 
3302 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3303 			if (xoap->xoa_av_modified !=
3304 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3305 				need_policy = TRUE;
3306 			} else {
3307 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3308 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
3309 			}
3310 		}
3311 
3312 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3313 			if ((vp->v_type != VREG &&
3314 			    xoap->xoa_av_quarantined) ||
3315 			    xoap->xoa_av_quarantined !=
3316 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3317 				need_policy = TRUE;
3318 			} else {
3319 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3320 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
3321 			}
3322 		}
3323 
3324 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3325 			mutex_exit(&zp->z_lock);
3326 			ZFS_EXIT(zfsvfs);
3327 			return (SET_ERROR(EPERM));
3328 		}
3329 
3330 		if (need_policy == FALSE &&
3331 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3332 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3333 			need_policy = TRUE;
3334 		}
3335 	}
3336 
3337 	mutex_exit(&zp->z_lock);
3338 
3339 	if (mask & AT_MODE) {
3340 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3341 			err = secpolicy_setid_setsticky_clear(vp, vap,
3342 			    &oldva, cr);
3343 			if (err) {
3344 				ZFS_EXIT(zfsvfs);
3345 				return (err);
3346 			}
3347 			trim_mask |= AT_MODE;
3348 		} else {
3349 			need_policy = TRUE;
3350 		}
3351 	}
3352 
3353 	if (need_policy) {
3354 		/*
3355 		 * If trim_mask is set then take ownership
3356 		 * has been granted or write_acl is present and user
3357 		 * has the ability to modify mode.  In that case remove
3358 		 * UID|GID and or MODE from mask so that
3359 		 * secpolicy_vnode_setattr() doesn't revoke it.
3360 		 */
3361 
3362 		if (trim_mask) {
3363 			saved_mask = vap->va_mask;
3364 			vap->va_mask &= ~trim_mask;
3365 		}
3366 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3367 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3368 		if (err) {
3369 			ZFS_EXIT(zfsvfs);
3370 			return (err);
3371 		}
3372 
3373 		if (trim_mask)
3374 			vap->va_mask |= saved_mask;
3375 	}
3376 
3377 	/*
3378 	 * secpolicy_vnode_setattr, or take ownership may have
3379 	 * changed va_mask
3380 	 */
3381 	mask = vap->va_mask;
3382 
3383 	if ((mask & (AT_UID | AT_GID)) || projid != ZFS_INVALID_PROJID) {
3384 		handle_eadir = B_TRUE;
3385 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3386 		    &xattr_obj, sizeof (xattr_obj));
3387 
3388 		if (err == 0 && xattr_obj) {
3389 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3390 			if (err)
3391 				goto out2;
3392 		}
3393 		if (mask & AT_UID) {
3394 			new_uid = zfs_fuid_create(zfsvfs,
3395 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3396 			if (new_uid != zp->z_uid &&
3397 			    zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
3398 			    new_uid)) {
3399 				if (attrzp)
3400 					VN_RELE(ZTOV(attrzp));
3401 				err = SET_ERROR(EDQUOT);
3402 				goto out2;
3403 			}
3404 		}
3405 
3406 		if (mask & AT_GID) {
3407 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3408 			    cr, ZFS_GROUP, &fuidp);
3409 			if (new_gid != zp->z_gid &&
3410 			    zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3411 			    new_gid)) {
3412 				if (attrzp)
3413 					VN_RELE(ZTOV(attrzp));
3414 				err = SET_ERROR(EDQUOT);
3415 				goto out2;
3416 			}
3417 		}
3418 
3419 		if (projid != ZFS_INVALID_PROJID &&
3420 		    zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
3421 			if (attrzp)
3422 				VN_RELE(ZTOV(attrzp));
3423 			err = EDQUOT;
3424 			goto out2;
3425 		}
3426 	}
3427 	tx = dmu_tx_create(os);
3428 
3429 	if (mask & AT_MODE) {
3430 		uint64_t pmode = zp->z_mode;
3431 		uint64_t acl_obj;
3432 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3433 
3434 		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3435 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3436 			err = SET_ERROR(EPERM);
3437 			goto out;
3438 		}
3439 
3440 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3441 			goto out;
3442 
3443 		mutex_enter(&zp->z_lock);
3444 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3445 			/*
3446 			 * Are we upgrading ACL from old V0 format
3447 			 * to V1 format?
3448 			 */
3449 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3450 			    zfs_znode_acl_version(zp) ==
3451 			    ZFS_ACL_VERSION_INITIAL) {
3452 				dmu_tx_hold_free(tx, acl_obj, 0,
3453 				    DMU_OBJECT_END);
3454 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3455 				    0, aclp->z_acl_bytes);
3456 			} else {
3457 				dmu_tx_hold_write(tx, acl_obj, 0,
3458 				    aclp->z_acl_bytes);
3459 			}
3460 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3461 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3462 			    0, aclp->z_acl_bytes);
3463 		}
3464 		mutex_exit(&zp->z_lock);
3465 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3466 	} else {
3467 		if (((mask & AT_XVATTR) &&
3468 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
3469 		    (projid != ZFS_INVALID_PROJID &&
3470 		    !(zp->z_pflags & ZFS_PROJID)))
3471 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3472 		else
3473 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3474 	}
3475 
3476 	if (attrzp) {
3477 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3478 	}
3479 
3480 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3481 	if (fuid_dirtied)
3482 		zfs_fuid_txhold(zfsvfs, tx);
3483 
3484 	zfs_sa_upgrade_txholds(tx, zp);
3485 
3486 	err = dmu_tx_assign(tx, TXG_WAIT);
3487 	if (err)
3488 		goto out;
3489 
3490 	count = 0;
3491 	/*
3492 	 * Set each attribute requested.
3493 	 * We group settings according to the locks they need to acquire.
3494 	 *
3495 	 * Note: you cannot set ctime directly, although it will be
3496 	 * updated as a side-effect of calling this function.
3497 	 */
3498 
3499 	if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
3500 		/*
3501 		 * For the existing object that is upgraded from old system,
3502 		 * its on-disk layout has no slot for the project ID attribute.
3503 		 * But quota accounting logic needs to access related slots by
3504 		 * offset directly. So we need to adjust old objects' layout
3505 		 * to make the project ID to some unified and fixed offset.
3506 		 */
3507 		if (attrzp)
3508 			err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
3509 		if (err == 0)
3510 			err = sa_add_projid(zp->z_sa_hdl, tx, projid);
3511 
3512 		if (unlikely(err == EEXIST))
3513 			err = 0;
3514 		else if (err != 0)
3515 			goto out;
3516 		else
3517 			projid = ZFS_INVALID_PROJID;
3518 	}
3519 
3520 	if (mask & (AT_UID|AT_GID|AT_MODE))
3521 		mutex_enter(&zp->z_acl_lock);
3522 	mutex_enter(&zp->z_lock);
3523 
3524 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3525 	    &zp->z_pflags, sizeof (zp->z_pflags));
3526 
3527 	if (attrzp) {
3528 		if (mask & (AT_UID|AT_GID|AT_MODE))
3529 			mutex_enter(&attrzp->z_acl_lock);
3530 		mutex_enter(&attrzp->z_lock);
3531 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3532 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3533 		    sizeof (attrzp->z_pflags));
3534 		if (projid != ZFS_INVALID_PROJID) {
3535 			attrzp->z_projid = projid;
3536 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3537 			    SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
3538 			    sizeof (attrzp->z_projid));
3539 		}
3540 	}
3541 
3542 	if (mask & (AT_UID|AT_GID)) {
3543 
3544 		if (mask & AT_UID) {
3545 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3546 			    &new_uid, sizeof (new_uid));
3547 			zp->z_uid = new_uid;
3548 			if (attrzp) {
3549 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3550 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3551 				    sizeof (new_uid));
3552 				attrzp->z_uid = new_uid;
3553 			}
3554 		}
3555 
3556 		if (mask & AT_GID) {
3557 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3558 			    NULL, &new_gid, sizeof (new_gid));
3559 			zp->z_gid = new_gid;
3560 			if (attrzp) {
3561 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3562 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3563 				    sizeof (new_gid));
3564 				attrzp->z_gid = new_gid;
3565 			}
3566 		}
3567 		if (!(mask & AT_MODE)) {
3568 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3569 			    NULL, &new_mode, sizeof (new_mode));
3570 			new_mode = zp->z_mode;
3571 		}
3572 		err = zfs_acl_chown_setattr(zp);
3573 		ASSERT(err == 0);
3574 		if (attrzp) {
3575 			err = zfs_acl_chown_setattr(attrzp);
3576 			ASSERT(err == 0);
3577 		}
3578 	}
3579 
3580 	if (mask & AT_MODE) {
3581 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3582 		    &new_mode, sizeof (new_mode));
3583 		zp->z_mode = new_mode;
3584 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3585 		err = zfs_aclset_common(zp, aclp, cr, tx);
3586 		ASSERT0(err);
3587 		if (zp->z_acl_cached)
3588 			zfs_acl_free(zp->z_acl_cached);
3589 		zp->z_acl_cached = aclp;
3590 		aclp = NULL;
3591 	}
3592 
3593 
3594 	if (mask & AT_ATIME) {
3595 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3596 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3597 		    &zp->z_atime, sizeof (zp->z_atime));
3598 	}
3599 
3600 	if (mask & AT_MTIME) {
3601 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3602 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3603 		    mtime, sizeof (mtime));
3604 	}
3605 
3606 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3607 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3608 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3609 		    NULL, mtime, sizeof (mtime));
3610 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3611 		    &ctime, sizeof (ctime));
3612 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3613 		    B_TRUE);
3614 	} else if (mask != 0) {
3615 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3616 		    &ctime, sizeof (ctime));
3617 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3618 		    B_TRUE);
3619 		if (attrzp) {
3620 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3621 			    SA_ZPL_CTIME(zfsvfs), NULL,
3622 			    &ctime, sizeof (ctime));
3623 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3624 			    mtime, ctime, B_TRUE);
3625 		}
3626 	}
3627 
3628 	if (projid != ZFS_INVALID_PROJID) {
3629 		zp->z_projid = projid;
3630 		SA_ADD_BULK_ATTR(bulk, count,
3631 		    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
3632 		    sizeof (zp->z_projid));
3633 	}
3634 
3635 	/*
3636 	 * Do this after setting timestamps to prevent timestamp
3637 	 * update from toggling bit
3638 	 */
3639 
3640 	if (xoap && (mask & AT_XVATTR)) {
3641 
3642 		/*
3643 		 * restore trimmed off masks
3644 		 * so that return masks can be set for caller.
