xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision 148434217c040ea38dc844384f6ba68d9b325906)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Portions Copyright 2007 Jeremy Teo */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/vnode.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/kmem.h>
40 #include <sys/taskq.h>
41 #include <sys/uio.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <sys/vm.h>
45 #include <vm/seg_vn.h>
46 #include <vm/pvn.h>
47 #include <vm/as.h>
48 #include <vm/kpm.h>
49 #include <vm/seg_kpm.h>
50 #include <sys/mman.h>
51 #include <sys/pathname.h>
52 #include <sys/cmn_err.h>
53 #include <sys/errno.h>
54 #include <sys/unistd.h>
55 #include <sys/zfs_dir.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/dmu.h>
60 #include <sys/spa.h>
61 #include <sys/txg.h>
62 #include <sys/dbuf.h>
63 #include <sys/zap.h>
64 #include <sys/dirent.h>
65 #include <sys/policy.h>
66 #include <sys/sunddi.h>
67 #include <sys/filio.h>
68 #include <sys/sid.h>
69 #include "fs/fs_subr.h"
70 #include <sys/zfs_ctldir.h>
71 #include <sys/zfs_fuid.h>
72 #include <sys/dnlc.h>
73 #include <sys/zfs_rlock.h>
74 #include <sys/extdirent.h>
75 #include <sys/kidmap.h>
76 #include <sys/cred_impl.h>
77 #include <sys/attr.h>
78 
79 /*
80  * Programming rules.
81  *
82  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
83  * properly lock its in-core state, create a DMU transaction, do the work,
84  * record this work in the intent log (ZIL), commit the DMU transaction,
85  * and wait for the intent log to commit if it is a synchronous operation.
86  * Moreover, the vnode ops must work in both normal and log replay context.
87  * The ordering of events is important to avoid deadlocks and references
88  * to freed memory.  The example below illustrates the following Big Rules:
89  *
90  *  (1) A check must be made in each zfs thread for a mounted file system.
91  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
92  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
93  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
94  *      can return EIO from the calling function.
95  *
96  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
97  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
98  *	First, if it's the last reference, the vnode/znode
99  *	can be freed, so the zp may point to freed memory.  Second, the last
100  *	reference will call zfs_zinactive(), which may induce a lot of work --
101  *	pushing cached pages (which acquires range locks) and syncing out
102  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
103  *	which could deadlock the system if you were already holding one.
104  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
105  *
106  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
107  *	as they can span dmu_tx_assign() calls.
108  *
109  *  (4)	Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
110  *	This is critical because we don't want to block while holding locks.
111  *	Note, in particular, that if a lock is sometimes acquired before
112  *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
113  *	use a non-blocking assign can deadlock the system.  The scenario:
114  *
115  *	Thread A has grabbed a lock before calling dmu_tx_assign().
116  *	Thread B is in an already-assigned tx, and blocks for this lock.
117  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
118  *	forever, because the previous txg can't quiesce until B's tx commits.
119  *
120  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
121  *	then drop all locks, call dmu_tx_wait(), and try again.
122  *
123  *  (5)	If the operation succeeded, generate the intent log entry for it
124  *	before dropping locks.  This ensures that the ordering of events
125  *	in the intent log matches the order in which they actually occurred.
126  *      During ZIL replay the zfs_log_* functions will update the sequence
127  *	number to indicate the zil transaction has replayed.
128  *
129  *  (6)	At the end of each vnode op, the DMU tx must always commit,
130  *	regardless of whether there were any errors.
131  *
132  *  (7)	After dropping all locks, invoke zil_commit(zilog, seq, foid)
133  *	to ensure that synchronous semantics are provided when necessary.
134  *
135  * In general, this is how things should be ordered in each vnode op:
136  *
137  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
138  * top:
139  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
140  *	rw_enter(...);			// grab any other locks you need
141  *	tx = dmu_tx_create(...);	// get DMU tx
142  *	dmu_tx_hold_*();		// hold each object you might modify
143  *	error = dmu_tx_assign(tx, TXG_NOWAIT);	// try to assign
144  *	if (error) {
145  *		rw_exit(...);		// drop locks
146  *		zfs_dirent_unlock(dl);	// unlock directory entry
147  *		VN_RELE(...);		// release held vnodes
148  *		if (error == ERESTART) {
149  *			dmu_tx_wait(tx);
150  *			dmu_tx_abort(tx);
151  *			goto top;
152  *		}
153  *		dmu_tx_abort(tx);	// abort DMU tx
154  *		ZFS_EXIT(zfsvfs);	// finished in zfs
155  *		return (error);		// really out of space
156  *	}
157  *	error = do_real_work();		// do whatever this VOP does
158  *	if (error == 0)
159  *		zfs_log_*(...);		// on success, make ZIL entry
160  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
161  *	rw_exit(...);			// drop locks
162  *	zfs_dirent_unlock(dl);		// unlock directory entry
163  *	VN_RELE(...);			// release held vnodes
164  *	zil_commit(zilog, seq, foid);	// synchronous when necessary
165  *	ZFS_EXIT(zfsvfs);		// finished in zfs
166  *	return (error);			// done, report error
167  */
168 
169 /* ARGSUSED */
170 static int
171 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
172 {
173 	znode_t	*zp = VTOZ(*vpp);
174 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
175 
176 	ZFS_ENTER(zfsvfs);
177 	ZFS_VERIFY_ZP(zp);
178 
179 	if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) &&
180 	    ((flag & FAPPEND) == 0)) {
181 		ZFS_EXIT(zfsvfs);
182 		return (EPERM);
183 	}
184 
185 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
186 	    ZTOV(zp)->v_type == VREG &&
187 	    !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) &&
188 	    zp->z_phys->zp_size > 0) {
189 		if (fs_vscan(*vpp, cr, 0) != 0) {
190 			ZFS_EXIT(zfsvfs);
191 			return (EACCES);
192 		}
193 	}
194 
195 	/* Keep a count of the synchronous opens in the znode */
196 	if (flag & (FSYNC | FDSYNC))
197 		atomic_inc_32(&zp->z_sync_cnt);
198 
199 	ZFS_EXIT(zfsvfs);
200 	return (0);
201 }
202 
203 /* ARGSUSED */
204 static int
205 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
206     caller_context_t *ct)
207 {
208 	znode_t	*zp = VTOZ(vp);
209 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
210 
211 	ZFS_ENTER(zfsvfs);
212 	ZFS_VERIFY_ZP(zp);
213 
214 	/* Decrement the synchronous opens in the znode */
215 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
216 		atomic_dec_32(&zp->z_sync_cnt);
217 
218 	/*
219 	 * Clean up any locks held by this process on the vp.
220 	 */
221 	cleanlocks(vp, ddi_get_pid(), 0);
222 	cleanshares(vp, ddi_get_pid());
223 
224 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
225 	    ZTOV(zp)->v_type == VREG &&
226 	    !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) &&
227 	    zp->z_phys->zp_size > 0)
228 		VERIFY(fs_vscan(vp, cr, 1) == 0);
229 
230 	ZFS_EXIT(zfsvfs);
231 	return (0);
232 }
233 
234 /*
235  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
236  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
237  */
238 static int
239 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
240 {
241 	znode_t	*zp = VTOZ(vp);
242 	uint64_t noff = (uint64_t)*off; /* new offset */
243 	uint64_t file_sz;
244 	int error;
245 	boolean_t hole;
246 
247 	file_sz = zp->z_phys->zp_size;
248 	if (noff >= file_sz)  {
249 		return (ENXIO);
250 	}
251 
252 	if (cmd == _FIO_SEEK_HOLE)
253 		hole = B_TRUE;
254 	else
255 		hole = B_FALSE;
256 
257 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
258 
259 	/* end of file? */
260 	if ((error == ESRCH) || (noff > file_sz)) {
261 		/*
262 		 * Handle the virtual hole at the end of file.
263 		 */
264 		if (hole) {
265 			*off = file_sz;
266 			return (0);
267 		}
268 		return (ENXIO);
269 	}
270 
271 	if (noff < *off)
272 		return (error);
273 	*off = noff;
274 	return (error);
275 }
276 
277 /* ARGSUSED */
278 static int
279 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
280     int *rvalp, caller_context_t *ct)
281 {
282 	offset_t off;
283 	int error;
284 	zfsvfs_t *zfsvfs;
285 	znode_t *zp;
286 
287 	switch (com) {
288 	case _FIOFFS:
289 		return (zfs_sync(vp->v_vfsp, 0, cred));
290 
291 		/*
292 		 * The following two ioctls are used by bfu.  Faking out,
293 		 * necessary to avoid bfu errors.
294 		 */
295 	case _FIOGDIO:
296 	case _FIOSDIO:
297 		return (0);
298 
299 	case _FIO_SEEK_DATA:
300 	case _FIO_SEEK_HOLE:
301 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
302 			return (EFAULT);
303 
304 		zp = VTOZ(vp);
305 		zfsvfs = zp->z_zfsvfs;
306 		ZFS_ENTER(zfsvfs);
307 		ZFS_VERIFY_ZP(zp);
308 
309 		/* offset parameter is in/out */
310 		error = zfs_holey(vp, com, &off);
311 		ZFS_EXIT(zfsvfs);
312 		if (error)
313 			return (error);
314 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
315 			return (EFAULT);
316 		return (0);
317 	}
318 	return (ENOTTY);
319 }
320 
321 /*
322  * Utility functions to map and unmap a single physical page.  These
323  * are used to manage the mappable copies of ZFS file data, and therefore
324  * do not update ref/mod bits.
325  */
326 caddr_t
327 zfs_map_page(page_t *pp, enum seg_rw rw)
328 {
329 	if (kpm_enable)
330 		return (hat_kpm_mapin(pp, 0));
331 	ASSERT(rw == S_READ || rw == S_WRITE);
332 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
333 	    (caddr_t)-1));
334 }
335 
336 void
337 zfs_unmap_page(page_t *pp, caddr_t addr)
338 {
339 	if (kpm_enable) {
340 		hat_kpm_mapout(pp, 0, addr);
341 	} else {
342 		ppmapout(addr);
343 	}
344 }
345 
346 /*
347  * When a file is memory mapped, we must keep the IO data synchronized
348  * between the DMU cache and the memory mapped pages.  What this means:
349  *
350  * On Write:	If we find a memory mapped page, we write to *both*
351  *		the page and the dmu buffer.
352  */
353 static void
354 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
355 {
356 	int64_t	off;
357 
358 	off = start & PAGEOFFSET;
359 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
360 		page_t *pp;
361 		uint64_t nbytes = MIN(PAGESIZE - off, len);
362 
363 		if (pp = page_lookup(vp, start, SE_SHARED)) {
364 			caddr_t va;
365 
366 			va = zfs_map_page(pp, S_WRITE);
367 			(void) dmu_read(os, oid, start+off, nbytes, va+off);
368 			zfs_unmap_page(pp, va);
369 			page_unlock(pp);
370 		}
371 		len -= nbytes;
372 		off = 0;
373 	}
374 }
375 
376 /*
377  * When a file is memory mapped, we must keep the IO data synchronized
378  * between the DMU cache and the memory mapped pages.  What this means:
379  *
380  * On Read:	We "read" preferentially from memory mapped pages,
381  *		else we default from the dmu buffer.
382  *
383  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
384  *	the file is memory mapped.
385  */
386 static int
387 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
388 {
389 	znode_t *zp = VTOZ(vp);
390 	objset_t *os = zp->z_zfsvfs->z_os;
391 	int64_t	start, off;
392 	int len = nbytes;
393 	int error = 0;
394 
395 	start = uio->uio_loffset;
396 	off = start & PAGEOFFSET;
397 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
398 		page_t *pp;
399 		uint64_t bytes = MIN(PAGESIZE - off, len);
400 
401 		if (pp = page_lookup(vp, start, SE_SHARED)) {
402 			caddr_t va;
403 
404 			va = zfs_map_page(pp, S_READ);
405 			error = uiomove(va + off, bytes, UIO_READ, uio);
406 			zfs_unmap_page(pp, va);
407 			page_unlock(pp);
408 		} else {
409 			error = dmu_read_uio(os, zp->z_id, uio, bytes);
410 		}
411 		len -= bytes;
412 		off = 0;
413 		if (error)
414 			break;
415 	}
416 	return (error);
417 }
418 
419 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
420 
421 /*
422  * Read bytes from specified file into supplied buffer.
423  *
424  *	IN:	vp	- vnode of file to be read from.
425  *		uio	- structure supplying read location, range info,
426  *			  and return buffer.
427  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
428  *		cr	- credentials of caller.
429  *		ct	- caller context
430  *
431  *	OUT:	uio	- updated offset and range, buffer filled.
432  *
433  *	RETURN:	0 if success
434  *		error code if failure
435  *
436  * Side Effects:
437  *	vp - atime updated if byte count > 0
438  */
439 /* ARGSUSED */
440 static int
441 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
442 {
443 	znode_t		*zp = VTOZ(vp);
444 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
445 	objset_t	*os;
446 	ssize_t		n, nbytes;
447 	int		error;
448 	rl_t		*rl;
449 
450 	ZFS_ENTER(zfsvfs);
451 	ZFS_VERIFY_ZP(zp);
452 	os = zfsvfs->z_os;
453 
454 	if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) {
455 		ZFS_EXIT(zfsvfs);
456 		return (EACCES);
457 	}
458 
459 	/*
460 	 * Validate file offset
461 	 */
462 	if (uio->uio_loffset < (offset_t)0) {
463 		ZFS_EXIT(zfsvfs);
464 		return (EINVAL);
465 	}
466 
467 	/*
468 	 * Fasttrack empty reads
469 	 */
470 	if (uio->uio_resid == 0) {
471 		ZFS_EXIT(zfsvfs);
472 		return (0);
473 	}
474 
475 	/*
476 	 * Check for mandatory locks
477 	 */
478 	if (MANDMODE((mode_t)zp->z_phys->zp_mode)) {
479 		if (error = chklock(vp, FREAD,
480 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
481 			ZFS_EXIT(zfsvfs);
482 			return (error);
483 		}
484 	}
485 
486 	/*
487 	 * If we're in FRSYNC mode, sync out this znode before reading it.
488 	 */
489 	if (ioflag & FRSYNC)
490 		zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
491 
492 	/*
493 	 * Lock the range against changes.
494 	 */
495 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
496 
497 	/*
498 	 * If we are reading past end-of-file we can skip
499 	 * to the end; but we might still need to set atime.
500 	 */
501 	if (uio->uio_loffset >= zp->z_phys->zp_size) {
502 		error = 0;
503 		goto out;
504 	}
505 
506 	ASSERT(uio->uio_loffset < zp->z_phys->zp_size);
507 	n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset);
508 
509 	while (n > 0) {
510 		nbytes = MIN(n, zfs_read_chunk_size -
511 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
512 
513 		if (vn_has_cached_data(vp))
514 			error = mappedread(vp, nbytes, uio);
515 		else
516 			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
517 		if (error) {
518 			/* convert checksum errors into IO errors */
519 			if (error == ECKSUM)
520 				error = EIO;
521 			break;
522 		}
523 
524 		n -= nbytes;
525 	}
526 
527 out:
528 	zfs_range_unlock(rl);
529 
530 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
531 	ZFS_EXIT(zfsvfs);
532 	return (error);
533 }
534 
535 /*
536  * Write the bytes to a file.
537  *
538  *	IN:	vp	- vnode of file to be written to.
539  *		uio	- structure supplying write location, range info,
540  *			  and data buffer.
541  *		ioflag	- FAPPEND flag set if in append mode.
542  *		cr	- credentials of caller.
543  *		ct	- caller context (NFS/CIFS fem monitor only)
544  *
545  *	OUT:	uio	- updated offset and range.
546  *
547  *	RETURN:	0 if success
548  *		error code if failure
549  *
550  * Timestamps:
551  *	vp - ctime|mtime updated if byte count > 0
552  */
553 /* ARGSUSED */
554 static int
555 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
556 {
557 	znode_t		*zp = VTOZ(vp);
558 	rlim64_t	limit = uio->uio_llimit;
559 	ssize_t		start_resid = uio->uio_resid;
560 	ssize_t		tx_bytes;
561 	uint64_t	end_size;
562 	dmu_tx_t	*tx;
563 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
564 	zilog_t		*zilog;
565 	offset_t	woff;
566 	ssize_t		n, nbytes;
567 	rl_t		*rl;
568 	int		max_blksz = zfsvfs->z_max_blksz;
569 	uint64_t	pflags;
570 	int		error;
571 
572 	/*
573 	 * Fasttrack empty write
574 	 */
575 	n = start_resid;
576 	if (n == 0)
577 		return (0);
578 
579 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
580 		limit = MAXOFFSET_T;
581 
582 	ZFS_ENTER(zfsvfs);
583 	ZFS_VERIFY_ZP(zp);
584 
585 	/*
586 	 * If immutable or not appending then return EPERM
587 	 */
588 	pflags = zp->z_phys->zp_flags;
589 	if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
590 	    ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
591 	    (uio->uio_loffset < zp->z_phys->zp_size))) {
592 		ZFS_EXIT(zfsvfs);
593 		return (EPERM);
594 	}
595 
596 	zilog = zfsvfs->z_log;
597 
598 	/*
599 	 * Pre-fault the pages to ensure slow (eg NFS) pages
600 	 * don't hold up txg.
601 	 */
602 	uio_prefaultpages(n, uio);
603 
604 	/*
605 	 * If in append mode, set the io offset pointer to eof.
606 	 */
607 	if (ioflag & FAPPEND) {
608 		/*
609 		 * Range lock for a file append:
610 		 * The value for the start of range will be determined by
611 		 * zfs_range_lock() (to guarantee append semantics).
