1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/pathname.h> 32 #include <sys/vnode.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/mntent.h> 36 #include <sys/mount.h> 37 #include <sys/cmn_err.h> 38 #include "fs/fs_subr.h" 39 #include <sys/zfs_znode.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/refstr.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa_boot.h> 63 64 int zfsfstype; 65 vfsops_t *zfs_vfsops = NULL; 66 static major_t zfs_major; 67 static minor_t zfs_minor; 68 static kmutex_t zfs_dev_mtx; 69 70 extern int sys_shutdown; 71 72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 78 static void zfs_freevfs(vfs_t *vfsp); 79 80 static const fs_operation_def_t zfs_vfsops_template[] = { 81 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 82 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 83 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 84 VFSNAME_ROOT, { .vfs_root = zfs_root }, 85 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 86 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 87 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 88 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 89 NULL, NULL 90 }; 91 92 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 94 NULL, NULL 95 }; 96 97 /* 98 * We need to keep a count of active fs's. 99 * This is necessary to prevent our module 100 * from being unloaded after a umount -f 101 */ 102 static uint32_t zfs_active_fs_count = 0; 103 104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 108 109 /* 110 * MO_DEFAULT is not used since the default value is determined 111 * by the equivalent property. 112 */ 113 static mntopt_t mntopts[] = { 114 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 115 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 116 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 117 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 118 }; 119 120 static mntopts_t zfs_mntopts = { 121 sizeof (mntopts) / sizeof (mntopt_t), 122 mntopts 123 }; 124 125 /*ARGSUSED*/ 126 int 127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 128 { 129 /* 130 * Data integrity is job one. We don't want a compromised kernel 131 * writing to the storage pool, so we never sync during panic. 132 */ 133 if (panicstr) 134 return (0); 135 136 /* 137 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 138 * to sync metadata, which they would otherwise cache indefinitely. 139 * Semantically, the only requirement is that the sync be initiated. 140 * The DMU syncs out txgs frequently, so there's nothing to do. 141 */ 142 if (flag & SYNC_ATTR) 143 return (0); 144 145 if (vfsp != NULL) { 146 /* 147 * Sync a specific filesystem. 148 */ 149 zfsvfs_t *zfsvfs = vfsp->vfs_data; 150 dsl_pool_t *dp; 151 152 ZFS_ENTER(zfsvfs); 153 dp = dmu_objset_pool(zfsvfs->z_os); 154 155 /* 156 * If the system is shutting down, then skip any 157 * filesystems which may exist on a suspended pool. 158 */ 159 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 160 ZFS_EXIT(zfsvfs); 161 return (0); 162 } 163 164 if (zfsvfs->z_log != NULL) 165 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 166 else 167 txg_wait_synced(dp, 0); 168 ZFS_EXIT(zfsvfs); 169 } else { 170 /* 171 * Sync all ZFS filesystems. This is what happens when you 172 * run sync(1M). Unlike other filesystems, ZFS honors the 173 * request by waiting for all pools to commit all dirty data. 174 */ 175 spa_sync_allpools(); 176 } 177 178 return (0); 179 } 180 181 static int 182 zfs_create_unique_device(dev_t *dev) 183 { 184 major_t new_major; 185 186 do { 187 ASSERT3U(zfs_minor, <=, MAXMIN32); 188 minor_t start = zfs_minor; 189 do { 190 mutex_enter(&zfs_dev_mtx); 191 if (zfs_minor >= MAXMIN32) { 192 /* 193 * If we're still using the real major 194 * keep out of /dev/zfs and /dev/zvol minor 195 * number space. If we're using a getudev()'ed 196 * major number, we can use all of its minors. 197 */ 198 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 199 zfs_minor = ZFS_MIN_MINOR; 200 else 201 zfs_minor = 0; 202 } else { 203 zfs_minor++; 204 } 205 *dev = makedevice(zfs_major, zfs_minor); 206 mutex_exit(&zfs_dev_mtx); 207 } while (vfs_devismounted(*dev) && zfs_minor != start); 208 if (zfs_minor == start) { 209 /* 210 * We are using all ~262,000 minor numbers for the 211 * current major number. Create a new major number. 212 */ 213 if ((new_major = getudev()) == (major_t)-1) { 214 cmn_err(CE_WARN, 215 "zfs_mount: Can't get unique major " 216 "device number."); 217 return (-1); 218 } 219 mutex_enter(&zfs_dev_mtx); 220 zfs_major = new_major; 221 zfs_minor = 0; 222 223 mutex_exit(&zfs_dev_mtx); 224 } else { 225 break; 226 } 227 /* CONSTANTCONDITION */ 228 } while (1); 229 230 return (0); 231 } 232 233 static void 234 atime_changed_cb(void *arg, uint64_t newval) 235 { 236 zfsvfs_t *zfsvfs = arg; 237 238 if (newval == TRUE) { 239 zfsvfs->z_atime = TRUE; 240 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 241 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 242 } else { 243 zfsvfs->z_atime = FALSE; 244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 246 } 247 } 248 249 static void 250 xattr_changed_cb(void *arg, uint64_t newval) 251 { 252 zfsvfs_t *zfsvfs = arg; 253 254 if (newval == TRUE) { 255 /* XXX locking on vfs_flag? */ 256 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 257 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 258 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 259 } else { 260 /* XXX locking on vfs_flag? */ 261 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 262 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 263 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 264 } 265 } 266 267 static void 268 blksz_changed_cb(void *arg, uint64_t newval) 269 { 270 zfsvfs_t *zfsvfs = arg; 271 272 if (newval < SPA_MINBLOCKSIZE || 273 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 274 newval = SPA_MAXBLOCKSIZE; 275 276 zfsvfs->z_max_blksz = newval; 277 zfsvfs->z_vfs->vfs_bsize = newval; 278 } 279 280 static void 281 readonly_changed_cb(void *arg, uint64_t newval) 282 { 283 zfsvfs_t *zfsvfs = arg; 284 285 if (newval) { 286 /* XXX locking on vfs_flag? */ 287 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 288 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 289 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 290 } else { 291 /* XXX locking on vfs_flag? */ 292 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 295 } 296 } 297 298 static void 299 devices_changed_cb(void *arg, uint64_t newval) 300 { 301 zfsvfs_t *zfsvfs = arg; 302 303 if (newval == FALSE) { 304 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 305 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 306 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 307 } else { 308 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 311 } 312 } 313 314 static void 315 