3645 		 */
3646 
3647 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3648 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3649 		}
3650 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3651 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3652 		}
3653 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3654 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3655 		}
3656 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3657 			XVA_SET_REQ(xvap, XAT_NODUMP);
3658 		}
3659 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3660 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3661 		}
3662 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3663 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3664 		}
3665 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_PROJINHERIT)) {
3666 			XVA_SET_REQ(xvap, XAT_PROJINHERIT);
3667 		}
3668 
3669 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3670 			ASSERT(vp->v_type == VREG);
3671 
3672 		zfs_xvattr_set(zp, xvap, tx);
3673 	}
3674 
3675 	if (fuid_dirtied)
3676 		zfs_fuid_sync(zfsvfs, tx);
3677 
3678 	if (mask != 0)
3679 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3680 
3681 	mutex_exit(&zp->z_lock);
3682 	if (mask & (AT_UID|AT_GID|AT_MODE))
3683 		mutex_exit(&zp->z_acl_lock);
3684 
3685 	if (attrzp) {
3686 		if (mask & (AT_UID|AT_GID|AT_MODE))
3687 			mutex_exit(&attrzp->z_acl_lock);
3688 		mutex_exit(&attrzp->z_lock);
3689 	}
3690 out:
3691 	if (err == 0 && xattr_count > 0) {
3692 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3693 		    xattr_count, tx);
3694 		ASSERT(err2 == 0);
3695 	}
3696 
3697 	if (aclp)
3698 		zfs_acl_free(aclp);
3699 
3700 	if (fuidp) {
3701 		zfs_fuid_info_free(fuidp);
3702 		fuidp = NULL;
3703 	}
3704 
3705 	if (err) {
3706 		dmu_tx_abort(tx);
3707 		if (attrzp)
3708 			VN_RELE(ZTOV(attrzp));
3709 		if (err == ERESTART)
3710 			goto top;
3711 	} else {
3712 		if (count > 0)
3713 			err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3714 		dmu_tx_commit(tx);
3715 		if (attrzp) {
3716 			if (err2 == 0 && handle_eadir)
3717 				err2 = zfs_setattr_dir(attrzp);
3718 			VN_RELE(ZTOV(attrzp));
3719 		}
3720 	}
3721 
3722 out2:
3723 	if (os->os_sync == ZFS_SYNC_ALWAYS)
3724 		zil_commit(zilog, 0);
3725 
3726 	ZFS_EXIT(zfsvfs);
3727 	return (err);
3728 }
3729 
3730 typedef struct zfs_zlock {
3731 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3732 	znode_t		*zl_znode;	/* znode we held */
3733 	struct zfs_zlock *zl_next;	/* next in list */
3734 } zfs_zlock_t;
3735 
3736 /*
3737  * Drop locks and release vnodes that were held by zfs_rename_lock().
3738  */
3739 static void
3740 zfs_rename_unlock(zfs_zlock_t **zlpp)
3741 {
3742 	zfs_zlock_t *zl;
3743 
3744 	while ((zl = *zlpp) != NULL) {
3745 		if (zl->zl_znode != NULL)
3746 			VN_RELE(ZTOV(zl->zl_znode));
3747 		rw_exit(zl->zl_rwlock);
3748 		*zlpp = zl->zl_next;
3749 		kmem_free(zl, sizeof (*zl));
3750 	}
3751 }
3752 
3753 /*
3754  * Search back through the directory tree, using the ".." entries.
3755  * Lock each directory in the chain to prevent concurrent renames.
3756  * Fail any attempt to move a directory into one of its own descendants.
3757  * XXX - z_parent_lock can overlap with map or grow locks
3758  */
3759 static int
3760 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3761 {
3762 	zfs_zlock_t	*zl;
3763 	znode_t		*zp = tdzp;
3764 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3765 	uint64_t	oidp = zp->z_id;
3766 	krwlock_t	*rwlp = &szp->z_parent_lock;
3767 	krw_t		rw = RW_WRITER;
3768 
3769 	/*
3770 	 * First pass write-locks szp and compares to zp->z_id.
3771 	 * Later passes read-lock zp and compare to zp->z_parent.
3772 	 */
3773 	do {
3774 		if (!rw_tryenter(rwlp, rw)) {
3775 			/*
3776 			 * Another thread is renaming in this path.
3777 			 * Note that if we are a WRITER, we don't have any
3778 			 * parent_locks held yet.
3779 			 */
3780 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3781 				/*
3782 				 * Drop our locks and restart
3783 				 */
3784 				zfs_rename_unlock(&zl);
3785 				*zlpp = NULL;
3786 				zp = tdzp;
3787 				oidp = zp->z_id;
3788 				rwlp = &szp->z_parent_lock;
3789 				rw = RW_WRITER;
3790 				continue;
3791 			} else {
3792 				/*
3793 				 * Wait for other thread to drop its locks
3794 				 */
3795 				rw_enter(rwlp, rw);
3796 			}
3797 		}
3798 
3799 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3800 		zl->zl_rwlock = rwlp;
3801 		zl->zl_znode = NULL;
3802 		zl->zl_next = *zlpp;
3803 		*zlpp = zl;
3804 
3805 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3806 			return (SET_ERROR(EINVAL));
3807 
3808 		if (oidp == rootid)		/* We've hit the top */
3809 			return (0);
3810 
3811 		if (rw == RW_READER) {		/* i.e. not the first pass */
3812 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3813 			if (error)
3814 				return (error);
3815 			zl->zl_znode = zp;
3816 		}
3817 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3818 		    &oidp, sizeof (oidp));
3819 		rwlp = &zp->z_parent_lock;
3820 		rw = RW_READER;
3821 
3822 	} while (zp->z_id != sdzp->z_id);
3823 
3824 	return (0);
3825 }
3826 
3827 /*
3828  * Move an entry from the provided source directory to the target
3829  * directory.  Change the entry name as indicated.
3830  *
3831  *	IN:	sdvp	- Source directory containing the "old entry".
3832  *		snm	- Old entry name.
3833  *		tdvp	- Target directory to contain the "new entry".
3834  *		tnm	- New entry name.
3835  *		cr	- credentials of caller.
3836  *		ct	- caller context
3837  *		flags	- case flags
3838  *
3839  *	RETURN:	0 on success, error code on failure.
3840  *
3841  * Timestamps:
3842  *	sdvp,tdvp - ctime|mtime updated
3843  */
3844 /*ARGSUSED*/
3845 static int
3846 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3847     caller_context_t *ct, int flags)
3848 {
3849 	znode_t		*tdzp, *szp, *tzp;
3850 	znode_t		*sdzp = VTOZ(sdvp);
3851 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3852 	zilog_t		*zilog;
3853 	vnode_t		*realvp;
3854 	zfs_dirlock_t	*sdl, *tdl;
3855 	dmu_tx_t	*tx;
3856 	zfs_zlock_t	*zl;
3857 	int		cmp, serr, terr;
3858 	int		error = 0, rm_err = 0;
3859 	int		zflg = 0;
3860 	boolean_t	waited = B_FALSE;
3861 
3862 	ZFS_ENTER(zfsvfs);
3863 	ZFS_VERIFY_ZP(sdzp);
3864 	zilog = zfsvfs->z_log;
3865 
3866 	/*
3867 	 * Make sure we have the real vp for the target directory.
3868 	 */
3869 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3870 		tdvp = realvp;
3871 
3872 	tdzp = VTOZ(tdvp);
3873 	ZFS_VERIFY_ZP(tdzp);
3874 
3875 	/*
3876 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3877 	 * ctldir appear to have the same v_vfsp.
3878 	 */
3879 	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3880 		ZFS_EXIT(zfsvfs);
3881 		return (SET_ERROR(EXDEV));
3882 	}
3883 
3884 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3885 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3886 		ZFS_EXIT(zfsvfs);
3887 		return (SET_ERROR(EILSEQ));
3888 	}
3889 
3890 	if (flags & FIGNORECASE)
3891 		zflg |= ZCILOOK;
3892 
3893 top:
3894 	szp = NULL;
3895 	tzp = NULL;
3896 	zl = NULL;
3897 
3898 	/*
3899 	 * This is to prevent the creation of links into attribute space
3900 	 * by renaming a linked file into/outof an attribute directory.
3901 	 * See the comment in zfs_link() for why this is considered bad.
3902 	 */
3903 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3904 		ZFS_EXIT(zfsvfs);
3905 		return (SET_ERROR(EINVAL));
3906 	}
3907 
3908 	/*
3909 	 * Lock source and target directory entries.  To prevent deadlock,
3910 	 * a lock ordering must be defined.  We lock the directory with
3911 	 * the smallest object id first, or if it's a tie, the one with
3912 	 * the lexically first name.
