1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 */ 26 27 /* Portions Copyright 2010 Robert Milkowski */ 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/kmem.h> 34 #include <sys/pathname.h> 35 #include <sys/vnode.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/mntent.h> 39 #include <sys/mount.h> 40 #include <sys/cmn_err.h> 41 #include "fs/fs_subr.h" 42 #include <sys/zfs_znode.h> 43 #include <sys/zfs_dir.h> 44 #include <sys/zil.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/dmu.h> 47 #include <sys/dsl_prop.h> 48 #include <sys/dsl_dataset.h> 49 #include <sys/dsl_deleg.h> 50 #include <sys/spa.h> 51 #include <sys/zap.h> 52 #include <sys/sa.h> 53 #include <sys/sa_impl.h> 54 #include <sys/varargs.h> 55 #include <sys/policy.h> 56 #include <sys/atomic.h> 57 #include <sys/mkdev.h> 58 #include <sys/modctl.h> 59 #include <sys/refstr.h> 60 #include <sys/zfs_ioctl.h> 61 #include <sys/zfs_ctldir.h> 62 #include <sys/zfs_fuid.h> 63 #include <sys/bootconf.h> 64 #include <sys/sunddi.h> 65 #include <sys/dnlc.h> 66 #include <sys/dmu_objset.h> 67 #include <sys/spa_boot.h> 68 #include "zfs_comutil.h" 69 70 int zfsfstype; 71 vfsops_t *zfs_vfsops = NULL; 72 static major_t zfs_major; 73 static minor_t zfs_minor; 74 static kmutex_t zfs_dev_mtx; 75 76 extern int sys_shutdown; 77 78 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 79 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 80 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 81 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 82 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 83 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 84 static void zfs_freevfs(vfs_t *vfsp); 85 86 static const fs_operation_def_t zfs_vfsops_template[] = { 87 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 88 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 89 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 90 VFSNAME_ROOT, { .vfs_root = zfs_root }, 91 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 92 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 93 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 94 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 95 NULL, NULL 96 }; 97 98 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 99 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 100 NULL, NULL 101 }; 102 103 /* 104 * We need to keep a count of active fs's. 105 * This is necessary to prevent our module 106 * from being unloaded after a umount -f 107 */ 108 static uint32_t zfs_active_fs_count = 0; 109 110 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 111 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 112 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 113 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 114 115 /* 116 * MO_DEFAULT is not used since the default value is determined 117 * by the equivalent property. 118 */ 119 static mntopt_t mntopts[] = { 120 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 121 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 122 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 123 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 124 }; 125 126 static mntopts_t zfs_mntopts = { 127 sizeof (mntopts) / sizeof (mntopt_t), 128 mntopts 129 }; 130 131 /*ARGSUSED*/ 132 int 133 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 134 { 135 /* 136 * Data integrity is job one. We don't want a compromised kernel 137 * writing to the storage pool, so we never sync during panic. 138 */ 139 if (panicstr) 140 return (0); 141 142 /* 143 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 144 * to sync metadata, which they would otherwise cache indefinitely. 145 * Semantically, the only requirement is that the sync be initiated. 146 * The DMU syncs out txgs frequently, so there's nothing to do. 147 */ 148 if (flag & SYNC_ATTR) 149 return (0); 150 151 if (vfsp != NULL) { 152 /* 153 * Sync a specific filesystem. 