setuid_changed_cb(void *arg, uint64_t newval) 316 { 317 zfsvfs_t *zfsvfs = arg; 318 319 if (newval == FALSE) { 320 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 321 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 322 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 323 } else { 324 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 327 } 328 } 329 330 static void 331 exec_changed_cb(void *arg, uint64_t newval) 332 { 333 zfsvfs_t *zfsvfs = arg; 334 335 if (newval == FALSE) { 336 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 337 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 338 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 339 } else { 340 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 343 } 344 } 345 346 /* 347 * The nbmand mount option can be changed at mount time. 348 * We can't allow it to be toggled on live file systems or incorrect 349 * behavior may be seen from cifs clients 350 * 351 * This property isn't registered via dsl_prop_register(), but this callback 352 * will be called when a file system is first mounted 353 */ 354 static void 355 nbmand_changed_cb(void *arg, uint64_t newval) 356 { 357 zfsvfs_t *zfsvfs = arg; 358 if (newval == FALSE) { 359 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 360 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 361 } else { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 364 } 365 } 366 367 static void 368 snapdir_changed_cb(void *arg, uint64_t newval) 369 { 370 zfsvfs_t *zfsvfs = arg; 371 372 zfsvfs->z_show_ctldir = newval; 373 } 374 375 static void 376 vscan_changed_cb(void *arg, uint64_t newval) 377 { 378 zfsvfs_t *zfsvfs = arg; 379 380 zfsvfs->z_vscan = newval; 381 } 382 383 static void 384 acl_mode_changed_cb(void *arg, uint64_t newval) 385 { 386 zfsvfs_t *zfsvfs = arg; 387 388 zfsvfs->z_acl_mode = newval; 389 } 390 391 static void 392 acl_inherit_changed_cb(void *arg, uint64_t newval) 393 { 394 zfsvfs_t *zfsvfs = arg; 395 396 zfsvfs->z_acl_inherit = newval; 397 } 398 399 static int 400 zfs_register_callbacks(vfs_t *vfsp) 401 { 402 struct dsl_dataset *ds = NULL; 403 objset_t *os = NULL; 404 zfsvfs_t *zfsvfs = NULL; 405 uint64_t nbmand; 406 int readonly, do_readonly = B_FALSE; 407 int setuid, do_setuid = B_FALSE; 408 int exec, do_exec = B_FALSE; 409 int devices, do_devices = B_FALSE; 410 int xattr, do_xattr = B_FALSE; 411 int atime, do_atime = B_FALSE; 412 int error = 0; 413 414 ASSERT(vfsp); 415 zfsvfs = vfsp->vfs_data; 416 ASSERT(zfsvfs); 417 os = zfsvfs->z_os; 418 419 /* 420 * The act of registering our callbacks will destroy any mount 421 * options we may have. In order to enable temporary overrides 422 * of mount options, we stash away the current values and 423 * restore them after we register the callbacks. 424 */ 425 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 426 readonly = B_TRUE; 427 do_readonly = B_TRUE; 428 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 429 readonly = B_FALSE; 430 do_readonly = B_TRUE; 431 } 432 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 433 devices = B_FALSE; 434 setuid = B_FALSE; 435 do_devices = B_TRUE; 436 do_setuid = B_TRUE; 437 } else { 438 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 439 devices = B_FALSE; 440 do_devices = B_TRUE; 441 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 442 devices = B_TRUE; 443 do_devices = B_TRUE; 444 } 445 446 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 447 setuid = B_FALSE; 448 do_setuid = B_TRUE; 449 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 450 setuid = B_TRUE; 451 do_setuid = B_TRUE; 452 } 453 } 454 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 455 exec = B_FALSE; 456 do_exec = B_TRUE; 457 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 458 exec = B_TRUE; 459 do_exec = B_TRUE; 460 } 461 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 462 xattr = B_FALSE; 463 do_xattr = B_TRUE; 464 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 465 xattr = B_TRUE; 466 do_xattr = B_TRUE; 467 } 468 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 469 atime = B_FALSE; 470 do_atime = B_TRUE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 472 atime = B_TRUE; 473 do_atime = B_TRUE; 474 } 475 476 /* 477 * nbmand is a special property. It can only be changed at 478 * mount time. 479 * 480 * This is weird, but it is documented to only be changeable 481 * at mount time. 482 */ 483 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 484 nbmand = B_FALSE; 485 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 486 nbmand = B_TRUE; 487 } else { 488 char osname[MAXNAMELEN]; 489 490 dmu_objset_name(os, osname); 491 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 492 NULL)) { 493 return (error); 494 } 495 } 496 497 /* 498 * Register property callbacks. 499 * 500 * It would probably be fine to just check for i/o error from 501 * the first prop_register(), but I guess I like to go 502 * overboard... 503 */ 504 ds = dmu_objset_ds(os); 505 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "xattr", xattr_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "recordsize", blksz_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "readonly", readonly_changed_cb, zfsvfs); 512 error = error ? error : dsl_prop_register(ds, 513 "devices", devices_changed_cb, zfsvfs); 514 error = error ? error : dsl_prop_register(ds, 515 "setuid", setuid_changed_cb, zfsvfs); 516 error = error ? error : dsl_prop_register(ds, 517 "exec", exec_changed_cb, zfsvfs); 518 error = error ? error : dsl_prop_register(ds, 519 "snapdir", snapdir_changed_cb, zfsvfs); 520 error = error ? error : dsl_prop_register(ds, 521 "aclmode", acl_mode_changed_cb, zfsvfs); 522 error = error ? error : dsl_prop_register(ds, 523 "aclinherit", acl_inherit_changed_cb, zfsvfs); 524 error = error ? error : dsl_prop_register(ds, 525 "vscan", vscan_changed_cb, zfsvfs); 526 if (error) 527 goto unregister; 528 529 /* 530 * Invoke our callbacks to restore temporary mount options. 531 */ 532 if (do_readonly) 533 readonly_changed_cb(zfsvfs, readonly); 534 if (do_setuid) 535 setuid_changed_cb(zfsvfs, setuid); 536 if (do_exec) 537 exec_changed_cb(zfsvfs, exec); 538 if (do_devices) 539 devices_changed_cb(zfsvfs, devices); 540 if (do_xattr) 541 xattr_changed_cb(zfsvfs, xattr); 542 if (do_atime) 543 atime_changed_cb(zfsvfs, atime); 544 545 nbmand_changed_cb(zfsvfs, nbmand); 546 547 return (0); 548 549 unregister: 550 /* 551 * We may attempt to unregister some callbacks that are not 552 * registered, but this is OK; it will simply return ENOMSG, 553 * which we will ignore. 