3913 	 */
3914 	if (sdzp->z_id < tdzp->z_id) {
3915 		cmp = -1;
3916 	} else if (sdzp->z_id > tdzp->z_id) {
3917 		cmp = 1;
3918 	} else {
3919 		/*
3920 		 * First compare the two name arguments without
3921 		 * considering any case folding.
3922 		 */
3923 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3924 
3925 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3926 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3927 		if (cmp == 0) {
3928 			/*
3929 			 * POSIX: "If the old argument and the new argument
3930 			 * both refer to links to the same existing file,
3931 			 * the rename() function shall return successfully
3932 			 * and perform no other action."
3933 			 */
3934 			ZFS_EXIT(zfsvfs);
3935 			return (0);
3936 		}
3937 		/*
3938 		 * If the file system is case-folding, then we may
3939 		 * have some more checking to do.  A case-folding file
3940 		 * system is either supporting mixed case sensitivity
3941 		 * access or is completely case-insensitive.  Note
3942 		 * that the file system is always case preserving.
3943 		 *
3944 		 * In mixed sensitivity mode case sensitive behavior
3945 		 * is the default.  FIGNORECASE must be used to
3946 		 * explicitly request case insensitive behavior.
3947 		 *
3948 		 * If the source and target names provided differ only
3949 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3950 		 * we will treat this as a special case in the
3951 		 * case-insensitive mode: as long as the source name
3952 		 * is an exact match, we will allow this to proceed as
3953 		 * a name-change request.
3954 		 */
3955 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3956 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3957 		    flags & FIGNORECASE)) &&
3958 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3959 		    &error) == 0) {
3960 			/*
3961 			 * case preserving rename request, require exact
3962 			 * name matches
3963 			 */
3964 			zflg |= ZCIEXACT;
3965 			zflg &= ~ZCILOOK;
3966 		}
3967 	}
3968 
3969 	/*
3970 	 * If the source and destination directories are the same, we should
3971 	 * grab the z_name_lock of that directory only once.
3972 	 */
3973 	if (sdzp == tdzp) {
3974 		zflg |= ZHAVELOCK;
3975 		rw_enter(&sdzp->z_name_lock, RW_READER);
3976 	}
3977 
3978 	if (cmp < 0) {
3979 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3980 		    ZEXISTS | zflg, NULL, NULL);
3981 		terr = zfs_dirent_lock(&tdl,
3982 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3983 	} else {
3984 		terr = zfs_dirent_lock(&tdl,
3985 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3986 		serr = zfs_dirent_lock(&sdl,
3987 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3988 		    NULL, NULL);
3989 	}
3990 
3991 	if (serr) {
3992 		/*
3993 		 * Source entry invalid or not there.
3994 		 */
3995 		if (!terr) {
3996 			zfs_dirent_unlock(tdl);
3997 			if (tzp)
3998 				VN_RELE(ZTOV(tzp));
3999 		}
4000 
4001 		if (sdzp == tdzp)
4002 			rw_exit(&sdzp->z_name_lock);
4003 
4004 		if (strcmp(snm, "..") == 0)
4005 			serr = SET_ERROR(EINVAL);
4006 		ZFS_EXIT(zfsvfs);
4007 		return (serr);
4008 	}
4009 	if (terr) {
4010 		zfs_dirent_unlock(sdl);
4011 		VN_RELE(ZTOV(szp));
4012 
4013 		if (sdzp == tdzp)
4014 			rw_exit(&sdzp->z_name_lock);
4015 
4016 		if (strcmp(tnm, "..") == 0)
4017 			terr = SET_ERROR(EINVAL);
4018 		ZFS_EXIT(zfsvfs);
4019 		return (terr);
4020 	}
4021 
4022 	/*
4023 	 * If we are using project inheritance, it means if the directory has
4024 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
4025 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
4026 	 * such case, we only allow renames into our tree when the project
4027 	 * IDs are the same.
4028 	 */
4029 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
4030 	    tdzp->z_projid != szp->z_projid) {
4031 		error = SET_ERROR(EXDEV);
4032 		goto out;
4033 	}
4034 
4035 	/*
4036 	 * Must have write access at the source to remove the old entry
4037 	 * and write access at the target to create the new entry.
4038 	 * Note that if target and source are the same, this can be
4039 	 * done in a single check.
4040 	 */
4041 
4042 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
4043 		goto out;
4044 
4045 	if (ZTOV(szp)->v_type == VDIR) {
4046 		/*
4047 		 * Check to make sure rename is valid.
4048 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
4049 		 */
4050 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
4051 			goto out;
4052 	}
4053 
4054 	/*
4055 	 * Does target exist?
4056 	 */
4057 	if (tzp) {
4058 		/*
4059 		 * Source and target must be the same type.
4060 		 */
4061 		if (ZTOV(szp)->v_type == VDIR) {
4062 			if (ZTOV(tzp)->v_type != VDIR) {
4063 				error = SET_ERROR(ENOTDIR);
4064 				goto out;
4065 			}
4066 		} else {
4067 			if (ZTOV(tzp)->v_type == VDIR) {
4068 				error = SET_ERROR(EISDIR);
4069 				goto out;
4070 			}
4071 		}
4072 		/*
4073 		 * POSIX dictates that when the source and target
4074 		 * entries refer to the same file object, rename
4075 		 * must do nothing and exit without error.
4076 		 */
4077 		if (szp->z_id == tzp->z_id) {
4078 			error = 0;
4079 			goto out;
4080 		}
4081 	}
4082 
4083 	vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
4084 	if (tzp)
4085 		vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
4086 
4087 	/*
4088 	 * notify the target directory if it is not the same
4089 	 * as source directory.
4090 	 */
4091 	if (tdvp != sdvp) {
4092 		vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
4093 	}
4094 
4095 	tx = dmu_tx_create(zfsvfs->z_os);
4096 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4097 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
4098 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
4099 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
4100 	if (sdzp != tdzp) {
4101 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
4102 		zfs_sa_upgrade_txholds(tx, tdzp);
4103 	}
4104 	if (tzp) {
4105 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
4106 		zfs_sa_upgrade_txholds(tx, tzp);
4107 	}
4108 
4109 	zfs_sa_upgrade_txholds(tx, szp);
4110 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
4111 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4112 	if (error) {
4113 		if (zl != NULL)
4114 			zfs_rename_unlock(&zl);
4115 		zfs_dirent_unlock(sdl);
4116 		zfs_dirent_unlock(tdl);
4117 
4118 		if (sdzp == tdzp)
4119 			rw_exit(&sdzp->z_name_lock);
4120 
4121 		VN_RELE(ZTOV(szp));
4122 		if (tzp)
4123 			VN_RELE(ZTOV(tzp));
4124 		if (error == ERESTART) {
4125 			waited = B_TRUE;
4126 			dmu_tx_wait(tx);
4127 			dmu_tx_abort(tx);
4128 			goto top;
4129 		}
4130 		dmu_tx_abort(tx);
4131 		ZFS_EXIT(zfsvfs);
4132 		return (error);
4133 	}
4134 
4135 	if (tzp)	/* Attempt to remove the existing target */
4136 		error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
4137 
4138 	if (error == 0) {
4139 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
4140 		if (error == 0) {
4141 			szp->z_pflags |= ZFS_AV_MODIFIED;
4142 			if (tdzp->z_pflags & ZFS_PROJINHERIT)
4143 				szp->z_pflags |= ZFS_PROJINHERIT;
4144 
4145 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
4146 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
4147 			ASSERT0(error);
4148 
4149 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
4150 			if (error == 0) {
4151 				zfs_log_rename(zilog, tx, TX_RENAME |
4152 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
4153 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
4154 
4155 				/*
4156 				 * Update path information for the target vnode
4157 				 */
4158 				vn_renamepath(tdvp, ZTOV(szp), tnm,
4159 				    strlen(tnm));
4160 			} else {
4161 				/*
4162 				 * At this point, we have successfully created
4163 				 * the target name, but have failed to remove
4164 				 * the source name.  Since the create was done
4165 				 * with the ZRENAMING flag, there are
4166 				 * complications; for one, the link count is
4167 				 * wrong.  The easiest way to deal with this
4168 				 * is to remove the newly created target, and
4169 				 * return the original error.  This must
4170 				 * succeed; fortunately, it is very unlikely to
4171 				 * fail, since we just created it.
4172 				 */
4173 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
4174 				    ZRENAMING, NULL), ==, 0);
4175 			}
4176 		}
4177 	}
4178 
4179 	dmu_tx_commit(tx);
4180 
4181 	if (tzp && rm_err == 0)
4182 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
4183 
4184 	if (error == 0) {
4185 		vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
4186 		/* notify the target dir if it is not the same as source dir */
4187 		if (tdvp != sdvp)
4188 			vnevent_rename_dest_dir(tdvp, ct);
4189 	}
4190 out:
4191 	if (zl != NULL)
4192 		zfs_rename_unlock(&zl);
4193 
4194 	zfs_dirent_unlock(sdl);
4195 	zfs_dirent_unlock(tdl);
4196 
4197 	if (sdzp == tdzp)
4198 		rw_exit(&sdzp->z_name_lock);
4199 
4200 
4201 	VN_RELE(ZTOV(szp));
4202 	if (tzp)
4203 		VN_RELE(ZTOV(tzp));
4204 
4205 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4206 		zil_commit(zilog, 0);
4207 
4208 	ZFS_EXIT(zfsvfs);
4209 	return (error);
4210 }
4211 
4212 /*
4213  * Insert the indicated symbolic reference entry into the directory.