154 */ 155 zfsvfs_t *zfsvfs = vfsp->vfs_data; 156 dsl_pool_t *dp; 157 158 ZFS_ENTER(zfsvfs); 159 dp = dmu_objset_pool(zfsvfs->z_os); 160 161 /* 162 * If the system is shutting down, then skip any 163 * filesystems which may exist on a suspended pool. 164 */ 165 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 166 ZFS_EXIT(zfsvfs); 167 return (0); 168 } 169 170 if (zfsvfs->z_log != NULL) 171 zil_commit(zfsvfs->z_log, 0); 172 173 ZFS_EXIT(zfsvfs); 174 } else { 175 /* 176 * Sync all ZFS filesystems. This is what happens when you 177 * run sync(1M). Unlike other filesystems, ZFS honors the 178 * request by waiting for all pools to commit all dirty data. 179 */ 180 spa_sync_allpools(); 181 } 182 183 return (0); 184 } 185 186 static int 187 zfs_create_unique_device(dev_t *dev) 188 { 189 major_t new_major; 190 191 do { 192 ASSERT3U(zfs_minor, <=, MAXMIN32); 193 minor_t start = zfs_minor; 194 do { 195 mutex_enter(&zfs_dev_mtx); 196 if (zfs_minor >= MAXMIN32) { 197 /* 198 * If we're still using the real major 199 * keep out of /dev/zfs and /dev/zvol minor 200 * number space. If we're using a getudev()'ed 201 * major number, we can use all of its minors. 202 */ 203 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 204 zfs_minor = ZFS_MIN_MINOR; 205 else 206 zfs_minor = 0; 207 } else { 208 zfs_minor++; 209 } 210 *dev = makedevice(zfs_major, zfs_minor); 211 mutex_exit(&zfs_dev_mtx); 212 } while (vfs_devismounted(*dev) && zfs_minor != start); 213 if (zfs_minor == start) { 214 /* 215 * We are using all ~262,000 minor numbers for the 216 * current major number. Create a new major number. 217 */ 218 if ((new_major = getudev()) == (major_t)-1) { 219 cmn_err(CE_WARN, 220 "zfs_mount: Can't get unique major " 221 "device number."); 222 return (-1); 223 } 224 mutex_enter(&zfs_dev_mtx); 225 zfs_major = new_major; 226 zfs_minor = 0; 227 228 mutex_exit(&zfs_dev_mtx); 229 } else { 230 break; 231 } 232 /* CONSTANTCONDITION */ 233 } while (1); 234 235 return (0); 236 } 237 238 static void 239 atime_changed_cb(void *arg, uint64_t newval) 240 { 241 zfsvfs_t *zfsvfs = arg; 242 243 if (newval == TRUE) { 244 zfsvfs->z_atime = TRUE; 245 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 246 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 247 } else { 248 zfsvfs->z_atime = FALSE; 249 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 250 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 251 } 252 } 253 254 static void 255 xattr_changed_cb(void *arg, uint64_t newval) 256 { 257 zfsvfs_t *zfsvfs = arg; 258 259 if (newval == TRUE) { 260 /* XXX locking on vfs_flag? */ 261 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 262 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 263 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 264 } else { 265 /* XXX locking on vfs_flag? */ 266 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 267 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 268 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 269 } 270 } 271 272 static void 273 blksz_changed_cb(void *arg, uint64_t newval) 274 { 275 zfsvfs_t *zfsvfs = arg; 276 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); 277 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); 278 ASSERT(ISP2(newval)); 279 280 zfsvfs->z_max_blksz = newval; 281 zfsvfs->z_vfs->vfs_bsize = newval; 282 } 283 284 static void 285 readonly_changed_cb(void *arg, uint64_t newval) 286 { 287 zfsvfs_t *zfsvfs = arg; 288 289 if (newval) { 290 /* XXX locking on vfs_flag? */ 291 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 292 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 293 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 294 } else { 295 /* XXX locking on vfs_flag? */ 296 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 299 } 300 } 301 302 static void 303 devices_changed_cb(void *arg, uint64_t newval) 304 { 305 zfsvfs_t *zfsvfs = arg; 306 307 if (newval == FALSE) { 308 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 311 } else { 312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 315 } 316 } 317 318 static void 319 setuid_changed_cb(void *arg, uint64_t newval) 320 { 321 zfsvfs_t *zfsvfs = arg; 322 323 if (newval == FALSE) { 324 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 327 } else { 328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 331 } 332 } 333 334 static void 335 exec_changed_cb(void *arg, uint64_t newval) 336 { 337 zfsvfs_t *zfsvfs = arg; 338 339 if (newval == FALSE) { 340 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 343 } else { 344 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 347 } 348 } 349 350 /* 351 * The nbmand mount option can be changed at mount time. 352 * We can't allow it to be toggled on live file systems or incorrect 353 * behavior may be seen from cifs clients 354 * 355 * This property isn't registered via dsl_prop_register(), but this callback 356 * will be called when a