612 		 * If this write will cause the block size to increase,
613 		 * zfs_range_lock() will lock the entire file, so we must
614 		 * later reduce the range after we grow the block size.
615 		 */
616 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
617 		if (rl->r_len == UINT64_MAX) {
618 			/* overlocked, zp_size can't change */
619 			woff = uio->uio_loffset = zp->z_phys->zp_size;
620 		} else {
621 			woff = uio->uio_loffset = rl->r_off;
622 		}
623 	} else {
624 		woff = uio->uio_loffset;
625 		/*
626 		 * Validate file offset
627 		 */
628 		if (woff < 0) {
629 			ZFS_EXIT(zfsvfs);
630 			return (EINVAL);
631 		}
632 
633 		/*
634 		 * If we need to grow the block size then zfs_range_lock()
635 		 * will lock a wider range than we request here.
636 		 * Later after growing the block size we reduce the range.
637 		 */
638 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
639 	}
640 
641 	if (woff >= limit) {
642 		zfs_range_unlock(rl);
643 		ZFS_EXIT(zfsvfs);
644 		return (EFBIG);
645 	}
646 
647 	if ((woff + n) > limit || woff > (limit - n))
648 		n = limit - woff;
649 
650 	/*
651 	 * Check for mandatory locks
652 	 */
653 	if (MANDMODE((mode_t)zp->z_phys->zp_mode) &&
654 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
655 		zfs_range_unlock(rl);
656 		ZFS_EXIT(zfsvfs);
657 		return (error);
658 	}
659 	end_size = MAX(zp->z_phys->zp_size, woff + n);
660 
661 	/*
662 	 * Write the file in reasonable size chunks.  Each chunk is written
663 	 * in a separate transaction; this keeps the intent log records small
664 	 * and allows us to do more fine-grained space accounting.
665 	 */
666 	while (n > 0) {
667 		/*
668 		 * Start a transaction.
669 		 */
670 		if (zfs_usergroup_overquota(zfsvfs,
671 		    B_FALSE, zp->z_phys->zp_uid) ||
672 		    zfs_usergroup_overquota(zfsvfs,
673 		    B_TRUE, zp->z_phys->zp_gid)) {
674 			error = EDQUOT;
675 			break;
676 		}
677 		woff = uio->uio_loffset;
678 		tx = dmu_tx_create(zfsvfs->z_os);
679 		dmu_tx_hold_bonus(tx, zp->z_id);
680 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
681 		error = dmu_tx_assign(tx, TXG_NOWAIT);
682 		if (error) {
683 			if (error == ERESTART) {
684 				dmu_tx_wait(tx);
685 				dmu_tx_abort(tx);
686 				continue;
687 			}
688 			dmu_tx_abort(tx);
689 			break;
690 		}
691 
692 		/*
693 		 * If zfs_range_lock() over-locked we grow the blocksize
694 		 * and then reduce the lock range.  This will only happen
695 		 * on the first iteration since zfs_range_reduce() will
696 		 * shrink down r_len to the appropriate size.
697 		 */
698 		if (rl->r_len == UINT64_MAX) {
699 			uint64_t new_blksz;
700 
701 			if (zp->z_blksz > max_blksz) {
702 				ASSERT(!ISP2(zp->z_blksz));
703 				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
704 			} else {
705 				new_blksz = MIN(end_size, max_blksz);
706 			}
707 			zfs_grow_blocksize(zp, new_blksz, tx);
708 			zfs_range_reduce(rl, woff, n);
709 		}
710 
711 		/*
712 		 * XXX - should we really limit each write to z_max_blksz?
713 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
714 		 */
715 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
716 
717 		tx_bytes = uio->uio_resid;
718 		error = dmu_write_uio(zfsvfs->z_os, zp->z_id, uio, nbytes, tx);
719 		tx_bytes -= uio->uio_resid;
720 		if (tx_bytes && vn_has_cached_data(vp))
721 			update_pages(vp, woff,
722 			    tx_bytes, zfsvfs->z_os, zp->z_id);
723 
724 		/*
725 		 * If we made no progress, we're done.  If we made even
726 		 * partial progress, update the znode and ZIL accordingly.
727 		 */
728 		if (tx_bytes == 0) {
729 			dmu_tx_commit(tx);
730 			ASSERT(error != 0);
731 			break;
732 		}
733 
734 		/*
735 		 * Clear Set-UID/Set-GID bits on successful write if not
736 		 * privileged and at least one of the excute bits is set.
737 		 *
738 		 * It would be nice to to this after all writes have
739 		 * been done, but that would still expose the ISUID/ISGID
740 		 * to another app after the partial write is committed.
741 		 *
742 		 * Note: we don't call zfs_fuid_map_id() here because
743 		 * user 0 is not an ephemeral uid.
744 		 */
745 		mutex_enter(&zp->z_acl_lock);
746 		if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) |
747 		    (S_IXUSR >> 6))) != 0 &&
748 		    (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 &&
749 		    secpolicy_vnode_setid_retain(cr,
750 		    (zp->z_phys->zp_mode & S_ISUID) != 0 &&
751 		    zp->z_phys->zp_uid == 0) != 0) {
752 			zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID);
753 		}
754 		mutex_exit(&zp->z_acl_lock);
755 
756 		/*
757 		 * Update time stamp.  NOTE: This marks the bonus buffer as
758 		 * dirty, so we don't have to do it again for zp_size.
759 		 */
760 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
761 
762 		/*
763 		 * Update the file size (zp_size) if it has changed;
764 		 * account for possible concurrent updates.
765 		 */
766 		while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset)
767 			(void) atomic_cas_64(&zp->z_phys->zp_size, end_size,
768 			    uio->uio_loffset);
769 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
770 		dmu_tx_commit(tx);
771 
772 		if (error != 0)
773 			break;
774 		ASSERT(tx_bytes == nbytes);
775 		n -= nbytes;
776 	}
777 
778 	zfs_range_unlock(rl);
779 
780 	/*
781 	 * If we're in replay mode, or we made no progress, return error.
782 	 * Otherwise, it's at least a partial write, so it's successful.
783 	 */
784 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
785 		ZFS_EXIT(zfsvfs);
786 		return (error);
787 	}
788 
789 	if (ioflag & (FSYNC | FDSYNC))
790 		zil_commit(zilog, zp->z_last_itx, zp->z_id);
791 
792 	ZFS_EXIT(zfsvfs);
793 	return (0);
794 }
795 
796 void
797 zfs_get_done(dmu_buf_t *db, void *vzgd)
798 {
799 	zgd_t *zgd = (zgd_t *)vzgd;
800 	rl_t *rl = zgd->zgd_rl;
801 	vnode_t *vp = ZTOV(rl->r_zp);
802 	objset_t *os = rl->r_zp->z_zfsvfs->z_os;
803 
804 	dmu_buf_rele(db, vzgd);
805 	zfs_range_unlock(rl);
806 	/*
807 	 * Release the vnode asynchronously as we currently have the
808 	 * txg stopped from syncing.
809 	 */
810 	VN_RELE_ASYNC(vp, dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
811 	zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
812 	kmem_free(zgd, sizeof (zgd_t));
813 }
814 
815 /*
816  * Get data to generate a TX_WRITE intent log record.
817  */
818 int
819 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
820 {
821 	zfsvfs_t *zfsvfs = arg;
822 	objset_t *os = zfsvfs->z_os;
823 	znode_t *zp;
824 	uint64_t off = lr->lr_offset;
825 	dmu_buf_t *db;
826 	rl_t *rl;
827 	zgd_t *zgd;
828 	int dlen = lr->lr_length;		/* length of user data */
829 	int error = 0;
830 
831 	ASSERT(zio);
832 	ASSERT(dlen != 0);
833 
834 	/*
835 	 * Nothing to do if the file has been removed
836 	 */
837 	if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0)
838 		return (ENOENT);
839 	if (zp->z_unlinked) {
840 		/*
841 		 * Release the vnode asynchronously as we currently have the
842 		 * txg stopped from syncing.
843 		 */
844 		VN_RELE_ASYNC(ZTOV(zp),
845 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
846 		return (ENOENT);
847 	}
848 
849 	/*
850 	 * Write records come in two flavors: immediate and indirect.
851 	 * For small writes it's cheaper to store the data with the
852 	 * log record (immediate); for large writes it's cheaper to
853 	 * sync the data and get a pointer to it (indirect) so that
854 	 * we don't have to write the data twice.
855 	 */
856 	if (buf != NULL) { /* immediate write */
857 		rl = zfs_range_lock(zp, off, dlen, RL_READER);
858 		/* test for truncation needs to be done while range locked */
859 		if (off >= zp->z_phys->zp_size) {
860 			error = ENOENT;
861 			goto out;
862 		}
863 		VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf));
864 	} else { /* indirect write */
865 		uint64_t boff; /* block starting offset */
866 
867 		/*
868 		 * Have to lock the whole block to ensure when it's
869 		 * written out and it's checksum is being calculated
870 		 * that no one can change the data. We need to re-check
871 		 * blocksize after we get the lock in case it's changed!
872 		 */
873 		for (;;) {
874 			if (ISP2(zp->z_blksz)) {
875 				boff = P2ALIGN_TYPED(off, zp->z_blksz,
876 				    uint64_t);
877 			} else {
878 				boff = 0;
879 			}
880 			dlen = zp->z_blksz;
881 			rl = zfs_range_lock(zp, boff, dlen, RL_READER);
882 			if (zp->z_blksz == dlen)
883 				break;
884 			zfs_range_unlock(rl);
885 		}
886 		/* test for truncation needs to be done while range locked */
887 		if (off >= zp->z_phys->zp_size) {
888 			error = ENOENT;
889 			goto out;
890 		}
891 		zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP);
892 		zgd->zgd_rl = rl;
893 		zgd->zgd_zilog = zfsvfs->z_log;
894 		zgd->zgd_bp = &lr->lr_blkptr;
895 		VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db));
896 		ASSERT(boff == db->db_offset);
897 		lr->lr_blkoff = off - boff;
898 		error = dmu_sync(zio, db, &lr->lr_blkptr,
899 		    lr->lr_common.lrc_txg, zfs_get_done, zgd);
900 		ASSERT((error && error != EINPROGRESS) ||
901 		    lr->lr_length <= zp->z_blksz);
902 		if (error == 0)
903 			zil_add_block(zfsvfs->z_log, &lr->lr_blkptr);
904 		/*
905 		 * If we get EINPROGRESS, then we need to wait for a
906 		 * write IO initiated by dmu_sync() to complete before
907 		 * we can release this dbuf.  We will finish everything
908 		 * up in the zfs_get_done() callback.
909 		 */
910 		if (error == EINPROGRESS)
911 			return (0);
912 		dmu_buf_rele(db, zgd);
913 		kmem_free(zgd, sizeof (zgd_t));
914 	}
915 out:
916 	zfs_range_unlock(rl);
917 	/*
918 	 * Release the vnode asynchronously as we currently have the
919 	 * txg stopped from syncing.
920 	 */
921 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
922 	return (error);
923 }
924 
925 /*ARGSUSED*/
926 static int
927 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
928     caller_context_t *ct)
929 {
930 	znode_t *zp = VTOZ(vp);
931 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
932 	int error;
933 
934 	ZFS_ENTER(zfsvfs);
935 	ZFS_VERIFY_ZP(zp);
936 
937 	if (flag & V_ACE_MASK)
938 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
939 	else
940 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
941 
942 	ZFS_EXIT(zfsvfs);
943 	return (error);
944 }
945 
946 /*
947  * Lookup an entry in a directory, or an extended attribute directory.
948  * If it exists, return a held vnode reference for it.
949  *
950  *	IN:	dvp	- vnode of directory to search.
951  *		nm	- name of entry to lookup.
952  *		pnp	- full pathname to lookup [UNUSED].
953  *		flags	- LOOKUP_XATTR set if looking for an attribute.
954  *		rdir	- root directory vnode [UNUSED].
955  *		cr	- credentials of caller.
956  *		ct	- caller context
957  *		direntflags - directory lookup flags
958  *		realpnp - returned pathname.
959  *
960  *	OUT:	vpp	- vnode of located entry, NULL if not found.
961  *
962  *	RETURN:	0 if success
963  *		error code if failure
964  *
965  * Timestamps:
966  *	NA
967  */
968 /* ARGSUSED */
969 static int
970 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
971     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
972     int *direntflags, pathname_t *realpnp)
973 {
974 	znode_t *zdp = VTOZ(dvp);
975 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
976 	int	error;
977 
978 	ZFS_ENTER(zfsvfs);
979 	ZFS_VERIFY_ZP(zdp);
980 
981 	*vpp = NULL;
982 
983 	if (flags & LOOKUP_XATTR) {
984 		/*
985 		 * If the xattr property is off, refuse the lookup request.
986 		 */
987 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
988 			ZFS_EXIT(zfsvfs);
989 			return (EINVAL);
990 		}
991 
992 		/*
993 		 * We don't allow recursive attributes..
994 		 * Maybe someday we will.
995 		 */
996 		if (zdp->z_phys->zp_flags & ZFS_XATTR) {
997 			ZFS_EXIT(zfsvfs);
998 			return (EINVAL);
999 		}
1000 
1001 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1002 			ZFS_EXIT(zfsvfs);
1003 			return (error);
1004 		}
1005 
1006 		/*
1007 		 * Do we have permission to get into attribute directory?
1008 		 */
1009 
1010 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1011 		    B_FALSE, cr)) {
1012 			VN_RELE(*vpp);
1013 			*vpp = NULL;
1014 		}
1015 
1016 		ZFS_EXIT(zfsvfs);
1017 		return (error);
1018 	}
1019 
1020 	if (dvp->v_type != VDIR) {
1021 		ZFS_EXIT(zfsvfs);
1022 		return (ENOTDIR);
1023 	}
1024 
1025 	/*
1026 	 * Check accessibility of directory.
1027 	 */
1028 
1029 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1030 		ZFS_EXIT(zfsvfs);
1031 		return (error);
1032 	}
1033 
1034 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1035 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1036 		ZFS_EXIT(zfsvfs);
1037 		return (EILSEQ);
1038 	}
1039 
1040 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1041 	if (error == 0) {
1042 		/*
1043 		 * Convert device special files
1044 		 */
1045 		if (IS_DEVVP(*vpp)) {
1046 			vnode_t	*svp;
1047 
1048 			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1049 			VN_RELE(*vpp);
1050 			if (svp == NULL)
1051 				error = ENOSYS;
1052 			else
1053 				*vpp = svp;
1054 		}
1055 	}
1056 
1057 	ZFS_EXIT(zfsvfs);
1058 	return (error);
1059 }
1060 
1061 /*
1062  * Attempt to create a new entry in a directory.  If the entry
1063  * already exists, truncate the file if permissible, else return
1064  * an error.  Return the vp of the created or trunc'd file.
1065  *
1066  *	IN:	dvp	- vnode of directory to put new file entry in.
1067  *		name	- name of new file entry.
1068  *		vap	- attributes of new file.
1069  *		excl	- flag indicating exclusive or non-exclusive mode.
1070  *		mode	- mode to open file with.
1071  *		cr	- credentials of caller.
1072  *		flag	- large file flag [UNUSED].
1073  *		ct	- caller context
1074  *		vsecp 	- ACL to be set
1075  *
1076  *	OUT:	vpp	- vnode of created or trunc'd entry.
1077  *
1078  *	RETURN:	0 if success
1079  *		error code if failure
1080  *
1081  * Timestamps:
1082  *	dvp - ctime|mtime updated if new entry created
1083  *	 vp - ctime|mtime always, atime if new
1084  */
1085 
1086 /* ARGSUSED */
1087 static int
1088 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1089     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1090     vsecattr_t *vsecp)
1091 {
1092 	znode_t		*zp, *dzp = VTOZ(dvp);
1093 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1094 	zilog_t		*zilog;
1095 	objset_t	*os;
1096 	zfs_dirlock_t	*dl;
1097 	dmu_tx_t	*tx;
1098 	int		error;
1099 	ksid_t		*ksid;
1100 	uid_t		uid;
1101 	gid_t		gid = crgetgid(cr);
1102 	zfs_acl_ids_t	acl_ids;
1103 	boolean_t	fuid_dirtied;
1104 
1105 	/*
1106 	 * If we have an ephemeral id, ACL, or XVATTR then
1107 	 * make sure file system is at proper version
1108 	 */
1109 
1110 	ksid = crgetsid(cr, KSID_OWNER);
1111 	if (ksid)
1112 		uid = ksid_getid(ksid);
1113 	else
1114 		uid = crgetuid(cr);
1115 
1116 	if (zfsvfs->z_use_fuids == B_FALSE &&
1117 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1118 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1119 		return (EINVAL);
1120 
1121 	ZFS_ENTER(zfsvfs);
1122 	ZFS_VERIFY_ZP(dzp);
1123 	os = zfsvfs->z_os;
1124 	zilog = zfsvfs->z_log;
1125 
1126 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1127 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1128 		ZFS_EXIT(zfsvfs);
1129 		return (EILSEQ);
1130 	}
1131 
1132 	if (vap->va_mask & AT_XVATTR) {
1133 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1134 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1135 			ZFS_EXIT(zfsvfs);
1136 			return (error);
1137 		}
1138 	}
1139 top:
1140 	*vpp = NULL;
1141 
1142 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1143 		vap->va_mode &= ~VSVTX;
1144 
1145 	if (*name == '\0') {
1146 		/*
1147 		 * Null component name refers to the directory itself.