554 */ 555 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 556 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 557 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 558 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 559 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 560 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 561 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 562 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 563 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 564 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 565 zfsvfs); 566 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 567 return (error); 568 569 } 570 571 static void 572 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid, 573 int64_t delta, dmu_tx_t *tx) 574 { 575 uint64_t used = 0; 576 char buf[32]; 577 int err; 578 uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 579 580 if (delta == 0) 581 return; 582 583 (void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid); 584 err = zap_lookup(os, obj, buf, 8, 1, &used); 585 ASSERT(err == 0 || err == ENOENT); 586 /* no underflow/overflow */ 587 ASSERT(delta > 0 || used >= -delta); 588 ASSERT(delta < 0 || used + delta > used); 589 used += delta; 590 if (used == 0) 591 err = zap_remove(os, obj, buf, tx); 592 else 593 err = zap_update(os, obj, buf, 8, 1, &used, tx); 594 ASSERT(err == 0); 595 } 596 597 static int 598 zfs_space_delta_cb(dmu_object_type_t bonustype, void *bonus, 599 uint64_t *userp, uint64_t *groupp) 600 { 601 znode_phys_t *znp = bonus; 602 603 if (bonustype != DMU_OT_ZNODE) 604 return (ENOENT); 605 606 *userp = znp->zp_uid; 607 *groupp = znp->zp_gid; 608 return (0); 609 } 610 611 static void 612 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 613 char *domainbuf, int buflen, uid_t *ridp) 614 { 615 uint64_t fuid; 616 const char *domain; 617 618 fuid = strtonum(fuidstr, NULL); 619 620 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 621 if (domain) 622 (void) strlcpy(domainbuf, domain, buflen); 623 else 624 domainbuf[0] = '\0'; 625 *ridp = FUID_RID(fuid); 626 } 627 628 static uint64_t 629 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 630 { 631 switch (type) { 632 case ZFS_PROP_USERUSED: 633 return (DMU_USERUSED_OBJECT); 634 case ZFS_PROP_GROUPUSED: 635 return (DMU_GROUPUSED_OBJECT); 636 case ZFS_PROP_USERQUOTA: 637 return (zfsvfs->z_userquota_obj); 638 case ZFS_PROP_GROUPQUOTA: 639 return (zfsvfs->z_groupquota_obj); 640 } 641 return (0); 642 } 643 644 int 645 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 646 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 647 { 648 int error; 649 zap_cursor_t zc; 650 zap_attribute_t za; 651 zfs_useracct_t *buf = vbuf; 652 uint64_t obj; 653 654 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 655 return (ENOTSUP); 656 657 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 658 if (obj == 0) { 659 *bufsizep = 0; 660 return (0); 661 } 662 663 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 664 (error = zap_cursor_retrieve(&zc, &za)) == 0; 665 zap_cursor_advance(&zc)) { 666 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 667 *bufsizep) 668 break; 669 670 fuidstr_to_sid(zfsvfs, za.za_name, 671 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 672 673 buf->zu_space = za.za_first_integer; 674 buf++; 675 } 676 if (error == ENOENT) 677 error = 0; 678 679 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 680 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 681 *cookiep = zap_cursor_serialize(&zc); 682 zap_cursor_fini(&zc); 683 return (error); 684 } 685 686 /* 687 * buf must be big enough (eg, 32 bytes) 688 */ 689 static int 690 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 691 char *buf, boolean_t addok) 692 { 693 uint64_t fuid; 694 int domainid = 0; 695 696 if (domain && domain[0]) { 697 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 698 if (domainid == -1) 699 return (ENOENT); 700 } 701 fuid = FUID_ENCODE(domainid, rid); 702 (void) sprintf(buf, "%llx", (longlong_t)fuid); 703 return (0); 704 } 705 706 int 707 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 708 const char *domain, uint64_t rid, uint64_t *valp) 709 { 710 char buf[32]; 711 int err; 712 uint64_t obj; 713 714 *valp = 0; 715 716 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 717 return (ENOTSUP); 718 719 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 720 if (obj == 0) 721 return (0); 722 723 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 724 if (err) 725 return (err); 726 727 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 728 if (err == ENOENT) 729 err = 0; 730 return (err); 731 } 732 733 int 734 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 735 const char *domain, uint64_t rid, uint64_t quota) 736 { 737 char buf[32]; 738 int err; 739 dmu_tx_t *tx; 740 uint64_t *objp; 741 boolean_t fuid_dirtied; 742 743 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 744 return (EINVAL); 745 746 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 747 return (ENOTSUP); 748 749 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 750 &zfsvfs->z_groupquota_obj; 751 752 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 753 if (err) 754 return (err); 755 fuid_dirtied = zfsvfs->z_fuid_dirty; 756 757 tx = dmu_tx_create(zfsvfs->z_os); 758 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 759 if (*objp == 0) { 760 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 761 zfs_userquota_prop_prefixes[type]); 762 } 763 if (fuid_dirtied) 764 zfs_fuid_txhold(zfsvfs, tx); 765 err = dmu_tx_assign(tx, TXG_WAIT); 766 if (err) { 767 dmu_tx_abort(tx); 768 return (err); 769 } 770 771 mutex_enter(&zfsvfs->z_lock); 772 if (*objp == 0) { 773 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 774 DMU_OT_NONE, 0, tx); 775 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 776 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 777 } 778 mutex_exit(&zfsvfs->z_lock); 779 780 if (quota == 0) { 781 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 782 if (err == ENOENT) 783 err = 0; 784 } else { 785 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 786 } 787 ASSERT(err == 0); 788 if (fuid_dirtied) 789 zfs_fuid_sync(zfsvfs, tx); 790 dmu_tx_commit(tx); 791 return (err); 792 } 793 794 boolean_t 795 zfs_usergroup_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 796 { 797 char buf[32]; 798 uint64_t used, quota, usedobj, quotaobj; 799 int err; 800 801 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 802 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 803 804 if (quotaobj == 0 || zfsvfs->z_replay) 805 return (B_FALSE); 806 807 (void) sprintf(buf, "%llx", (longlong_t)fuid); 808 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 809 if (err != 0) 810 return (B_FALSE); 811 812 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 813 if (err != 0) 814 return (B_FALSE); 815 return (used >= quota); 816 } 817 818 int 819 zfsvfs_create(const char *osname, zfsvfs_t **zvp) 820 { 821 objset_t *os; 822 zfsvfs_t *zfsvfs; 823 uint64_t zval; 824 int i, error; 825 826 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 827 828 /* 829 * We claim to always be readonly so we can open snapshots; 830 * other ZPL code will prevent us from writing to snapshots. 