4214  *
4215  *	IN:	dvp	- Directory to contain new symbolic link.
4216  *		link	- Name for new symlink entry.
4217  *		vap	- Attributes of new entry.
4218  *		cr	- credentials of caller.
4219  *		ct	- caller context
4220  *		flags	- case flags
4221  *
4222  *	RETURN:	0 on success, error code on failure.
4223  *
4224  * Timestamps:
4225  *	dvp - ctime|mtime updated
4226  */
4227 /*ARGSUSED*/
4228 static int
4229 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
4230     caller_context_t *ct, int flags)
4231 {
4232 	znode_t		*zp, *dzp = VTOZ(dvp);
4233 	zfs_dirlock_t	*dl;
4234 	dmu_tx_t	*tx;
4235 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4236 	zilog_t		*zilog;
4237 	uint64_t	len = strlen(link);
4238 	int		error;
4239 	int		zflg = ZNEW;
4240 	zfs_acl_ids_t	acl_ids;
4241 	boolean_t	fuid_dirtied;
4242 	uint64_t	txtype = TX_SYMLINK;
4243 	boolean_t	waited = B_FALSE;
4244 
4245 	ASSERT(vap->va_type == VLNK);
4246 
4247 	ZFS_ENTER(zfsvfs);
4248 	ZFS_VERIFY_ZP(dzp);
4249 	zilog = zfsvfs->z_log;
4250 
4251 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4252 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4253 		ZFS_EXIT(zfsvfs);
4254 		return (SET_ERROR(EILSEQ));
4255 	}
4256 	if (flags & FIGNORECASE)
4257 		zflg |= ZCILOOK;
4258 
4259 	if (len > MAXPATHLEN) {
4260 		ZFS_EXIT(zfsvfs);
4261 		return (SET_ERROR(ENAMETOOLONG));
4262 	}
4263 
4264 	if ((error = zfs_acl_ids_create(dzp, 0,
4265 	    vap, cr, NULL, &acl_ids)) != 0) {
4266 		ZFS_EXIT(zfsvfs);
4267 		return (error);
4268 	}
4269 top:
4270 	/*
4271 	 * Attempt to lock directory; fail if entry already exists.
4272 	 */
4273 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
4274 	if (error) {
4275 		zfs_acl_ids_free(&acl_ids);
4276 		ZFS_EXIT(zfsvfs);
4277 		return (error);
4278 	}
4279 
4280 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4281 		zfs_acl_ids_free(&acl_ids);
4282 		zfs_dirent_unlock(dl);
4283 		ZFS_EXIT(zfsvfs);
4284 		return (error);
4285 	}
4286 
4287 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
4288 		zfs_acl_ids_free(&acl_ids);
4289 		zfs_dirent_unlock(dl);
4290 		ZFS_EXIT(zfsvfs);
4291 		return (SET_ERROR(EDQUOT));
4292 	}
4293 	tx = dmu_tx_create(zfsvfs->z_os);
4294 	fuid_dirtied = zfsvfs->z_fuid_dirty;
4295 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4296 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4297 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4298 	    ZFS_SA_BASE_ATTR_SIZE + len);
4299 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4300 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4301 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4302 		    acl_ids.z_aclp->z_acl_bytes);
4303 	}
4304 	if (fuid_dirtied)
4305 		zfs_fuid_txhold(zfsvfs, tx);
4306 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4307 	if (error) {
4308 		zfs_dirent_unlock(dl);
4309 		if (error == ERESTART) {
4310 			waited = B_TRUE;
4311 			dmu_tx_wait(tx);
4312 			dmu_tx_abort(tx);
4313 			goto top;
4314 		}
4315 		zfs_acl_ids_free(&acl_ids);
4316 		dmu_tx_abort(tx);
4317 		ZFS_EXIT(zfsvfs);
4318 		return (error);
4319 	}
4320 
4321 	/*
4322 	 * Create a new object for the symlink.
4323 	 * for version 4 ZPL datsets the symlink will be an SA attribute
4324 	 */
4325 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4326 
4327 	if (fuid_dirtied)
4328 		zfs_fuid_sync(zfsvfs, tx);
4329 
4330 	mutex_enter(&zp->z_lock);
4331 	if (zp->z_is_sa)
4332 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4333 		    link, len, tx);
4334 	else
4335 		zfs_sa_symlink(zp, link, len, tx);
4336 	mutex_exit(&zp->z_lock);
4337 
4338 	zp->z_size = len;
4339 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4340 	    &zp->z_size, sizeof (zp->z_size), tx);
4341 	/*
4342 	 * Insert the new object into the directory.
4343 	 */
4344 	(void) zfs_link_create(dl, zp, tx, ZNEW);
4345 
4346 	if (flags & FIGNORECASE)
4347 		txtype |= TX_CI;
4348 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4349 
4350 	zfs_acl_ids_free(&acl_ids);
4351 
4352 	dmu_tx_commit(tx);
4353 
4354 	zfs_dirent_unlock(dl);
4355 
4356 	VN_RELE(ZTOV(zp));
4357 
4358 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4359 		zil_commit(zilog, 0);
4360 
4361 	ZFS_EXIT(zfsvfs);
4362 	return (error);
4363 }
4364 
4365 /*
4366  * Return, in the buffer contained in the provided uio structure,
4367  * the symbolic path referred to by vp.
4368  *
4369  *	IN:	vp	- vnode of symbolic link.
4370  *		uio	- structure to contain the link path.
4371  *		cr	- credentials of caller.
4372  *		ct	- caller context
4373  *
4374  *	OUT:	uio	- structure containing the link path.
4375  *
4376  *	RETURN:	0 on success, error code on failure.
4377  *
4378  * Timestamps:
4379  *	vp - atime updated
4380  */
4381 /* ARGSUSED */
4382 static int
4383 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
4384 {
4385 	znode_t		*zp = VTOZ(vp);
4386 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4387 	int		error;
4388 
4389 	ZFS_ENTER(zfsvfs);
4390 	ZFS_VERIFY_ZP(zp);
4391 
4392 	mutex_enter(&zp->z_lock);
4393 	if (zp->z_is_sa)
4394 		error = sa_lookup_uio(zp->z_sa_hdl,
4395 		    SA_ZPL_SYMLINK(zfsvfs), uio);
4396 	else
4397 		error = zfs_sa_readlink(zp, uio);
4398 	mutex_exit(&zp->z_lock);
4399 
4400 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4401 
4402 	ZFS_EXIT(zfsvfs);
4403 	return (error);
4404 }
4405 
4406 /*
4407  * Insert a new entry into directory tdvp referencing svp.
4408  *
4409  *	IN:	tdvp	- Directory to contain new entry.
4410  *		svp	- vnode of new entry.
4411  *		name	- name of new entry.
4412  *		cr	- credentials of caller.
4413  *		ct	- caller context
4414  *
4415  *	RETURN:	0 on success, error code on failure.
4416  *
4417  * Timestamps:
4418  *	tdvp - ctime|mtime updated
4419  *	 svp - ctime updated
4420  */
4421 /* ARGSUSED */
4422 static int
4423 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4424     caller_context_t *ct, int flags)
4425 {
4426 	znode_t		*dzp = VTOZ(tdvp);
4427 	znode_t		*tzp, *szp;
4428 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4429 	zilog_t		*zilog;
4430 	zfs_dirlock_t	*dl;
4431 	dmu_tx_t	*tx;
4432 	vnode_t		*realvp;
4433 	int		error;
4434 	int		zf = ZNEW;
4435 	uint64_t	parent;
4436 	uid_t		owner;
4437 	boolean_t	waited = B_FALSE;
4438 
4439 	ASSERT(tdvp->v_type == VDIR);
4440 
4441 	ZFS_ENTER(zfsvfs);
4442 	ZFS_VERIFY_ZP(dzp);
4443 	zilog = zfsvfs->z_log;
4444 
4445 	if (VOP_REALVP(svp, &realvp, ct) == 0)
4446 		svp = realvp;
4447 
4448 	/*
4449 	 * POSIX dictates that we return EPERM here.
4450 	 * Better choices include ENOTSUP or EISDIR.
4451 	 */
4452 	if (svp->v_type == VDIR) {
4453 		ZFS_EXIT(zfsvfs);
4454 		return (SET_ERROR(EPERM));
4455 	}
4456 
4457 	szp = VTOZ(svp);
4458 	ZFS_VERIFY_ZP(szp);
4459 
4460 	/*
4461 	 * If we are using project inheritance, it means if the directory has
4462 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
4463 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
4464 	 * such case, we only allow hard link creation in our tree when the
4465 	 * project IDs are the same.
4466 	 */
4467 	if (dzp->z_pflags & ZFS_PROJINHERIT && dzp->z_projid != szp->z_projid) {
4468 		ZFS_EXIT(zfsvfs);
4469 		return (SET_ERROR(EXDEV));
4470 	}
4471 
4472 	/*
4473 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4474 	 * ctldir appear to have the same v_vfsp.