1148 		 */
1149 		VN_HOLD(dvp);
1150 		zp = dzp;
1151 		dl = NULL;
1152 		error = 0;
1153 	} else {
1154 		/* possible VN_HOLD(zp) */
1155 		int zflg = 0;
1156 
1157 		if (flag & FIGNORECASE)
1158 			zflg |= ZCILOOK;
1159 
1160 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1161 		    NULL, NULL);
1162 		if (error) {
1163 			if (strcmp(name, "..") == 0)
1164 				error = EISDIR;
1165 			ZFS_EXIT(zfsvfs);
1166 			return (error);
1167 		}
1168 	}
1169 	if (zp == NULL) {
1170 		uint64_t txtype;
1171 
1172 		/*
1173 		 * Create a new file object and update the directory
1174 		 * to reference it.
1175 		 */
1176 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1177 			goto out;
1178 		}
1179 
1180 		/*
1181 		 * We only support the creation of regular files in
1182 		 * extended attribute directories.
1183 		 */
1184 		if ((dzp->z_phys->zp_flags & ZFS_XATTR) &&
1185 		    (vap->va_type != VREG)) {
1186 			error = EINVAL;
1187 			goto out;
1188 		}
1189 
1190 		if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp,
1191 		    &acl_ids)) != 0)
1192 			goto out;
1193 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1194 			error = EDQUOT;
1195 			goto out;
1196 		}
1197 
1198 		tx = dmu_tx_create(os);
1199 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1200 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1201 		if (fuid_dirtied)
1202 			zfs_fuid_txhold(zfsvfs, tx);
1203 		dmu_tx_hold_bonus(tx, dzp->z_id);
1204 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1205 		if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1206 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1207 			    0, SPA_MAXBLOCKSIZE);
1208 		}
1209 		error = dmu_tx_assign(tx, TXG_NOWAIT);
1210 		if (error) {
1211 			zfs_acl_ids_free(&acl_ids);
1212 			zfs_dirent_unlock(dl);
1213 			if (error == ERESTART) {
1214 				dmu_tx_wait(tx);
1215 				dmu_tx_abort(tx);
1216 				goto top;
1217 			}
1218 			dmu_tx_abort(tx);
1219 			ZFS_EXIT(zfsvfs);
1220 			return (error);
1221 		}
1222 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids);
1223 
1224 		if (fuid_dirtied)
1225 			zfs_fuid_sync(zfsvfs, tx);
1226 
1227 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1228 
1229 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1230 		if (flag & FIGNORECASE)
1231 			txtype |= TX_CI;
1232 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1233 		    vsecp, acl_ids.z_fuidp, vap);
1234 		zfs_acl_ids_free(&acl_ids);
1235 		dmu_tx_commit(tx);
1236 	} else {
1237 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1238 
1239 		/*
1240 		 * A directory entry already exists for this name.
1241 		 */
1242 		/*
1243 		 * Can't truncate an existing file if in exclusive mode.
1244 		 */
1245 		if (excl == EXCL) {
1246 			error = EEXIST;
1247 			goto out;
1248 		}
1249 		/*
1250 		 * Can't open a directory for writing.
1251 		 */
1252 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1253 			error = EISDIR;
1254 			goto out;
1255 		}
1256 		/*
1257 		 * Verify requested access to file.
1258 		 */
1259 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1260 			goto out;
1261 		}
1262 
1263 		mutex_enter(&dzp->z_lock);
1264 		dzp->z_seq++;
1265 		mutex_exit(&dzp->z_lock);
1266 
1267 		/*
1268 		 * Truncate regular files if requested.
1269 		 */
1270 		if ((ZTOV(zp)->v_type == VREG) &&
1271 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1272 			/* we can't hold any locks when calling zfs_freesp() */
1273 			zfs_dirent_unlock(dl);
1274 			dl = NULL;
1275 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1276 			if (error == 0) {
1277 				vnevent_create(ZTOV(zp), ct);
1278 			}
1279 		}
1280 	}
1281 out:
1282 
1283 	if (dl)
1284 		zfs_dirent_unlock(dl);
1285 
1286 	if (error) {
1287 		if (zp)
1288 			VN_RELE(ZTOV(zp));
1289 	} else {
1290 		*vpp = ZTOV(zp);
1291 		/*
1292 		 * If vnode is for a device return a specfs vnode instead.
1293 		 */
1294 		if (IS_DEVVP(*vpp)) {
1295 			struct vnode *svp;
1296 
1297 			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1298 			VN_RELE(*vpp);
1299 			if (svp == NULL) {
1300 				error = ENOSYS;
1301 			}
1302 			*vpp = svp;
1303 		}
1304 	}
1305 
1306 	ZFS_EXIT(zfsvfs);
1307 	return (error);
1308 }
1309 
1310 /*
1311  * Remove an entry from a directory.
1312  *
1313  *	IN:	dvp	- vnode of directory to remove entry from.
1314  *		name	- name of entry to remove.
1315  *		cr	- credentials of caller.
1316  *		ct	- caller context
1317  *		flags	- case flags
1318  *
1319  *	RETURN:	0 if success
1320  *		error code if failure
1321  *
1322  * Timestamps:
1323  *	dvp - ctime|mtime
1324  *	 vp - ctime (if nlink > 0)
1325  */
1326 /*ARGSUSED*/
1327 static int
1328 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1329     int flags)
1330 {
1331 	znode_t		*zp, *dzp = VTOZ(dvp);
1332 	znode_t		*xzp = NULL;
1333 	vnode_t		*vp;
1334 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1335 	zilog_t		*zilog;
1336 	uint64_t	acl_obj, xattr_obj;
1337 	zfs_dirlock_t	*dl;
1338 	dmu_tx_t	*tx;
1339 	boolean_t	may_delete_now, delete_now = FALSE;
1340 	boolean_t	unlinked, toobig = FALSE;
1341 	uint64_t	txtype;
1342 	pathname_t	*realnmp = NULL;
1343 	pathname_t	realnm;
1344 	int		error;
1345 	int		zflg = ZEXISTS;
1346 
1347 	ZFS_ENTER(zfsvfs);
1348 	ZFS_VERIFY_ZP(dzp);
1349 	zilog = zfsvfs->z_log;
1350 
1351 	if (flags & FIGNORECASE) {
1352 		zflg |= ZCILOOK;
1353 		pn_alloc(&realnm);
1354 		realnmp = &realnm;
1355 	}
1356 
1357 top:
1358 	/*
1359 	 * Attempt to lock directory; fail if entry doesn't exist.
1360 	 */
1361 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1362 	    NULL, realnmp)) {
1363 		if (realnmp)
1364 			pn_free(realnmp);
1365 		ZFS_EXIT(zfsvfs);
1366 		return (error);
1367 	}
1368 
1369 	vp = ZTOV(zp);
1370 
1371 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1372 		goto out;
1373 	}
1374 
1375 	/*
1376 	 * Need to use rmdir for removing directories.
1377 	 */
1378 	if (vp->v_type == VDIR) {
1379 		error = EPERM;
1380 		goto out;
1381 	}
1382 
1383 	vnevent_remove(vp, dvp, name, ct);
1384 
1385 	if (realnmp)
1386 		dnlc_remove(dvp, realnmp->pn_buf);
1387 	else
1388 		dnlc_remove(dvp, name);
1389 
1390 	mutex_enter(&vp->v_lock);
1391 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1392 	mutex_exit(&vp->v_lock);
1393 
1394 	/*
1395 	 * We may delete the znode now, or we may put it in the unlinked set;
1396 	 * it depends on whether we're the last link, and on whether there are
1397 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1398 	 * allow for either case.
1399 	 */
1400 	tx = dmu_tx_create(zfsvfs->z_os);
1401 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1402 	dmu_tx_hold_bonus(tx, zp->z_id);
1403 	if (may_delete_now) {
1404 		toobig =
1405 		    zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1406 		/* if the file is too big, only hold_free a token amount */
1407 		dmu_tx_hold_free(tx, zp->z_id, 0,
1408 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1409 	}
1410 
1411 	/* are there any extended attributes? */
1412 	if ((xattr_obj = zp->z_phys->zp_xattr) != 0) {
1413 		/* XXX - do we need this if we are deleting? */
1414 		dmu_tx_hold_bonus(tx, xattr_obj);
1415 	}
1416 
1417 	/* are there any additional acls */
1418 	if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 &&
1419 	    may_delete_now)
1420 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1421 
1422 	/* charge as an update -- would be nice not to charge at all */
1423 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1424 
1425 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1426 	if (error) {
1427 		zfs_dirent_unlock(dl);
1428 		VN_RELE(vp);
1429 		if (error == ERESTART) {
1430 			dmu_tx_wait(tx);
1431 			dmu_tx_abort(tx);
1432 			goto top;
1433 		}
1434 		if (realnmp)
1435 			pn_free(realnmp);
1436 		dmu_tx_abort(tx);
1437 		ZFS_EXIT(zfsvfs);
1438 		return (error);
1439 	}
1440 
1441 	/*
1442 	 * Remove the directory entry.
1443 	 */
1444 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1445 
1446 	if (error) {
1447 		dmu_tx_commit(tx);
1448 		goto out;
1449 	}
1450 
1451 	if (unlinked) {
1452 		mutex_enter(&vp->v_lock);
1453 		delete_now = may_delete_now && !toobig &&
1454 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1455 		    zp->z_phys->zp_xattr == xattr_obj &&
1456 		    zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj;
1457 		mutex_exit(&vp->v_lock);
1458 	}
1459 
1460 	if (delete_now) {
1461 		if (zp->z_phys->zp_xattr) {
1462 			error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp);
1463 			ASSERT3U(error, ==, 0);
1464 			ASSERT3U(xzp->z_phys->zp_links, ==, 2);
1465 			dmu_buf_will_dirty(xzp->z_dbuf, tx);
1466 			mutex_enter(&xzp->z_lock);
1467 			xzp->z_unlinked = 1;
1468 			xzp->z_phys->zp_links = 0;
1469 			mutex_exit(&xzp->z_lock);
1470 			zfs_unlinked_add(xzp, tx);
1471 			zp->z_phys->zp_xattr = 0; /* probably unnecessary */
1472 		}
1473 		mutex_enter(&zp->z_lock);
1474 		mutex_enter(&vp->v_lock);
1475 		vp->v_count--;
1476 		ASSERT3U(vp->v_count, ==, 0);
1477 		mutex_exit(&vp->v_lock);
1478 		mutex_exit(&zp->z_lock);
1479 		zfs_znode_delete(zp, tx);
1480 	} else if (unlinked) {
1481 		zfs_unlinked_add(zp, tx);
1482 	}
1483 
1484 	txtype = TX_REMOVE;
1485 	if (flags & FIGNORECASE)
1486 		txtype |= TX_CI;
1487 	zfs_log_remove(zilog, tx, txtype, dzp, name);
1488 
1489 	dmu_tx_commit(tx);
1490 out:
1491 	if (realnmp)
1492 		pn_free(realnmp);
1493 
1494 	zfs_dirent_unlock(dl);
1495 
1496 	if (!delete_now) {
1497 		VN_RELE(vp);
1498 	} else if (xzp) {
1499 		/* this rele is delayed to prevent nesting transactions */
1500 		VN_RELE(ZTOV(xzp));
1501 	}
1502 
1503 	ZFS_EXIT(zfsvfs);
1504 	return (error);
1505 }
1506 
1507 /*
1508  * Create a new directory and insert it into dvp using the name
1509  * provided.  Return a pointer to the inserted directory.
1510  *
1511  *	IN:	dvp	- vnode of directory to add subdir to.
1512  *		dirname	- name of new directory.
1513  *		vap	- attributes of new directory.
1514  *		cr	- credentials of caller.
1515  *		ct	- caller context
1516  *		vsecp	- ACL to be set
1517  *
1518  *	OUT:	vpp	- vnode of created directory.
1519  *
1520  *	RETURN:	0 if success
1521  *		error code if failure
1522  *
1523  * Timestamps:
1524  *	dvp - ctime|mtime updated
1525  *	 vp - ctime|mtime|atime updated
1526  */
1527 /*ARGSUSED*/
1528 static int
1529 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1530     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1531 {
1532 	znode_t		*zp, *dzp = VTOZ(dvp);
1533 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1534 	zilog_t		*zilog;
1535 	zfs_dirlock_t	*dl;
1536 	uint64_t	txtype;
1537 	dmu_tx_t	*tx;
1538 	int		error;
1539 	int		zf = ZNEW;
1540 	ksid_t		*ksid;
1541 	uid_t		uid;
1542 	gid_t		gid = crgetgid(cr);
1543 	zfs_acl_ids_t	acl_ids;
1544 	boolean_t	fuid_dirtied;
1545 
1546 	ASSERT(vap->va_type == VDIR);
1547 
1548 	/*
1549 	 * If we have an ephemeral id, ACL, or XVATTR then
1550 	 * make sure file system is at proper version
1551 	 */
1552 
1553 	ksid = crgetsid(cr, KSID_OWNER);
1554 	if (ksid)
1555 		uid = ksid_getid(ksid);
1556 	else
1557 		uid = crgetuid(cr);
1558 	if (zfsvfs->z_use_fuids == B_FALSE &&
1559 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1560 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1561 		return (EINVAL);
1562 
1563 	ZFS_ENTER(zfsvfs);
1564 	ZFS_VERIFY_ZP(dzp);
1565 	zilog = zfsvfs->z_log;
1566 
1567 	if (dzp->z_phys->zp_flags & ZFS_XATTR) {
1568 		ZFS_EXIT(zfsvfs);
1569 		return (EINVAL);
1570 	}
1571 
1572 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1573 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1574 		ZFS_EXIT(zfsvfs);
1575 		return (EILSEQ);
1576 	}
1577 	if (flags & FIGNORECASE)
1578 		zf |= ZCILOOK;
1579 
1580 	if (vap->va_mask & AT_XVATTR)
1581 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1582 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1583 			ZFS_EXIT(zfsvfs);
1584 			return (error);
1585 		}
1586 
1587 	/*
1588 	 * First make sure the new directory doesn't exist.
1589 	 */
1590 top:
1591 	*vpp = NULL;
1592 
1593 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1594 	    NULL, NULL)) {
1595 		ZFS_EXIT(zfsvfs);
1596 		return (error);
1597 	}
1598 
1599 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1600 		zfs_dirent_unlock(dl);
1601 		ZFS_EXIT(zfsvfs);
1602 		return (error);
1603 	}
1604 
1605 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp,
1606 	    &acl_ids)) != 0) {
1607 		zfs_dirent_unlock(dl);
1608 		ZFS_EXIT(zfsvfs);
1609 		return (error);
1610 	}
1611 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1612 		zfs_dirent_unlock(dl);
1613 		ZFS_EXIT(zfsvfs);
1614 		return (EDQUOT);
1615 	}
1616 
1617 	/*
1618 	 * Add a new entry to the directory.
1619 	 */
1620 	tx = dmu_tx_create(zfsvfs->z_os);
1621 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1622 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1623 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1624 	if (fuid_dirtied)
1625 		zfs_fuid_txhold(zfsvfs, tx);
1626 	if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE)
1627 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1628 		    0, SPA_MAXBLOCKSIZE);
1629 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1630 	if (error) {
1631 		zfs_acl_ids_free(&acl_ids);
1632 		zfs_dirent_unlock(dl);
1633 		if (error == ERESTART) {
1634 			dmu_tx_wait(tx);
1635 			dmu_tx_abort(tx);
1636 			goto top;
1637 		}
1638 		dmu_tx_abort(tx);
1639 		ZFS_EXIT(zfsvfs);
1640 		return (error);
1641 	}
1642 
1643 	/*
1644 	 * Create new node.
1645 	 */
1646 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids);
1647 
1648 	if (fuid_dirtied)
1649 		zfs_fuid_sync(zfsvfs, tx);
1650 	/*
1651 	 * Now put new name in parent dir.
1652 	 */
1653 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1654 
1655 	*vpp = ZTOV(zp);
1656 
1657 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1658 	if (flags & FIGNORECASE)
1659 		txtype |= TX_CI;
1660 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1661 	    acl_ids.z_fuidp, vap);
1662 
1663 	zfs_acl_ids_free(&acl_ids);
1664 	dmu_tx_commit(tx);
1665 
1666 	zfs_dirent_unlock(dl);
1667 
1668 	ZFS_EXIT(zfsvfs);
1669 	return (0);
1670 }
1671 
1672 /*
1673  * Remove a directory subdir entry.  If the current working
1674  * directory is the same as the subdir to be removed, the
1675  * remove will fail.
1676  *
1677  *	IN:	dvp	- vnode of directory to remove from.
1678  *		name	- name of directory to be removed.
1679  *		cwd	- vnode of current working directory.
1680  *		cr	- credentials of caller.
1681  *		ct	- caller context
1682  *		flags	- case flags
1683  *
1684  *	RETURN:	0 if success
1685  *		error code if failure
1686  *
1687  * Timestamps:
1688  *	dvp - ctime|mtime updated
1689  */
1690 /*ARGSUSED*/
1691 static int
1692 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1693     caller_context_t *ct, int flags)
1694 {
1695 	znode_t		*dzp = VTOZ(dvp);
1696 	znode_t		*zp;
1697 	vnode_t		*vp;
1698 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1699 	zilog_t		*zilog;
1700 	zfs_dirlock_t	*dl;
1701 	dmu_tx_t	*tx;
1702 	int		error;
1703 	int		zflg = ZEXISTS;
1704 
1705 	ZFS_ENTER(zfsvfs);
1706 	ZFS_VERIFY_ZP(dzp);
1707 	zilog = zfsvfs->z_log;
1708 
1709 	if (flags & FIGNORECASE)
1710 		zflg |= ZCILOOK;
1711 top:
1712 	zp = NULL;
1713 
1714 	/*
1715 	 * Attempt to lock directory; fail if entry doesn't exist.