831 */ 832 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 833 if (error) { 834 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 835 return (error); 836 } 837 838 /* 839 * Initialize the zfs-specific filesystem structure. 840 * Should probably make this a kmem cache, shuffle fields, 841 * and just bzero up to z_hold_mtx[]. 842 */ 843 zfsvfs->z_vfs = NULL; 844 zfsvfs->z_parent = zfsvfs; 845 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 846 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 847 zfsvfs->z_os = os; 848 849 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 850 if (error) { 851 goto out; 852 } else if (zfsvfs->z_version > ZPL_VERSION) { 853 (void) printf("Mismatched versions: File system " 854 "is version %llu on-disk format, which is " 855 "incompatible with this software version %lld!", 856 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 857 error = ENOTSUP; 858 goto out; 859 } 860 861 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 862 goto out; 863 zfsvfs->z_norm = (int)zval; 864 865 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 866 goto out; 867 zfsvfs->z_utf8 = (zval != 0); 868 869 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 870 goto out; 871 zfsvfs->z_case = (uint_t)zval; 872 873 /* 874 * Fold case on file systems that are always or sometimes case 875 * insensitive. 876 */ 877 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 878 zfsvfs->z_case == ZFS_CASE_MIXED) 879 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 880 881 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 882 883 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 884 &zfsvfs->z_root); 885 if (error) 886 goto out; 887 ASSERT(zfsvfs->z_root != 0); 888 889 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 890 &zfsvfs->z_unlinkedobj); 891 if (error) 892 goto out; 893 894 error = zap_lookup(os, MASTER_NODE_OBJ, 895 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 896 8, 1, &zfsvfs->z_userquota_obj); 897 if (error && error != ENOENT) 898 goto out; 899 900 error = zap_lookup(os, MASTER_NODE_OBJ, 901 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 902 8, 1, &zfsvfs->z_groupquota_obj); 903 if (error && error != ENOENT) 904 goto out; 905 906 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 907 &zfsvfs->z_fuid_obj); 908 if (error && error != ENOENT) 909 goto out; 910 911 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 912 &zfsvfs->z_shares_dir); 913 if (error && error != ENOENT) 914 goto out; 915 916 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 917 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 918 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 919 offsetof(znode_t, z_link_node)); 920 rrw_init(&zfsvfs->z_teardown_lock); 921 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 922 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 923 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 924 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 925 926 *zvp = zfsvfs; 927 return (0); 928 929 out: 930 dmu_objset_disown(os, zfsvfs); 931 *zvp = NULL; 932 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 933 return (error); 934 } 935 936 static int 937 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 938 { 939 int error; 940 941 error = zfs_register_callbacks(zfsvfs->z_vfs); 942 if (error) 943 return (error); 944 945 /* 946 * Set the objset user_ptr to track its zfsvfs. 947 */ 948 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 949 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 950 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 951 952 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 953 if (zil_disable) { 954 zil_destroy(zfsvfs->z_log, 0); 955 zfsvfs->z_log = NULL; 956 } 957 958 /* 959 * If we are not mounting (ie: online recv), then we don't 960 * have to worry about replaying the log as we blocked all 961 * operations out since we closed the ZIL. 962 */ 963 if (mounting) { 964 boolean_t readonly; 965 966 /* 967 * During replay we remove the read only flag to 968 * allow replays to succeed. 969 */ 970 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 971 if (readonly != 0) 972 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 973 else 974 zfs_unlinked_drain(zfsvfs); 975 976 if (zfsvfs->z_log) { 977 /* 978 * Parse and replay the intent log. 979 * 980 * Because of ziltest, this must be done after 981 * zfs_unlinked_drain(). (Further note: ziltest 982 * doesn't use readonly mounts, where 983 * zfs_unlinked_drain() isn't called.) This is because 984 * ziltest causes spa_sync() to think it's committed, 985 * but actually it is not, so the intent log contains 986 * many txg's worth of changes. 987 * 988 * In particular, if object N is in the unlinked set in 989 * the last txg to actually sync, then it could be 990 * actually freed in a later txg and then reallocated 991 * in a yet later txg. This would write a "create 992 * object N" record to the intent log. Normally, this 993 * would be fine because the spa_sync() would have 994 * written out the fact that object N is free, before 995 * we could write the "create object N" intent log 996 * record. 997 * 998 * But when we are in ziltest mode, we advance the "open 999 * txg" without actually spa_sync()-ing the changes to 1000 * disk. So we would see that object N is still 1001 * allocated and in the unlinked set, and there is an 1002 * intent log record saying to allocate it. 1003 */ 1004 zfsvfs->z_replay = B_TRUE; 1005 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 1006 zfsvfs->z_replay = B_FALSE; 1007 } 1008 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1009 } 1010 1011 return (0); 1012 } 1013 1014 void 1015 zfsvfs_free(zfsvfs_t *zfsvfs) 1016 { 1017 int i; 1018 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1019 1020 /* 1021 * This is a barrier to prevent the filesystem from going away in 1022 * zfs_znode_move() until we can safely ensure that the filesystem is 1023 * not unmounted. We consider the filesystem valid before the barrier 1024 * and invalid after the barrier. 