4475 	 */
4476 	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4477 		ZFS_EXIT(zfsvfs);
4478 		return (SET_ERROR(EXDEV));
4479 	}
4480 
4481 	/* Prevent links to .zfs/shares files */
4482 
4483 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4484 	    &parent, sizeof (uint64_t))) != 0) {
4485 		ZFS_EXIT(zfsvfs);
4486 		return (error);
4487 	}
4488 	if (parent == zfsvfs->z_shares_dir) {
4489 		ZFS_EXIT(zfsvfs);
4490 		return (SET_ERROR(EPERM));
4491 	}
4492 
4493 	if (zfsvfs->z_utf8 && u8_validate(name,
4494 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4495 		ZFS_EXIT(zfsvfs);
4496 		return (SET_ERROR(EILSEQ));
4497 	}
4498 	if (flags & FIGNORECASE)
4499 		zf |= ZCILOOK;
4500 
4501 	/*
4502 	 * We do not support links between attributes and non-attributes
4503 	 * because of the potential security risk of creating links
4504 	 * into "normal" file space in order to circumvent restrictions
4505 	 * imposed in attribute space.
4506 	 */
4507 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4508 		ZFS_EXIT(zfsvfs);
4509 		return (SET_ERROR(EINVAL));
4510 	}
4511 
4512 
4513 	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4514 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4515 		ZFS_EXIT(zfsvfs);
4516 		return (SET_ERROR(EPERM));
4517 	}
4518 
4519 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4520 		ZFS_EXIT(zfsvfs);
4521 		return (error);
4522 	}
4523 
4524 top:
4525 	/*
4526 	 * Attempt to lock directory; fail if entry already exists.
4527 	 */
4528 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4529 	if (error) {
4530 		ZFS_EXIT(zfsvfs);
4531 		return (error);
4532 	}
4533 
4534 	tx = dmu_tx_create(zfsvfs->z_os);
4535 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4536 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4537 	zfs_sa_upgrade_txholds(tx, szp);
4538 	zfs_sa_upgrade_txholds(tx, dzp);
4539 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4540 	if (error) {
4541 		zfs_dirent_unlock(dl);
4542 		if (error == ERESTART) {
4543 			waited = B_TRUE;
4544 			dmu_tx_wait(tx);
4545 			dmu_tx_abort(tx);
4546 			goto top;
4547 		}
4548 		dmu_tx_abort(tx);
4549 		ZFS_EXIT(zfsvfs);
4550 		return (error);
4551 	}
4552 
4553 	error = zfs_link_create(dl, szp, tx, 0);
4554 
4555 	if (error == 0) {
4556 		uint64_t txtype = TX_LINK;
4557 		if (flags & FIGNORECASE)
4558 			txtype |= TX_CI;
4559 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4560 	}
4561 
4562 	dmu_tx_commit(tx);
4563 
4564 	zfs_dirent_unlock(dl);
4565 
4566 	if (error == 0) {
4567 		vnevent_link(svp, ct);
4568 	}
4569 
4570 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4571 		zil_commit(zilog, 0);
4572 
4573 	ZFS_EXIT(zfsvfs);
4574 	return (error);
4575 }
4576 
4577 /*
4578  * zfs_null_putapage() is used when the file system has been force
4579  * unmounted. It just drops the pages.
4580  */
4581 /* ARGSUSED */
4582 static int
4583 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4584     size_t *lenp, int flags, cred_t *cr)
4585 {
4586 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4587 	return (0);
4588 }
4589 
4590 /*
4591  * Push a page out to disk, klustering if possible.
4592  *
4593  *	IN:	vp	- file to push page to.
4594  *		pp	- page to push.
4595  *		flags	- additional flags.
4596  *		cr	- credentials of caller.
4597  *
4598  *	OUT:	offp	- start of range pushed.
4599  *		lenp	- len of range pushed.
4600  *
4601  *	RETURN:	0 on success, error code on failure.
4602  *
4603  * NOTE: callers must have locked the page to be pushed.  On
4604  * exit, the page (and all other pages in the kluster) must be
4605  * unlocked.
4606  */
4607 /* ARGSUSED */
4608 static int
4609 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4610     size_t *lenp, int flags, cred_t *cr)
4611 {
4612 	znode_t		*zp = VTOZ(vp);
4613 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4614 	dmu_tx_t	*tx;
4615 	u_offset_t	off, koff;
4616 	size_t		len, klen;
4617 	int		err;
4618 
4619 	off = pp->p_offset;
4620 	len = PAGESIZE;
4621 	/*
4622 	 * If our blocksize is bigger than the page size, try to kluster
4623 	 * multiple pages so that we write a full block (thus avoiding
4624 	 * a read-modify-write).
4625 	 */
4626 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4627 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4628 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4629 		ASSERT(koff <= zp->z_size);
4630 		if (koff + klen > zp->z_size)
4631 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4632 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4633 	}
4634 	ASSERT3U(btop(len), ==, btopr(len));
4635 
4636 	/*
4637 	 * Can't push pages past end-of-file.
4638 	 */
4639 	if (off >= zp->z_size) {
4640 		/* ignore all pages */
4641 		err = 0;
4642 		goto out;
4643 	} else if (off + len > zp->z_size) {
4644 		int npages = btopr(zp->z_size - off);
4645 		page_t *trunc;
4646 
4647 		page_list_break(&pp, &trunc, npages);
4648 		/* ignore pages past end of file */
4649 		if (trunc)
4650 			pvn_write_done(trunc, flags);
4651 		len = zp->z_size - off;
4652 	}
4653 
4654 	if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, zp->z_uid) ||
4655 	    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, zp->z_gid)) {
4656 		err = SET_ERROR(EDQUOT);
4657 		goto out;
4658 	}
4659 	tx = dmu_tx_create(zfsvfs->z_os);
4660 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4661 
4662 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4663 	zfs_sa_upgrade_txholds(tx, zp);
4664 	err = dmu_tx_assign(tx, TXG_WAIT);
4665 	if (err != 0) {
4666 		dmu_tx_abort(tx);
4667 		goto out;
4668 	}
4669 
4670 	if (zp->z_blksz <= PAGESIZE) {
4671 		caddr_t va = zfs_map_page(pp, S_READ);
4672 		ASSERT3U(len, <=, PAGESIZE);
4673 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4674 		zfs_unmap_page(pp, va);
4675 	} else {
4676 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4677 	}
4678 
4679 	if (err == 0) {
4680 		uint64_t mtime[2], ctime[2];
4681 		sa_bulk_attr_t bulk[3];
4682 		int count = 0;
4683 
4684 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4685 		    &mtime, 16);
4686 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4687 		    &ctime, 16);
4688 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4689 		    &zp->z_pflags, 8);
4690 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4691 		    B_TRUE);
4692 		err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
4693 		ASSERT0(err);
4694 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4695 	}
4696 	dmu_tx_commit(tx);
4697 
4698 out:
4699 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4700 	if (offp)
4701 		*offp = off;
4702 	if (lenp)
4703 		*lenp = len;
4704 
4705 	return (err);
4706 }
4707 
4708 /*
4709  * Copy the portion of the file indicated from pages into the file.
4710  * The pages are stored in a page list attached to the files vnode.
4711  *
4712  *	IN:	vp	- vnode of file to push page data to.
4713  *		off	- position in file to put data.
4714  *		len	- amount of data to write.
4715  *		flags	- flags to control the operation.
4716  *		cr	- credentials of caller.
4717  *		ct	- caller context.
4718  *
4719  *	RETURN:	0 on success, error code on failure.
4720  *
4721  * Timestamps:
4722  *	vp - ctime|mtime updated
4723  */
4724 /*ARGSUSED*/
4725 static int
4726 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4727     caller_context_t *ct)
4728 {
4729 	znode_t		*zp = VTOZ(vp);
4730 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4731 	page_t		*pp;
4732 	size_t		io_len;
4733 	u_offset_t	io_off;
4734 	uint_t		blksz;
4735 	locked_range_t	*lr;
4736 	int		error = 0;
4737 
4738 	ZFS_ENTER(zfsvfs);
4739 	ZFS_VERIFY_ZP(zp);
4740 
4741 	/*
4742 	 * There's nothing to do if no data is cached.
4743 	 */
4744 	if (!vn_has_cached_data(vp)) {
4745 		ZFS_EXIT(zfsvfs);
4746 		return (0);
4747 	}
4748 
4749 	/*
4750 	 * Align this request to the file block size in case we kluster.
4751 	 * XXX - this can result in pretty aggresive locking, which can
4752 	 * impact simultanious read/write access.  One option might be
4753 	 * to break up long requests (len == 0) into block-by-block
4754 	 * operations to get narrower locking.
4755 	 */
4756 	blksz = zp->z_blksz;
4757 	if (ISP2(blksz))
4758 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4759 	else
4760 		io_off = 0;
4761 	if (len > 0 && ISP2(blksz))
4762 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4763 	else
4764 		io_len = 0;
4765 
4766 	if (io_len == 0) {
4767 		/*
4768 		 * Search the entire vp list for pages >= io_off.
4769 		 */
4770 		lr = rangelock_enter(&zp->z_rangelock,
4771 		    io_off, UINT64_MAX, RL_WRITER);
4772 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4773 		goto out;
4774 	}
4775 	lr = rangelock_enter(&zp->z_rangelock, io_off, io_len, RL_WRITER);
4776 
4777 	if (off > zp->z_size) {
4778 		/* past end of file */
4779 		rangelock_exit(lr);
4780 		ZFS_EXIT(zfsvfs);
4781 		return (0);
4782 	}
4783 
4784 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4785 
4786 	for (off = io_off; io_off < off + len; io_off += io_len) {
4787 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4788 			pp = page_lookup(vp, io_off,
4789 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4790 		} else {
4791 			pp = page_lookup_nowait(vp, io_off,
4792 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4793 		}
4794 
4795 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4796 			int err;
4797 
4798 			/*
4799 			 * Found a dirty page to push
4800 			 */
4801 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4802 			if (err)
4803 				error = err;
4804 		} else {
4805 			io_len = PAGESIZE;
4806 		}
4807 	}
4808 out:
4809 	rangelock_exit(lr);
4810 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4811 		zil_commit(zfsvfs->z_log, zp->z_id);
4812 	ZFS_EXIT(zfsvfs);
4813 	return (error);
4814 }
4815 
4816 /*ARGSUSED*/
4817 void
4818 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4819 {
4820 	znode_t	*zp = VTOZ(vp);
4821 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4822 	int error;
4823 
4824 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4825 	if (zp->z_sa_hdl == NULL) {
4826 		/*
4827 		 * The fs has been unmounted, or we did a
4828 		 * suspend/resume and this file no longer exists.
