xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision dfc0fed81813380fb526f1a003d3be17ab26ce3b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  */
25 
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zil.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/dmu.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dsl_dataset.h>
48 #include <sys/dsl_deleg.h>
49 #include <sys/spa.h>
50 #include <sys/zap.h>
51 #include <sys/sa.h>
52 #include <sys/sa_impl.h>
53 #include <sys/varargs.h>
54 #include <sys/policy.h>
55 #include <sys/atomic.h>
56 #include <sys/mkdev.h>
57 #include <sys/modctl.h>
58 #include <sys/refstr.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/zfs_ctldir.h>
61 #include <sys/zfs_fuid.h>
62 #include <sys/bootconf.h>
63 #include <sys/sunddi.h>
64 #include <sys/dnlc.h>
65 #include <sys/dmu_objset.h>
66 #include <sys/spa_boot.h>
67 #include "zfs_comutil.h"
68 
69 int zfsfstype;
70 vfsops_t *zfs_vfsops = NULL;
71 static major_t zfs_major;
72 static minor_t zfs_minor;
73 static kmutex_t	zfs_dev_mtx;
74 
75 extern int sys_shutdown;
76 
77 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
78 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
79 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
80 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
81 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
82 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
83 static void zfs_freevfs(vfs_t *vfsp);
84 
85 static const fs_operation_def_t zfs_vfsops_template[] = {
86 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
87 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
88 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
89 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
90 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
91 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
92 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
93 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
94 	NULL,			NULL
95 };
96 
97 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
98 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
99 	NULL,			NULL
100 };
101 
102 /*
103  * We need to keep a count of active fs's.
104  * This is necessary to prevent our module
105  * from being unloaded after a umount -f
106  */
107 static uint32_t	zfs_active_fs_count = 0;
108 
109 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
110 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
111 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
112 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
113 
114 /*
115  * MO_DEFAULT is not used since the default value is determined
116  * by the equivalent property.
117  */
118 static mntopt_t mntopts[] = {
119 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
120 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
121 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
122 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
123 };
124 
125 static mntopts_t zfs_mntopts = {
126 	sizeof (mntopts) / sizeof (mntopt_t),
127 	mntopts
128 };
129 
130 /*ARGSUSED*/
131 int
132 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
133 {
134 	/*
135 	 * Data integrity is job one.  We don't want a compromised kernel
136 	 * writing to the storage pool, so we never sync during panic.
137 	 */
138 	if (panicstr)
139 		return (0);
140 
141 	/*
142 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
143 	 * to sync metadata, which they would otherwise cache indefinitely.
144 	 * Semantically, the only requirement is that the sync be initiated.
145 	 * The DMU syncs out txgs frequently, so there's nothing to do.
146 	 */
147 	if (flag & SYNC_ATTR)
148 		return (0);
149 
150 	if (vfsp != NULL) {
151 		/*
152 		 * Sync a specific filesystem.
153 		 */
154 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
155 		dsl_pool_t *dp;
156 
157 		ZFS_ENTER(zfsvfs);
158 		dp = dmu_objset_pool(zfsvfs->z_os);
159 
160 		/*
161 		 * If the system is shutting down, then skip any
162 		 * filesystems which may exist on a suspended pool.
163 		 */
164 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
165 			ZFS_EXIT(zfsvfs);
166 			return (0);
167 		}
168 
169 		if (zfsvfs->z_log != NULL)
170 			zil_commit(zfsvfs->z_log, 0);
171 
172 		ZFS_EXIT(zfsvfs);
173 	} else {
174 		/*
175 		 * Sync all ZFS filesystems.  This is what happens when you
176 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
177 		 * request by waiting for all pools to commit all dirty data.
178 		 */
179 		spa_sync_allpools();
180 	}
181 
182 	return (0);
183 }
184 
185 static int
186 zfs_create_unique_device(dev_t *dev)
187 {
188 	major_t new_major;
189 
190 	do {
191 		ASSERT3U(zfs_minor, <=, MAXMIN32);
192 		minor_t start = zfs_minor;
193 		do {
194 			mutex_enter(&zfs_dev_mtx);
195 			if (zfs_minor >= MAXMIN32) {
196 				/*
197 				 * If we're still using the real major
198 				 * keep out of /dev/zfs and /dev/zvol minor
199 				 * number space.  If we're using a getudev()'ed
200 				 * major number, we can use all of its minors.
201 				 */
202 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
203 					zfs_minor = ZFS_MIN_MINOR;
204 				else
205 					zfs_minor = 0;
206 			} else {
207 				zfs_minor++;
208 			}
209 			*dev = makedevice(zfs_major, zfs_minor);
210 			mutex_exit(&zfs_dev_mtx);
211 		} while (vfs_devismounted(*dev) && zfs_minor != start);
212 		if (zfs_minor == start) {
213 			/*
214 			 * We are using all ~262,000 minor numbers for the
215 			 * current major number.  Create a new major number.
216 			 */
217 			if ((new_major = getudev()) == (major_t)-1) {
218 				cmn_err(CE_WARN,
219 				    "zfs_mount: Can't get unique major "
220 				    "device number.");
221 				return (-1);
222 			}
223 			mutex_enter(&zfs_dev_mtx);
224 			zfs_major = new_major;
225 			zfs_minor = 0;
226 
227 			mutex_exit(&zfs_dev_mtx);
228 		} else {
229 			break;
230 		}
231 		/* CONSTANTCONDITION */
232 	} while (1);
233 
234 	return (0);
235 }
236 
237 static void
238 atime_changed_cb(void *arg, uint64_t newval)
239 {
240 	zfsvfs_t *zfsvfs = arg;
241 
242 	if (newval == TRUE) {
243 		zfsvfs->z_atime = TRUE;
244 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
245 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
246 	} else {
247 		zfsvfs->z_atime = FALSE;
248 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
249 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
250 	}
251 }
252 
253 static void
254 xattr_changed_cb(void *arg, uint64_t newval)
255 {
256 	zfsvfs_t *zfsvfs = arg;
257 
258 	if (newval == TRUE) {
259 		/* XXX locking on vfs_flag? */
260 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
261 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
262 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
263 	} else {
264 		/* XXX locking on vfs_flag? */
265 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
266 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
267 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
268 	}
269 }
270 
271 static void
272 blksz_changed_cb(void *arg, uint64_t newval)
273 {
274 	zfsvfs_t *zfsvfs = arg;
275 
276 	if (newval < SPA_MINBLOCKSIZE ||
277 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
278 		newval = SPA_MAXBLOCKSIZE;
279 
280 	zfsvfs->z_max_blksz = newval;
281 	zfsvfs->z_vfs->vfs_bsize = newval;
282 }
283 
284 static void
285 readonly_changed_cb(void *arg, uint64_t newval)
286 {
287 	zfsvfs_t *zfsvfs = arg;
288 
289 	if (newval) {
290 		/* XXX locking on vfs_flag? */
291 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
292 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
293 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
294 	} else {
295 		/* XXX locking on vfs_flag? */
296 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
297 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
298 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
299 	}
300 }
301 
302 static void
303 devices_changed_cb(void *arg, uint64_t newval)
304 {
305 	zfsvfs_t *zfsvfs = arg;
306 
307 	if (newval == FALSE) {
308 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
309 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
310 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
311 	} else {
312 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
313 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
314 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
315 	}
316 }
317 
318 static void
319 setuid_changed_cb(void *arg, uint64_t newval)
320 {
321 	zfsvfs_t *zfsvfs = arg;
322 
323 	if (newval == FALSE) {
324 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
325 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
326 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
327 	} else {
328 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
329 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
330 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
331 	}
332 }
333 
334 static void
335 exec_changed_cb(void *arg, uint64_t newval)
336 {
337 	zfsvfs_t *zfsvfs = arg;
338 
339 	if (newval == FALSE) {
340 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
341 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
342 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
343 	} else {
344 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
345 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
346 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
347 	}
348 }
349 
350 /*
351  * The nbmand mount option can be changed at mount time.