1025 */ 1026 rw_enter(&zfsvfs_lock, RW_READER); 1027 rw_exit(&zfsvfs_lock); 1028 1029 zfs_fuid_destroy(zfsvfs); 1030 1031 mutex_destroy(&zfsvfs->z_znodes_lock); 1032 mutex_destroy(&zfsvfs->z_lock); 1033 list_destroy(&zfsvfs->z_all_znodes); 1034 rrw_destroy(&zfsvfs->z_teardown_lock); 1035 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1036 rw_destroy(&zfsvfs->z_fuid_lock); 1037 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1038 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1039 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1040 } 1041 1042 static void 1043 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1044 { 1045 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1046 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) { 1047 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1048 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1049 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1050 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1051 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1052 } 1053 } 1054 1055 static int 1056 zfs_domount(vfs_t *vfsp, char *osname) 1057 { 1058 dev_t mount_dev; 1059 uint64_t recordsize, fsid_guid; 1060 int error = 0; 1061 zfsvfs_t *zfsvfs; 1062 1063 ASSERT(vfsp); 1064 ASSERT(osname); 1065 1066 error = zfsvfs_create(osname, &zfsvfs); 1067 if (error) 1068 return (error); 1069 zfsvfs->z_vfs = vfsp; 1070 1071 /* Initialize the generic filesystem structure. */ 1072 vfsp->vfs_bcount = 0; 1073 vfsp->vfs_data = NULL; 1074 1075 if (zfs_create_unique_device(&mount_dev) == -1) { 1076 error = ENODEV; 1077 goto out; 1078 } 1079 ASSERT(vfs_devismounted(mount_dev) == 0); 1080 1081 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1082 NULL)) 1083 goto out; 1084 1085 vfsp->vfs_dev = mount_dev; 1086 vfsp->vfs_fstype = zfsfstype; 1087 vfsp->vfs_bsize = recordsize; 1088 vfsp->vfs_flag |= VFS_NOTRUNC; 1089 vfsp->vfs_data = zfsvfs; 1090 1091 /* 1092 * The fsid is 64 bits, composed of an 8-bit fs type, which 1093 * separates our fsid from any other filesystem types, and a 1094 * 56-bit objset unique ID. The objset unique ID is unique to 1095 * all objsets open on this system, provided by unique_create(). 1096 * The 8-bit fs type must be put in the low bits of fsid[1] 1097 * because that's where other Solaris filesystems put it. 1098 */ 1099 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1100 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1101 vfsp->vfs_fsid.val[0] = fsid_guid; 1102 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1103 zfsfstype & 0xFF; 1104 1105 /* 1106 * Set features for file system. 1107 */ 1108 zfs_set_fuid_feature(zfsvfs); 1109 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1110 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1111 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1112 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1113 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1114 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1115 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1116 } 1117 1118 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1119 uint64_t pval; 1120 1121 atime_changed_cb(zfsvfs, B_FALSE); 1122 readonly_changed_cb(zfsvfs, B_TRUE); 1123 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1124 goto out; 1125 xattr_changed_cb(zfsvfs, pval); 1126 zfsvfs->z_issnap = B_TRUE; 1127 1128 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1129 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1130 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1131 } else { 1132 error = zfsvfs_setup(zfsvfs, B_TRUE); 1133 } 1134 1135 if (!zfsvfs->z_issnap) 1136 zfsctl_create(zfsvfs); 1137 out: 1138 if (error) { 1139 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1140 zfsvfs_free(zfsvfs); 1141 } else { 1142 atomic_add_32(&zfs_active_fs_count, 1); 1143 } 1144 1145 return (error); 1146 } 1147 1148 void 1149 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1150 { 1151 objset_t *os = zfsvfs->z_os; 1152 struct dsl_dataset *ds; 1153 1154 /* 1155 * Unregister properties. 1156 */ 1157 if (!dmu_objset_is_snapshot(os)) { 1158 ds = dmu_objset_ds(os); 1159 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1160 zfsvfs) == 0); 1161 1162 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1163 zfsvfs) == 0); 1164 1165 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1166 zfsvfs) == 0); 1167 1168 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1169 zfsvfs) == 0); 1170 1171 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1172 zfsvfs) == 0); 1173 1174 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1175 zfsvfs) == 0); 1176 1177 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1178 zfsvfs) == 0); 1179 1180 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1181 zfsvfs) == 0); 1182 1183 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 1184 zfsvfs) == 0); 1185 1186 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1187 acl_inherit_changed_cb, zfsvfs) == 0); 1188 1189 VERIFY(dsl_prop_unregister(ds, "vscan", 1190 vscan_changed_cb, zfsvfs) == 0); 1191 } 1192 } 1193 1194 /* 1195 * Convert a decimal digit string to a uint64_t integer. 1196 */ 1197 static int 1198 str_to_uint64(char *str, uint64_t *objnum) 1199 { 1200 uint64_t num = 0; 1201 1202 while (*str) { 1203 if (*str < '0' || *str > '9') 1204 return (EINVAL); 1205 1206 num = num*10 + *str++ - '0'; 1207 } 1208 1209 *objnum = num; 1210 return (0); 1211 } 1212 1213 /* 1214 * The boot path passed from the boot loader is in the form of 1215 * "rootpool-name/root-filesystem-object-number'. Convert this 1216 * string to a dataset name: "rootpool-name/root-filesystem-name". 1217 */ 1218 static int 1219 zfs_parse_bootfs(char *bpath, char *outpath) 1220 { 1221 char *slashp; 1222 uint64_t objnum; 1223 int error; 1224 1225 if (*bpath == 0 || *bpath == '/') 1226 return (EINVAL); 1227 1228 (void) strcpy(outpath, bpath); 1229 1230 slashp = strchr(bpath, '/'); 1231 1232 /* if no '/', just return the pool name */ 1233 if (slashp == NULL) { 1234 return (0); 1235 } 1236 1237 /* if not a number, just return the root dataset name */ 1238 if (str_to_uint64(slashp+1, &objnum)) { 1239 return (0); 1240 } 1241 1242 *slashp = '\0'; 1243 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1244 *slashp = '/'; 1245 1246 return (error); 1247 } 1248 1249 static int 1250 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1251 { 1252 int error = 0; 1253 static int zfsrootdone = 0; 1254 zfsvfs_t *zfsvfs = NULL; 1255 znode_t *zp = NULL; 1256 vnode_t *vp = NULL; 1257 char *zfs_bootfs; 1258 char *zfs_devid; 1259 1260 ASSERT(vfsp); 1261 1262 /* 1263 * The filesystem that we mount as root is defined in the 1264 * boot property "zfs-bootfs" with a format of 1265 * "poolname/root-dataset-objnum". 1266 */ 1267 if (why == ROOT_INIT) { 1268 if (zfsrootdone++) 1269 return (EBUSY); 1270 /* 1271 * the process of doing a spa_load will require the 1272 * clock to be set before we could (for example) do 1273 * something better by looking at the timestamp on 1274 * an uberblock, so just set it to -1. 