4829 		 */
4830 		if (vn_has_cached_data(vp)) {
4831 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4832 			    B_INVAL, cr);
4833 		}
4834 
4835 		mutex_enter(&zp->z_lock);
4836 		mutex_enter(&vp->v_lock);
4837 		ASSERT(vp->v_count == 1);
4838 		VN_RELE_LOCKED(vp);
4839 		mutex_exit(&vp->v_lock);
4840 		mutex_exit(&zp->z_lock);
4841 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4842 		zfs_znode_free(zp);
4843 		return;
4844 	}
4845 
4846 	/*
4847 	 * Attempt to push any data in the page cache.  If this fails
4848 	 * we will get kicked out later in zfs_zinactive().
4849 	 */
4850 	if (vn_has_cached_data(vp)) {
4851 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4852 		    cr);
4853 	}
4854 
4855 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4856 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4857 
4858 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4859 		zfs_sa_upgrade_txholds(tx, zp);
4860 		error = dmu_tx_assign(tx, TXG_WAIT);
4861 		if (error) {
4862 			dmu_tx_abort(tx);
4863 		} else {
4864 			mutex_enter(&zp->z_lock);
4865 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4866 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4867 			zp->z_atime_dirty = 0;
4868 			mutex_exit(&zp->z_lock);
4869 			dmu_tx_commit(tx);
4870 		}
4871 	}
4872 
4873 	zfs_zinactive(zp);
4874 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4875 }
4876 
4877 /*
4878  * Bounds-check the seek operation.
4879  *
4880  *	IN:	vp	- vnode seeking within
4881  *		ooff	- old file offset
4882  *		noffp	- pointer to new file offset
4883  *		ct	- caller context
4884  *
4885  *	RETURN:	0 on success, EINVAL if new offset invalid.
4886  */
4887 /* ARGSUSED */
4888 static int
4889 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4890     caller_context_t *ct)
4891 {
4892 	if (vp->v_type == VDIR)
4893 		return (0);
4894 	return ((*noffp < 0) ? EINVAL : 0);
4895 }
4896 
4897 /*
4898  * Pre-filter the generic locking function to trap attempts to place
4899  * a mandatory lock on a memory mapped file.
4900  */
4901 static int
4902 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4903     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4904 {
4905 	znode_t *zp = VTOZ(vp);
4906 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4907 
4908 	ZFS_ENTER(zfsvfs);
4909 	ZFS_VERIFY_ZP(zp);
4910 
4911 	/*
4912 	 * We are following the UFS semantics with respect to mapcnt
4913 	 * here: If we see that the file is mapped already, then we will
4914 	 * return an error, but we don't worry about races between this
4915 	 * function and zfs_map().
4916 	 */
4917 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4918 		ZFS_EXIT(zfsvfs);
4919 		return (SET_ERROR(EAGAIN));
4920 	}
4921 	ZFS_EXIT(zfsvfs);
4922 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4923 }
4924 
4925 /*
4926  * If we can't find a page in the cache, we will create a new page
4927  * and fill it with file data.  For efficiency, we may try to fill
4928  * multiple pages at once (klustering) to fill up the supplied page
4929  * list.  Note that the pages to be filled are held with an exclusive
4930  * lock to prevent access by other threads while they are being filled.
4931  */
4932 static int
4933 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4934     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4935 {
4936 	znode_t *zp = VTOZ(vp);
4937 	page_t *pp, *cur_pp;
4938 	objset_t *os = zp->z_zfsvfs->z_os;
4939 	u_offset_t io_off, total;
4940 	size_t io_len;
4941 	int err;
4942 
4943 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4944 		/*
4945 		 * We only have a single page, don't bother klustering
4946 		 */
4947 		io_off = off;
4948 		io_len = PAGESIZE;
4949 		pp = page_create_va(vp, io_off, io_len,
4950 		    PG_EXCL | PG_WAIT, seg, addr);
4951 	} else {
4952 		/*
4953 		 * Try to find enough pages to fill the page list
4954 		 */
4955 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4956 		    &io_len, off, plsz, 0);
4957 	}
4958 	if (pp == NULL) {
4959 		/*
4960 		 * The page already exists, nothing to do here.
4961 		 */
4962 		*pl = NULL;
4963 		return (0);
4964 	}
4965 
4966 	/*
4967 	 * Fill the pages in the kluster.
4968 	 */
4969 	cur_pp = pp;
4970 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4971 		caddr_t va;
4972 
4973 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4974 		va = zfs_map_page(cur_pp, S_WRITE);
4975 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4976 		    DMU_READ_PREFETCH);
4977 		zfs_unmap_page(cur_pp, va);
4978 		if (err) {
4979 			/* On error, toss the entire kluster */
4980 			pvn_read_done(pp, B_ERROR);
4981 			/* convert checksum errors into IO errors */
4982 			if (err == ECKSUM)
4983 				err = SET_ERROR(EIO);
4984 			return (err);
4985 		}
4986 		cur_pp = cur_pp->p_next;
4987 	}
4988 
4989 	/*
4990 	 * Fill in the page list array from the kluster starting
4991 	 * from the desired offset `off'.
4992 	 * NOTE: the page list will always be null terminated.
4993 	 */
4994 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4995 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4996 
4997 	return (0);
4998 }
4999 
5000 /*
5001  * Return pointers to the pages for the file region [off, off + len]
5002  * in the pl array.  If plsz is greater than len, this function may
5003  * also return page pointers from after the specified region
5004  * (i.e. the region [off, off + plsz]).  These additional pages are
5005  * only returned if they are already in the cache, or were created as
5006  * part of a klustered read.
5007  *
5008  *	IN:	vp	- vnode of file to get data from.
5009  *		off	- position in file to get data from.
5010  *		len	- amount of data to retrieve.
5011  *		plsz	- length of provided page list.
5012  *		seg	- segment to obtain pages for.
5013  *		addr	- virtual address of fault.
5014  *		rw	- mode of created pages.
5015  *		cr	- credentials of caller.
5016  *		ct	- caller context.
5017  *
5018  *	OUT:	protp	- protection mode of created pages.
5019  *		pl	- list of pages created.
5020  *
5021  *	RETURN:	0 on success, error code on failure.
5022  *
5023  * Timestamps:
5024  *	vp - atime updated
5025  */
5026 /* ARGSUSED */
5027 static int
5028 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
5029     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
5030     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
5031 {
5032 	znode_t		*zp = VTOZ(vp);
5033 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5034 	page_t		**pl0 = pl;
5035 	int		err = 0;
5036 
5037 	/* we do our own caching, faultahead is unnecessary */
5038 	if (pl == NULL)
5039 		return (0);
5040 	else if (len > plsz)
5041 		len = plsz;
5042 	else
5043 		len = P2ROUNDUP(len, PAGESIZE);
5044 	ASSERT(plsz >= len);
5045 
5046 	ZFS_ENTER(zfsvfs);
5047 	ZFS_VERIFY_ZP(zp);
5048 
5049 	if (protp)
5050 		*protp = PROT_ALL;
5051 
5052 	/*
5053 	 * Loop through the requested range [off, off + len) looking
5054 	 * for pages.  If we don't find a page, we will need to create
5055 	 * a new page and fill it with data from the file.
5056 	 */
5057 	while (len > 0) {
5058 		if (*pl = page_lookup(vp, off, SE_SHARED))
5059 			*(pl+1) = NULL;
5060 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
5061 			goto out;
5062 		while (*pl) {
5063 			ASSERT3U((*pl)->p_offset, ==, off);
5064 			off += PAGESIZE;
5065 			addr += PAGESIZE;
5066 			if (len > 0) {
5067 				ASSERT3U(len, >=, PAGESIZE);
5068 				len -= PAGESIZE;
5069 			}
5070 			ASSERT3U(plsz, >=, PAGESIZE);
5071 			plsz -= PAGESIZE;
5072 			pl++;
5073 		}
5074 	}
5075 
5076 	/*
5077 	 * Fill out the page array with any pages already in the cache.
5078 	 */
5079 	while (plsz > 0 &&
5080 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
5081 			off += PAGESIZE;
5082 			plsz -= PAGESIZE;
5083 	}
5084 out:
5085 	if (err) {
5086 		/*
5087 		 * Release any pages we have previously locked.