352  * We can't allow it to be toggled on live file systems or incorrect
353  * behavior may be seen from cifs clients
354  *
355  * This property isn't registered via dsl_prop_register(), but this callback
356  * will be called when a file system is first mounted
357  */
358 static void
359 nbmand_changed_cb(void *arg, uint64_t newval)
360 {
361 	zfsvfs_t *zfsvfs = arg;
362 	if (newval == FALSE) {
363 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
364 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
365 	} else {
366 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
367 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
368 	}
369 }
370 
371 static void
372 snapdir_changed_cb(void *arg, uint64_t newval)
373 {
374 	zfsvfs_t *zfsvfs = arg;
375 
376 	zfsvfs->z_show_ctldir = newval;
377 }
378 
379 static void
380 vscan_changed_cb(void *arg, uint64_t newval)
381 {
382 	zfsvfs_t *zfsvfs = arg;
383 
384 	zfsvfs->z_vscan = newval;
385 }
386 
387 static void
388 acl_mode_changed_cb(void *arg, uint64_t newval)
389 {
390 	zfsvfs_t *zfsvfs = arg;
391 
392 	zfsvfs->z_acl_mode = newval;
393 }
394 
395 static void
396 acl_inherit_changed_cb(void *arg, uint64_t newval)
397 {
398 	zfsvfs_t *zfsvfs = arg;
399 
400 	zfsvfs->z_acl_inherit = newval;
401 }
402 
403 static int
404 zfs_register_callbacks(vfs_t *vfsp)
405 {
406 	struct dsl_dataset *ds = NULL;
407 	objset_t *os = NULL;
408 	zfsvfs_t *zfsvfs = NULL;
409 	uint64_t nbmand;
410 	boolean_t readonly = B_FALSE;
411 	boolean_t do_readonly = B_FALSE;
412 	boolean_t setuid = B_FALSE;
413 	boolean_t do_setuid = B_FALSE;
414 	boolean_t exec = B_FALSE;
415 	boolean_t do_exec = B_FALSE;
416 	boolean_t devices = B_FALSE;
417 	boolean_t do_devices = B_FALSE;
418 	boolean_t xattr = B_FALSE;
419 	boolean_t do_xattr = B_FALSE;
420 	boolean_t atime = B_FALSE;
421 	boolean_t do_atime = B_FALSE;
422 	int error = 0;
423 
424 	ASSERT(vfsp);
425 	zfsvfs = vfsp->vfs_data;
426 	ASSERT(zfsvfs);
427 	os = zfsvfs->z_os;
428 
429 	/*
430 	 * The act of registering our callbacks will destroy any mount
431 	 * options we may have.  In order to enable temporary overrides
432 	 * of mount options, we stash away the current values and
433 	 * restore them after we register the callbacks.
434 	 */
435 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
436 	    !spa_writeable(dmu_objset_spa(os))) {
437 		readonly = B_TRUE;
438 		do_readonly = B_TRUE;
439 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
440 		readonly = B_FALSE;
441 		do_readonly = B_TRUE;
442 	}
443 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
444 		devices = B_FALSE;
445 		setuid = B_FALSE;
446 		do_devices = B_TRUE;
447 		do_setuid = B_TRUE;
448 	} else {
449 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
450 			devices = B_FALSE;
451 			do_devices = B_TRUE;
452 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
453 			devices = B_TRUE;
454 			do_devices = B_TRUE;
455 		}
456 
457 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
458 			setuid = B_FALSE;
459 			do_setuid = B_TRUE;
460 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
461 			setuid = B_TRUE;
462 			do_setuid = B_TRUE;
463 		}
464 	}
465 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
466 		exec = B_FALSE;
467 		do_exec = B_TRUE;
468 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
469 		exec = B_TRUE;
470 		do_exec = B_TRUE;
471 	}
472 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
473 		xattr = B_FALSE;
474 		do_xattr = B_TRUE;
475 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
476 		xattr = B_TRUE;
477 		do_xattr = B_TRUE;
478 	}
479 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
480 		atime = B_FALSE;
481 		do_atime = B_TRUE;
482 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
483 		atime = B_TRUE;
484 		do_atime = B_TRUE;
485 	}
486 
487 	/*
488 	 * nbmand is a special property.  It can only be changed at
489 	 * mount time.
490 	 *
491 	 * This is weird, but it is documented to only be changeable
492 	 * at mount time.
493 	 */
494 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
495 		nbmand = B_FALSE;
496 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
497 		nbmand = B_TRUE;
498 	} else {
499 		char osname[MAXNAMELEN];
500 
501 		dmu_objset_name(os, osname);
502 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
503 		    NULL)) {
504 			return (error);
505 		}
506 	}
507 
508 	/*
509 	 * Register property callbacks.
510 	 *
511 	 * It would probably be fine to just check for i/o error from
512 	 * the first prop_register(), but I guess I like to go
513 	 * overboard...
514 	 */
515 	ds = dmu_objset_ds(os);
516 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
517 	error = dsl_prop_register(ds,
518 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
519 	error = error ? error : dsl_prop_register(ds,
520 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
521 	error = error ? error : dsl_prop_register(ds,
522 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
523 	error = error ? error : dsl_prop_register(ds,
524 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
525 	error = error ? error : dsl_prop_register(ds,
526 	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
527 	error = error ? error : dsl_prop_register(ds,
528 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
529 	error = error ? error : dsl_prop_register(ds,
530 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
531 	error = error ? error : dsl_prop_register(ds,
532 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
533 	error = error ? error : dsl_prop_register(ds,
534 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
535 	error = error ? error : dsl_prop_register(ds,
536 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
537 	    zfsvfs);
538 	error = error ? error : dsl_prop_register(ds,
539 	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
540 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
541 	if (error)
542 		goto unregister;
543 
544 	/*
545 	 * Invoke our callbacks to restore temporary mount options.
546 	 */
547 	if (do_readonly)
548 		readonly_changed_cb(zfsvfs, readonly);
549 	if (do_setuid)
550 		setuid_changed_cb(zfsvfs, setuid);
551 	if (do_exec)
552 		exec_changed_cb(zfsvfs, exec);
553 	if (do_devices)
554 		devices_changed_cb(zfsvfs, devices);
555 	if (do_xattr)
556 		xattr_changed_cb(zfsvfs, xattr);
557 	if (do_atime)
558 		atime_changed_cb(zfsvfs, atime);
559 
560 	nbmand_changed_cb(zfsvfs, nbmand);
561 
562 	return (0);
563 
564 unregister:
565 	/*
566 	 * We may attempt to unregister some callbacks that are not
567 	 * registered, but this is OK; it will simply return ENOMSG,
568 	 * which we will ignore.
569 	 */
570 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME),
571 	    atime_changed_cb, zfsvfs);
572 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR),
573 	    xattr_changed_cb, zfsvfs);
574 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
575 	    blksz_changed_cb, zfsvfs);
576 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY),
577 	    readonly_changed_cb, zfsvfs);
578 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES),
579 	    devices_changed_cb, zfsvfs);
580 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID),
581 	    setuid_changed_cb, zfsvfs);
582 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC),
583 	    exec_changed_cb, zfsvfs);
584 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR),
585 	    snapdir_changed_cb, zfsvfs);
586 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE),
587 	    acl_mode_changed_cb, zfsvfs);
588 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT),
589 	    acl_inherit_changed_cb, zfsvfs);
590 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN),
591 	    vscan_changed_cb, zfsvfs);
592 	return (error);
593 }
594 
595 static int
596 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
597     uint64_t *userp, uint64_t *groupp)
598 {
599 	/*
600 	 * Is it a valid type of object to track?
601 	 */
602 	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
603 		return (SET_ERROR(ENOENT));
604 
605 	/*
606 	 * If we have a NULL data pointer
607 	 * then assume the id's aren't changing and
608 	 * return EEXIST to the dmu to let it know to
609 	 * use the same ids
610 	 */
611 	if (data == NULL)
612 		return (SET_ERROR(EEXIST));
613 
614 	if (bonustype == DMU_OT_ZNODE) {
615 		znode_phys_t *znp = data;
616 		*userp = znp->zp_uid;
617 		*groupp = znp->zp_gid;
618 	} else {
619 		int hdrsize;
620 		sa_hdr_phys_t *sap = data;
621 		sa_hdr_phys_t sa = *sap;
622 		boolean_t swap = B_FALSE;
623 
624 		ASSERT(bonustype == DMU_OT_SA);
625 
626 		if (sa.sa_magic == 0) {
627 			/*
628 			 * This should only happen for newly created
629 			 * files that haven't had the znode data filled
630 			 * in yet.