1275 */ 1276 clkset(-1); 1277 1278 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1279 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1280 "bootfs name"); 1281 return (EINVAL); 1282 } 1283 zfs_devid = spa_get_bootprop("diskdevid"); 1284 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1285 if (zfs_devid) 1286 spa_free_bootprop(zfs_devid); 1287 if (error) { 1288 spa_free_bootprop(zfs_bootfs); 1289 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1290 error); 1291 return (error); 1292 } 1293 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1294 spa_free_bootprop(zfs_bootfs); 1295 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1296 error); 1297 return (error); 1298 } 1299 1300 spa_free_bootprop(zfs_bootfs); 1301 1302 if (error = vfs_lock(vfsp)) 1303 return (error); 1304 1305 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1306 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1307 goto out; 1308 } 1309 1310 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1311 ASSERT(zfsvfs); 1312 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1313 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1314 goto out; 1315 } 1316 1317 vp = ZTOV(zp); 1318 mutex_enter(&vp->v_lock); 1319 vp->v_flag |= VROOT; 1320 mutex_exit(&vp->v_lock); 1321 rootvp = vp; 1322 1323 /* 1324 * Leave rootvp held. The root file system is never unmounted. 1325 */ 1326 1327 vfs_add((struct vnode *)0, vfsp, 1328 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1329 out: 1330 vfs_unlock(vfsp); 1331 return (error); 1332 } else if (why == ROOT_REMOUNT) { 1333 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1334 vfsp->vfs_flag |= VFS_REMOUNT; 1335 1336 /* refresh mount options */ 1337 zfs_unregister_callbacks(vfsp->vfs_data); 1338 return (zfs_register_callbacks(vfsp)); 1339 1340 } else if (why == ROOT_UNMOUNT) { 1341 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1342 (void) zfs_sync(vfsp, 0, 0); 1343 return (0); 1344 } 1345 1346 /* 1347 * if "why" is equal to anything else other than ROOT_INIT, 1348 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1349 */ 1350 return (ENOTSUP); 1351 } 1352 1353 /*ARGSUSED*/ 1354 static int 1355 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1356 { 1357 char *osname; 1358 pathname_t spn; 1359 int error = 0; 1360 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1361 UIO_SYSSPACE : UIO_USERSPACE; 1362 int canwrite; 1363 1364 if (mvp->v_type != VDIR) 1365 return (ENOTDIR); 1366 1367 mutex_enter(&mvp->v_lock); 1368 if ((uap->flags & MS_REMOUNT) == 0 && 1369 (uap->flags & MS_OVERLAY) == 0 && 1370 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1371 mutex_exit(&mvp->v_lock); 1372 return (EBUSY); 1373 } 1374 mutex_exit(&mvp->v_lock); 1375 1376 /* 1377 * ZFS does not support passing unparsed data in via MS_DATA. 1378 * Users should use the MS_OPTIONSTR interface; this means 1379 * that all option parsing is already done and the options struct 1380 * can be interrogated. 1381 */ 1382 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1383 return (EINVAL); 1384 1385 /* 1386 * Get the objset name (the "special" mount argument). 1387 */ 1388 if (error = pn_get(uap->spec, fromspace, &spn)) 1389 return (error); 1390 1391 osname = spn.pn_path; 1392 1393 /* 1394 * Check for mount privilege? 1395 * 1396 * If we don't have privilege then see if 1397 * we have local permission to allow it 1398 */ 1399 error = secpolicy_fs_mount(cr, mvp, vfsp); 1400 if (error) { 1401 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 1402 if (error == 0) { 1403 vattr_t vattr; 1404 1405 /* 1406 * Make sure user is the owner of the mount point 1407 * or has sufficient privileges. 1408 */ 1409 1410 vattr.va_mask = AT_UID; 1411 1412 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1413 goto out; 1414 } 1415 1416 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1417 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1418 error = EPERM; 1419 goto out; 1420 } 1421 1422 secpolicy_fs_mount_clearopts(cr, vfsp); 1423 } else { 1424 goto out; 1425 } 1426 } 1427 1428 /* 1429 * Refuse to mount a filesystem if we are in a local zone and the 1430 * dataset is not visible. 1431 */ 1432 if (!INGLOBALZONE(curproc) && 1433 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1434 error = EPERM; 1435 goto out; 1436 } 1437 1438 /* 1439 * When doing a remount, we simply refresh our temporary properties 1440 * according to those options set in the current VFS options. 1441 */ 1442 if (uap->flags & MS_REMOUNT) { 1443 /* refresh mount options */ 1444 zfs_unregister_callbacks(vfsp->vfs_data); 1445 error = zfs_register_callbacks(vfsp); 1446 goto out; 1447 } 1448 1449 error = zfs_domount(vfsp, osname); 1450 1451 /* 1452 * Add an extra VFS_HOLD on our parent vfs so that it can't 1453 * disappear due to a forced unmount. 1454 */ 1455 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1456 VFS_HOLD(mvp->v_vfsp); 1457 1458 out: 1459 pn_free(&spn); 1460 return (error); 1461 } 1462 1463 static int 1464 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1465 { 1466 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1467 dev32_t d32; 1468 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1469 1470 ZFS_ENTER(zfsvfs); 1471 1472 dmu_objset_space(zfsvfs->z_os, 1473 &refdbytes, &availbytes, &usedobjs, &availobjs); 1474 1475 /* 1476 * The underlying storage pool actually uses multiple block sizes. 1477 * We report the fragsize as the smallest block size we support, 1478 * and we report our blocksize as the filesystem's maximum blocksize. 1479 */ 1480 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1481 statp->f_bsize = zfsvfs->z_max_blksz; 1482 1483 /* 1484 * The following report "total" blocks of various kinds in the 1485 * file system, but reported in terms of f_frsize - the 1486 * "fragment" size. 1487 */ 1488 1489 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1490 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1491 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1492 1493 /* 1494 * statvfs() should really be called statufs(), because it assumes 1495 * static metadata. ZFS doesn't preallocate files, so the best 1496 * we can do is report the max that could possibly fit in f_files, 1497 * and that minus the number actually used in f_ffree. 1498 * For f_ffree, report the smaller of the number of object available 1499 * and the number of blocks (each object will take at least a block). 1500 */ 1501 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1502 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1503 statp->f_files = statp->f_ffree + usedobjs; 1504 1505 (void) cmpldev(&d32, vfsp->vfs_dev); 1506 statp->f_fsid = d32; 1507 1508 /* 1509 * We're a zfs filesystem. 1510 */ 1511 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1512 1513 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1514 1515 statp->f_namemax = ZFS_MAXNAMELEN; 1516 1517 /* 1518 * We have all of 32 characters to stuff a string here. 1519 * Is there anything useful we could/should provide? 