file system is first mounted 357 */ 358 static void 359 nbmand_changed_cb(void *arg, uint64_t newval) 360 { 361 zfsvfs_t *zfsvfs = arg; 362 if (newval == FALSE) { 363 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 364 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 365 } else { 366 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 367 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 368 } 369 } 370 371 static void 372 snapdir_changed_cb(void *arg, uint64_t newval) 373 { 374 zfsvfs_t *zfsvfs = arg; 375 376 zfsvfs->z_show_ctldir = newval; 377 } 378 379 static void 380 vscan_changed_cb(void *arg, uint64_t newval) 381 { 382 zfsvfs_t *zfsvfs = arg; 383 384 zfsvfs->z_vscan = newval; 385 } 386 387 static void 388 acl_mode_changed_cb(void *arg, uint64_t newval) 389 { 390 zfsvfs_t *zfsvfs = arg; 391 392 zfsvfs->z_acl_mode = newval; 393 } 394 395 static void 396 acl_inherit_changed_cb(void *arg, uint64_t newval) 397 { 398 zfsvfs_t *zfsvfs = arg; 399 400 zfsvfs->z_acl_inherit = newval; 401 } 402 403 static int 404 zfs_register_callbacks(vfs_t *vfsp) 405 { 406 struct dsl_dataset *ds = NULL; 407 objset_t *os = NULL; 408 zfsvfs_t *zfsvfs = NULL; 409 uint64_t nbmand; 410 boolean_t readonly = B_FALSE; 411 boolean_t do_readonly = B_FALSE; 412 boolean_t setuid = B_FALSE; 413 boolean_t do_setuid = B_FALSE; 414 boolean_t exec = B_FALSE; 415 boolean_t do_exec = B_FALSE; 416 boolean_t devices = B_FALSE; 417 boolean_t do_devices = B_FALSE; 418 boolean_t xattr = B_FALSE; 419 boolean_t do_xattr = B_FALSE; 420 boolean_t atime = B_FALSE; 421 boolean_t do_atime = B_FALSE; 422 int error = 0; 423 424 ASSERT(vfsp); 425 zfsvfs = vfsp->vfs_data; 426 ASSERT(zfsvfs); 427 os = zfsvfs->z_os; 428 429 /* 430 * The act of registering our callbacks will destroy any mount 431 * options we may have. In order to enable temporary overrides 432 * of mount options, we stash away the current values and 433 * restore them after we register the callbacks. 434 */ 435 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || 436 !spa_writeable(dmu_objset_spa(os))) { 437 readonly = B_TRUE; 438 do_readonly = B_TRUE; 439 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 440 readonly = B_FALSE; 441 do_readonly = B_TRUE; 442 } 443 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 444 devices = B_FALSE; 445 setuid = B_FALSE; 446 do_devices = B_TRUE; 447 do_setuid = B_TRUE; 448 } else { 449 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 450 devices = B_FALSE; 451 do_devices = B_TRUE; 452 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 453 devices = B_TRUE; 454 do_devices = B_TRUE; 455 } 456 457 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 458 setuid = B_FALSE; 459 do_setuid = B_TRUE; 460 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 461 setuid = B_TRUE; 462 do_setuid = B_TRUE; 463 } 464 } 465 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 466 exec = B_FALSE; 467 do_exec = B_TRUE; 468 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 469 exec = B_TRUE; 470 do_exec = B_TRUE; 471 } 472 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 473 xattr = B_FALSE; 474 do_xattr = B_TRUE; 475 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 476 xattr = B_TRUE; 477 do_xattr = B_TRUE; 478 } 479 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 480 atime = B_FALSE; 481 do_atime = B_TRUE; 482 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 483 atime = B_TRUE; 484 do_atime = B_TRUE; 485 } 486 487 /* 488 * nbmand is a special property. It can only be changed at 489 * mount time. 490 * 491 * This is weird, but it is documented to only be changeable 492 * at mount time. 493 */ 494 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 495 nbmand = B_FALSE; 496 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 497 nbmand = B_TRUE; 498 } else { 499 char osname[ZFS_MAX_DATASET_NAME_LEN]; 500 501 dmu_objset_name(os, osname); 502 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 503 NULL)) { 504 return (error); 505 } 506 } 507 508 /* 509 * Register property callbacks. 510 * 511 * It would probably be fine to just check for i/o error from 512 * the first prop_register(), but I guess I like to go 513 * overboard... 