1716 	 */
1717 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1718 	    NULL, NULL)) {
1719 		ZFS_EXIT(zfsvfs);
1720 		return (error);
1721 	}
1722 
1723 	vp = ZTOV(zp);
1724 
1725 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1726 		goto out;
1727 	}
1728 
1729 	if (vp->v_type != VDIR) {
1730 		error = ENOTDIR;
1731 		goto out;
1732 	}
1733 
1734 	if (vp == cwd) {
1735 		error = EINVAL;
1736 		goto out;
1737 	}
1738 
1739 	vnevent_rmdir(vp, dvp, name, ct);
1740 
1741 	/*
1742 	 * Grab a lock on the directory to make sure that noone is
1743 	 * trying to add (or lookup) entries while we are removing it.
1744 	 */
1745 	rw_enter(&zp->z_name_lock, RW_WRITER);
1746 
1747 	/*
1748 	 * Grab a lock on the parent pointer to make sure we play well
1749 	 * with the treewalk and directory rename code.
1750 	 */
1751 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1752 
1753 	tx = dmu_tx_create(zfsvfs->z_os);
1754 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1755 	dmu_tx_hold_bonus(tx, zp->z_id);
1756 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1757 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1758 	if (error) {
1759 		rw_exit(&zp->z_parent_lock);
1760 		rw_exit(&zp->z_name_lock);
1761 		zfs_dirent_unlock(dl);
1762 		VN_RELE(vp);
1763 		if (error == ERESTART) {
1764 			dmu_tx_wait(tx);
1765 			dmu_tx_abort(tx);
1766 			goto top;
1767 		}
1768 		dmu_tx_abort(tx);
1769 		ZFS_EXIT(zfsvfs);
1770 		return (error);
1771 	}
1772 
1773 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1774 
1775 	if (error == 0) {
1776 		uint64_t txtype = TX_RMDIR;
1777 		if (flags & FIGNORECASE)
1778 			txtype |= TX_CI;
1779 		zfs_log_remove(zilog, tx, txtype, dzp, name);
1780 	}
1781 
1782 	dmu_tx_commit(tx);
1783 
1784 	rw_exit(&zp->z_parent_lock);
1785 	rw_exit(&zp->z_name_lock);
1786 out:
1787 	zfs_dirent_unlock(dl);
1788 
1789 	VN_RELE(vp);
1790 
1791 	ZFS_EXIT(zfsvfs);
1792 	return (error);
1793 }
1794 
1795 /*
1796  * Read as many directory entries as will fit into the provided
1797  * buffer from the given directory cursor position (specified in
1798  * the uio structure.
1799  *
1800  *	IN:	vp	- vnode of directory to read.
1801  *		uio	- structure supplying read location, range info,
1802  *			  and return buffer.
1803  *		cr	- credentials of caller.
1804  *		ct	- caller context
1805  *		flags	- case flags
1806  *
1807  *	OUT:	uio	- updated offset and range, buffer filled.
1808  *		eofp	- set to true if end-of-file detected.
1809  *
1810  *	RETURN:	0 if success
1811  *		error code if failure
1812  *
1813  * Timestamps:
1814  *	vp - atime updated
1815  *
1816  * Note that the low 4 bits of the cookie returned by zap is always zero.
1817  * This allows us to use the low range for "special" directory entries:
1818  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1819  * we use the offset 2 for the '.zfs' directory.
1820  */
1821 /* ARGSUSED */
1822 static int
1823 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
1824     caller_context_t *ct, int flags)
1825 {
1826 	znode_t		*zp = VTOZ(vp);
1827 	iovec_t		*iovp;
1828 	edirent_t	*eodp;
1829 	dirent64_t	*odp;
1830 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
1831 	objset_t	*os;
1832 	caddr_t		outbuf;
1833 	size_t		bufsize;
1834 	zap_cursor_t	zc;
1835 	zap_attribute_t	zap;
1836 	uint_t		bytes_wanted;
1837 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1838 	int		local_eof;
1839 	int		outcount;
1840 	int		error;
1841 	uint8_t		prefetch;
1842 	boolean_t	check_sysattrs;
1843 
1844 	ZFS_ENTER(zfsvfs);
1845 	ZFS_VERIFY_ZP(zp);
1846 
1847 	/*
1848 	 * If we are not given an eof variable,
1849 	 * use a local one.
1850 	 */
1851 	if (eofp == NULL)
1852 		eofp = &local_eof;
1853 
1854 	/*
1855 	 * Check for valid iov_len.
1856 	 */
1857 	if (uio->uio_iov->iov_len <= 0) {
1858 		ZFS_EXIT(zfsvfs);
1859 		return (EINVAL);
1860 	}
1861 
1862 	/*
1863 	 * Quit if directory has been removed (posix)
1864 	 */
1865 	if ((*eofp = zp->z_unlinked) != 0) {
1866 		ZFS_EXIT(zfsvfs);
1867 		return (0);
1868 	}
1869 
1870 	error = 0;
1871 	os = zfsvfs->z_os;
1872 	offset = uio->uio_loffset;
1873 	prefetch = zp->z_zn_prefetch;
1874 
1875 	/*
1876 	 * Initialize the iterator cursor.
1877 	 */
1878 	if (offset <= 3) {
1879 		/*
1880 		 * Start iteration from the beginning of the directory.
1881 		 */
1882 		zap_cursor_init(&zc, os, zp->z_id);
1883 	} else {
1884 		/*
1885 		 * The offset is a serialized cursor.
1886 		 */
1887 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1888 	}
1889 
1890 	/*
1891 	 * Get space to change directory entries into fs independent format.
1892 	 */
1893 	iovp = uio->uio_iov;
1894 	bytes_wanted = iovp->iov_len;
1895 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
1896 		bufsize = bytes_wanted;
1897 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
1898 		odp = (struct dirent64 *)outbuf;
1899 	} else {
1900 		bufsize = bytes_wanted;
1901 		odp = (struct dirent64 *)iovp->iov_base;
1902 	}
1903 	eodp = (struct edirent *)odp;
1904 
1905 	/*
1906 	 * If this VFS supports the system attribute view interface; and
1907 	 * we're looking at an extended attribute directory; and we care
1908 	 * about normalization conflicts on this vfs; then we must check
1909 	 * for normalization conflicts with the sysattr name space.
1910 	 */
1911 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
1912 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
1913 	    (flags & V_RDDIR_ENTFLAGS);
1914 
1915 	/*
1916 	 * Transform to file-system independent format
1917 	 */
1918 	outcount = 0;
1919 	while (outcount < bytes_wanted) {
1920 		ino64_t objnum;
1921 		ushort_t reclen;
1922 		off64_t *next;
1923 
1924 		/*
1925 		 * Special case `.', `..', and `.zfs'.
1926 		 */
1927 		if (offset == 0) {
1928 			(void) strcpy(zap.za_name, ".");
1929 			zap.za_normalization_conflict = 0;
1930 			objnum = zp->z_id;
1931 		} else if (offset == 1) {
1932 			(void) strcpy(zap.za_name, "..");
1933 			zap.za_normalization_conflict = 0;
1934 			objnum = zp->z_phys->zp_parent;
1935 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1936 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1937 			zap.za_normalization_conflict = 0;
1938 			objnum = ZFSCTL_INO_ROOT;
1939 		} else {
1940 			/*
1941 			 * Grab next entry.
1942 			 */
1943 			if (error = zap_cursor_retrieve(&zc, &zap)) {
1944 				if ((*eofp = (error == ENOENT)) != 0)
1945 					break;
1946 				else
1947 					goto update;
1948 			}
1949 
1950 			if (zap.za_integer_length != 8 ||
1951 			    zap.za_num_integers != 1) {
1952 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1953 				    "entry, obj = %lld, offset = %lld\n",
1954 				    (u_longlong_t)zp->z_id,
1955 				    (u_longlong_t)offset);
1956 				error = ENXIO;
1957 				goto update;
1958 			}
1959 
1960 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
1961 			/*
1962 			 * MacOS X can extract the object type here such as:
1963 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1964 			 */
1965 
1966 			if (check_sysattrs && !zap.za_normalization_conflict) {
1967 				zap.za_normalization_conflict =
1968 				    xattr_sysattr_casechk(zap.za_name);
1969 			}
1970 		}
1971 
1972 		if (flags & V_RDDIR_ENTFLAGS)
1973 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
1974 		else
1975 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
1976 
1977 		/*
1978 		 * Will this entry fit in the buffer?
1979 		 */
1980 		if (outcount + reclen > bufsize) {
1981 			/*
1982 			 * Did we manage to fit anything in the buffer?
1983 			 */
1984 			if (!outcount) {
1985 				error = EINVAL;
1986 				goto update;
1987 			}
1988 			break;
1989 		}
1990 		if (flags & V_RDDIR_ENTFLAGS) {
1991 			/*
1992 			 * Add extended flag entry:
1993 			 */
1994 			eodp->ed_ino = objnum;
1995 			eodp->ed_reclen = reclen;
1996 			/* NOTE: ed_off is the offset for the *next* entry */
1997 			next = &(eodp->ed_off);
1998 			eodp->ed_eflags = zap.za_normalization_conflict ?
1999 			    ED_CASE_CONFLICT : 0;
2000 			(void) strncpy(eodp->ed_name, zap.za_name,
2001 			    EDIRENT_NAMELEN(reclen));
2002 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2003 		} else {
2004 			/*
2005 			 * Add normal entry:
2006 			 */
2007 			odp->d_ino = objnum;
2008 			odp->d_reclen = reclen;
2009 			/* NOTE: d_off is the offset for the *next* entry */
2010 			next = &(odp->d_off);
2011 			(void) strncpy(odp->d_name, zap.za_name,
2012 			    DIRENT64_NAMELEN(reclen));
2013 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2014 		}
2015 		outcount += reclen;
2016 
2017 		ASSERT(outcount <= bufsize);
2018 
2019 		/* Prefetch znode */
2020 		if (prefetch)
2021 			dmu_prefetch(os, objnum, 0, 0);
2022 
2023 		/*
2024 		 * Move to the next entry, fill in the previous offset.
2025 		 */
2026 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2027 			zap_cursor_advance(&zc);
2028 			offset = zap_cursor_serialize(&zc);
2029 		} else {
2030 			offset += 1;
2031 		}
2032 		*next = offset;
2033 	}
2034 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2035 
2036 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2037 		iovp->iov_base += outcount;
2038 		iovp->iov_len -= outcount;
2039 		uio->uio_resid -= outcount;
2040 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2041 		/*
2042 		 * Reset the pointer.
2043 		 */
2044 		offset = uio->uio_loffset;
2045 	}
2046 
2047 update:
2048 	zap_cursor_fini(&zc);
2049 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2050 		kmem_free(outbuf, bufsize);
2051 
2052 	if (error == ENOENT)
2053 		error = 0;
2054 
2055 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2056 
2057 	uio->uio_loffset = offset;
2058 	ZFS_EXIT(zfsvfs);
2059 	return (error);
2060 }
2061 
2062 ulong_t zfs_fsync_sync_cnt = 4;
2063 
2064 static int
2065 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2066 {
2067 	znode_t	*zp = VTOZ(vp);
2068 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2069 
2070 	/*
2071 	 * Regardless of whether this is required for standards conformance,
2072 	 * this is the logical behavior when fsync() is called on a file with
2073 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2074 	 * going to be pushed out as part of the zil_commit().
2075 	 */
2076 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2077 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2078 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2079 
2080 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2081 
2082 	ZFS_ENTER(zfsvfs);
2083 	ZFS_VERIFY_ZP(zp);
2084 	zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
2085 	ZFS_EXIT(zfsvfs);
2086 	return (0);
2087 }
2088 
2089 
2090 /*
2091  * Get the requested file attributes and place them in the provided
2092  * vattr structure.
2093  *
2094  *	IN:	vp	- vnode of file.
2095  *		vap	- va_mask identifies requested attributes.
2096  *			  If AT_XVATTR set, then optional attrs are requested
2097  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2098  *		cr	- credentials of caller.
2099  *		ct	- caller context
2100  *
2101  *	OUT:	vap	- attribute values.
2102  *
2103  *	RETURN:	0 (always succeeds)
2104  */
2105 /* ARGSUSED */
2106 static int
2107 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2108     caller_context_t *ct)
2109 {
2110 	znode_t *zp = VTOZ(vp);
2111 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2112 	znode_phys_t *pzp;
2113 	int	error = 0;
2114 	uint64_t links;
2115 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2116 	xoptattr_t *xoap = NULL;
2117 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2118 
2119 	ZFS_ENTER(zfsvfs);
2120 	ZFS_VERIFY_ZP(zp);
2121 	pzp = zp->z_phys;
2122 
2123 	mutex_enter(&zp->z_lock);
2124 
2125 	/*
2126 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2127 	 * Also, if we are the owner don't bother, since owner should
2128 	 * always be allowed to read basic attributes of file.
2129 	 */
2130 	if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) &&
2131 	    (pzp->zp_uid != crgetuid(cr))) {
2132 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2133 		    skipaclchk, cr)) {
2134 			mutex_exit(&zp->z_lock);
2135 			ZFS_EXIT(zfsvfs);
2136 			return (error);
2137 		}
2138 	}
2139 
2140 	/*
2141 	 * Return all attributes.  It's cheaper to provide the answer
2142 	 * than to determine whether we were asked the question.
2143 	 */
2144 
2145 	vap->va_type = vp->v_type;
2146 	vap->va_mode = pzp->zp_mode & MODEMASK;
2147 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2148 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2149 	vap->va_nodeid = zp->z_id;
2150 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2151 		links = pzp->zp_links + 1;
2152 	else
2153 		links = pzp->zp_links;
2154 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2155 	vap->va_size = pzp->zp_size;
2156 	vap->va_rdev = vp->v_rdev;
2157 	vap->va_seq = zp->z_seq;
2158 
2159 	/*
2160 	 * Add in any requested optional attributes and the create time.
2161 	 * Also set the corresponding bits in the returned attribute bitmap.
2162 	 */
2163 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2164 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2165 			xoap->xoa_archive =
2166 			    ((pzp->zp_flags & ZFS_ARCHIVE) != 0);
2167 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2168 		}
2169 
2170 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2171 			xoap->xoa_readonly =
2172 			    ((pzp->zp_flags & ZFS_READONLY) != 0);
2173 			XVA_SET_RTN(xvap, XAT_READONLY);
2174 		}
2175 
2176 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2177 			xoap->xoa_system =
2178 			    ((pzp->zp_flags & ZFS_SYSTEM) != 0);
2179 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2180 		}
2181 
2182 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2183 			xoap->xoa_hidden =
2184 			    ((pzp->zp_flags & ZFS_HIDDEN) != 0);
2185 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2186 		}
2187 
2188 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2189 			xoap->xoa_nounlink =
2190 			    ((pzp->zp_flags & ZFS_NOUNLINK) != 0);
2191 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2192 		}
2193 
2194 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2195 			xoap->xoa_immutable =
2196 			    ((pzp->zp_flags & ZFS_IMMUTABLE) != 0);
2197 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2198 		}
2199 
2200 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2201 			xoap->xoa_appendonly =
2202 			    ((pzp->zp_flags & ZFS_APPENDONLY) != 0);
2203 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2204 		}
2205 
2206 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2207 			xoap->xoa_nodump =
2208 			    ((pzp->zp_flags & ZFS_NODUMP) != 0);
2209 			XVA_SET_RTN(xvap, XAT_NODUMP);
2210 		}
2211 
2212 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2213 			xoap->xoa_opaque =
2214 			    ((pzp->zp_flags & ZFS_OPAQUE) != 0);
2215 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2216 		}
2217 
2218 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2219 			xoap->xoa_av_quarantined =
2220 			    ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0);
2221 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2222 		}
2223 
2224 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2225 			xoap->xoa_av_modified =
2226 			    ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0);
2227 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2228 		}
2229 
2230 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2231 		    vp->v_type == VREG &&
2232 		    (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) {
2233 			size_t len;
2234 			dmu_object_info_t doi;
2235 
2236 			/*
2237 			 * Only VREG files have anti-virus scanstamps, so we
2238 			 * won't conflict with symlinks in the bonus buffer.
2239 			 */
2240 			dmu_object_info_from_db(zp->z_dbuf, &doi);
2241 			len = sizeof (xoap->xoa_av_scanstamp) +
2242 			    sizeof (znode_phys_t);
2243 			if (len <= doi.doi_bonus_size) {
2244 				/*
2245 				 * pzp points to the start of the
2246 				 * znode_phys_t. pzp + 1 points to the
2247 				 * first byte after the znode_phys_t.
2248 				 */
2249 				(void) memcpy(xoap->xoa_av_scanstamp,
2250 				    pzp + 1,
2251 				    sizeof (xoap->xoa_av_scanstamp));
2252 				XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
2253 			}
2254 		}
2255 
2256 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2257 			ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime);
2258 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2259 		}
2260 	}
2261 
2262 	ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime);
2263 	ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime);
2264 	ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime);
2265 
2266 	mutex_exit(&zp->z_lock);
2267 
2268 	dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks);
2269 
2270 	if (zp->z_blksz == 0) {
2271 		/*
2272 		 * Block size hasn't been set; suggest maximal I/O transfers.
2273 		 */
2274 		vap->va_blksize = zfsvfs->z_max_blksz;
2275 	}
2276 
2277 	ZFS_EXIT(zfsvfs);
2278 	return (0);
2279 }
2280 
2281 /*
2282  * Set the file attributes to the values contained in the
2283  * vattr structure.
2284  *
2285  *	IN:	vp	- vnode of file to be modified.