5088 		 */
5089 		while (pl > pl0)
5090 			page_unlock(*--pl);
5091 	} else {
5092 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
5093 	}
5094 
5095 	*pl = NULL;
5096 
5097 	ZFS_EXIT(zfsvfs);
5098 	return (err);
5099 }
5100 
5101 /*
5102  * Request a memory map for a section of a file.  This code interacts
5103  * with common code and the VM system as follows:
5104  *
5105  * - common code calls mmap(), which ends up in smmap_common()
5106  * - this calls VOP_MAP(), which takes you into (say) zfs
5107  * - zfs_map() calls as_map(), passing segvn_create() as the callback
5108  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
5109  * - zfs_addmap() updates z_mapcnt
5110  */
5111 /*ARGSUSED*/
5112 static int
5113 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
5114     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5115     caller_context_t *ct)
5116 {
5117 	znode_t *zp = VTOZ(vp);
5118 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5119 	segvn_crargs_t	vn_a;
5120 	int		error;
5121 
5122 	ZFS_ENTER(zfsvfs);
5123 	ZFS_VERIFY_ZP(zp);
5124 
5125 	/*
5126 	 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
5127 	 */
5128 
5129 	if ((prot & PROT_WRITE) && (zp->z_pflags &
5130 	    (ZFS_IMMUTABLE | ZFS_APPENDONLY))) {
5131 		ZFS_EXIT(zfsvfs);
5132 		return (SET_ERROR(EPERM));
5133 	}
5134 
5135 	if ((prot & (PROT_READ | PROT_EXEC)) &&
5136 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
5137 		ZFS_EXIT(zfsvfs);
5138 		return (SET_ERROR(EACCES));
5139 	}
5140 
5141 	if (vp->v_flag & VNOMAP) {
5142 		ZFS_EXIT(zfsvfs);
5143 		return (SET_ERROR(ENOSYS));
5144 	}
5145 
5146 	if (off < 0 || len > MAXOFFSET_T - off) {
5147 		ZFS_EXIT(zfsvfs);
5148 		return (SET_ERROR(ENXIO));
5149 	}
5150 
5151 	if (vp->v_type != VREG) {
5152 		ZFS_EXIT(zfsvfs);
5153 		return (SET_ERROR(ENODEV));
5154 	}
5155 
5156 	/*
5157 	 * If file is locked, disallow mapping.
5158 	 */
5159 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
5160 		ZFS_EXIT(zfsvfs);
5161 		return (SET_ERROR(EAGAIN));
5162 	}
5163 
5164 	as_rangelock(as);
5165 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5166 	if (error != 0) {
5167 		as_rangeunlock(as);
5168 		ZFS_EXIT(zfsvfs);
5169 		return (error);
5170 	}
5171 
5172 	vn_a.vp = vp;
5173 	vn_a.offset = (u_offset_t)off;
5174 	vn_a.type = flags & MAP_TYPE;
5175 	vn_a.prot = prot;
5176 	vn_a.maxprot = maxprot;
5177 	vn_a.cred = cr;
5178 	vn_a.amp = NULL;
5179 	vn_a.flags = flags & ~MAP_TYPE;
5180 	vn_a.szc = 0;
5181 	vn_a.lgrp_mem_policy_flags = 0;
5182 
5183 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
5184 
5185 	as_rangeunlock(as);
5186 	ZFS_EXIT(zfsvfs);
5187 	return (error);
5188 }
5189 
5190 /* ARGSUSED */
5191 static int
5192 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5193     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5194     caller_context_t *ct)
5195 {
5196 	uint64_t pages = btopr(len);
5197 
5198 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
5199 	return (0);
5200 }
5201 
5202 /* ARGSUSED */
5203 static int
5204 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5205     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
5206     caller_context_t *ct)
5207 {
5208 	uint64_t pages = btopr(len);
5209 
5210 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
5211 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
5212 
5213 	return (0);
5214 }
5215 
5216 /*
5217  * Free or allocate space in a file.  Currently, this function only
5218  * supports the `F_FREESP' command.  However, this command is somewhat
5219  * misnamed, as its functionality includes the ability to allocate as
5220  * well as free space.
5221  *
5222  *	IN:	vp	- vnode of file to free data in.
5223  *		cmd	- action to take (only F_FREESP supported).
5224  *		bfp	- section of file to free/alloc.
5225  *		flag	- current file open mode flags.
5226  *		offset	- current file offset.
5227  *		cr	- credentials of caller [UNUSED].
5228  *		ct	- caller context.
5229  *
5230  *	RETURN:	0 on success, error code on failure.
5231  *
5232  * Timestamps:
5233  *	vp - ctime|mtime updated
5234  */
5235 /* ARGSUSED */
5236 static int
5237 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
5238     offset_t offset, cred_t *cr, caller_context_t *ct)
5239 {
5240 	znode_t		*zp = VTOZ(vp);
5241 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5242 	uint64_t	off, len;
5243 	int		error;
5244 
5245 	ZFS_ENTER(zfsvfs);
5246 	ZFS_VERIFY_ZP(zp);
5247 
5248 	if (cmd != F_FREESP) {
5249 		ZFS_EXIT(zfsvfs);
5250 		return (SET_ERROR(EINVAL));
5251 	}
5252 
5253 	/*
5254 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
5255 	 * callers might not be able to detect properly that we are read-only,
5256 	 * so check it explicitly here.
5257 	 */
5258 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
5259 		ZFS_EXIT(zfsvfs);
5260 		return (SET_ERROR(EROFS));
5261 	}
5262 
5263 	if (error = convoff(vp, bfp, 0, offset)) {
5264 		ZFS_EXIT(zfsvfs);
5265 		return (error);
5266 	}
5267 
5268 	if (bfp->l_len < 0) {
5269 		ZFS_EXIT(zfsvfs);
5270 		return (SET_ERROR(EINVAL));
5271 	}
5272 
5273 	off = bfp->l_start;
5274 	len = bfp->l_len; /* 0 means from off to end of file */
5275 
5276 	error = zfs_freesp(zp, off, len, flag, TRUE);
5277 
5278 	if (error == 0 && off == 0 && len == 0)
5279 		vnevent_truncate(ZTOV(zp), ct);
5280 
5281 	ZFS_EXIT(zfsvfs);
5282 	return (error);
5283 }
5284 
5285 /*ARGSUSED*/
5286 static int
5287 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
5288 {
5289 	znode_t		*zp = VTOZ(vp);
5290 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5291 	uint32_t	gen;
5292 	uint64_t	gen64;
5293 	uint64_t	object = zp->z_id;
5294 	zfid_short_t	*zfid;
5295 	int		size, i, error;
5296 
5297 	ZFS_ENTER(zfsvfs);
5298 	ZFS_VERIFY_ZP(zp);
5299 
5300 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
5301 	    &gen64, sizeof (uint64_t))) != 0) {
5302 		ZFS_EXIT(zfsvfs);
5303 		return (error);
5304 	}
5305 
5306 	gen = (uint32_t)gen64;
5307 
5308 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
5309 	if (fidp->fid_len < size) {
5310 		fidp->fid_len = size;
5311 		ZFS_EXIT(zfsvfs);
5312 		return (SET_ERROR(ENOSPC));
5313 	}
5314 
5315 	zfid = (zfid_short_t *)fidp;
5316 
5317 	zfid->zf_len = size;
5318 
5319 	for (i = 0; i < sizeof (zfid->zf_object); i++)
5320 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
5321 
5322 	/* Must have a non-zero generation number to distinguish from .zfs */
5323 	if (gen == 0)
5324 		gen = 1;
5325 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
5326 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
5327 
5328 	if (size == LONG_FID_LEN) {
5329 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
5330 		zfid_long_t	*zlfid;
5331 
5332 		zlfid = (zfid_long_t *)fidp;
5333 
5334 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
5335 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
5336 
5337 		/* XXX - this should be the generation number for the objset */
5338 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
5339 			zlfid->zf_setgen[i] = 0;
5340 	}
5341 
5342 	ZFS_EXIT(zfsvfs);
5343 	return (0);
5344 }
5345 
5346 static int
5347 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5348     caller_context_t *ct)
5349 {
5350 	znode_t		*zp, *xzp;
5351 	zfsvfs_t	*zfsvfs;
5352 	zfs_dirlock_t	*dl;
5353 	int		error;
5354 
5355 	switch (cmd) {
5356 	case _PC_LINK_MAX:
5357 		*valp = ULONG_MAX;
5358 		return (0);
5359 
5360 	case _PC_FILESIZEBITS:
5361 		*valp = 64;
5362 		return (0);
5363 
5364 	case _PC_XATTR_EXISTS:
5365 		zp = VTOZ(vp);
5366 		zfsvfs = zp->z_zfsvfs;
5367 		ZFS_ENTER(zfsvfs);
5368 		ZFS_VERIFY_ZP(zp);
5369 		*valp = 0;
5370 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
5371 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
5372 		if (error == 0) {
5373 			zfs_dirent_unlock(dl);
5374 			if (!zfs_dirempty(xzp))
5375 				*valp = 1;
5376 			VN_RELE(ZTOV(xzp));
5377 		} else if (error == ENOENT) {
5378 			/*
5379 			 * If there aren't extended attributes, it's the
5380 			 * same as having zero of them.
5381 			 */
5382 			error = 0;
5383 		}
5384 		ZFS_EXIT(zfsvfs);
5385 		return (error);
5386 
5387 	case _PC_SATTR_ENABLED:
5388 	case _PC_SATTR_EXISTS:
5389 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5390 		    (vp->v_type == VREG || vp->v_type == VDIR);
5391 		return (0);
5392 
5393 	case _PC_ACCESS_FILTERING:
5394 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5395 		    vp->v_type == VDIR;
5396 		return (0);
5397 
5398 	case _PC_ACL_ENABLED:
5399 		*valp = _ACL_ACE_ENABLED;
5400 		return (0);
5401 
5402 	case _PC_MIN_HOLE_SIZE:
5403 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
5404 		return (0);
5405 
5406 	case _PC_TIMESTAMP_RESOLUTION:
5407 		/* nanosecond timestamp resolution */
5408 		*valp = 1L;
5409 		return (0);
5410 
5411 	default:
5412 		return (fs_pathconf(vp, cmd, valp, cr, ct));
5413 	}
5414 }
5415 
5416 /*ARGSUSED*/
5417 static int
5418 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5419     caller_context_t *ct)
5420 {
5421 	znode_t *zp = VTOZ(vp);
5422 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5423 	int error;
5424 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5425 
5426 	ZFS_ENTER(zfsvfs);
5427 	ZFS_VERIFY_ZP(zp);
5428 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5429 	ZFS_EXIT(zfsvfs);
5430 
5431 	return (error);
5432 }
5433 
5434 /*ARGSUSED*/
5435 static int
5436 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5437     caller_context_t *ct)
5438 {
5439 	znode_t *zp = VTOZ(vp);
5440 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5441 	int error;
5442 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5443 	zilog_t	*zilog = zfsvfs->z_log;
5444 
5445 	ZFS_ENTER(zfsvfs);
5446 	ZFS_VERIFY_ZP(zp);
5447 
5448 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5449 
5450 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5451 		zil_commit(zilog, 0);
5452 
5453 	ZFS_EXIT(zfsvfs);
5454 	return (error);
5455 }
5456 
5457 /*
5458  * The smallest read we may consider to loan out an arcbuf.