631 			 */
632 			*userp = 0;
633 			*groupp = 0;
634 			return (0);
635 		}
636 		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
637 			sa.sa_magic = SA_MAGIC;
638 			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
639 			swap = B_TRUE;
640 		} else {
641 			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
642 		}
643 
644 		hdrsize = sa_hdrsize(&sa);
645 		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
646 		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
647 		    SA_UID_OFFSET));
648 		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
649 		    SA_GID_OFFSET));
650 		if (swap) {
651 			*userp = BSWAP_64(*userp);
652 			*groupp = BSWAP_64(*groupp);
653 		}
654 	}
655 	return (0);
656 }
657 
658 static void
659 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
660     char *domainbuf, int buflen, uid_t *ridp)
661 {
662 	uint64_t fuid;
663 	const char *domain;
664 
665 	fuid = strtonum(fuidstr, NULL);
666 
667 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
668 	if (domain)
669 		(void) strlcpy(domainbuf, domain, buflen);
670 	else
671 		domainbuf[0] = '\0';
672 	*ridp = FUID_RID(fuid);
673 }
674 
675 static uint64_t
676 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
677 {
678 	switch (type) {
679 	case ZFS_PROP_USERUSED:
680 		return (DMU_USERUSED_OBJECT);
681 	case ZFS_PROP_GROUPUSED:
682 		return (DMU_GROUPUSED_OBJECT);
683 	case ZFS_PROP_USERQUOTA:
684 		return (zfsvfs->z_userquota_obj);
685 	case ZFS_PROP_GROUPQUOTA:
686 		return (zfsvfs->z_groupquota_obj);
687 	}
688 	return (0);
689 }
690 
691 int
692 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
693     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
694 {
695 	int error;
696 	zap_cursor_t zc;
697 	zap_attribute_t za;
698 	zfs_useracct_t *buf = vbuf;
699 	uint64_t obj;
700 
701 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
702 		return (SET_ERROR(ENOTSUP));
703 
704 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
705 	if (obj == 0) {
706 		*bufsizep = 0;
707 		return (0);
708 	}
709 
710 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
711 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
712 	    zap_cursor_advance(&zc)) {
713 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
714 		    *bufsizep)
715 			break;
716 
717 		fuidstr_to_sid(zfsvfs, za.za_name,
718 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
719 
720 		buf->zu_space = za.za_first_integer;
721 		buf++;
722 	}
723 	if (error == ENOENT)
724 		error = 0;
725 
726 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
727 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
728 	*cookiep = zap_cursor_serialize(&zc);
729 	zap_cursor_fini(&zc);
730 	return (error);
731 }
732 
733 /*
734  * buf must be big enough (eg, 32 bytes)
735  */
736 static int
737 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
738     char *buf, boolean_t addok)
739 {
740 	uint64_t fuid;
741 	int domainid = 0;
742 
743 	if (domain && domain[0]) {
744 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
745 		if (domainid == -1)
746 			return (SET_ERROR(ENOENT));
747 	}
748 	fuid = FUID_ENCODE(domainid, rid);
749 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
750 	return (0);
751 }
752 
753 int
754 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
755     const char *domain, uint64_t rid, uint64_t *valp)
756 {
757 	char buf[32];
758 	int err;
759 	uint64_t obj;
760 
761 	*valp = 0;
762 
763 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
764 		return (SET_ERROR(ENOTSUP));
765 
766 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
767 	if (obj == 0)
768 		return (0);
769 
770 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
771 	if (err)
772 		return (err);
773 
774 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
775 	if (err == ENOENT)
776 		err = 0;
777 	return (err);
778 }
779 
780 int
781 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
782     const char *domain, uint64_t rid, uint64_t quota)
783 {
784 	char buf[32];
785 	int err;
786 	dmu_tx_t *tx;
787 	uint64_t *objp;
788 	boolean_t fuid_dirtied;
789 
790 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
791 		return (SET_ERROR(EINVAL));
792 
793 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
794 		return (SET_ERROR(ENOTSUP));
795 
796 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
797 	    &zfsvfs->z_groupquota_obj;
798 
799 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
800 	if (err)
801 		return (err);
802 	fuid_dirtied = zfsvfs->z_fuid_dirty;
803 
804 	tx = dmu_tx_create(zfsvfs->z_os);
805 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
806 	if (*objp == 0) {
807 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
808 		    zfs_userquota_prop_prefixes[type]);
809 	}
810 	if (fuid_dirtied)
811 		zfs_fuid_txhold(zfsvfs, tx);
812 	err = dmu_tx_assign(tx, TXG_WAIT);
813 	if (err) {
814 		dmu_tx_abort(tx);
815 		return (err);
816 	}
817 
818 	mutex_enter(&zfsvfs->z_lock);
819 	if (*objp == 0) {
820 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
821 		    DMU_OT_NONE, 0, tx);
822 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
823 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
824 	}
825 	mutex_exit(&zfsvfs->z_lock);
826 
827 	if (quota == 0) {
828 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
829 		if (err == ENOENT)
830 			err = 0;
831 	} else {
832 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
833 	}
834 	ASSERT(err == 0);
835 	if (fuid_dirtied)
836 		zfs_fuid_sync(zfsvfs, tx);
837 	dmu_tx_commit(tx);
838 	return (err);
839 }
840 
841 boolean_t
842 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
843 {
844 	char buf[32];
845 	uint64_t used, quota, usedobj, quotaobj;
846 	int err;
847 
848 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
849 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
850 
851 	if (quotaobj == 0 || zfsvfs->z_replay)
852 		return (B_FALSE);
853 
854 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
855 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
856 	if (err != 0)
857 		return (B_FALSE);
858 
859 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
860 	if (err != 0)
861 		return (B_FALSE);
862 	return (used >= quota);
863 }
864 
865 boolean_t
866 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
867 {
868 	uint64_t fuid;
869 	uint64_t quotaobj;
870 
871 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
872 
873 	fuid = isgroup ? zp->z_gid : zp->z_uid;
874 
875 	if (quotaobj == 0 || zfsvfs->z_replay)
876 		return (B_FALSE);
877 
878 	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
879 }
880 
881 int
882 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
883 {
884 	objset_t *os;
885 	zfsvfs_t *zfsvfs;
886 	uint64_t zval;
887 	int i, error;
888 	uint64_t sa_obj;
889 
890 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
891 
892 	/*
893 	 * We claim to always be readonly so we can open snapshots;
894 	 * other ZPL code will prevent us from writing to snapshots.
895 	 */
896 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
897 	if (error) {
898 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
899 		return (error);
900 	}
901 
902 	/*
903 	 * Initialize the zfs-specific filesystem structure.
904 	 * Should probably make this a kmem cache, shuffle fields,
905 	 * and just bzero up to z_hold_mtx[].
906 	 */
907 	zfsvfs->z_vfs = NULL;
908 	zfsvfs->z_parent = zfsvfs;
909 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
910 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
911 	zfsvfs->z_os = os;
912 
913 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
914 	if (error) {
915 		goto out;
916 	} else if (zfsvfs->z_version >
917 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
918 		(void) printf("Can't mount a version %lld file system "
919 		    "on a version %lld pool\n. Pool must be upgraded to mount "
920 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
921 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
922 		error = SET_ERROR(ENOTSUP);
923 		goto out;
924 	}
925 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
926 		goto out;
927 	zfsvfs->z_norm = (int)zval;
928 
929 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
930 		goto out;
931 	zfsvfs->z_utf8 = (zval != 0);
932 
933 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
934 		goto out;
935 	zfsvfs->z_case = (uint_t)zval;
936 
937 	/*
938 	 * Fold case on file systems that are always or sometimes case
939 	 * insensitive.