2286  *		vap	- new attribute values.
2287  *			  If AT_XVATTR set, then optional attrs are being set
2288  *		flags	- ATTR_UTIME set if non-default time values provided.
2289  *			- ATTR_NOACLCHECK (CIFS context only).
2290  *		cr	- credentials of caller.
2291  *		ct	- caller context
2292  *
2293  *	RETURN:	0 if success
2294  *		error code if failure
2295  *
2296  * Timestamps:
2297  *	vp - ctime updated, mtime updated if size changed.
2298  */
2299 /* ARGSUSED */
2300 static int
2301 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2302 	caller_context_t *ct)
2303 {
2304 	znode_t		*zp = VTOZ(vp);
2305 	znode_phys_t	*pzp;
2306 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2307 	zilog_t		*zilog;
2308 	dmu_tx_t	*tx;
2309 	vattr_t		oldva;
2310 	xvattr_t	tmpxvattr;
2311 	uint_t		mask = vap->va_mask;
2312 	uint_t		saved_mask;
2313 	int		trim_mask = 0;
2314 	uint64_t	new_mode;
2315 	uint64_t	new_uid, new_gid;
2316 	znode_t		*attrzp;
2317 	int		need_policy = FALSE;
2318 	int		err;
2319 	zfs_fuid_info_t *fuidp = NULL;
2320 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2321 	xoptattr_t	*xoap;
2322 	zfs_acl_t	*aclp = NULL;
2323 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2324 	boolean_t fuid_dirtied = B_FALSE;
2325 
2326 	if (mask == 0)
2327 		return (0);
2328 
2329 	if (mask & AT_NOSET)
2330 		return (EINVAL);
2331 
2332 	ZFS_ENTER(zfsvfs);
2333 	ZFS_VERIFY_ZP(zp);
2334 
2335 	pzp = zp->z_phys;
2336 	zilog = zfsvfs->z_log;
2337 
2338 	/*
2339 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2340 	 * that file system is at proper version level
2341 	 */
2342 
2343 	if (zfsvfs->z_use_fuids == B_FALSE &&
2344 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2345 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2346 	    (mask & AT_XVATTR))) {
2347 		ZFS_EXIT(zfsvfs);
2348 		return (EINVAL);
2349 	}
2350 
2351 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2352 		ZFS_EXIT(zfsvfs);
2353 		return (EISDIR);
2354 	}
2355 
2356 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2357 		ZFS_EXIT(zfsvfs);
2358 		return (EINVAL);
2359 	}
2360 
2361 	/*
2362 	 * If this is an xvattr_t, then get a pointer to the structure of
2363 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2364 	 */
2365 	xoap = xva_getxoptattr(xvap);
2366 
2367 	xva_init(&tmpxvattr);
2368 
2369 	/*
2370 	 * Immutable files can only alter immutable bit and atime
2371 	 */
2372 	if ((pzp->zp_flags & ZFS_IMMUTABLE) &&
2373 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2374 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2375 		ZFS_EXIT(zfsvfs);
2376 		return (EPERM);
2377 	}
2378 
2379 	if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) {
2380 		ZFS_EXIT(zfsvfs);
2381 		return (EPERM);
2382 	}
2383 
2384 	/*
2385 	 * Verify timestamps doesn't overflow 32 bits.
2386 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2387 	 * handle times greater than 2039.  This check should be removed
2388 	 * once large timestamps are fully supported.
2389 	 */
2390 	if (mask & (AT_ATIME | AT_MTIME)) {
2391 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2392 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2393 			ZFS_EXIT(zfsvfs);
2394 			return (EOVERFLOW);
2395 		}
2396 	}
2397 
2398 top:
2399 	attrzp = NULL;
2400 
2401 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2402 		ZFS_EXIT(zfsvfs);
2403 		return (EROFS);
2404 	}
2405 
2406 	/*
2407 	 * First validate permissions
2408 	 */
2409 
2410 	if (mask & AT_SIZE) {
2411 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2412 		if (err) {
2413 			ZFS_EXIT(zfsvfs);
2414 			return (err);
2415 		}
2416 		/*
2417 		 * XXX - Note, we are not providing any open
2418 		 * mode flags here (like FNDELAY), so we may
2419 		 * block if there are locks present... this
2420 		 * should be addressed in openat().
2421 		 */
2422 		/* XXX - would it be OK to generate a log record here? */
2423 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2424 		if (err) {
2425 			ZFS_EXIT(zfsvfs);
2426 			return (err);
2427 		}
2428 	}
2429 
2430 	if (mask & (AT_ATIME|AT_MTIME) ||
2431 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2432 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2433 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2434 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2435 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM))))
2436 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2437 		    skipaclchk, cr);
2438 
2439 	if (mask & (AT_UID|AT_GID)) {
2440 		int	idmask = (mask & (AT_UID|AT_GID));
2441 		int	take_owner;
2442 		int	take_group;
2443 
2444 		/*
2445 		 * NOTE: even if a new mode is being set,
2446 		 * we may clear S_ISUID/S_ISGID bits.
2447 		 */
2448 
2449 		if (!(mask & AT_MODE))
2450 			vap->va_mode = pzp->zp_mode;
2451 
2452 		/*
2453 		 * Take ownership or chgrp to group we are a member of
2454 		 */
2455 
2456 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2457 		take_group = (mask & AT_GID) &&
2458 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2459 
2460 		/*
2461 		 * If both AT_UID and AT_GID are set then take_owner and
2462 		 * take_group must both be set in order to allow taking
2463 		 * ownership.
2464 		 *
2465 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2466 		 *
2467 		 */
2468 
2469 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2470 		    ((idmask == AT_UID) && take_owner) ||
2471 		    ((idmask == AT_GID) && take_group)) {
2472 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2473 			    skipaclchk, cr) == 0) {
2474 				/*
2475 				 * Remove setuid/setgid for non-privileged users
2476 				 */
2477 				secpolicy_setid_clear(vap, cr);
2478 				trim_mask = (mask & (AT_UID|AT_GID));
2479 			} else {
2480 				need_policy =  TRUE;
2481 			}
2482 		} else {
2483 			need_policy =  TRUE;
2484 		}
2485 	}
2486 
2487 	mutex_enter(&zp->z_lock);
2488 	oldva.va_mode = pzp->zp_mode;
2489 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2490 	if (mask & AT_XVATTR) {
2491 		/*
2492 		 * Update xvattr mask to include only those attributes
2493 		 * that are actually changing.
2494 		 *
2495 		 * the bits will be restored prior to actually setting
2496 		 * the attributes so the caller thinks they were set.
2497 		 */
2498 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2499 			if (xoap->xoa_appendonly !=
2500 			    ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) {
2501 				need_policy = TRUE;
2502 			} else {
2503 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2504 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2505 			}
2506 		}
2507 
2508 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2509 			if (xoap->xoa_nounlink !=
2510 			    ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) {
2511 				need_policy = TRUE;
2512 			} else {
2513 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2514 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2515 			}
2516 		}
2517 
2518 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2519 			if (xoap->xoa_immutable !=
2520 			    ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) {
2521 				need_policy = TRUE;
2522 			} else {
2523 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2524 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2525 			}
2526 		}
2527 
2528 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2529 			if (xoap->xoa_nodump !=
2530 			    ((pzp->zp_flags & ZFS_NODUMP) != 0)) {
2531 				need_policy = TRUE;
2532 			} else {
2533 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2534 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2535 			}
2536 		}
2537 
2538 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2539 			if (xoap->xoa_av_modified !=
2540 			    ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) {
2541 				need_policy = TRUE;
2542 			} else {
2543 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2544 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2545 			}
2546 		}
2547 
2548 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2549 			if ((vp->v_type != VREG &&
2550 			    xoap->xoa_av_quarantined) ||
2551 			    xoap->xoa_av_quarantined !=
2552 			    ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)) {
2553 				need_policy = TRUE;
2554 			} else {
2555 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2556 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2557 			}
2558 		}
2559 
2560 		if (need_policy == FALSE &&
2561 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2562 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2563 			need_policy = TRUE;
2564 		}
2565 	}
2566 
2567 	mutex_exit(&zp->z_lock);
2568 
2569 	if (mask & AT_MODE) {
2570 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2571 			err = secpolicy_setid_setsticky_clear(vp, vap,
2572 			    &oldva, cr);
2573 			if (err) {
2574 				ZFS_EXIT(zfsvfs);
2575 				return (err);
2576 			}
2577 			trim_mask |= AT_MODE;
2578 		} else {
2579 			need_policy = TRUE;
2580 		}
2581 	}
2582 
2583 	if (need_policy) {
2584 		/*
2585 		 * If trim_mask is set then take ownership
2586 		 * has been granted or write_acl is present and user
2587 		 * has the ability to modify mode.  In that case remove
2588 		 * UID|GID and or MODE from mask so that
2589 		 * secpolicy_vnode_setattr() doesn't revoke it.
2590 		 */
2591 
2592 		if (trim_mask) {
2593 			saved_mask = vap->va_mask;
2594 			vap->va_mask &= ~trim_mask;
2595 		}
2596 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2597 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2598 		if (err) {
2599 			ZFS_EXIT(zfsvfs);
2600 			return (err);
2601 		}
2602 
2603 		if (trim_mask)
2604 			vap->va_mask |= saved_mask;
2605 	}
2606 
2607 	/*
2608 	 * secpolicy_vnode_setattr, or take ownership may have
2609 	 * changed va_mask
2610 	 */
2611 	mask = vap->va_mask;
2612 
2613 	tx = dmu_tx_create(zfsvfs->z_os);
2614 	dmu_tx_hold_bonus(tx, zp->z_id);
2615 
2616 	if (mask & AT_MODE) {
2617 		uint64_t pmode = pzp->zp_mode;
2618 
2619 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2620 
2621 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
2622 			goto out;
2623 		if (pzp->zp_acl.z_acl_extern_obj) {
2624 			/* Are we upgrading ACL from old V0 format to new V1 */
2625 			if (zfsvfs->z_version <= ZPL_VERSION_FUID &&
2626 			    pzp->zp_acl.z_acl_version ==
2627 			    ZFS_ACL_VERSION_INITIAL) {
2628 				dmu_tx_hold_free(tx,
2629 				    pzp->zp_acl.z_acl_extern_obj, 0,
2630 				    DMU_OBJECT_END);
2631 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2632 				    0, aclp->z_acl_bytes);
2633 			} else {
2634 				dmu_tx_hold_write(tx,
2635 				    pzp->zp_acl.z_acl_extern_obj, 0,
2636 				    aclp->z_acl_bytes);
2637 			}
2638 		} else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2639 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2640 			    0, aclp->z_acl_bytes);
2641 		}
2642 	}
2643 
2644 	if (mask & (AT_UID | AT_GID)) {
2645 		if (pzp->zp_xattr) {
2646 			err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp);
2647 			if (err)
2648 				goto out;
2649 			dmu_tx_hold_bonus(tx, attrzp->z_id);
2650 		}
2651 		if (mask & AT_UID) {
2652 			new_uid = zfs_fuid_create(zfsvfs,
2653 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2654 			if (new_uid != pzp->zp_uid &&
2655 			    zfs_usergroup_overquota(zfsvfs, B_FALSE, new_uid)) {
2656 				err = EDQUOT;
2657 				goto out;
2658 			}
2659 		}
2660 
2661 		if (mask & AT_GID) {
2662 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2663 			    cr, ZFS_GROUP, &fuidp);
2664 			if (new_gid != pzp->zp_gid &&
2665 			    zfs_usergroup_overquota(zfsvfs, B_TRUE, new_gid)) {
2666 				err = EDQUOT;
2667 				goto out;
2668 			}
2669 		}
2670 		fuid_dirtied = zfsvfs->z_fuid_dirty;
2671 		if (fuid_dirtied) {
2672 			if (zfsvfs->z_fuid_obj == 0) {
2673 				dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2674 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2675 				    FUID_SIZE_ESTIMATE(zfsvfs));
2676 				dmu_tx_hold_zap(tx, MASTER_NODE_OBJ,
2677 				    FALSE, NULL);
2678 			} else {
2679 				dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
2680 				dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
2681 				    FUID_SIZE_ESTIMATE(zfsvfs));
2682 			}
2683 		}
2684 	}
2685 
2686 	err = dmu_tx_assign(tx, TXG_NOWAIT);
2687 	if (err) {
2688 		if (err == ERESTART)
2689 			dmu_tx_wait(tx);
2690 		goto out;
2691 	}
2692 
2693 	dmu_buf_will_dirty(zp->z_dbuf, tx);
2694 
2695 	/*
2696 	 * Set each attribute requested.
2697 	 * We group settings according to the locks they need to acquire.
2698 	 *
2699 	 * Note: you cannot set ctime directly, although it will be
2700 	 * updated as a side-effect of calling this function.
2701 	 */
2702 
2703 	mutex_enter(&zp->z_lock);
2704 
2705 	if (mask & AT_MODE) {
2706 		mutex_enter(&zp->z_acl_lock);
2707 		zp->z_phys->zp_mode = new_mode;
2708 		err = zfs_aclset_common(zp, aclp, cr, tx);
2709 		ASSERT3U(err, ==, 0);
2710 		mutex_exit(&zp->z_acl_lock);
2711 	}
2712 
2713 	if (attrzp)
2714 		mutex_enter(&attrzp->z_lock);
2715 
2716 	if (mask & AT_UID) {
2717 		pzp->zp_uid = new_uid;
2718 		if (attrzp)
2719 			attrzp->z_phys->zp_uid = new_uid;
2720 	}
2721 
2722 	if (mask & AT_GID) {
2723 		pzp->zp_gid = new_gid;
2724 		if (attrzp)
2725 			attrzp->z_phys->zp_gid = new_gid;
2726 	}
2727 
2728 	if (attrzp)
2729 		mutex_exit(&attrzp->z_lock);
2730 
2731 	if (mask & AT_ATIME)
2732 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
2733 
2734 	if (mask & AT_MTIME)
2735 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
2736 
2737 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
2738 	if (mask & AT_SIZE)
2739 		zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx);
2740 	else if (mask != 0)
2741 		zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
2742 	/*
2743 	 * Do this after setting timestamps to prevent timestamp
2744 	 * update from toggling bit
2745 	 */
2746 
2747 	if (xoap && (mask & AT_XVATTR)) {
2748 
2749 		/*
2750 		 * restore trimmed off masks
2751 		 * so that return masks can be set for caller.
2752 		 */
2753 
2754 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
2755 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
2756 		}
2757 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
2758 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
2759 		}
2760 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
2761 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2762 		}
2763 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
2764 			XVA_SET_REQ(xvap, XAT_NODUMP);
2765 		}
2766 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
2767 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2768 		}
2769 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
2770 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2771 		}
2772 
2773 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
2774 			size_t len;
2775 			dmu_object_info_t doi;
2776 
2777 			ASSERT(vp->v_type == VREG);
2778 
2779 			/* Grow the bonus buffer if necessary. */
2780 			dmu_object_info_from_db(zp->z_dbuf, &doi);
2781 			len = sizeof (xoap->xoa_av_scanstamp) +
2782 			    sizeof (znode_phys_t);
2783 			if (len > doi.doi_bonus_size)
2784 				VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0);
2785 		}
2786 		zfs_xvattr_set(zp, xvap);
2787 	}
2788 
2789 	if (fuid_dirtied)
2790 		zfs_fuid_sync(zfsvfs, tx);
2791 
2792 	if (mask != 0)
2793 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2794 
2795 	mutex_exit(&zp->z_lock);
2796 
2797 out:
2798 	if (attrzp)
2799 		VN_RELE(ZTOV(attrzp));
2800 
2801 	if (aclp) {
2802 		zfs_acl_free(aclp);
2803 		aclp = NULL;
2804 	}
2805 
2806 	if (fuidp) {
2807 		zfs_fuid_info_free(fuidp);
2808 		fuidp = NULL;
2809 	}
2810 
2811 	if (err)
2812 		dmu_tx_abort(tx);
2813 	else
2814 		dmu_tx_commit(tx);
2815 
2816 	if (err == ERESTART)
2817 		goto top;
2818 
2819 	ZFS_EXIT(zfsvfs);
2820 	return (err);
2821 }
2822 
2823 typedef struct zfs_zlock {
2824 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2825 	znode_t		*zl_znode;	/* znode we held */
2826 	struct zfs_zlock *zl_next;	/* next in list */
2827 } zfs_zlock_t;
2828 
2829 /*
2830  * Drop locks and release vnodes that were held by zfs_rename_lock().
2831  */
2832 static void
2833 zfs_rename_unlock(zfs_zlock_t **zlpp)
2834 {
2835 	zfs_zlock_t *zl;
2836 
2837 	while ((zl = *zlpp) != NULL) {
2838 		if (zl->zl_znode != NULL)
2839 			VN_RELE(ZTOV(zl->zl_znode));
2840 		rw_exit(zl->zl_rwlock);
2841 		*zlpp = zl->zl_next;
2842 		kmem_free(zl, sizeof (*zl));
2843 	}
2844 }
2845 
2846 /*
2847  * Search back through the directory tree, using the ".." entries.
2848  * Lock each directory in the chain to prevent concurrent renames.
2849  * Fail any attempt to move a directory into one of its own descendants.
2850  * XXX - z_parent_lock can overlap with map or grow locks
2851  */
2852 static int
2853 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2854 {
2855 	zfs_zlock_t	*zl;
2856 	znode_t		*zp = tdzp;
2857 	uint64_t	rootid = zp->z_zfsvfs->z_root;
2858 	uint64_t	*oidp = &zp->z_id;
2859 	krwlock_t	*rwlp = &szp->z_parent_lock;
2860 	krw_t		rw = RW_WRITER;
2861 
2862 	/*
2863 	 * First pass write-locks szp and compares to zp->z_id.