514 */ 515 ds = dmu_objset_ds(os); 516 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 517 error = dsl_prop_register(ds, 518 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 519 error = error ? error : dsl_prop_register(ds, 520 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 521 error = error ? error : dsl_prop_register(ds, 522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 523 error = error ? error : dsl_prop_register(ds, 524 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 525 error = error ? error : dsl_prop_register(ds, 526 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 527 error = error ? error : dsl_prop_register(ds, 528 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 529 error = error ? error : dsl_prop_register(ds, 530 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 531 error = error ? error : dsl_prop_register(ds, 532 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 533 error = error ? error : dsl_prop_register(ds, 534 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 535 error = error ? error : dsl_prop_register(ds, 536 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 537 zfsvfs); 538 error = error ? error : dsl_prop_register(ds, 539 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); 540 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 541 if (error) 542 goto unregister; 543 544 /* 545 * Invoke our callbacks to restore temporary mount options. 546 */ 547 if (do_readonly) 548 readonly_changed_cb(zfsvfs, readonly); 549 if (do_setuid) 550 setuid_changed_cb(zfsvfs, setuid); 551 if (do_exec) 552 exec_changed_cb(zfsvfs, exec); 553 if (do_devices) 554 devices_changed_cb(zfsvfs, devices); 555 if (do_xattr) 556 xattr_changed_cb(zfsvfs, xattr); 557 if (do_atime) 558 atime_changed_cb(zfsvfs, atime); 559 560 nbmand_changed_cb(zfsvfs, nbmand); 561 562 return (0); 563 564 unregister: 565 dsl_prop_unregister_all(ds, zfsvfs); 566 return (error); 567 } 568 569 static int 570 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 571 uint64_t *userp, uint64_t *groupp) 572 { 573 /* 574 * Is it a valid type of object to track? 575 */ 576 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 577 return (SET_ERROR(ENOENT)); 578 579 /* 580 * If we have a NULL data pointer 581 * then assume the id's aren't changing and 582 * return EEXIST to the dmu to let it know to 583 * use the same ids 584 */ 585 if (data == NULL) 586 return (SET_ERROR(EEXIST)); 587 588 if (bonustype == DMU_OT_ZNODE) { 589 znode_phys_t *znp = data; 590 *userp = znp->zp_uid; 591 *groupp = znp->zp_gid; 592 } else { 593 int hdrsize; 594 sa_hdr_phys_t *sap = data; 595 sa_hdr_phys_t sa = *sap; 596 boolean_t swap = B_FALSE; 597 598 ASSERT(bonustype == DMU_OT_SA); 599 600 if (sa.sa_magic == 0) { 601 /* 602 * This should only happen for newly created 603 * files that haven't had the znode data filled 604 * in yet. 605 */ 606 *userp = 0; 607 *groupp = 0; 608 return (0); 609 } 610 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) { 611 sa.sa_magic = SA_MAGIC; 612 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info); 613 swap = B_TRUE; 614 } else { 615 VERIFY3U(sa.sa_magic, ==, SA_MAGIC); 616 } 617 618 hdrsize = sa_hdrsize(&sa); 619 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t)); 620 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 621 SA_UID_OFFSET)); 622 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 623 SA_GID_OFFSET)); 624 if (swap) { 625 *userp = BSWAP_64(*userp); 626 *groupp = BSWAP_64(*groupp); 627 } 628 } 629 return (0); 630 } 631 632 static void 633 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 634 char *domainbuf, int buflen, uid_t *ridp) 635 { 636 uint64_t fuid; 637 const char *domain; 638 639 fuid = strtonum(fuidstr, NULL); 640 641 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 642 if (domain) 643 (void) strlcpy(domainbuf, domain, buflen); 644 else 645 domainbuf[0] = '\0'; 646 *ridp = FUID_RID(fuid); 647 } 648 649 static uint64_t 650 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 651 { 652 switch (type) { 653 case ZFS_PROP_USERUSED: 654 return (DMU_USERUSED_OBJECT); 655 case ZFS_PROP_GROUPUSED: 656 return (DMU_GROUPUSED_OBJECT); 657 case ZFS_PROP_USERQUOTA: 658 return (zfsvfs->z_userquota_obj); 659 case ZFS_PROP_GROUPQUOTA: 660 return (zfsvfs->z_groupquota_obj); 661 } 662 return (0); 663 } 664 665 int 666 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 667 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 668 { 669 int error; 670 zap_cursor_t zc; 671 zap_attribute_t za; 672 zfs_useracct_t *buf = vbuf; 673 uint64_t obj; 674 675 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 676 return (SET_ERROR(ENOTSUP)); 677 678 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 679 if (obj == 0) { 680 *bufsizep = 0; 681 return (0); 682 } 683 684 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 685 (error = zap_cursor_retrieve(&zc, &za)) == 0; 686 zap_cursor_advance(&zc)) { 687 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 688 *bufsizep) 689 break; 690 691 fuidstr_to_sid(zfsvfs, za.za_name, 692 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 693 694 buf->zu_space = za.za_first_integer; 695 buf++; 696 } 697 if (error == ENOENT) 698 error = 0; 699 700 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 701 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 702 *cookiep = zap_cursor_serialize(&zc); 703 zap_cursor_fini(&zc); 704 return (error); 705 } 706 707 /* 708 * buf must be big enough (eg, 32 bytes) 709 */ 710 static int 711 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 712 char *buf, boolean_t addok) 713 { 714 uint64_t fuid; 715 int domainid = 0; 716 717 if (domain && domain[0]) { 718 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 719 if (domainid == -1) 720 return (SET_ERROR(ENOENT)); 721 } 722 fuid = FUID_ENCODE(domainid, rid); 723 (void) sprintf(buf, "%llx", (longlong_t)fuid); 724 return (0); 725 } 726 727 int 728 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 729 const char *domain, uint64_t rid, uint64_t *valp) 730 { 731 char buf[32]; 732 int err; 733 uint64_t obj; 734 735 *valp = 0; 736 737 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 738 return (SET_ERROR(ENOTSUP)); 739 740 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 741 if (obj == 0) 742 return (0); 743 744 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 745 if (err) 746 return (err); 747 748 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 749 if (err == ENOENT) 750 err = 0; 751 return (err); 752 } 753 754 int 755 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 756 const char *domain, uint64_t rid, uint64_t quota) 757 { 758 char buf[32]; 759 int err; 760 dmu_tx_t *tx; 761 uint64_t *objp; 762 boolean_t fuid_dirtied; 763 764 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 765 return (SET_ERROR(EINVAL)); 766 767 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 768 return (SET_ERROR(ENOTSUP)); 769 770 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 771 &zfsvfs->z_groupquota_obj; 772 773 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 774 if (err) 775 return (err); 776 fuid_dirtied = zfsvfs->z_fuid_dirty; 777 778 tx = dmu_tx_create(zfsvfs->z_os); 779 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 780 if (*objp == 0) { 781 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 782 zfs_userquota_prop_prefixes[type]); 783 } 784 if (fuid_dirtied) 785 zfs_fuid_txhold(zfsvfs, tx); 786 err = dmu_tx_assign(tx, TXG_WAIT); 787 if (err) { 788 dmu_tx_abort(tx); 789 return (err); 790 } 791 792 mutex_enter(&zfsvfs->z_lock); 793 if (*objp == 0) { 794 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 795 DMU_OT_NONE, 0, tx); 796 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 797 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 798 } 799 mutex_exit(&zfsvfs->z_lock); 800 801 if (quota == 0) { 802 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 803 if (err == ENOENT) 804 err = 0; 805 } else { 806 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 807 } 808 ASSERT(err == 0); 809 if (fuid_dirtied) 810 zfs_fuid_sync(zfsvfs, tx); 811 dmu_tx_commit(tx); 812 return (err); 813 } 814 815 boolean_t 816 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 817 { 818 char buf[32]; 819 uint64_t used, quota, usedobj, quotaobj; 820 int err; 821 822 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 823 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 824 825 if (quotaobj == 0 || zfsvfs->z_replay) 826 return (B_FALSE); 827 828 (void) sprintf(buf, "%llx", (longlong_t)fuid); 829 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 830 if (err != 0) 831 return (B_FALSE); 832 833 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 834 if (err != 0) 835 return (B_FALSE); 836 return (used >= quota); 837 } 838 839 boolean_t 840 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 841 { 842 uint64_t fuid; 843 uint64_t quotaobj; 844 845 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 846 847 fuid = isgroup ? zp->z_gid : zp->z_uid; 848 849 if (quotaobj == 0 || zfsvfs->z_replay) 850 return (B_FALSE); 851 852 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 853 } 854 855 /* 856 * Associate this zfsvfs with the given objset, which must be owned. 