940 	 */
941 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
942 	    zfsvfs->z_case == ZFS_CASE_MIXED)
943 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
944 
945 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
946 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
947 
948 	if (zfsvfs->z_use_sa) {
949 		/* should either have both of these objects or none */
950 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
951 		    &sa_obj);
952 		if (error)
953 			return (error);
954 	} else {
955 		/*
956 		 * Pre SA versions file systems should never touch
957 		 * either the attribute registration or layout objects.
958 		 */
959 		sa_obj = 0;
960 	}
961 
962 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
963 	    &zfsvfs->z_attr_table);
964 	if (error)
965 		goto out;
966 
967 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
968 		sa_register_update_callback(os, zfs_sa_upgrade);
969 
970 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
971 	    &zfsvfs->z_root);
972 	if (error)
973 		goto out;
974 	ASSERT(zfsvfs->z_root != 0);
975 
976 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
977 	    &zfsvfs->z_unlinkedobj);
978 	if (error)
979 		goto out;
980 
981 	error = zap_lookup(os, MASTER_NODE_OBJ,
982 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
983 	    8, 1, &zfsvfs->z_userquota_obj);
984 	if (error && error != ENOENT)
985 		goto out;
986 
987 	error = zap_lookup(os, MASTER_NODE_OBJ,
988 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
989 	    8, 1, &zfsvfs->z_groupquota_obj);
990 	if (error && error != ENOENT)
991 		goto out;
992 
993 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
994 	    &zfsvfs->z_fuid_obj);
995 	if (error && error != ENOENT)
996 		goto out;
997 
998 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
999 	    &zfsvfs->z_shares_dir);
1000 	if (error && error != ENOENT)
1001 		goto out;
1002 
1003 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1004 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
1005 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1006 	    offsetof(znode_t, z_link_node));
1007 	rrw_init(&zfsvfs->z_teardown_lock, B_FALSE);
1008 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
1009 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1010 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1011 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1012 
1013 	*zfvp = zfsvfs;
1014 	return (0);
1015 
1016 out:
1017 	dmu_objset_disown(os, zfsvfs);
1018 	*zfvp = NULL;
1019 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1020 	return (error);
1021 }
1022 
1023 static int
1024 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1025 {
1026 	int error;
1027 
1028 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1029 	if (error)
1030 		return (error);
1031 
1032 	/*
1033 	 * Set the objset user_ptr to track its zfsvfs.
1034 	 */
1035 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1036 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1037 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1038 
1039 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1040 
1041 	/*
1042 	 * If we are not mounting (ie: online recv), then we don't
1043 	 * have to worry about replaying the log as we blocked all
1044 	 * operations out since we closed the ZIL.
1045 	 */
1046 	if (mounting) {
1047 		boolean_t readonly;
1048 
1049 		/*
1050 		 * During replay we remove the read only flag to
1051 		 * allow replays to succeed.
1052 		 */
1053 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1054 		if (readonly != 0)
1055 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1056 		else
1057 			zfs_unlinked_drain(zfsvfs);
1058 
1059 		/*
1060 		 * Parse and replay the intent log.
1061 		 *
1062 		 * Because of ziltest, this must be done after
1063 		 * zfs_unlinked_drain().  (Further note: ziltest
1064 		 * doesn't use readonly mounts, where
1065 		 * zfs_unlinked_drain() isn't called.)  This is because
1066 		 * ziltest causes spa_sync() to think it's committed,
1067 		 * but actually it is not, so the intent log contains
1068 		 * many txg's worth of changes.
1069 		 *
1070 		 * In particular, if object N is in the unlinked set in
1071 		 * the last txg to actually sync, then it could be
1072 		 * actually freed in a later txg and then reallocated
1073 		 * in a yet later txg.  This would write a "create
1074 		 * object N" record to the intent log.  Normally, this
1075 		 * would be fine because the spa_sync() would have
1076 		 * written out the fact that object N is free, before
1077 		 * we could write the "create object N" intent log
1078 		 * record.
1079 		 *
1080 		 * But when we are in ziltest mode, we advance the "open
1081 		 * txg" without actually spa_sync()-ing the changes to
1082 		 * disk.  So we would see that object N is still
1083 		 * allocated and in the unlinked set, and there is an
1084 		 * intent log record saying to allocate it.
1085 		 */
1086 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1087 			if (zil_replay_disable) {
1088 				zil_destroy(zfsvfs->z_log, B_FALSE);
1089 			} else {
1090 				zfsvfs->z_replay = B_TRUE;
1091 				zil_replay(zfsvfs->z_os, zfsvfs,
1092 				    zfs_replay_vector);
1093 				zfsvfs->z_replay = B_FALSE;
1094 			}
1095 		}
1096 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1097 	}
1098 
1099 	return (0);
1100 }
1101 
1102 void
1103 zfsvfs_free(zfsvfs_t *zfsvfs)
1104 {
1105 	int i;
1106 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1107 
1108 	/*
1109 	 * This is a barrier to prevent the filesystem from going away in
1110 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1111 	 * not unmounted. We consider the filesystem valid before the barrier
1112 	 * and invalid after the barrier.
1113 	 */
1114 	rw_enter(&zfsvfs_lock, RW_READER);
1115 	rw_exit(&zfsvfs_lock);
1116 
1117 	zfs_fuid_destroy(zfsvfs);
1118 
1119 	mutex_destroy(&zfsvfs->z_znodes_lock);
1120 	mutex_destroy(&zfsvfs->z_lock);
1121 	list_destroy(&zfsvfs->z_all_znodes);
1122 	rrw_destroy(&zfsvfs->z_teardown_lock);
1123 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1124 	rw_destroy(&zfsvfs->z_fuid_lock);
1125 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1126 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1127 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1128 }
1129 
1130 static void
1131 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1132 {
1133 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1134 	if (zfsvfs->z_vfs) {
1135 		if (zfsvfs->z_use_fuids) {
1136 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1137 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1138 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1139 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1140 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1141 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1142 		} else {
1143 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1144 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1145 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1146 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1147 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1148 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1149 		}
1150 	}
1151 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1152 }
1153 
1154 static int
1155 zfs_domount(vfs_t *vfsp, char *osname)
1156 {
1157 	dev_t mount_dev;
1158 	uint64_t recordsize, fsid_guid;
1159 	int error = 0;
1160 	zfsvfs_t *zfsvfs;
1161 
1162 	ASSERT(vfsp);
1163 	ASSERT(osname);
1164 
1165 	error = zfsvfs_create(osname, &zfsvfs);
1166 	if (error)
1167 		return (error);
1168 	zfsvfs->z_vfs = vfsp;
1169 
1170 	/* Initialize the generic filesystem structure. */
1171 	vfsp->vfs_bcount = 0;
1172 	vfsp->vfs_data = NULL;
1173 
1174 	if (zfs_create_unique_device(&mount_dev) == -1) {
1175 		error = SET_ERROR(ENODEV);
1176 		goto out;
1177 	}
1178 	ASSERT(vfs_devismounted(mount_dev) == 0);
1179 
1180 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1181 	    NULL))
1182 		goto out;
1183 
1184 	vfsp->vfs_dev = mount_dev;
1185 	vfsp->vfs_fstype = zfsfstype;
1186 	vfsp->vfs_bsize = recordsize;
1187 	vfsp->vfs_flag |= VFS_NOTRUNC;
1188 	vfsp->vfs_data = zfsvfs;
1189 
1190 	/*
1191 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1192 	 * separates our fsid from any other filesystem types, and a
1193 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1194 	 * all objsets open on this system, provided by unique_create().
1195 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1196 	 * because that's where other Solaris filesystems put it.
1197 	 */
1198 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1199 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1200 	vfsp->vfs_fsid.val[0] = fsid_guid;
1201 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1202 	    zfsfstype & 0xFF;
1203 
1204 	/*
1205 	 * Set features for file system.