2864 	 * Later passes read-lock zp and compare to zp->z_parent.
2865 	 */
2866 	do {
2867 		if (!rw_tryenter(rwlp, rw)) {
2868 			/*
2869 			 * Another thread is renaming in this path.
2870 			 * Note that if we are a WRITER, we don't have any
2871 			 * parent_locks held yet.
2872 			 */
2873 			if (rw == RW_READER && zp->z_id > szp->z_id) {
2874 				/*
2875 				 * Drop our locks and restart
2876 				 */
2877 				zfs_rename_unlock(&zl);
2878 				*zlpp = NULL;
2879 				zp = tdzp;
2880 				oidp = &zp->z_id;
2881 				rwlp = &szp->z_parent_lock;
2882 				rw = RW_WRITER;
2883 				continue;
2884 			} else {
2885 				/*
2886 				 * Wait for other thread to drop its locks
2887 				 */
2888 				rw_enter(rwlp, rw);
2889 			}
2890 		}
2891 
2892 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2893 		zl->zl_rwlock = rwlp;
2894 		zl->zl_znode = NULL;
2895 		zl->zl_next = *zlpp;
2896 		*zlpp = zl;
2897 
2898 		if (*oidp == szp->z_id)		/* We're a descendant of szp */
2899 			return (EINVAL);
2900 
2901 		if (*oidp == rootid)		/* We've hit the top */
2902 			return (0);
2903 
2904 		if (rw == RW_READER) {		/* i.e. not the first pass */
2905 			int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp);
2906 			if (error)
2907 				return (error);
2908 			zl->zl_znode = zp;
2909 		}
2910 		oidp = &zp->z_phys->zp_parent;
2911 		rwlp = &zp->z_parent_lock;
2912 		rw = RW_READER;
2913 
2914 	} while (zp->z_id != sdzp->z_id);
2915 
2916 	return (0);
2917 }
2918 
2919 /*
2920  * Move an entry from the provided source directory to the target
2921  * directory.  Change the entry name as indicated.
2922  *
2923  *	IN:	sdvp	- Source directory containing the "old entry".
2924  *		snm	- Old entry name.
2925  *		tdvp	- Target directory to contain the "new entry".
2926  *		tnm	- New entry name.
2927  *		cr	- credentials of caller.
2928  *		ct	- caller context
2929  *		flags	- case flags
2930  *
2931  *	RETURN:	0 if success
2932  *		error code if failure
2933  *
2934  * Timestamps:
2935  *	sdvp,tdvp - ctime|mtime updated
2936  */
2937 /*ARGSUSED*/
2938 static int
2939 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
2940     caller_context_t *ct, int flags)
2941 {
2942 	znode_t		*tdzp, *szp, *tzp;
2943 	znode_t		*sdzp = VTOZ(sdvp);
2944 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
2945 	zilog_t		*zilog;
2946 	vnode_t		*realvp;
2947 	zfs_dirlock_t	*sdl, *tdl;
2948 	dmu_tx_t	*tx;
2949 	zfs_zlock_t	*zl;
2950 	int		cmp, serr, terr;
2951 	int		error = 0;
2952 	int		zflg = 0;
2953 
2954 	ZFS_ENTER(zfsvfs);
2955 	ZFS_VERIFY_ZP(sdzp);
2956 	zilog = zfsvfs->z_log;
2957 
2958 	/*
2959 	 * Make sure we have the real vp for the target directory.
2960 	 */
2961 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
2962 		tdvp = realvp;
2963 
2964 	if (tdvp->v_vfsp != sdvp->v_vfsp) {
2965 		ZFS_EXIT(zfsvfs);
2966 		return (EXDEV);
2967 	}
2968 
2969 	tdzp = VTOZ(tdvp);
2970 	ZFS_VERIFY_ZP(tdzp);
2971 	if (zfsvfs->z_utf8 && u8_validate(tnm,
2972 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2973 		ZFS_EXIT(zfsvfs);
2974 		return (EILSEQ);
2975 	}
2976 
2977 	if (flags & FIGNORECASE)
2978 		zflg |= ZCILOOK;
2979 
2980 top:
2981 	szp = NULL;
2982 	tzp = NULL;
2983 	zl = NULL;
2984 
2985 	/*
2986 	 * This is to prevent the creation of links into attribute space
2987 	 * by renaming a linked file into/outof an attribute directory.
2988 	 * See the comment in zfs_link() for why this is considered bad.
2989 	 */
2990 	if ((tdzp->z_phys->zp_flags & ZFS_XATTR) !=
2991 	    (sdzp->z_phys->zp_flags & ZFS_XATTR)) {
2992 		ZFS_EXIT(zfsvfs);
2993 		return (EINVAL);
2994 	}
2995 
2996 	/*
2997 	 * Lock source and target directory entries.  To prevent deadlock,
2998 	 * a lock ordering must be defined.  We lock the directory with
2999 	 * the smallest object id first, or if it's a tie, the one with
3000 	 * the lexically first name.
3001 	 */
3002 	if (sdzp->z_id < tdzp->z_id) {
3003 		cmp = -1;
3004 	} else if (sdzp->z_id > tdzp->z_id) {
3005 		cmp = 1;
3006 	} else {
3007 		/*
3008 		 * First compare the two name arguments without
3009 		 * considering any case folding.
3010 		 */
3011 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3012 
3013 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3014 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3015 		if (cmp == 0) {
3016 			/*
3017 			 * POSIX: "If the old argument and the new argument
3018 			 * both refer to links to the same existing file,
3019 			 * the rename() function shall return successfully
3020 			 * and perform no other action."
3021 			 */
3022 			ZFS_EXIT(zfsvfs);
3023 			return (0);
3024 		}
3025 		/*
3026 		 * If the file system is case-folding, then we may
3027 		 * have some more checking to do.  A case-folding file
3028 		 * system is either supporting mixed case sensitivity
3029 		 * access or is completely case-insensitive.  Note
3030 		 * that the file system is always case preserving.
3031 		 *
3032 		 * In mixed sensitivity mode case sensitive behavior
3033 		 * is the default.  FIGNORECASE must be used to
3034 		 * explicitly request case insensitive behavior.
3035 		 *
3036 		 * If the source and target names provided differ only
3037 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3038 		 * we will treat this as a special case in the
3039 		 * case-insensitive mode: as long as the source name
3040 		 * is an exact match, we will allow this to proceed as
3041 		 * a name-change request.
3042 		 */
3043 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3044 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3045 		    flags & FIGNORECASE)) &&
3046 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3047 		    &error) == 0) {
3048 			/*
3049 			 * case preserving rename request, require exact
3050 			 * name matches
3051 			 */
3052 			zflg |= ZCIEXACT;
3053 			zflg &= ~ZCILOOK;
3054 		}
3055 	}
3056 
3057 	if (cmp < 0) {
3058 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3059 		    ZEXISTS | zflg, NULL, NULL);
3060 		terr = zfs_dirent_lock(&tdl,
3061 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3062 	} else {
3063 		terr = zfs_dirent_lock(&tdl,
3064 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3065 		serr = zfs_dirent_lock(&sdl,
3066 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3067 		    NULL, NULL);
3068 	}
3069 
3070 	if (serr) {
3071 		/*
3072 		 * Source entry invalid or not there.
3073 		 */
3074 		if (!terr) {
3075 			zfs_dirent_unlock(tdl);
3076 			if (tzp)
3077 				VN_RELE(ZTOV(tzp));
3078 		}
3079 		if (strcmp(snm, "..") == 0)
3080 			serr = EINVAL;
3081 		ZFS_EXIT(zfsvfs);
3082 		return (serr);
3083 	}
3084 	if (terr) {
3085 		zfs_dirent_unlock(sdl);
3086 		VN_RELE(ZTOV(szp));
3087 		if (strcmp(tnm, "..") == 0)
3088 			terr = EINVAL;
3089 		ZFS_EXIT(zfsvfs);
3090 		return (terr);
3091 	}
3092 
3093 	/*
3094 	 * Must have write access at the source to remove the old entry
3095 	 * and write access at the target to create the new entry.
3096 	 * Note that if target and source are the same, this can be
3097 	 * done in a single check.
3098 	 */
3099 
3100 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3101 		goto out;
3102 
3103 	if (ZTOV(szp)->v_type == VDIR) {
3104 		/*
3105 		 * Check to make sure rename is valid.
3106 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3107 		 */
3108 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3109 			goto out;
3110 	}
3111 
3112 	/*
3113 	 * Does target exist?
3114 	 */
3115 	if (tzp) {
3116 		/*
3117 		 * Source and target must be the same type.
3118 		 */
3119 		if (ZTOV(szp)->v_type == VDIR) {
3120 			if (ZTOV(tzp)->v_type != VDIR) {
3121 				error = ENOTDIR;
3122 				goto out;
3123 			}
3124 		} else {
3125 			if (ZTOV(tzp)->v_type == VDIR) {
3126 				error = EISDIR;
3127 				goto out;
3128 			}
3129 		}
3130 		/*
3131 		 * POSIX dictates that when the source and target
3132 		 * entries refer to the same file object, rename
3133 		 * must do nothing and exit without error.
3134 		 */
3135 		if (szp->z_id == tzp->z_id) {
3136 			error = 0;
3137 			goto out;
3138 		}
3139 	}
3140 
3141 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3142 	if (tzp)
3143 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3144 
3145 	/*
3146 	 * notify the target directory if it is not the same
3147 	 * as source directory.
3148 	 */
3149 	if (tdvp != sdvp) {
3150 		vnevent_rename_dest_dir(tdvp, ct);
3151 	}
3152 
3153 	tx = dmu_tx_create(zfsvfs->z_os);
3154 	dmu_tx_hold_bonus(tx, szp->z_id);	/* nlink changes */
3155 	dmu_tx_hold_bonus(tx, sdzp->z_id);	/* nlink changes */
3156 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3157 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3158 	if (sdzp != tdzp)
3159 		dmu_tx_hold_bonus(tx, tdzp->z_id);	/* nlink changes */
3160 	if (tzp)
3161 		dmu_tx_hold_bonus(tx, tzp->z_id);	/* parent changes */
3162 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3163 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3164 	if (error) {
3165 		if (zl != NULL)
3166 			zfs_rename_unlock(&zl);
3167 		zfs_dirent_unlock(sdl);
3168 		zfs_dirent_unlock(tdl);
3169 		VN_RELE(ZTOV(szp));
3170 		if (tzp)
3171 			VN_RELE(ZTOV(tzp));
3172 		if (error == ERESTART) {
3173 			dmu_tx_wait(tx);
3174 			dmu_tx_abort(tx);
3175 			goto top;
3176 		}
3177 		dmu_tx_abort(tx);
3178 		ZFS_EXIT(zfsvfs);
3179 		return (error);
3180 	}
3181 
3182 	if (tzp)	/* Attempt to remove the existing target */
3183 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3184 
3185 	if (error == 0) {
3186 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3187 		if (error == 0) {
3188 			szp->z_phys->zp_flags |= ZFS_AV_MODIFIED;
3189 
3190 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3191 			ASSERT(error == 0);
3192 
3193 			zfs_log_rename(zilog, tx,
3194 			    TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0),
3195 			    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3196 
3197 			/* Update path information for the target vnode */
3198 			vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm));
3199 		}
3200 	}
3201 
3202 	dmu_tx_commit(tx);
3203 out:
3204 	if (zl != NULL)
3205 		zfs_rename_unlock(&zl);
3206 
3207 	zfs_dirent_unlock(sdl);
3208 	zfs_dirent_unlock(tdl);
3209 
3210 	VN_RELE(ZTOV(szp));
3211 	if (tzp)
3212 		VN_RELE(ZTOV(tzp));
3213 
3214 	ZFS_EXIT(zfsvfs);
3215 	return (error);
3216 }
3217 
3218 /*
3219  * Insert the indicated symbolic reference entry into the directory.
3220  *
3221  *	IN:	dvp	- Directory to contain new symbolic link.
3222  *		link	- Name for new symlink entry.
3223  *		vap	- Attributes of new entry.
3224  *		target	- Target path of new symlink.
3225  *		cr	- credentials of caller.
3226  *		ct	- caller context
3227  *		flags	- case flags
3228  *
3229  *	RETURN:	0 if success
3230  *		error code if failure
3231  *
3232  * Timestamps:
3233  *	dvp - ctime|mtime updated
3234  */
3235 /*ARGSUSED*/
3236 static int
3237 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3238     caller_context_t *ct, int flags)
3239 {
3240 	znode_t		*zp, *dzp = VTOZ(dvp);
3241 	zfs_dirlock_t	*dl;
3242 	dmu_tx_t	*tx;
3243 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3244 	zilog_t		*zilog;
3245 	int		len = strlen(link);
3246 	int		error;
3247 	int		zflg = ZNEW;
3248 	zfs_acl_ids_t	acl_ids;
3249 	boolean_t	fuid_dirtied;
3250 
3251 	ASSERT(vap->va_type == VLNK);
3252 
3253 	ZFS_ENTER(zfsvfs);
3254 	ZFS_VERIFY_ZP(dzp);
3255 	zilog = zfsvfs->z_log;
3256 
3257 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3258 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3259 		ZFS_EXIT(zfsvfs);
3260 		return (EILSEQ);
3261 	}
3262 	if (flags & FIGNORECASE)
3263 		zflg |= ZCILOOK;
3264 top:
3265 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3266 		ZFS_EXIT(zfsvfs);
3267 		return (error);
3268 	}
3269 
3270 	if (len > MAXPATHLEN) {
3271 		ZFS_EXIT(zfsvfs);
3272 		return (ENAMETOOLONG);
3273 	}
3274 
3275 	/*
3276 	 * Attempt to lock directory; fail if entry already exists.
3277 	 */
3278 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3279 	if (error) {
3280 		ZFS_EXIT(zfsvfs);
3281 		return (error);
3282 	}
3283 
3284 	VERIFY(0 == zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids));
3285 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3286 		zfs_acl_ids_free(&acl_ids);
3287 		zfs_dirent_unlock(dl);
3288 		ZFS_EXIT(zfsvfs);
3289 		return (EDQUOT);
3290 	}
3291 	tx = dmu_tx_create(zfsvfs->z_os);
3292 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3293 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3294 	dmu_tx_hold_bonus(tx, dzp->z_id);
3295 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3296 	if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE)
3297 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE);
3298 	if (fuid_dirtied)
3299 		zfs_fuid_txhold(zfsvfs, tx);
3300 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3301 	if (error) {
3302 		zfs_acl_ids_free(&acl_ids);
3303 		zfs_dirent_unlock(dl);
3304 		if (error == ERESTART) {
3305 			dmu_tx_wait(tx);
3306 			dmu_tx_abort(tx);
3307 			goto top;
3308 		}
3309 		dmu_tx_abort(tx);
3310 		ZFS_EXIT(zfsvfs);
3311 		return (error);
3312 	}
3313 
3314 	dmu_buf_will_dirty(dzp->z_dbuf, tx);
3315 
3316 	/*
3317 	 * Create a new object for the symlink.
3318 	 * Put the link content into bonus buffer if it will fit;
3319 	 * otherwise, store it just like any other file data.
3320 	 */
3321 	if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) {
3322 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, &acl_ids);
3323 		if (len != 0)
3324 			bcopy(link, zp->z_phys + 1, len);
3325 	} else {
3326 		dmu_buf_t *dbp;
3327 
3328 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids);
3329 
3330 		if (fuid_dirtied)
3331 			zfs_fuid_sync(zfsvfs, tx);
3332 		/*
3333 		 * Nothing can access the znode yet so no locking needed
3334 		 * for growing the znode's blocksize.
3335 		 */
3336 		zfs_grow_blocksize(zp, len, tx);
3337 
3338 		VERIFY(0 == dmu_buf_hold(zfsvfs->z_os,
3339 		    zp->z_id, 0, FTAG, &dbp));
3340 		dmu_buf_will_dirty(dbp, tx);
3341 
3342 		ASSERT3U(len, <=, dbp->db_size);
3343 		bcopy(link, dbp->db_data, len);
3344 		dmu_buf_rele(dbp, FTAG);
3345 	}
3346 	zp->z_phys->zp_size = len;
3347 
3348 	/*
3349 	 * Insert the new object into the directory.
3350 	 */
3351 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3352 	if (error == 0) {
3353 		uint64_t txtype = TX_SYMLINK;
3354 		if (flags & FIGNORECASE)
3355 			txtype |= TX_CI;
3356 		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3357 	}
3358 
3359 	zfs_acl_ids_free(&acl_ids);
3360 
3361 	dmu_tx_commit(tx);
3362 
3363 	zfs_dirent_unlock(dl);
3364 
3365 	VN_RELE(ZTOV(zp));
3366 
3367 	ZFS_EXIT(zfsvfs);
3368 	return (error);
3369 }
3370 
3371 /*
3372  * Return, in the buffer contained in the provided uio structure,
3373  * the symbolic path referred to by vp.
3374  *
3375  *	IN:	vp	- vnode of symbolic link.
3376  *		uoip	- structure to contain the link path.
3377  *		cr	- credentials of caller.
3378  *		ct	- caller context
3379  *
3380  *	OUT:	uio	- structure to contain the link path.