5459  * This must be a power of 2.
5460  */
5461 int zcr_blksz_min = (1 << 10);	/* 1K */
5462 /*
5463  * If set to less than the file block size, allow loaning out of an
5464  * arcbuf for a partial block read.  This must be a power of 2.
5465  */
5466 int zcr_blksz_max = (1 << 17);	/* 128K */
5467 
5468 /*ARGSUSED*/
5469 static int
5470 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5471     caller_context_t *ct)
5472 {
5473 	znode_t	*zp = VTOZ(vp);
5474 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5475 	int max_blksz = zfsvfs->z_max_blksz;
5476 	uio_t *uio = &xuio->xu_uio;
5477 	ssize_t size = uio->uio_resid;
5478 	offset_t offset = uio->uio_loffset;
5479 	int blksz;
5480 	int fullblk, i;
5481 	arc_buf_t *abuf;
5482 	ssize_t maxsize;
5483 	int preamble, postamble;
5484 
5485 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5486 		return (SET_ERROR(EINVAL));
5487 
5488 	ZFS_ENTER(zfsvfs);
5489 	ZFS_VERIFY_ZP(zp);
5490 	switch (ioflag) {
5491 	case UIO_WRITE:
5492 		/*
5493 		 * Loan out an arc_buf for write if write size is bigger than
5494 		 * max_blksz, and the file's block size is also max_blksz.
5495 		 */
5496 		blksz = max_blksz;
5497 		if (size < blksz || zp->z_blksz != blksz) {
5498 			ZFS_EXIT(zfsvfs);
5499 			return (SET_ERROR(EINVAL));
5500 		}
5501 		/*
5502 		 * Caller requests buffers for write before knowing where the
5503 		 * write offset might be (e.g. NFS TCP write).
5504 		 */
5505 		if (offset == -1) {
5506 			preamble = 0;
5507 		} else {
5508 			preamble = P2PHASE(offset, blksz);
5509 			if (preamble) {
5510 				preamble = blksz - preamble;
5511 				size -= preamble;
5512 			}
5513 		}
5514 
5515 		postamble = P2PHASE(size, blksz);
5516 		size -= postamble;
5517 
5518 		fullblk = size / blksz;
5519 		(void) dmu_xuio_init(xuio,
5520 		    (preamble != 0) + fullblk + (postamble != 0));
5521 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5522 		    int, postamble, int,
5523 		    (preamble != 0) + fullblk + (postamble != 0));
5524 
5525 		/*
5526 		 * Have to fix iov base/len for partial buffers.  They
5527 		 * currently represent full arc_buf's.
5528 		 */
5529 		if (preamble) {
5530 			/* data begins in the middle of the arc_buf */
5531 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5532 			    blksz);
5533 			ASSERT(abuf);
5534 			(void) dmu_xuio_add(xuio, abuf,
5535 			    blksz - preamble, preamble);
5536 		}
5537 
5538 		for (i = 0; i < fullblk; i++) {
5539 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5540 			    blksz);
5541 			ASSERT(abuf);
5542 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5543 		}
5544 
5545 		if (postamble) {
5546 			/* data ends in the middle of the arc_buf */
5547 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5548 			    blksz);
5549 			ASSERT(abuf);
5550 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5551 		}
5552 		break;
5553 	case UIO_READ:
5554 		/*
5555 		 * Loan out an arc_buf for read if the read size is larger than
5556 		 * the current file block size.  Block alignment is not
5557 		 * considered.  Partial arc_buf will be loaned out for read.
5558 		 */
5559 		blksz = zp->z_blksz;
5560 		if (blksz < zcr_blksz_min)
5561 			blksz = zcr_blksz_min;
5562 		if (blksz > zcr_blksz_max)
5563 			blksz = zcr_blksz_max;
5564 		/* avoid potential complexity of dealing with it */
5565 		if (blksz > max_blksz) {
5566 			ZFS_EXIT(zfsvfs);
5567 			return (SET_ERROR(EINVAL));
5568 		}
5569 
5570 		maxsize = zp->z_size - uio->uio_loffset;
5571 		if (size > maxsize)
5572 			size = maxsize;
5573 
5574 		if (size < blksz || vn_has_cached_data(vp)) {
5575 			ZFS_EXIT(zfsvfs);
5576 			return (SET_ERROR(EINVAL));
5577 		}
5578 		break;
5579 	default:
5580 		ZFS_EXIT(zfsvfs);
5581 		return (SET_ERROR(EINVAL));
5582 	}
5583 
5584 	uio->uio_extflg = UIO_XUIO;
5585 	XUIO_XUZC_RW(xuio) = ioflag;
5586 	ZFS_EXIT(zfsvfs);
5587 	return (0);
5588 }
5589 
5590 /*ARGSUSED*/
5591 static int
5592 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5593 {
5594 	int i;
5595 	arc_buf_t *abuf;
5596 	int ioflag = XUIO_XUZC_RW(xuio);
5597 
5598 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5599 
5600 	i = dmu_xuio_cnt(xuio);
5601 	while (i-- > 0) {
5602 		abuf = dmu_xuio_arcbuf(xuio, i);
5603 		/*
5604 		 * if abuf == NULL, it must be a write buffer
5605 		 * that has been returned in zfs_write().
5606 		 */
5607 		if (abuf)
5608 			dmu_return_arcbuf(abuf);
5609 		ASSERT(abuf || ioflag == UIO_WRITE);
5610 	}
5611 
5612 	dmu_xuio_fini(xuio);
5613 	return (0);
5614 }
5615 
5616 /*
5617  * Predeclare these here so that the compiler assumes that
5618  * this is an "old style" function declaration that does
5619  * not include arguments => we won't get type mismatch errors
5620  * in the initializations that follow.
5621  */
5622 static int zfs_inval();
5623 static int zfs_isdir();
5624 
5625 static int
5626 zfs_inval()
5627 {
5628 	return (SET_ERROR(EINVAL));
5629 }
5630 
5631 static int
5632 zfs_isdir()
5633 {
5634 	return (SET_ERROR(EISDIR));
5635 }
5636 /*
5637  * Directory vnode operations template
5638  */
5639 const fs_operation_def_t zfs_dvnodeops_template[] = {
5640 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5641 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5642 	VOPNAME_READ,		{ .error = zfs_isdir },
5643 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5644 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5645 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5646 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5647 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5648 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5649 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5650 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5651 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5652 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5653 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5654 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5655 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5656 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5657 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5658 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5659 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5660 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5661 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5662 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5663 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5664 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5665 	NULL,			NULL
5666 };
5667 
5668 /*
5669  * Regular file vnode operations template
5670  */
5671 const fs_operation_def_t zfs_fvnodeops_template[] = {
5672 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5673 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5674 	VOPNAME_READ,		{ .vop_read = zfs_read },
5675 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5676 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5677 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5678 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5679 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5680 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5681 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5682 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5683 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5684 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5685 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5686 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5687 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5688 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5689 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5690 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5691 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5692 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5693 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5694 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5695 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5696 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5697 	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5698 	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5699 	NULL,			NULL
5700 };
5701 
5702 /*
5703  * Symbolic link vnode operations template
5704  */
5705 const fs_operation_def_t zfs_symvnodeops_template[] = {
5706 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5707 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5708 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5709 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5710 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5711 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5712 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5713 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5714 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5715 	NULL,			NULL
5716 };
5717 
5718 /*
5719  * special share hidden files vnode operations template
5720  */
5721 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5722 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5723 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5724 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5725 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5726 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5727 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5728 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5729 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5730 	NULL,			NULL
5731 };
5732 
5733 /*
5734  * Extended attribute directory vnode operations template
5735  *
5736  * This template is identical to the directory vnodes
5737  * operation template except for restricted operations:
5738  *	VOP_MKDIR()
5739  *	VOP_SYMLINK()
5740  *
5741  * Note that there are other restrictions embedded in:
5742  *	zfs_create()	- restrict type to VREG
5743  *	zfs_link()	- no links into/out of attribute space
5744  *	zfs_rename()	- no moves into/out of attribute space
5745  */
5746 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5747 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5748 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5749 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5750 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5751 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5752 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5753 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5754 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5755 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5756 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5757 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5758 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5759 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5760 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5761 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5762 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5763 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5764 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5765 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5766 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5767 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5768 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5769 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5770 	NULL,			NULL
5771 };
5772 
5773 /*
5774  * Error vnode operations template
5775  */
5776 const fs_operation_def_t zfs_evnodeops_template[] = {
5777 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5778 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5779 	NULL,			NULL
5780 };
5781