1206 	 */
1207 	zfs_set_fuid_feature(zfsvfs);
1208 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1209 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1210 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1211 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1212 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1213 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1214 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1215 	}
1216 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1217 
1218 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1219 		uint64_t pval;
1220 
1221 		atime_changed_cb(zfsvfs, B_FALSE);
1222 		readonly_changed_cb(zfsvfs, B_TRUE);
1223 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1224 			goto out;
1225 		xattr_changed_cb(zfsvfs, pval);
1226 		zfsvfs->z_issnap = B_TRUE;
1227 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1228 
1229 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1230 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1231 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1232 	} else {
1233 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1234 	}
1235 
1236 	if (!zfsvfs->z_issnap)
1237 		zfsctl_create(zfsvfs);
1238 out:
1239 	if (error) {
1240 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1241 		zfsvfs_free(zfsvfs);
1242 	} else {
1243 		atomic_add_32(&zfs_active_fs_count, 1);
1244 	}
1245 
1246 	return (error);
1247 }
1248 
1249 void
1250 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1251 {
1252 	objset_t *os = zfsvfs->z_os;
1253 	struct dsl_dataset *ds;
1254 
1255 	/*
1256 	 * Unregister properties.
1257 	 */
1258 	if (!dmu_objset_is_snapshot(os)) {
1259 		ds = dmu_objset_ds(os);
1260 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1261 		    zfsvfs) == 0);
1262 
1263 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1264 		    zfsvfs) == 0);
1265 
1266 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1267 		    zfsvfs) == 0);
1268 
1269 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1270 		    zfsvfs) == 0);
1271 
1272 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1273 		    zfsvfs) == 0);
1274 
1275 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1276 		    zfsvfs) == 0);
1277 
1278 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1279 		    zfsvfs) == 0);
1280 
1281 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1282 		    zfsvfs) == 0);
1283 
1284 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1285 		    zfsvfs) == 0);
1286 
1287 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1288 		    acl_inherit_changed_cb, zfsvfs) == 0);
1289 
1290 		VERIFY(dsl_prop_unregister(ds, "vscan",
1291 		    vscan_changed_cb, zfsvfs) == 0);
1292 	}
1293 }
1294 
1295 /*
1296  * Convert a decimal digit string to a uint64_t integer.
1297  */
1298 static int
1299 str_to_uint64(char *str, uint64_t *objnum)
1300 {
1301 	uint64_t num = 0;
1302 
1303 	while (*str) {
1304 		if (*str < '0' || *str > '9')
1305 			return (SET_ERROR(EINVAL));
1306 
1307 		num = num*10 + *str++ - '0';
1308 	}
1309 
1310 	*objnum = num;
1311 	return (0);
1312 }
1313 
1314 /*
1315  * The boot path passed from the boot loader is in the form of
1316  * "rootpool-name/root-filesystem-object-number'. Convert this
1317  * string to a dataset name: "rootpool-name/root-filesystem-name".
1318  */
1319 static int
1320 zfs_parse_bootfs(char *bpath, char *outpath)
1321 {
1322 	char *slashp;
1323 	uint64_t objnum;
1324 	int error;
1325 
1326 	if (*bpath == 0 || *bpath == '/')
1327 		return (SET_ERROR(EINVAL));
1328 
1329 	(void) strcpy(outpath, bpath);
1330 
1331 	slashp = strchr(bpath, '/');
1332 
1333 	/* if no '/', just return the pool name */
1334 	if (slashp == NULL) {
1335 		return (0);
1336 	}
1337 
1338 	/* if not a number, just return the root dataset name */
1339 	if (str_to_uint64(slashp+1, &objnum)) {
1340 		return (0);
1341 	}
1342 
1343 	*slashp = '\0';
1344 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1345 	*slashp = '/';
1346 
1347 	return (error);
1348 }
1349 
1350 /*
1351  * zfs_check_global_label:
1352  *	Check that the hex label string is appropriate for the dataset
1353  *	being mounted into the global_zone proper.
1354  *
1355  *	Return an error if the hex label string is not default or
1356  *	admin_low/admin_high.  For admin_low labels, the corresponding
1357  *	dataset must be readonly.
1358  */
1359 int
1360 zfs_check_global_label(const char *dsname, const char *hexsl)
1361 {
1362 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1363 		return (0);
1364 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1365 		return (0);
1366 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1367 		/* must be readonly */
1368 		uint64_t rdonly;
1369 
1370 		if (dsl_prop_get_integer(dsname,
1371 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1372 			return (SET_ERROR(EACCES));
1373 		return (rdonly ? 0 : EACCES);
1374 	}
1375 	return (SET_ERROR(EACCES));
1376 }
1377 
1378 /*
1379  * zfs_mount_label_policy:
1380  *	Determine whether the mount is allowed according to MAC check.
1381  *	by comparing (where appropriate) label of the dataset against
1382  *	the label of the zone being mounted into.  If the dataset has
1383  *	no label, create one.
1384  *
1385  *	Returns:
1386  *		 0 :	access allowed
1387  *		>0 :	error code, such as EACCES
1388  */
1389 static int
1390 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1391 {
1392 	int		error, retv;
1393 	zone_t		*mntzone = NULL;
1394 	ts_label_t	*mnt_tsl;
1395 	bslabel_t	*mnt_sl;
1396 	bslabel_t	ds_sl;
1397 	char		ds_hexsl[MAXNAMELEN];
1398 
1399 	retv = EACCES;				/* assume the worst */
1400 
1401 	/*
1402 	 * Start by getting the dataset label if it exists.
1403 	 */
1404 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1405 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1406 	if (error)
1407 		return (SET_ERROR(EACCES));
1408 
1409 	/*
1410 	 * If labeling is NOT enabled, then disallow the mount of datasets
1411 	 * which have a non-default label already.  No other label checks
1412 	 * are needed.
1413 	 */
1414 	if (!is_system_labeled()) {
1415 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1416 			return (0);
1417 		return (SET_ERROR(EACCES));
1418 	}
1419 
1420 	/*
1421 	 * Get the label of the mountpoint.  If mounting into the global
1422 	 * zone (i.e. mountpoint is not within an active zone and the
1423 	 * zoned property is off), the label must be default or
1424 	 * admin_low/admin_high only; no other checks are needed.
1425 	 */
1426 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1427 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1428 		uint64_t zoned;
1429 
1430 		zone_rele(mntzone);
1431 
1432 		if (dsl_prop_get_integer(osname,
1433 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1434 			return (SET_ERROR(EACCES));
1435 		if (!zoned)
1436 			return (zfs_check_global_label(osname, ds_hexsl));
1437 		else
1438 			/*
1439 			 * This is the case of a zone dataset being mounted
1440 			 * initially, before the zone has been fully created;
1441 			 * allow this mount into global zone.
1442 			 */
1443 			return (0);
1444 	}
1445 
1446 	mnt_tsl = mntzone->zone_slabel;
1447 	ASSERT(mnt_tsl != NULL);
1448 	label_hold(mnt_tsl);
1449 	mnt_sl = label2bslabel(mnt_tsl);
1450 
1451 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1452 		/*
1453 		 * The dataset doesn't have a real label, so fabricate one.
1454 		 */
1455 		char *str = NULL;
1456 
1457 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1458 		    dsl_prop_set_string(osname,
1459 		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1460 		    ZPROP_SRC_LOCAL, str) == 0)
1461 			retv = 0;
1462 		if (str != NULL)
1463 			kmem_free(str, strlen(str) + 1);
1464 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1465 		/*
1466 		 * Now compare labels to complete the MAC check.  If the
1467 		 * labels are equal then allow access.  If the mountpoint
1468 		 * label dominates the dataset label, allow readonly access.
1469 		 * Otherwise, access is denied.
1470 		 */
1471 		if (blequal(mnt_sl, &ds_sl))
1472 			retv = 0;
1473 		else if (bldominates(mnt_sl, &ds_sl)) {
1474 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1475 			retv = 0;
1476 		}
1477 	}
1478 
1479 	label_rele(mnt_tsl);
1480 	zone_rele(mntzone);
1481 	return (retv);
1482 }
1483 
1484 static int
1485 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1486 {
1487 	int error = 0;
1488 	static int zfsrootdone = 0;
1489 	zfsvfs_t *zfsvfs = NULL;
1490 	znode_t *zp = NULL;
1491 	vnode_t *vp = NULL;
1492 	char *zfs_bootfs;
1493 	char *zfs_devid;
1494 
1495 	ASSERT(vfsp);
1496 
1497 	/*
1498 	 * The filesystem that we mount as root is defined in the
1499 	 * boot property "zfs-bootfs" with a format of
1500 	 * "poolname/root-dataset-objnum".