3381  *
3382  *	RETURN:	0 if success
3383  *		error code if failure
3384  *
3385  * Timestamps:
3386  *	vp - atime updated
3387  */
3388 /* ARGSUSED */
3389 static int
3390 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3391 {
3392 	znode_t		*zp = VTOZ(vp);
3393 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3394 	size_t		bufsz;
3395 	int		error;
3396 
3397 	ZFS_ENTER(zfsvfs);
3398 	ZFS_VERIFY_ZP(zp);
3399 
3400 	bufsz = (size_t)zp->z_phys->zp_size;
3401 	if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) {
3402 		error = uiomove(zp->z_phys + 1,
3403 		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
3404 	} else {
3405 		dmu_buf_t *dbp;
3406 		error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp);
3407 		if (error) {
3408 			ZFS_EXIT(zfsvfs);
3409 			return (error);
3410 		}
3411 		error = uiomove(dbp->db_data,
3412 		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
3413 		dmu_buf_rele(dbp, FTAG);
3414 	}
3415 
3416 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3417 	ZFS_EXIT(zfsvfs);
3418 	return (error);
3419 }
3420 
3421 /*
3422  * Insert a new entry into directory tdvp referencing svp.
3423  *
3424  *	IN:	tdvp	- Directory to contain new entry.
3425  *		svp	- vnode of new entry.
3426  *		name	- name of new entry.
3427  *		cr	- credentials of caller.
3428  *		ct	- caller context
3429  *
3430  *	RETURN:	0 if success
3431  *		error code if failure
3432  *
3433  * Timestamps:
3434  *	tdvp - ctime|mtime updated
3435  *	 svp - ctime updated
3436  */
3437 /* ARGSUSED */
3438 static int
3439 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3440     caller_context_t *ct, int flags)
3441 {
3442 	znode_t		*dzp = VTOZ(tdvp);
3443 	znode_t		*tzp, *szp;
3444 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3445 	zilog_t		*zilog;
3446 	zfs_dirlock_t	*dl;
3447 	dmu_tx_t	*tx;
3448 	vnode_t		*realvp;
3449 	int		error;
3450 	int		zf = ZNEW;
3451 	uid_t		owner;
3452 
3453 	ASSERT(tdvp->v_type == VDIR);
3454 
3455 	ZFS_ENTER(zfsvfs);
3456 	ZFS_VERIFY_ZP(dzp);
3457 	zilog = zfsvfs->z_log;
3458 
3459 	if (VOP_REALVP(svp, &realvp, ct) == 0)
3460 		svp = realvp;
3461 
3462 	if (svp->v_vfsp != tdvp->v_vfsp) {
3463 		ZFS_EXIT(zfsvfs);
3464 		return (EXDEV);
3465 	}
3466 	szp = VTOZ(svp);
3467 	ZFS_VERIFY_ZP(szp);
3468 
3469 	if (zfsvfs->z_utf8 && u8_validate(name,
3470 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3471 		ZFS_EXIT(zfsvfs);
3472 		return (EILSEQ);
3473 	}
3474 	if (flags & FIGNORECASE)
3475 		zf |= ZCILOOK;
3476 
3477 top:
3478 	/*
3479 	 * We do not support links between attributes and non-attributes
3480 	 * because of the potential security risk of creating links
3481 	 * into "normal" file space in order to circumvent restrictions
3482 	 * imposed in attribute space.
3483 	 */
3484 	if ((szp->z_phys->zp_flags & ZFS_XATTR) !=
3485 	    (dzp->z_phys->zp_flags & ZFS_XATTR)) {
3486 		ZFS_EXIT(zfsvfs);
3487 		return (EINVAL);
3488 	}
3489 
3490 	/*
3491 	 * POSIX dictates that we return EPERM here.
3492 	 * Better choices include ENOTSUP or EISDIR.
3493 	 */
3494 	if (svp->v_type == VDIR) {
3495 		ZFS_EXIT(zfsvfs);
3496 		return (EPERM);
3497 	}
3498 
3499 	owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER);
3500 	if (owner != crgetuid(cr) &&
3501 	    secpolicy_basic_link(cr) != 0) {
3502 		ZFS_EXIT(zfsvfs);
3503 		return (EPERM);
3504 	}
3505 
3506 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3507 		ZFS_EXIT(zfsvfs);
3508 		return (error);
3509 	}
3510 
3511 	/*
3512 	 * Attempt to lock directory; fail if entry already exists.
3513 	 */
3514 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3515 	if (error) {
3516 		ZFS_EXIT(zfsvfs);
3517 		return (error);
3518 	}
3519 
3520 	tx = dmu_tx_create(zfsvfs->z_os);
3521 	dmu_tx_hold_bonus(tx, szp->z_id);
3522 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3523 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3524 	if (error) {
3525 		zfs_dirent_unlock(dl);
3526 		if (error == ERESTART) {
3527 			dmu_tx_wait(tx);
3528 			dmu_tx_abort(tx);
3529 			goto top;
3530 		}
3531 		dmu_tx_abort(tx);
3532 		ZFS_EXIT(zfsvfs);
3533 		return (error);
3534 	}
3535 
3536 	error = zfs_link_create(dl, szp, tx, 0);
3537 
3538 	if (error == 0) {
3539 		uint64_t txtype = TX_LINK;
3540 		if (flags & FIGNORECASE)
3541 			txtype |= TX_CI;
3542 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
3543 	}
3544 
3545 	dmu_tx_commit(tx);
3546 
3547 	zfs_dirent_unlock(dl);
3548 
3549 	if (error == 0) {
3550 		vnevent_link(svp, ct);
3551 	}
3552 
3553 	ZFS_EXIT(zfsvfs);
3554 	return (error);
3555 }
3556 
3557 /*
3558  * zfs_null_putapage() is used when the file system has been force
3559  * unmounted. It just drops the pages.
3560  */
3561 /* ARGSUSED */
3562 static int
3563 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3564 		size_t *lenp, int flags, cred_t *cr)
3565 {
3566 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
3567 	return (0);
3568 }
3569 
3570 /*
3571  * Push a page out to disk, klustering if possible.
3572  *
3573  *	IN:	vp	- file to push page to.
3574  *		pp	- page to push.
3575  *		flags	- additional flags.
3576  *		cr	- credentials of caller.
3577  *
3578  *	OUT:	offp	- start of range pushed.
3579  *		lenp	- len of range pushed.
3580  *
3581  *	RETURN:	0 if success
3582  *		error code if failure
3583  *
3584  * NOTE: callers must have locked the page to be pushed.  On
3585  * exit, the page (and all other pages in the kluster) must be
3586  * unlocked.
3587  */
3588 /* ARGSUSED */
3589 static int
3590 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3591 		size_t *lenp, int flags, cred_t *cr)
3592 {
3593 	znode_t		*zp = VTOZ(vp);
3594 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3595 	dmu_tx_t	*tx;
3596 	u_offset_t	off, koff;
3597 	size_t		len, klen;
3598 	uint64_t	filesz;
3599 	int		err;
3600 
3601 	filesz = zp->z_phys->zp_size;
3602 	off = pp->p_offset;
3603 	len = PAGESIZE;
3604 	/*
3605 	 * If our blocksize is bigger than the page size, try to kluster
3606 	 * multiple pages so that we write a full block (thus avoiding
3607 	 * a read-modify-write).
3608 	 */
3609 	if (off < filesz && zp->z_blksz > PAGESIZE) {
3610 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
3611 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
3612 		ASSERT(koff <= filesz);
3613 		if (koff + klen > filesz)
3614 			klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE);
3615 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
3616 	}
3617 	ASSERT3U(btop(len), ==, btopr(len));
3618 
3619 	/*
3620 	 * Can't push pages past end-of-file.
3621 	 */
3622 	if (off >= filesz) {
3623 		/* ignore all pages */
3624 		err = 0;
3625 		goto out;
3626 	} else if (off + len > filesz) {
3627 		int npages = btopr(filesz - off);
3628 		page_t *trunc;
3629 
3630 		page_list_break(&pp, &trunc, npages);
3631 		/* ignore pages past end of file */
3632 		if (trunc)
3633 			pvn_write_done(trunc, flags);
3634 		len = filesz - off;
3635 	}
3636 
3637 	if (zfs_usergroup_overquota(zfsvfs, B_FALSE, zp->z_phys->zp_uid) ||
3638 	    zfs_usergroup_overquota(zfsvfs, B_TRUE, zp->z_phys->zp_gid)) {
3639 		err = EDQUOT;
3640 		goto out;
3641 	}
3642 top:
3643 	tx = dmu_tx_create(zfsvfs->z_os);
3644 	dmu_tx_hold_write(tx, zp->z_id, off, len);
3645 	dmu_tx_hold_bonus(tx, zp->z_id);
3646 	err = dmu_tx_assign(tx, TXG_NOWAIT);
3647 	if (err != 0) {
3648 		if (err == ERESTART) {
3649 			dmu_tx_wait(tx);
3650 			dmu_tx_abort(tx);
3651 			goto top;
3652 		}
3653 		dmu_tx_abort(tx);
3654 		goto out;
3655 	}
3656 
3657 	if (zp->z_blksz <= PAGESIZE) {
3658 		caddr_t va = zfs_map_page(pp, S_READ);
3659 		ASSERT3U(len, <=, PAGESIZE);
3660 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
3661 		zfs_unmap_page(pp, va);
3662 	} else {
3663 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
3664 	}
3665 
3666 	if (err == 0) {
3667 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
3668 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
3669 		dmu_tx_commit(tx);
3670 	}
3671 
3672 out:
3673 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
3674 	if (offp)
3675 		*offp = off;
3676 	if (lenp)
3677 		*lenp = len;
3678 
3679 	return (err);
3680 }
3681 
3682 /*
3683  * Copy the portion of the file indicated from pages into the file.
3684  * The pages are stored in a page list attached to the files vnode.
3685  *
3686  *	IN:	vp	- vnode of file to push page data to.
3687  *		off	- position in file to put data.
3688  *		len	- amount of data to write.
3689  *		flags	- flags to control the operation.
3690  *		cr	- credentials of caller.
3691  *		ct	- caller context.
3692  *
3693  *	RETURN:	0 if success
3694  *		error code if failure
3695  *
3696  * Timestamps:
3697  *	vp - ctime|mtime updated
3698  */
3699 /*ARGSUSED*/
3700 static int
3701 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
3702     caller_context_t *ct)
3703 {
3704 	znode_t		*zp = VTOZ(vp);
3705 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3706 	page_t		*pp;
3707 	size_t		io_len;
3708 	u_offset_t	io_off;
3709 	uint_t		blksz;
3710 	rl_t		*rl;
3711 	int		error = 0;
3712 
3713 	ZFS_ENTER(zfsvfs);
3714 	ZFS_VERIFY_ZP(zp);
3715 
3716 	/*
3717 	 * Align this request to the file block size in case we kluster.
3718 	 * XXX - this can result in pretty aggresive locking, which can
3719 	 * impact simultanious read/write access.  One option might be
3720 	 * to break up long requests (len == 0) into block-by-block
3721 	 * operations to get narrower locking.
3722 	 */
3723 	blksz = zp->z_blksz;
3724 	if (ISP2(blksz))
3725 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
3726 	else
3727 		io_off = 0;
3728 	if (len > 0 && ISP2(blksz))
3729 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
3730 	else
3731 		io_len = 0;
3732 
3733 	if (io_len == 0) {
3734 		/*
3735 		 * Search the entire vp list for pages >= io_off.
3736 		 */
3737 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
3738 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
3739 		goto out;
3740 	}
3741 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
3742 
3743 	if (off > zp->z_phys->zp_size) {
3744 		/* past end of file */
3745 		zfs_range_unlock(rl);
3746 		ZFS_EXIT(zfsvfs);
3747 		return (0);
3748 	}
3749 
3750 	len = MIN(io_len, P2ROUNDUP(zp->z_phys->zp_size, PAGESIZE) - io_off);
3751 
3752 	for (off = io_off; io_off < off + len; io_off += io_len) {
3753 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
3754 			pp = page_lookup(vp, io_off,
3755 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
3756 		} else {
3757 			pp = page_lookup_nowait(vp, io_off,
3758 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
3759 		}
3760 
3761 		if (pp != NULL && pvn_getdirty(pp, flags)) {
3762 			int err;
3763 
3764 			/*
3765 			 * Found a dirty page to push
3766 			 */
3767 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
3768 			if (err)
3769 				error = err;
3770 		} else {
3771 			io_len = PAGESIZE;
3772 		}
3773 	}
3774 out:
3775 	zfs_range_unlock(rl);
3776 	if ((flags & B_ASYNC) == 0)
3777 		zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id);
3778 	ZFS_EXIT(zfsvfs);
3779 	return (error);
3780 }
3781 
3782 /*ARGSUSED*/
3783 void
3784 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
3785 {
3786 	znode_t	*zp = VTOZ(vp);
3787 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3788 	int error;
3789 
3790 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3791 	if (zp->z_dbuf == NULL) {
3792 		/*
3793 		 * The fs has been unmounted, or we did a
3794 		 * suspend/resume and this file no longer exists.
3795 		 */
3796 		if (vn_has_cached_data(vp)) {
3797 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
3798 			    B_INVAL, cr);
3799 		}
3800 
3801 		mutex_enter(&zp->z_lock);
3802 		vp->v_count = 0; /* count arrives as 1 */
3803 		mutex_exit(&zp->z_lock);
3804 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
3805 		zfs_znode_free(zp);
3806 		return;
3807 	}
3808 
3809 	/*
3810 	 * Attempt to push any data in the page cache.  If this fails
3811 	 * we will get kicked out later in zfs_zinactive().
3812 	 */
3813 	if (vn_has_cached_data(vp)) {
3814 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
3815 		    cr);
3816 	}
3817 
3818 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
3819 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3820 
3821 		dmu_tx_hold_bonus(tx, zp->z_id);
3822 		error = dmu_tx_assign(tx, TXG_WAIT);
3823 		if (error) {
3824 			dmu_tx_abort(tx);
3825 		} else {
3826 			dmu_buf_will_dirty(zp->z_dbuf, tx);
3827 			mutex_enter(&zp->z_lock);
3828 			zp->z_atime_dirty = 0;
3829 			mutex_exit(&zp->z_lock);
3830 			dmu_tx_commit(tx);
3831 		}
3832 	}
3833 
3834 	zfs_zinactive(zp);
3835 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
3836 }
3837 
3838 /*
3839  * Bounds-check the seek operation.
3840  *
3841  *	IN:	vp	- vnode seeking within
3842  *		ooff	- old file offset
3843  *		noffp	- pointer to new file offset
3844  *		ct	- caller context
3845  *
3846  *	RETURN:	0 if success
3847  *		EINVAL if new offset invalid
3848  */
3849 /* ARGSUSED */
3850 static int
3851 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
3852     caller_context_t *ct)
3853 {
3854 	if (vp->v_type == VDIR)
3855 		return (0);
3856 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
3857 }
3858 
3859 /*
3860  * Pre-filter the generic locking function to trap attempts to place
3861  * a mandatory lock on a memory mapped file.
3862  */
3863 static int
3864 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
3865     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
3866 {
3867 	znode_t *zp = VTOZ(vp);
3868 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3869 	int error;
3870 
3871 	ZFS_ENTER(zfsvfs);
3872 	ZFS_VERIFY_ZP(zp);
3873 
3874 	/*
3875 	 * We are following the UFS semantics with respect to mapcnt
3876 	 * here: If we see that the file is mapped already, then we will
3877 	 * return an error, but we don't worry about races between this
3878 	 * function and zfs_map().
3879 	 */
3880 	if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) {
3881 		ZFS_EXIT(zfsvfs);
3882 		return (EAGAIN);
3883 	}
3884 	error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct);
3885 	ZFS_EXIT(zfsvfs);
3886 	return (error);
3887 }
3888 
3889 /*
3890  * If we can't find a page in the cache, we will create a new page
3891  * and fill it with file data.  For efficiency, we may try to fill
3892  * multiple pages at once (klustering) to fill up the supplied page
3893  * list.  Note that the pages to be filled are held with an exclusive
3894  * lock to prevent access by other threads while they are being filled.
3895  */
3896 static int
3897 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
3898     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
3899 {
3900 	znode_t *zp = VTOZ(vp);
3901 	page_t *pp, *cur_pp;
3902 	objset_t *os = zp->z_zfsvfs->z_os;
3903 	u_offset_t io_off, total;
3904 	size_t io_len;
3905 	int err;
3906 
3907 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
3908 		/*
3909 		 * We only have a single page, don't bother klustering
3910 		 */
3911 		io_off = off;
3912 		io_len = PAGESIZE;
3913 		pp = page_create_va(vp, io_off, io_len,
3914 		    PG_EXCL | PG_WAIT, seg, addr);
3915 	} else {
3916 		/*
3917 		 * Try to find enough pages to fill the page list
3918 		 */
3919 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
3920 		    &io_len, off, plsz, 0);
3921 	}
3922 	if (pp == NULL) {
3923 		/*
3924 		 * The page already exists, nothing to do here.
3925 		 */
3926 		*pl = NULL;
3927 		return (0);
3928 	}
3929 
3930 	/*
3931 	 * Fill the pages in the kluster.
3932 	 */
3933 	cur_pp = pp;
3934 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
3935 		caddr_t va;
3936 
3937 		ASSERT3U(io_off, ==, cur_pp->p_offset);
3938 		va = zfs_map_page(cur_pp, S_WRITE);
3939 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va);
3940 		zfs_unmap_page(cur_pp, va);
3941 		if (err) {
3942 			/* On error, toss the entire kluster */
3943 			pvn_read_done(pp, B_ERROR);
3944 			/* convert checksum errors into IO errors */
3945 			if (err == ECKSUM)
3946 				err = EIO;
3947 			return (err);
3948 		}
3949 		cur_pp = cur_pp->p_next;
3950 	}
3951 
3952 	/*
3953 	 * Fill in the page list array from the kluster starting
3954 	 * from the desired offset `off'.