1520 */ 1521 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1522 1523 ZFS_EXIT(zfsvfs); 1524 return (0); 1525 } 1526 1527 static int 1528 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1529 { 1530 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1531 znode_t *rootzp; 1532 int error; 1533 1534 ZFS_ENTER(zfsvfs); 1535 1536 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1537 if (error == 0) 1538 *vpp = ZTOV(rootzp); 1539 1540 ZFS_EXIT(zfsvfs); 1541 return (error); 1542 } 1543 1544 /* 1545 * Teardown the zfsvfs::z_os. 1546 * 1547 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1548 * and 'z_teardown_inactive_lock' held. 1549 */ 1550 static int 1551 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1552 { 1553 znode_t *zp; 1554 1555 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1556 1557 if (!unmounting) { 1558 /* 1559 * We purge the parent filesystem's vfsp as the parent 1560 * filesystem and all of its snapshots have their vnode's 1561 * v_vfsp set to the parent's filesystem's vfsp. Note, 1562 * 'z_parent' is self referential for non-snapshots. 1563 */ 1564 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1565 } 1566 1567 /* 1568 * Close the zil. NB: Can't close the zil while zfs_inactive 1569 * threads are blocked as zil_close can call zfs_inactive. 1570 */ 1571 if (zfsvfs->z_log) { 1572 zil_close(zfsvfs->z_log); 1573 zfsvfs->z_log = NULL; 1574 } 1575 1576 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1577 1578 /* 1579 * If we are not unmounting (ie: online recv) and someone already 1580 * unmounted this file system while we were doing the switcheroo, 1581 * or a reopen of z_os failed then just bail out now. 1582 */ 1583 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1584 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1585 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1586 return (EIO); 1587 } 1588 1589 /* 1590 * At this point there are no vops active, and any new vops will 1591 * fail with EIO since we have z_teardown_lock for writer (only 1592 * relavent for forced unmount). 1593 * 1594 * Release all holds on dbufs. 1595 */ 1596 mutex_enter(&zfsvfs->z_znodes_lock); 1597 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1598 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1599 if (zp->z_dbuf) { 1600 ASSERT(ZTOV(zp)->v_count > 0); 1601 zfs_znode_dmu_fini(zp); 1602 } 1603 mutex_exit(&zfsvfs->z_znodes_lock); 1604 1605 /* 1606 * If we are unmounting, set the unmounted flag and let new vops 1607 * unblock. zfs_inactive will have the unmounted behavior, and all 1608 * other vops will fail with EIO. 1609 */ 1610 if (unmounting) { 1611 zfsvfs->z_unmounted = B_TRUE; 1612 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1613 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1614 } 1615 1616 /* 1617 * z_os will be NULL if there was an error in attempting to reopen 1618 * zfsvfs, so just return as the properties had already been 1619 * unregistered and cached data had been evicted before. 1620 */ 1621 if (zfsvfs->z_os == NULL) 1622 return (0); 1623 1624 /* 1625 * Unregister properties. 1626 */ 1627 zfs_unregister_callbacks(zfsvfs); 1628 1629 /* 1630 * Evict cached data 1631 */ 1632 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1633 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1634 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1635 } 1636 1637 return (0); 1638 } 1639 1640 /*ARGSUSED*/ 1641 static int 1642 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1643 { 1644 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1645 objset_t *os; 1646 int ret; 1647 1648 ret = secpolicy_fs_unmount(cr, vfsp); 1649 if (ret) { 1650 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1651 ZFS_DELEG_PERM_MOUNT, cr); 1652 if (ret) 1653 return (ret); 1654 } 1655 1656 /* 1657 * We purge the parent filesystem's vfsp as the parent filesystem 1658 * and all of its snapshots have their vnode's v_vfsp set to the 1659 * parent's filesystem's vfsp. Note, 'z_parent' is self 1660 * referential for non-snapshots. 1661 */ 1662 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1663 1664 /* 1665 * Unmount any snapshots mounted under .zfs before unmounting the 1666 * dataset itself. 1667 */ 1668 if (zfsvfs->z_ctldir != NULL && 1669 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1670 return (ret); 1671 } 1672 1673 if (!(fflag & MS_FORCE)) { 1674 /* 1675 * Check the number of active vnodes in the file system. 1676 * Our count is maintained in the vfs structure, but the 1677 * number is off by 1 to indicate a hold on the vfs 1678 * structure itself. 1679 * 1680 * The '.zfs' directory maintains a reference of its 1681 * own, and any active references underneath are 1682 * reflected in the vnode count. 1683 */ 1684 if (zfsvfs->z_ctldir == NULL) { 1685 if (vfsp->vfs_count > 1) 1686 return (EBUSY); 1687 } else { 1688 if (vfsp->vfs_count > 2 || 1689 zfsvfs->z_ctldir->v_count > 1) 1690 return (EBUSY); 1691 } 1692 } 1693 1694 vfsp->vfs_flag |= VFS_UNMOUNTED; 1695 1696 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1697 os = zfsvfs->z_os; 1698 1699 /* 1700 * z_os will be NULL if there was an error in 1701 * attempting to reopen zfsvfs. 1702 */ 1703 if (os != NULL) { 1704 /* 1705 * Unset the objset user_ptr. 1706 */ 1707 mutex_enter(&os->os_user_ptr_lock); 1708 dmu_objset_set_user(os, NULL); 1709 mutex_exit(&os->os_user_ptr_lock); 1710 1711 /* 1712 * Finally release the objset 1713 */ 1714 dmu_objset_disown(os, zfsvfs); 1715 } 1716 1717 /* 1718 * We can now safely destroy the '.zfs' directory node. 1719 */ 1720 if (zfsvfs->z_ctldir != NULL) 1721 zfsctl_destroy(zfsvfs); 1722 1723 return (0); 1724 } 1725 1726 static int 1727 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1728 { 1729 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1730 znode_t *zp; 1731 uint64_t object = 0; 1732 uint64_t fid_gen = 0; 1733 uint64_t gen_mask; 1734 uint64_t zp_gen; 1735 int i, err; 1736 1737 *vpp = NULL; 1738 1739 ZFS_ENTER(zfsvfs); 1740 1741 if (fidp->fid_len == LONG_FID_LEN) { 1742 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1743 uint64_t objsetid = 0; 1744 uint64_t setgen = 0; 1745 1746 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1747 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1748 1749 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1750 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1751 1752 ZFS_EXIT(zfsvfs); 1753 1754 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1755 if (err) 1756 return (EINVAL); 1757 ZFS_ENTER(zfsvfs); 1758 } 1759 1760 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1761 zfid_short_t *zfid = (zfid_short_t *)fidp; 1762 1763 for (i = 0; i < sizeof (zfid->zf_object); i++) 1764 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1765 1766 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1767 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1768 } else { 1769 ZFS_EXIT(zfsvfs); 1770 return (EINVAL); 1771 } 1772 1773 /* A zero fid_gen means we are in the .zfs control directories */ 1774 if (fid_gen == 0 && 1775 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1776 *vpp = zfsvfs->z_ctldir; 1777 ASSERT(*vpp != NULL); 1778 if (object == ZFSCTL_INO_SNAPDIR) { 1779 