857 * This will cache a bunch of on-disk state from the objset in the 858 * zfsvfs. 859 */ 860 static int 861 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os) 862 { 863 int error; 864 uint64_t val; 865 866 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; 867 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 868 zfsvfs->z_os = os; 869 870 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 871 if (error != 0) 872 return (error); 873 if (zfsvfs->z_version > 874 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 875 (void) printf("Can't mount a version %lld file system " 876 "on a version %lld pool\n. Pool must be upgraded to mount " 877 "this file system.", (u_longlong_t)zfsvfs->z_version, 878 (u_longlong_t)spa_version(dmu_objset_spa(os))); 879 return (SET_ERROR(ENOTSUP)); 880 } 881 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val); 882 if (error != 0) 883 return (error); 884 zfsvfs->z_norm = (int)val; 885 886 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val); 887 if (error != 0) 888 return (error); 889 zfsvfs->z_utf8 = (val != 0); 890 891 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val); 892 if (error != 0) 893 return (error); 894 zfsvfs->z_case = (uint_t)val; 895 896 /* 897 * Fold case on file systems that are always or sometimes case 898 * insensitive. 899 */ 900 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 901 zfsvfs->z_case == ZFS_CASE_MIXED) 902 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 903 904 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 905 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 906 907 uint64_t sa_obj = 0; 908 if (zfsvfs->z_use_sa) { 909 /* should either have both of these objects or none */ 910 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 911 &sa_obj); 912 if (error != 0) 913 return (error); 914 } 915 916 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 917 &zfsvfs->z_attr_table); 918 if (error != 0) 919 return (error); 920 921 if (zfsvfs->z_version >= ZPL_VERSION_SA) 922 sa_register_update_callback(os, zfs_sa_upgrade); 923 924 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 925 &zfsvfs->z_root); 926 if (error != 0) 927 return (error); 928 ASSERT(zfsvfs->z_root != 0); 929 930 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 931 &zfsvfs->z_unlinkedobj); 932 if (error != 0) 933 return (error); 934 935 error = zap_lookup(os, MASTER_NODE_OBJ, 936 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 937 8, 1, &zfsvfs->z_userquota_obj); 938 if (error == ENOENT) 939 zfsvfs->z_userquota_obj = 0; 940 else if (error != 0) 941 return (error); 942 943 error = zap_lookup(os, MASTER_NODE_OBJ, 944 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 945 8, 1, &zfsvfs->z_groupquota_obj); 946 if (error == ENOENT) 947 zfsvfs->z_groupquota_obj = 0; 948 else if (error != 0) 949 return (error); 950 951 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 952 &zfsvfs->z_fuid_obj); 953 if (error == ENOENT) 954 zfsvfs->z_fuid_obj = 0; 955 else if (error != 0) 956 return (error); 957 958 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 959 &zfsvfs->z_shares_dir); 960 if (error == ENOENT) 961 zfsvfs->z_shares_dir = 0; 962 else if (error != 0) 963 return (error); 964 965 return (0); 966 } 967 968 int 969 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 970 { 971 objset_t *os; 972 zfsvfs_t *zfsvfs; 973 int error; 974 975 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 976 977 /* 978 * We claim to always be readonly so we can open snapshots; 979 * other ZPL code will prevent us from writing to snapshots. 980 */ 981 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 982 if (error) { 983 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 984 return (error); 985 } 986 987 zfsvfs->z_vfs = NULL; 988 zfsvfs->z_parent = zfsvfs; 989 990 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 991 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 992 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 993 offsetof(znode_t, z_link_node)); 994 rrm_init(&zfsvfs->z_teardown_lock, B_FALSE); 995 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 996 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 997 for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++) 998 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 999 1000 error = zfsvfs_init(zfsvfs, os); 1001 if (error != 0) { 1002 dmu_objset_disown(os, zfsvfs); 1003 *zfvp = NULL; 1004 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1005 return (error); 1006 } 1007 1008 *zfvp = zfsvfs; 1009 return (0); 1010 } 1011 1012 static int 1013 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 1014 { 1015 int error; 1016 1017 error = zfs_register_callbacks(zfsvfs->z_vfs); 1018 if (error) 1019 return (error); 1020 1021 /* 1022 * Set the objset user_ptr to track its zfsvfs. 