1501 	 */
1502 	if (why == ROOT_INIT) {
1503 		if (zfsrootdone++)
1504 			return (SET_ERROR(EBUSY));
1505 		/*
1506 		 * the process of doing a spa_load will require the
1507 		 * clock to be set before we could (for example) do
1508 		 * something better by looking at the timestamp on
1509 		 * an uberblock, so just set it to -1.
1510 		 */
1511 		clkset(-1);
1512 
1513 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1514 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1515 			    "bootfs name");
1516 			return (SET_ERROR(EINVAL));
1517 		}
1518 		zfs_devid = spa_get_bootprop("diskdevid");
1519 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1520 		if (zfs_devid)
1521 			spa_free_bootprop(zfs_devid);
1522 		if (error) {
1523 			spa_free_bootprop(zfs_bootfs);
1524 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1525 			    error);
1526 			return (error);
1527 		}
1528 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1529 			spa_free_bootprop(zfs_bootfs);
1530 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1531 			    error);
1532 			return (error);
1533 		}
1534 
1535 		spa_free_bootprop(zfs_bootfs);
1536 
1537 		if (error = vfs_lock(vfsp))
1538 			return (error);
1539 
1540 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1541 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1542 			goto out;
1543 		}
1544 
1545 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1546 		ASSERT(zfsvfs);
1547 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1548 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1549 			goto out;
1550 		}
1551 
1552 		vp = ZTOV(zp);
1553 		mutex_enter(&vp->v_lock);
1554 		vp->v_flag |= VROOT;
1555 		mutex_exit(&vp->v_lock);
1556 		rootvp = vp;
1557 
1558 		/*
1559 		 * Leave rootvp held.  The root file system is never unmounted.
1560 		 */
1561 
1562 		vfs_add((struct vnode *)0, vfsp,
1563 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1564 out:
1565 		vfs_unlock(vfsp);
1566 		return (error);
1567 	} else if (why == ROOT_REMOUNT) {
1568 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1569 		vfsp->vfs_flag |= VFS_REMOUNT;
1570 
1571 		/* refresh mount options */
1572 		zfs_unregister_callbacks(vfsp->vfs_data);
1573 		return (zfs_register_callbacks(vfsp));
1574 
1575 	} else if (why == ROOT_UNMOUNT) {
1576 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1577 		(void) zfs_sync(vfsp, 0, 0);
1578 		return (0);
1579 	}
1580 
1581 	/*
1582 	 * if "why" is equal to anything else other than ROOT_INIT,
1583 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1584 	 */
1585 	return (SET_ERROR(ENOTSUP));
1586 }
1587 
1588 /*ARGSUSED*/
1589 static int
1590 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1591 {
1592 	char		*osname;
1593 	pathname_t	spn;
1594 	int		error = 0;
1595 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1596 	    UIO_SYSSPACE : UIO_USERSPACE;
1597 	int		canwrite;
1598 
1599 	if (mvp->v_type != VDIR)
1600 		return (SET_ERROR(ENOTDIR));
1601 
1602 	mutex_enter(&mvp->v_lock);
1603 	if ((uap->flags & MS_REMOUNT) == 0 &&
1604 	    (uap->flags & MS_OVERLAY) == 0 &&
1605 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1606 		mutex_exit(&mvp->v_lock);
1607 		return (SET_ERROR(EBUSY));
1608 	}
1609 	mutex_exit(&mvp->v_lock);
1610 
1611 	/*
1612 	 * ZFS does not support passing unparsed data in via MS_DATA.
1613 	 * Users should use the MS_OPTIONSTR interface; this means
1614 	 * that all option parsing is already done and the options struct
1615 	 * can be interrogated.
1616 	 */
1617 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1618 		return (SET_ERROR(EINVAL));
1619 
1620 	/*
1621 	 * Get the objset name (the "special" mount argument).
1622 	 */
1623 	if (error = pn_get(uap->spec, fromspace, &spn))
1624 		return (error);
1625 
1626 	osname = spn.pn_path;
1627 
1628 	/*
1629 	 * Check for mount privilege?
1630 	 *
1631 	 * If we don't have privilege then see if
1632 	 * we have local permission to allow it
1633 	 */
1634 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1635 	if (error) {
1636 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1637 			vattr_t		vattr;
1638 
1639 			/*
1640 			 * Make sure user is the owner of the mount point
1641 			 * or has sufficient privileges.
1642 			 */
1643 
1644 			vattr.va_mask = AT_UID;
1645 
1646 			if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1647 				goto out;
1648 			}
1649 
1650 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1651 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1652 				goto out;
1653 			}
1654 			secpolicy_fs_mount_clearopts(cr, vfsp);
1655 		} else {
1656 			goto out;
1657 		}
1658 	}
1659 
1660 	/*
1661 	 * Refuse to mount a filesystem if we are in a local zone and the
1662 	 * dataset is not visible.
1663 	 */
1664 	if (!INGLOBALZONE(curproc) &&
1665 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1666 		error = SET_ERROR(EPERM);
1667 		goto out;
1668 	}
1669 
1670 	error = zfs_mount_label_policy(vfsp, osname);
1671 	if (error)
1672 		goto out;
1673 
1674 	/*
1675 	 * When doing a remount, we simply refresh our temporary properties
1676 	 * according to those options set in the current VFS options.
1677 	 */
1678 	if (uap->flags & MS_REMOUNT) {
1679 		/* refresh mount options */
1680 		zfs_unregister_callbacks(vfsp->vfs_data);
1681 		error = zfs_register_callbacks(vfsp);
1682 		goto out;
1683 	}
1684 
1685 	error = zfs_domount(vfsp, osname);
1686 
1687 	/*
1688 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1689 	 * disappear due to a forced unmount.
1690 	 */
1691 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1692 		VFS_HOLD(mvp->v_vfsp);
1693 
1694 out:
1695 	pn_free(&spn);
1696 	return (error);
1697 }
1698 
1699 static int
1700 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1701 {
1702 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1703 	dev32_t d32;
1704 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1705 
1706 	ZFS_ENTER(zfsvfs);
1707 
1708 	dmu_objset_space(zfsvfs->z_os,
1709 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1710 
1711 	/*
1712 	 * The underlying storage pool actually uses multiple block sizes.
1713 	 * We report the fragsize as the smallest block size we support,
1714 	 * and we report our blocksize as the filesystem's maximum blocksize.
1715 	 */
1716 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1717 	statp->f_bsize = zfsvfs->z_max_blksz;
1718 
1719 	/*
1720 	 * The following report "total" blocks of various kinds in the
1721 	 * file system, but reported in terms of f_frsize - the
1722 	 * "fragment" size.
1723 	 */
1724 
1725 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1726 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1727 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1728 
1729 	/*
1730 	 * statvfs() should really be called statufs(), because it assumes
1731 	 * static metadata.  ZFS doesn't preallocate files, so the best
1732 	 * we can do is report the max that could possibly fit in f_files,
1733 	 * and that minus the number actually used in f_ffree.
1734 	 * For f_ffree, report the smaller of the number of object available
1735 	 * and the number of blocks (each object will take at least a block).
1736 	 */
1737 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1738 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1739 	statp->f_files = statp->f_ffree + usedobjs;
1740 
1741 	(void) cmpldev(&d32, vfsp->vfs_dev);
1742 	statp->f_fsid = d32;
1743 
1744 	/*
1745 	 * We're a zfs filesystem.
1746 	 */
1747 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1748 
1749 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1750 
1751 	statp->f_namemax = ZFS_MAXNAMELEN;
1752 
1753 	/*
1754 	 * We have all of 32 characters to stuff a string here.
1755 	 * Is there anything useful we could/should provide?