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1780 0, NULL, NULL, NULL, NULL, NULL) == 0); 1781 } else { 1782 VN_HOLD(*vpp); 1783 } 1784 ZFS_EXIT(zfsvfs); 1785 return (0); 1786 } 1787 1788 gen_mask = -1ULL >> (64 - 8 * i); 1789 1790 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1791 if (err = zfs_zget(zfsvfs, object, &zp)) { 1792 ZFS_EXIT(zfsvfs); 1793 return (err); 1794 } 1795 zp_gen = zp->z_phys->zp_gen & gen_mask; 1796 if (zp_gen == 0) 1797 zp_gen = 1; 1798 if (zp->z_unlinked || zp_gen != fid_gen) { 1799 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1800 VN_RELE(ZTOV(zp)); 1801 ZFS_EXIT(zfsvfs); 1802 return (EINVAL); 1803 } 1804 1805 *vpp = ZTOV(zp); 1806 ZFS_EXIT(zfsvfs); 1807 return (0); 1808 } 1809 1810 /* 1811 * Block out VOPs and close zfsvfs_t::z_os 1812 * 1813 * Note, if successful, then we return with the 'z_teardown_lock' and 1814 * 'z_teardown_inactive_lock' write held. 1815 */ 1816 int 1817 zfs_suspend_fs(zfsvfs_t *zfsvfs) 1818 { 1819 int error; 1820 1821 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1822 return (error); 1823 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1824 1825 return (0); 1826 } 1827 1828 /* 1829 * Reopen zfsvfs_t::z_os and release VOPs. 1830 */ 1831 int 1832 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 1833 { 1834 int err; 1835 1836 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1837 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1838 1839 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs, 1840 &zfsvfs->z_os); 1841 if (err) { 1842 zfsvfs->z_os = NULL; 1843 } else { 1844 znode_t *zp; 1845 1846 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1847 1848 /* 1849 * Attempt to re-establish all the active znodes with 1850 * their dbufs. If a zfs_rezget() fails, then we'll let 1851 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1852 * when they try to use their znode. 1853 */ 1854 mutex_enter(&zfsvfs->z_znodes_lock); 1855 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1856 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1857 (void) zfs_rezget(zp); 1858 } 1859 mutex_exit(&zfsvfs->z_znodes_lock); 1860 1861 } 1862 1863 /* release the VOPs */ 1864 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1865 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1866 1867 if (err) { 1868 /* 1869 * Since we couldn't reopen zfsvfs::z_os, force 1870 * unmount this file system. 1871 */ 1872 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1873 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1874 } 1875 return (err); 1876 } 1877 1878 static void 1879 zfs_freevfs(vfs_t *vfsp) 1880 { 1881 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1882 1883 /* 1884 * If this is a snapshot, we have an extra VFS_HOLD on our parent 1885 * from zfs_mount(). Release it here. 1886 */ 1887 if (zfsvfs->z_issnap) 1888 VFS_RELE(zfsvfs->z_parent->z_vfs); 1889 1890 zfsvfs_free(zfsvfs); 1891 1892 atomic_add_32(&zfs_active_fs_count, -1); 1893 } 1894 1895 /* 1896 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1897 * so we can't safely do any non-idempotent initialization here. 1898 * Leave that to zfs_init() and zfs_fini(), which are called 1899 * from the module's _init() and _fini() entry points. 1900 */ 1901 /*ARGSUSED*/ 1902 static int 1903 zfs_vfsinit(int fstype, char *name) 1904 { 1905 int error; 1906 1907 zfsfstype = fstype; 1908 1909 /* 1910 * Setup vfsops and vnodeops tables. 1911 */ 1912 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1913 if (error != 0) { 1914 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1915 } 1916 1917 error = zfs_create_op_tables(); 1918 if (error) { 1919 zfs_remove_op_tables(); 1920 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1921 (void) vfs_freevfsops_by_type(zfsfstype); 1922 return (error); 1923 } 1924 1925 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1926 1927 /* 1928 * Unique major number for all zfs mounts. 1929 * If we run out of 32-bit minors, we'll getudev() another major. 1930 */ 1931 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1932 zfs_minor = ZFS_MIN_MINOR; 1933 1934 return (0); 1935 } 1936 1937 void 1938 zfs_init(void) 1939 { 1940 /* 1941 * Initialize .zfs directory structures 1942 */ 1943 zfsctl_init(); 1944 1945 /* 1946 * Initialize znode cache, vnode ops, etc... 1947 */ 1948 zfs_znode_init(); 1949 1950 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 1951 } 1952 1953 void 1954 zfs_fini(void) 1955 { 1956 zfsctl_fini(); 1957 zfs_znode_fini(); 1958 } 1959 1960 int 1961 zfs_busy(void) 1962 { 1963 return (zfs_active_fs_count != 0); 1964 } 1965 1966 int 1967 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 1968 { 1969 int error; 1970 objset_t *os = zfsvfs->z_os; 1971 dmu_tx_t *tx; 1972 1973 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1974 return (EINVAL); 1975 1976 if (newvers < zfsvfs->z_version) 1977 return (EINVAL); 1978 1979 tx = dmu_tx_create(os); 1980 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 1981 error = dmu_tx_assign(tx, TXG_WAIT); 1982 if (error) { 1983 dmu_tx_abort(tx); 1984 return (error); 1985 } 1986 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1987 8, 1, &newvers, tx); 1988 1989 if (error) { 1990 dmu_tx_commit(tx); 1991 return (error); 1992 } 1993 1994 spa_history_internal_log(LOG_DS_UPGRADE, 1995 dmu_objset_spa(os), tx, CRED(), 1996 "oldver=%llu newver=%llu dataset = %llu", 1997 zfsvfs->z_version, newvers, dmu_objset_id(os)); 1998 1999 dmu_tx_commit(tx); 2000 2001 zfsvfs->z_version = newvers; 2002 2003 if (zfsvfs->z_version >= ZPL_VERSION_FUID) 2004 zfs_set_fuid_feature(zfsvfs); 2005 2006 return (0); 2007 } 2008 2009 /* 2010 * Read a property stored within the master node. 2011 */ 2012 int 2013 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2014 { 2015 const char *pname; 2016 int error = ENOENT; 2017 2018 /* 2019 * Look up the file system's value for the property. For the 2020 * version property, we look up a slightly different string. 2021 */ 2022 if (prop == ZFS_PROP_VERSION) 2023 pname = ZPL_VERSION_STR; 2024 else 2025 pname = zfs_prop_to_name(prop); 2026 2027 if (os != NULL) 2028 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2029 2030 if (error == ENOENT) { 2031 /* No value set, use the default value */ 2032 switch (prop) { 2033 case ZFS_PROP_VERSION: 2034 *value = ZPL_VERSION; 2035 break; 2036 case ZFS_PROP_NORMALIZE: 2037 case ZFS_PROP_UTF8ONLY: 2038 *value = 0; 2039 break; 2040 case ZFS_PROP_CASE: 2041 *value = ZFS_CASE_SENSITIVE; 2042 break; 2043 default: 2044 return (error); 2045 } 2046 error = 0; 2047 } 2048 return (error); 2049 } 2050 2051 static vfsdef_t vfw = { 2052 VFSDEF_VERSION, 2053 MNTTYPE_ZFS, 2054 zfs_vfsinit, 2055 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2056 VSW_XID, 2057 &zfs_mntopts 2058 }; 2059 2060 struct modlfs zfs_modlfs = { 2061 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2062 }; 2063