1023 */ 1024 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1025 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1026 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1027 1028 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1029 1030 /* 1031 * If we are not mounting (ie: online recv), then we don't 1032 * have to worry about replaying the log as we blocked all 1033 * operations out since we closed the ZIL. 1034 */ 1035 if (mounting) { 1036 boolean_t readonly; 1037 1038 /* 1039 * During replay we remove the read only flag to 1040 * allow replays to succeed. 1041 */ 1042 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1043 if (readonly != 0) 1044 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1045 else 1046 zfs_unlinked_drain(zfsvfs); 1047 1048 /* 1049 * Parse and replay the intent log. 1050 * 1051 * Because of ziltest, this must be done after 1052 * zfs_unlinked_drain(). (Further note: ziltest 1053 * doesn't use readonly mounts, where 1054 * zfs_unlinked_drain() isn't called.) This is because 1055 * ziltest causes spa_sync() to think it's committed, 1056 * but actually it is not, so the intent log contains 1057 * many txg's worth of changes. 1058 * 1059 * In particular, if object N is in the unlinked set in 1060 * the last txg to actually sync, then it could be 1061 * actually freed in a later txg and then reallocated 1062 * in a yet later txg. This would write a "create 1063 * object N" record to the intent log. Normally, this 1064 * would be fine because the spa_sync() would have 1065 * written out the fact that object N is free, before 1066 * we could write the "create object N" intent log 1067 * record. 1068 * 1069 * But when we are in ziltest mode, we advance the "open 1070 * txg" without actually spa_sync()-ing the changes to 1071 * disk. So we would see that object N is still 1072 * allocated and in the unlinked set, and there is an 1073 * intent log record saying to allocate it. 1074 */ 1075 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 1076 if (zil_replay_disable) { 1077 zil_destroy(zfsvfs->z_log, B_FALSE); 1078 } else { 1079 zfsvfs->z_replay = B_TRUE; 1080 zil_replay(zfsvfs->z_os, zfsvfs, 1081 zfs_replay_vector); 1082 zfsvfs->z_replay = B_FALSE; 1083 } 1084 } 1085 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1086 } 1087 1088 return (0); 1089 } 1090 1091 void 1092 zfsvfs_free(zfsvfs_t *zfsvfs) 1093 { 1094 int i; 1095 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1096 1097 /* 1098 * This is a barrier to prevent the filesystem from going away in 1099 * zfs_znode_move() until we can safely ensure that the filesystem is 1100 * not unmounted. We consider the filesystem valid before the barrier 1101 * and invalid after the barrier. 1102 */ 1103 rw_enter(&zfsvfs_lock, RW_READER); 1104 rw_exit(&zfsvfs_lock); 1105 1106 zfs_fuid_destroy(zfsvfs); 1107 1108 mutex_destroy(&zfsvfs->z_znodes_lock); 1109 mutex_destroy(&zfsvfs->z_lock); 1110 list_destroy(&zfsvfs->z_all_znodes); 1111 rrm_destroy(&zfsvfs->z_teardown_lock); 1112 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1113 rw_destroy(&zfsvfs->z_fuid_lock); 1114 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1115 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1116 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1117 } 1118 1119 static void 1120 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1121 { 1122 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1123 if (zfsvfs->z_vfs) { 1124 if (zfsvfs->z_use_fuids) { 1125 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1126 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1127 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1128 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1129 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1130 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1131 } else { 1132 