1756 	 */
1757 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1758 
1759 	ZFS_EXIT(zfsvfs);
1760 	return (0);
1761 }
1762 
1763 static int
1764 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1765 {
1766 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1767 	znode_t *rootzp;
1768 	int error;
1769 
1770 	ZFS_ENTER(zfsvfs);
1771 
1772 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1773 	if (error == 0)
1774 		*vpp = ZTOV(rootzp);
1775 
1776 	ZFS_EXIT(zfsvfs);
1777 	return (error);
1778 }
1779 
1780 /*
1781  * Teardown the zfsvfs::z_os.
1782  *
1783  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1784  * and 'z_teardown_inactive_lock' held.
1785  */
1786 static int
1787 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1788 {
1789 	znode_t	*zp;
1790 
1791 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1792 
1793 	if (!unmounting) {
1794 		/*
1795 		 * We purge the parent filesystem's vfsp as the parent
1796 		 * filesystem and all of its snapshots have their vnode's
1797 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1798 		 * 'z_parent' is self referential for non-snapshots.
1799 		 */
1800 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1801 	}
1802 
1803 	/*
1804 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1805 	 * threads are blocked as zil_close can call zfs_inactive.
1806 	 */
1807 	if (zfsvfs->z_log) {
1808 		zil_close(zfsvfs->z_log);
1809 		zfsvfs->z_log = NULL;
1810 	}
1811 
1812 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1813 
1814 	/*
1815 	 * If we are not unmounting (ie: online recv) and someone already
1816 	 * unmounted this file system while we were doing the switcheroo,
1817 	 * or a reopen of z_os failed then just bail out now.
1818 	 */
1819 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1820 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1821 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1822 		return (SET_ERROR(EIO));
1823 	}
1824 
1825 	/*
1826 	 * At this point there are no vops active, and any new vops will
1827 	 * fail with EIO since we have z_teardown_lock for writer (only
1828 	 * relavent for forced unmount).
1829 	 *
1830 	 * Release all holds on dbufs.
1831 	 */
1832 	mutex_enter(&zfsvfs->z_znodes_lock);
1833 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1834 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1835 		if (zp->z_sa_hdl) {
1836 			ASSERT(ZTOV(zp)->v_count > 0);
1837 			zfs_znode_dmu_fini(zp);
1838 		}
1839 	mutex_exit(&zfsvfs->z_znodes_lock);
1840 
1841 	/*
1842 	 * If we are unmounting, set the unmounted flag and let new vops
1843 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1844 	 * other vops will fail with EIO.
1845 	 */
1846 	if (unmounting) {
1847 		zfsvfs->z_unmounted = B_TRUE;
1848 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1849 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1850 	}
1851 
1852 	/*
1853 	 * z_os will be NULL if there was an error in attempting to reopen
1854 	 * zfsvfs, so just return as the properties had already been
1855 	 * unregistered and cached data had been evicted before.
1856 	 */
1857 	if (zfsvfs->z_os == NULL)
1858 		return (0);
1859 
1860 	/*
1861 	 * Unregister properties.
1862 	 */
1863 	zfs_unregister_callbacks(zfsvfs);
1864 
1865 	/*
1866 	 * Evict cached data
1867 	 */
1868 	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1869 	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1870 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1871 	dmu_objset_evict_dbufs(zfsvfs->z_os);
1872 
1873 	return (0);
1874 }
1875 
1876 /*ARGSUSED*/
1877 static int
1878 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1879 {
1880 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1881 	objset_t *os;
1882 	int ret;
1883 
1884 	ret = secpolicy_fs_unmount(cr, vfsp);
1885 	if (ret) {
1886 		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1887 		    ZFS_DELEG_PERM_MOUNT, cr))
1888 			return (ret);
1889 	}
1890 
1891 	/*
1892 	 * We purge the parent filesystem's vfsp as the parent filesystem
1893 	 * and all of its snapshots have their vnode's v_vfsp set to the
1894 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1895 	 * referential for non-snapshots.
1896 	 */
1897 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1898 
1899 	/*
1900 	 * Unmount any snapshots mounted under .zfs before unmounting the
1901 	 * dataset itself.
1902 	 */
1903 	if (zfsvfs->z_ctldir != NULL &&
1904 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1905 		return (ret);
1906 	}
1907 
1908 	if (!(fflag & MS_FORCE)) {
1909 		/*
1910 		 * Check the number of active vnodes in the file system.
1911 		 * Our count is maintained in the vfs structure, but the
1912 		 * number is off by 1 to indicate a hold on the vfs
1913 		 * structure itself.
1914 		 *
1915 		 * The '.zfs' directory maintains a reference of its
1916 		 * own, and any active references underneath are
1917 		 * reflected in the vnode count.
1918 		 */
1919 		if (zfsvfs->z_ctldir == NULL) {
1920 			if (vfsp->vfs_count > 1)
1921 				return (SET_ERROR(EBUSY));
1922 		} else {
1923 			if (vfsp->vfs_count > 2 ||
1924 			    zfsvfs->z_ctldir->v_count > 1)
1925 				return (SET_ERROR(EBUSY));
1926 		}
1927 	}
1928 
1929 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1930 
1931 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1932 	os = zfsvfs->z_os;
1933 
1934 	/*
1935 	 * z_os will be NULL if there was an error in
1936 	 * attempting to reopen zfsvfs.
1937 	 */
1938 	if (os != NULL) {
1939 		/*
1940 		 * Unset the objset user_ptr.
1941 		 */
1942 		mutex_enter(&os->os_user_ptr_lock);
1943 		dmu_objset_set_user(os, NULL);
1944 		mutex_exit(&os->os_user_ptr_lock);
1945 
1946 		/*
1947 		 * Finally release the objset
1948 		 */
1949 		dmu_objset_disown(os, zfsvfs);
1950 	}
1951 
1952 	/*
1953 	 * We can now safely destroy the '.zfs' directory node.
1954 	 */
1955 	if (zfsvfs->z_ctldir != NULL)
1956 		zfsctl_destroy(zfsvfs);
1957 
1958 	return (0);
1959 }
1960 
1961 static int
1962 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1963 {
1964 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1965 	znode_t		*zp;
1966 	uint64_t	object = 0;
1967 	uint64_t	fid_gen = 0;
1968 	uint64_t	gen_mask;
1969 	uint64_t	zp_gen;
1970 	int 		i, err;
1971 
1972 	*vpp = NULL;
1973 
1974 	ZFS_ENTER(zfsvfs);
1975 
1976 	if (fidp->fid_len == LONG_FID_LEN) {
1977 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1978 		uint64_t	objsetid = 0;
1979 		uint64_t	setgen = 0;
1980 
1981 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1982 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1983 
1984 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1985 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1986 
1987 		ZFS_EXIT(zfsvfs);
1988 
1989 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1990 		if (err)
1991 			return (SET_ERROR(EINVAL));
1992 		ZFS_ENTER(zfsvfs);
1993 	}
1994 
1995 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1996 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1997 
1998 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1999 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2000 
2001 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2002 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2003 	} else {
2004 		ZFS_EXIT(zfsvfs);
2005 		return (SET_ERROR(EINVAL));
2006 	}
2007 
2008 	/* A zero fid_gen means we are in the .zfs control directories */
2009 	if (fid_gen == 0 &&
2010 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
2011 		*vpp = zfsvfs->z_ctldir;
2012 		ASSERT(*vpp != NULL);
2013 		if (object == ZFSCTL_INO_SNAPDIR) {
2014 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2015 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2016 		} else {
2017 			VN_HOLD(*vpp);
2018 		}
2019 		ZFS_EXIT(zfsvfs);
2020 		return (0);
2021 	}
2022 
2023 	gen_mask = -1ULL >> (64 - 8 * i);
2024 
2025 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2026 	if (err = zfs_zget(zfsvfs, object, &zp)) {
2027 		ZFS_EXIT(zfsvfs);
2028 		return (err);
2029 	}
2030 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2031 	    sizeof (uint64_t));
2032 	zp_gen = zp_gen & gen_mask;
2033 	if (zp_gen == 0)
2034 		zp_gen = 1;
2035 	if (zp->z_unlinked || zp_gen != fid_gen) {
2036 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2037 		VN_RELE(ZTOV(zp));
2038 		ZFS_EXIT(zfsvfs);
2039 		return (SET_ERROR(EINVAL));
2040 	}
2041 
2042 	*vpp = ZTOV(zp);
2043 	ZFS_EXIT(zfsvfs);
2044 	return (0);
2045 }
2046 
2047 /*
2048  * Block out VOPs and close zfsvfs_t::z_os
2049  *
2050  * Note, if successful, then we return with the 'z_teardown_lock' and
2051  * 'z_teardown_inactive_lock' write held.