3955 	 * NOTE: the page list will always be null terminated.
3956 	 */
3957 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
3958 	ASSERT(pl == NULL || (*pl)->p_offset == off);
3959 
3960 	return (0);
3961 }
3962 
3963 /*
3964  * Return pointers to the pages for the file region [off, off + len]
3965  * in the pl array.  If plsz is greater than len, this function may
3966  * also return page pointers from after the specified region
3967  * (i.e. the region [off, off + plsz]).  These additional pages are
3968  * only returned if they are already in the cache, or were created as
3969  * part of a klustered read.
3970  *
3971  *	IN:	vp	- vnode of file to get data from.
3972  *		off	- position in file to get data from.
3973  *		len	- amount of data to retrieve.
3974  *		plsz	- length of provided page list.
3975  *		seg	- segment to obtain pages for.
3976  *		addr	- virtual address of fault.
3977  *		rw	- mode of created pages.
3978  *		cr	- credentials of caller.
3979  *		ct	- caller context.
3980  *
3981  *	OUT:	protp	- protection mode of created pages.
3982  *		pl	- list of pages created.
3983  *
3984  *	RETURN:	0 if success
3985  *		error code if failure
3986  *
3987  * Timestamps:
3988  *	vp - atime updated
3989  */
3990 /* ARGSUSED */
3991 static int
3992 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
3993 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3994 	enum seg_rw rw, cred_t *cr, caller_context_t *ct)
3995 {
3996 	znode_t		*zp = VTOZ(vp);
3997 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3998 	page_t		**pl0 = pl;
3999 	int		err = 0;
4000 
4001 	/* we do our own caching, faultahead is unnecessary */
4002 	if (pl == NULL)
4003 		return (0);
4004 	else if (len > plsz)
4005 		len = plsz;
4006 	else
4007 		len = P2ROUNDUP(len, PAGESIZE);
4008 	ASSERT(plsz >= len);
4009 
4010 	ZFS_ENTER(zfsvfs);
4011 	ZFS_VERIFY_ZP(zp);
4012 
4013 	if (protp)
4014 		*protp = PROT_ALL;
4015 
4016 	/*
4017 	 * Loop through the requested range [off, off + len) looking
4018 	 * for pages.  If we don't find a page, we will need to create
4019 	 * a new page and fill it with data from the file.
4020 	 */
4021 	while (len > 0) {
4022 		if (*pl = page_lookup(vp, off, SE_SHARED))
4023 			*(pl+1) = NULL;
4024 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4025 			goto out;
4026 		while (*pl) {
4027 			ASSERT3U((*pl)->p_offset, ==, off);
4028 			off += PAGESIZE;
4029 			addr += PAGESIZE;
4030 			if (len > 0) {
4031 				ASSERT3U(len, >=, PAGESIZE);
4032 				len -= PAGESIZE;
4033 			}
4034 			ASSERT3U(plsz, >=, PAGESIZE);
4035 			plsz -= PAGESIZE;
4036 			pl++;
4037 		}
4038 	}
4039 
4040 	/*
4041 	 * Fill out the page array with any pages already in the cache.
4042 	 */
4043 	while (plsz > 0 &&
4044 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4045 			off += PAGESIZE;
4046 			plsz -= PAGESIZE;
4047 	}
4048 out:
4049 	if (err) {
4050 		/*
4051 		 * Release any pages we have previously locked.
4052 		 */
4053 		while (pl > pl0)
4054 			page_unlock(*--pl);
4055 	} else {
4056 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4057 	}
4058 
4059 	*pl = NULL;
4060 
4061 	ZFS_EXIT(zfsvfs);
4062 	return (err);
4063 }
4064 
4065 /*
4066  * Request a memory map for a section of a file.  This code interacts
4067  * with common code and the VM system as follows:
4068  *
4069  *	common code calls mmap(), which ends up in smmap_common()
4070  *
4071  *	this calls VOP_MAP(), which takes you into (say) zfs
4072  *
4073  *	zfs_map() calls as_map(), passing segvn_create() as the callback
4074  *
4075  *	segvn_create() creates the new segment and calls VOP_ADDMAP()
4076  *
4077  *	zfs_addmap() updates z_mapcnt
4078  */
4079 /*ARGSUSED*/
4080 static int
4081 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4082     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4083     caller_context_t *ct)
4084 {
4085 	znode_t *zp = VTOZ(vp);
4086 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4087 	segvn_crargs_t	vn_a;
4088 	int		error;
4089 
4090 	ZFS_ENTER(zfsvfs);
4091 	ZFS_VERIFY_ZP(zp);
4092 
4093 	if ((prot & PROT_WRITE) &&
4094 	    (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY |
4095 	    ZFS_APPENDONLY))) {
4096 		ZFS_EXIT(zfsvfs);
4097 		return (EPERM);
4098 	}
4099 
4100 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4101 	    (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) {
4102 		ZFS_EXIT(zfsvfs);
4103 		return (EACCES);
4104 	}
4105 
4106 	if (vp->v_flag & VNOMAP) {
4107 		ZFS_EXIT(zfsvfs);
4108 		return (ENOSYS);
4109 	}
4110 
4111 	if (off < 0 || len > MAXOFFSET_T - off) {
4112 		ZFS_EXIT(zfsvfs);
4113 		return (ENXIO);
4114 	}
4115 
4116 	if (vp->v_type != VREG) {
4117 		ZFS_EXIT(zfsvfs);
4118 		return (ENODEV);
4119 	}
4120 
4121 	/*
4122 	 * If file is locked, disallow mapping.
4123 	 */
4124 	if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) {
4125 		ZFS_EXIT(zfsvfs);
4126 		return (EAGAIN);
4127 	}
4128 
4129 	as_rangelock(as);
4130 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4131 	if (error != 0) {
4132 		as_rangeunlock(as);
4133 		ZFS_EXIT(zfsvfs);
4134 		return (error);
4135 	}
4136 
4137 	vn_a.vp = vp;
4138 	vn_a.offset = (u_offset_t)off;
4139 	vn_a.type = flags & MAP_TYPE;
4140 	vn_a.prot = prot;
4141 	vn_a.maxprot = maxprot;
4142 	vn_a.cred = cr;
4143 	vn_a.amp = NULL;
4144 	vn_a.flags = flags & ~MAP_TYPE;
4145 	vn_a.szc = 0;
4146 	vn_a.lgrp_mem_policy_flags = 0;
4147 
4148 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4149 
4150 	as_rangeunlock(as);
4151 	ZFS_EXIT(zfsvfs);
4152 	return (error);
4153 }
4154 
4155 /* ARGSUSED */
4156 static int
4157 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4158     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4159     caller_context_t *ct)
4160 {
4161 	uint64_t pages = btopr(len);
4162 
4163 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4164 	return (0);
4165 }
4166 
4167 /*
4168  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4169  * more accurate mtime for the associated file.  Since we don't have a way of
4170  * detecting when the data was actually modified, we have to resort to
4171  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4172  * last page is pushed.  The problem occurs when the msync() call is omitted,
4173  * which by far the most common case:
4174  *
4175  * 	open()
4176  * 	mmap()
4177  * 	<modify memory>
4178  * 	munmap()
4179  * 	close()
4180  * 	<time lapse>
4181  * 	putpage() via fsflush
4182  *
4183  * If we wait until fsflush to come along, we can have a modification time that
4184  * is some arbitrary point in the future.  In order to prevent this in the
4185  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4186  * torn down.
4187  */
4188 /* ARGSUSED */
4189 static int
4190 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4191     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4192     caller_context_t *ct)
4193 {
4194 	uint64_t pages = btopr(len);
4195 
4196 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4197 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4198 
4199 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4200 	    vn_has_cached_data(vp))
4201 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4202 
4203 	return (0);
4204 }
4205 
4206 /*
4207  * Free or allocate space in a file.  Currently, this function only
4208  * supports the `F_FREESP' command.  However, this command is somewhat
4209  * misnamed, as its functionality includes the ability to allocate as
4210  * well as free space.
4211  *
4212  *	IN:	vp	- vnode of file to free data in.
4213  *		cmd	- action to take (only F_FREESP supported).
4214  *		bfp	- section of file to free/alloc.
4215  *		flag	- current file open mode flags.
4216  *		offset	- current file offset.
4217  *		cr	- credentials of caller [UNUSED].
4218  *		ct	- caller context.
4219  *
4220  *	RETURN:	0 if success
4221  *		error code if failure
4222  *
4223  * Timestamps:
4224  *	vp - ctime|mtime updated
4225  */
4226 /* ARGSUSED */
4227 static int
4228 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4229     offset_t offset, cred_t *cr, caller_context_t *ct)
4230 {
4231 	znode_t		*zp = VTOZ(vp);
4232 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4233 	uint64_t	off, len;
4234 	int		error;
4235 
4236 	ZFS_ENTER(zfsvfs);
4237 	ZFS_VERIFY_ZP(zp);
4238 
4239 	if (cmd != F_FREESP) {
4240 		ZFS_EXIT(zfsvfs);
4241 		return (EINVAL);
4242 	}
4243 
4244 	if (error = convoff(vp, bfp, 0, offset)) {
4245 		ZFS_EXIT(zfsvfs);
4246 		return (error);
4247 	}
4248 
4249 	if (bfp->l_len < 0) {
4250 		ZFS_EXIT(zfsvfs);
4251 		return (EINVAL);
4252 	}
4253 
4254 	off = bfp->l_start;
4255 	len = bfp->l_len; /* 0 means from off to end of file */
4256 
4257 	error = zfs_freesp(zp, off, len, flag, TRUE);
4258 
4259 	ZFS_EXIT(zfsvfs);
4260 	return (error);
4261 }
4262 
4263 /*ARGSUSED*/
4264 static int
4265 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4266 {
4267 	znode_t		*zp = VTOZ(vp);
4268 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4269 	uint32_t	gen;
4270 	uint64_t	object = zp->z_id;
4271 	zfid_short_t	*zfid;
4272 	int		size, i;
4273 
4274 	ZFS_ENTER(zfsvfs);
4275 	ZFS_VERIFY_ZP(zp);
4276 	gen = (uint32_t)zp->z_gen;
4277 
4278 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4279 	if (fidp->fid_len < size) {
4280 		fidp->fid_len = size;
4281 		ZFS_EXIT(zfsvfs);
4282 		return (ENOSPC);
4283 	}
4284 
4285 	zfid = (zfid_short_t *)fidp;
4286 
4287 	zfid->zf_len = size;
4288 
4289 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4290 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4291 
4292 	/* Must have a non-zero generation number to distinguish from .zfs */
4293 	if (gen == 0)
4294 		gen = 1;
4295 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4296 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4297 
4298 	if (size == LONG_FID_LEN) {
4299 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4300 		zfid_long_t	*zlfid;
4301 
4302 		zlfid = (zfid_long_t *)fidp;
4303 
4304 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4305 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4306 
4307 		/* XXX - this should be the generation number for the objset */
4308 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4309 			zlfid->zf_setgen[i] = 0;
4310 	}
4311 
4312 	ZFS_EXIT(zfsvfs);
4313 	return (0);
4314 }
4315 
4316 static int
4317 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4318     caller_context_t *ct)
4319 {
4320 	znode_t		*zp, *xzp;
4321 	zfsvfs_t	*zfsvfs;
4322 	zfs_dirlock_t	*dl;
4323 	int		error;
4324 
4325 	switch (cmd) {
4326 	case _PC_LINK_MAX:
4327 		*valp = ULONG_MAX;
4328 		return (0);
4329 
4330 	case _PC_FILESIZEBITS:
4331 		*valp = 64;
4332 		return (0);
4333 
4334 	case _PC_XATTR_EXISTS:
4335 		zp = VTOZ(vp);
4336 		zfsvfs = zp->z_zfsvfs;
4337 		ZFS_ENTER(zfsvfs);
4338 		ZFS_VERIFY_ZP(zp);
4339 		*valp = 0;
4340 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4341 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4342 		if (error == 0) {
4343 			zfs_dirent_unlock(dl);
4344 			if (!zfs_dirempty(xzp))
4345 				*valp = 1;
4346 			VN_RELE(ZTOV(xzp));
4347 		} else if (error == ENOENT) {
4348 			/*
4349 			 * If there aren't extended attributes, it's the
4350 			 * same as having zero of them.
4351 			 */
4352 			error = 0;
4353 		}
4354 		ZFS_EXIT(zfsvfs);
4355 		return (error);
4356 
4357 	case _PC_SATTR_ENABLED:
4358 	case _PC_SATTR_EXISTS:
4359 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4360 		    (vp->v_type == VREG || vp->v_type == VDIR);
4361 		return (0);
4362 
4363 	case _PC_ACL_ENABLED:
4364 		*valp = _ACL_ACE_ENABLED;
4365 		return (0);
4366 
4367 	case _PC_MIN_HOLE_SIZE:
4368 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4369 		return (0);
4370 
4371 	default:
4372 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4373 	}
4374 }
4375 
4376 /*ARGSUSED*/
4377 static int
4378 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4379     caller_context_t *ct)
4380 {
4381 	znode_t *zp = VTOZ(vp);
4382 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4383 	int error;
4384 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4385 
4386 	ZFS_ENTER(zfsvfs);
4387 	ZFS_VERIFY_ZP(zp);
4388 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4389 	ZFS_EXIT(zfsvfs);
4390 
4391 	return (error);
4392 }
4393 
4394 /*ARGSUSED*/
4395 static int
4396 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4397     caller_context_t *ct)
4398 {
4399 	znode_t *zp = VTOZ(vp);
4400 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4401 	int error;
4402 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4403 
4404 	ZFS_ENTER(zfsvfs);
4405 	ZFS_VERIFY_ZP(zp);
4406 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4407 	ZFS_EXIT(zfsvfs);
4408 	return (error);
4409 }
4410 
4411 /*
4412  * Predeclare these here so that the compiler assumes that
4413  * this is an "old style" function declaration that does
4414  * not include arguments => we won't get type mismatch errors
4415  * in the initializations that follow.
4416  */
4417 static int zfs_inval();
4418 static int zfs_isdir();
4419 
4420 static int
4421 zfs_inval()
4422 {
4423 	return (EINVAL);
4424 }
4425 
4426 static int
4427 zfs_isdir()
4428 {
4429 	return (EISDIR);
4430 }
4431 /*
4432  * Directory vnode operations template
4433  */
4434 vnodeops_t *zfs_dvnodeops;
4435 const fs_operation_def_t zfs_dvnodeops_template[] = {
4436 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
4437 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
4438 	VOPNAME_READ,		{ .error = zfs_isdir },
4439 	VOPNAME_WRITE,		{ .error = zfs_isdir },
4440 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
4441 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4442 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4443 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4444 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
4445 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
4446 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
4447 	VOPNAME_LINK,		{ .vop_link = zfs_link },
4448 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4449 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
4450 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
4451 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
4452 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
4453 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
4454 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4455 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4456 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
4457 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4458 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
4459 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
4460 	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
4461 	NULL,			NULL
4462 };
4463 
4464 /*
4465  * Regular file vnode operations template
4466  */
4467 vnodeops_t *zfs_fvnodeops;
4468 const fs_operation_def_t zfs_fvnodeops_template[] = {
4469 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
4470 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
4471 	VOPNAME_READ,		{ .vop_read = zfs_read },
4472 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
4473 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
4474 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4475 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4476 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4477 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
4478 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4479 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
4480 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4481 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4482 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
4483 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
4484 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
4485 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
4486 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
4487 	VOPNAME_MAP,		{ .vop_map = zfs_map },
4488 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
4489 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
4490 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4491 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
4492 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
4493 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
4494 	NULL,			NULL
4495 };
4496 
4497 /*
4498  * Symbolic link vnode operations template
4499  */
4500 vnodeops_t *zfs_symvnodeops;
4501 const fs_operation_def_t zfs_symvnodeops_template[] = {
4502 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4503 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4504 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4505 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4506 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
4507 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4508 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4509 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4510 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
4511 	NULL,			NULL
4512 };
4513 
4514 /*
4515  * special share hidden files vnode operations template
4516  */
4517 vnodeops_t *zfs_sharevnodeops;
4518 const fs_operation_def_t zfs_sharevnodeops_template[] = {
4519 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4520 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4521 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4522 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4523 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4524 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
4525 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
4526 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
4527 	NULL,			NULL
4528 };
4529 
4530 /*
4531  * Extended attribute directory vnode operations template
4532  *	This template is identical to the directory vnodes
4533  *	operation template except for restricted operations:
4534  *		VOP_MKDIR()
4535  *		VOP_SYMLINK()
4536  * Note that there are other restrictions embedded in:
4537  *	zfs_create()	- restrict type to VREG
4538  *	zfs_link()	- no links into/out of attribute space
4539  *	zfs_rename()	- no moves into/out of attribute space
4540  */
4541 vnodeops_t *zfs_xdvnodeops;
4542 const fs_operation_def_t zfs_xdvnodeops_template[] = {
4543 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
4544 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
4545 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
4546 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4547 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4548 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4549 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
4550 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
4551 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
4552 	VOPNAME_LINK,		{ .vop_link = zfs_link },
4553 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4554 	VOPNAME_MKDIR,		{ .error = zfs_inval },
4555 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
4556 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
4557 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
4558 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
4559 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4560 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4561 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
4562 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4563 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
4564 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
4565 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
4566 	NULL,			NULL
4567 };
4568 
4569 /*
4570  * Error vnode operations template
4571  */
4572 vnodeops_t *zfs_evnodeops;
4573 const fs_operation_def_t zfs_evnodeops_template[] = {
4574 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4575 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4576 	NULL,			NULL
4577 };
4578