2052  */
2053 int
2054 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2055 {
2056 	int error;
2057 
2058 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2059 		return (error);
2060 	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2061 
2062 	return (0);
2063 }
2064 
2065 /*
2066  * Reopen zfsvfs_t::z_os and release VOPs.
2067  */
2068 int
2069 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2070 {
2071 	int err;
2072 
2073 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2074 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2075 
2076 	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2077 	    &zfsvfs->z_os);
2078 	if (err) {
2079 		zfsvfs->z_os = NULL;
2080 	} else {
2081 		znode_t *zp;
2082 		uint64_t sa_obj = 0;
2083 
2084 		/*
2085 		 * Make sure version hasn't changed
2086 		 */
2087 
2088 		err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2089 		    &zfsvfs->z_version);
2090 
2091 		if (err)
2092 			goto bail;
2093 
2094 		err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2095 		    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2096 
2097 		if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2098 			goto bail;
2099 
2100 		if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2101 		    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2102 			goto bail;
2103 
2104 		if (zfsvfs->z_version >= ZPL_VERSION_SA)
2105 			sa_register_update_callback(zfsvfs->z_os,
2106 			    zfs_sa_upgrade);
2107 
2108 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2109 
2110 		zfs_set_fuid_feature(zfsvfs);
2111 
2112 		/*
2113 		 * Attempt to re-establish all the active znodes with
2114 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
2115 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2116 		 * when they try to use their znode.
2117 		 */
2118 		mutex_enter(&zfsvfs->z_znodes_lock);
2119 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2120 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2121 			(void) zfs_rezget(zp);
2122 		}
2123 		mutex_exit(&zfsvfs->z_znodes_lock);
2124 	}
2125 
2126 bail:
2127 	/* release the VOPs */
2128 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2129 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2130 
2131 	if (err) {
2132 		/*
2133 		 * Since we couldn't reopen zfsvfs::z_os, or
2134 		 * setup the sa framework force unmount this file system.
2135 		 */
2136 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2137 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2138 	}
2139 	return (err);
2140 }
2141 
2142 static void
2143 zfs_freevfs(vfs_t *vfsp)
2144 {
2145 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2146 
2147 	/*
2148 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2149 	 * from zfs_mount().  Release it here.  If we came through
2150 	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2151 	 * skip the VFS_RELE for rootvfs.
2152 	 */
2153 	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2154 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2155 
2156 	zfsvfs_free(zfsvfs);
2157 
2158 	atomic_add_32(&zfs_active_fs_count, -1);
2159 }
2160 
2161 /*
2162  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2163  * so we can't safely do any non-idempotent initialization here.
2164  * Leave that to zfs_init() and zfs_fini(), which are called
2165  * from the module's _init() and _fini() entry points.
2166  */
2167 /*ARGSUSED*/
2168 static int
2169 zfs_vfsinit(int fstype, char *name)
2170 {
2171 	int error;
2172 
2173 	zfsfstype = fstype;
2174 
2175 	/*
2176 	 * Setup vfsops and vnodeops tables.
2177 	 */
2178 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2179 	if (error != 0) {
2180 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2181 	}
2182 
2183 	error = zfs_create_op_tables();
2184 	if (error) {
2185 		zfs_remove_op_tables();
2186 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2187 		(void) vfs_freevfsops_by_type(zfsfstype);
2188 		return (error);
2189 	}
2190 
2191 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2192 
2193 	/*
2194 	 * Unique major number for all zfs mounts.
2195 	 * If we run out of 32-bit minors, we'll getudev() another major.
2196 	 */
2197 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2198 	zfs_minor = ZFS_MIN_MINOR;
2199 
2200 	return (0);
2201 }
2202 
2203 void
2204 zfs_init(void)
2205 {
2206 	/*
2207 	 * Initialize .zfs directory structures
2208 	 */
2209 	zfsctl_init();
2210 
2211 	/*
2212 	 * Initialize znode cache, vnode ops, etc...
2213 	 */
2214 	zfs_znode_init();
2215 
2216 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2217 }
2218 
2219 void
2220 zfs_fini(void)
2221 {
2222 	zfsctl_fini();
2223 	zfs_znode_fini();
2224 }
2225 
2226 int
2227 zfs_busy(void)
2228 {
2229 	return (zfs_active_fs_count != 0);
2230 }
2231 
2232 int
2233 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2234 {
2235 	int error;
2236 	objset_t *os = zfsvfs->z_os;
2237 	dmu_tx_t *tx;
2238 
2239 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2240 		return (SET_ERROR(EINVAL));
2241 
2242 	if (newvers < zfsvfs->z_version)
2243 		return (SET_ERROR(EINVAL));
2244 
2245 	if (zfs_spa_version_map(newvers) >
2246 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2247 		return (SET_ERROR(ENOTSUP));
2248 
2249 	tx = dmu_tx_create(os);
2250 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2251 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2252 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2253 		    ZFS_SA_ATTRS);
2254 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2255 	}
2256 	error = dmu_tx_assign(tx, TXG_WAIT);
2257 	if (error) {
2258 		dmu_tx_abort(tx);
2259 		return (error);
2260 	}
2261 
2262 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2263 	    8, 1, &newvers, tx);
2264 
2265 	if (error) {
2266 		dmu_tx_commit(tx);
2267 		return (error);
2268 	}
2269 
2270 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2271 		uint64_t sa_obj;
2272 
2273 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2274 		    SPA_VERSION_SA);
2275 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2276 		    DMU_OT_NONE, 0, tx);
2277 
2278 		error = zap_add(os, MASTER_NODE_OBJ,
2279 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2280 		ASSERT0(error);
2281 
2282 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2283 		sa_register_update_callback(os, zfs_sa_upgrade);
2284 	}
2285 
2286 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2287 	    "from %llu to %llu", zfsvfs->z_version, newvers);
2288 
2289 	dmu_tx_commit(tx);
2290 
2291 	zfsvfs->z_version = newvers;
2292 
2293 	zfs_set_fuid_feature(zfsvfs);
2294 
2295 	return (0);
2296 }
2297 
2298 /*
2299  * Read a property stored within the master node.
2300  */
2301 int
2302 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2303 {
2304 	const char *pname;
2305 	int error = ENOENT;
2306 
2307 	/*
2308 	 * Look up the file system's value for the property.  For the
2309 	 * version property, we look up a slightly different string.
2310 	 */
2311 	if (prop == ZFS_PROP_VERSION)
2312 		pname = ZPL_VERSION_STR;
2313 	else
2314 		pname = zfs_prop_to_name(prop);
2315 
2316 	if (os != NULL)
2317 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2318 
2319 	if (error == ENOENT) {
2320 		/* No value set, use the default value */
2321 		switch (prop) {
2322 		case ZFS_PROP_VERSION:
2323 			*value = ZPL_VERSION;
2324 			break;
2325 		case ZFS_PROP_NORMALIZE:
2326 		case ZFS_PROP_UTF8ONLY:
2327 			*value = 0;
2328 			break;
2329 		case ZFS_PROP_CASE:
2330 			*value = ZFS_CASE_SENSITIVE;
2331 			break;
2332 		default:
2333 			return (error);
2334 		}
2335 		error = 0;
2336 	}
2337 	return (error);
2338 }
2339 
2340 static vfsdef_t vfw = {
2341 	VFSDEF_VERSION,
2342 	MNTTYPE_ZFS,
2343 	zfs_vfsinit,
2344 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2345 	    VSW_XID|VSW_ZMOUNT,
2346 	&zfs_mntopts
2347 };
2348 
2349 struct modlfs zfs_modlfs = {
2350 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2351 };
2352