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1133 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1134 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1135 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1136 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1137 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1138 } 1139 } 1140 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1141 } 1142 1143 static int 1144 zfs_domount(vfs_t *vfsp, char *osname) 1145 { 1146 dev_t mount_dev; 1147 uint64_t recordsize, fsid_guid; 1148 int error = 0; 1149 zfsvfs_t *zfsvfs; 1150 1151 ASSERT(vfsp); 1152 ASSERT(osname); 1153 1154 error = zfsvfs_create(osname, &zfsvfs); 1155 if (error) 1156 return (error); 1157 zfsvfs->z_vfs = vfsp; 1158 1159 /* Initialize the generic filesystem structure. */ 1160 vfsp->vfs_bcount = 0; 1161 vfsp->vfs_data = NULL; 1162 1163 if (zfs_create_unique_device(&mount_dev) == -1) { 1164 error = SET_ERROR(ENODEV); 1165 goto out; 1166 } 1167 ASSERT(vfs_devismounted(mount_dev) == 0); 1168 1169 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1170 NULL)) 1171 goto out; 1172 1173 vfsp->vfs_dev = mount_dev; 1174 vfsp->vfs_fstype = zfsfstype; 1175 vfsp->vfs_bsize = recordsize; 1176 vfsp->vfs_flag |= VFS_NOTRUNC; 1177 vfsp->vfs_data = zfsvfs; 1178 1179 /* 1180 * The fsid is 64 bits, composed of an 8-bit fs type, which 1181 * separates our fsid from any other filesystem types, and a 1182 * 56-bit objset unique ID. The objset unique ID is unique to 1183 * all objsets open on this system, provided by unique_create(). 1184 * The 8-bit fs type must be put in the low bits of fsid[1] 1185 * because that's where other Solaris filesystems put it. 1186 */ 1187 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1188 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1189 vfsp->vfs_fsid.val[0] = fsid_guid; 1190 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1191 zfsfstype & 0xFF; 1192 1193 /* 1194 * Set features for file system. 1195 */ 1196 zfs_set_fuid_feature(zfsvfs); 1197 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1198 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1199 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1200 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1201 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1202 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1203 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1204 } 1205 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1206 1207 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1208 uint64_t pval; 1209 1210 atime_changed_cb(zfsvfs, B_FALSE); 1211 readonly_changed_cb(zfsvfs, B_TRUE); 1212 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1213 goto out; 1214 xattr_changed_cb(zfsvfs, pval); 1215 zfsvfs->z_issnap = B_TRUE; 1216 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1217 1218 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1219 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1220 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1221 } else { 1222 error = zfsvfs_setup(zfsvfs, B_TRUE); 1223 } 1224 1225 if (!zfsvfs->z_issnap) 1226 zfsctl_create(zfsvfs); 1227 out: 1228 if (error) { 1229 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1230 zfsvfs_free(zfsvfs); 1231 } else { 1232 atomic_inc_32(&zfs_active_fs_count); 1233 } 1234 1235 return (error); 1236 } 1237 1238 void 1239 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1240 { 1241 objset_t *os = zfsvfs->z_os; 1242 1243 if (!dmu_objset_is_snapshot(os)) 1244 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); 1245 } 1246 1247 /* 1248 * Convert a decimal digit string to a uint64_t integer. 1249 */ 1250 static int 1251 str_to_uint64(char *str, uint64_t *objnum) 1252 { 1253 uint64_t num = 0; 1254 1255 while (*str) { 1256 if (*str < '0' || *str > '9') 1257 return (SET_ERROR(EINVAL)); 1258 1259 num = num*10 + *str++ - '0'; 1260 } 1261 1262 *objnum = num; 1263 return (0); 1264 } 1265 1266 /* 1267 * The boot path passed from the boot loader is in the form of 1268 * "rootpool-name/root-filesystem-object-number'. Convert this 1269 * string to a dataset name: "rootpool-name/root-filesystem-name". 1270 */ 1271 static int 1272 zfs_parse_bootfs(char *bpath, char *outpath) 1273 { 1274 char *slashp; 1275 uint64_t objnum; 1276 int error; 1277 1278 if (*bpath == 0 || *bpath == '/') 1279 return (SET_ERROR(EINVAL)); 1280 1281 (void) strcpy(outpath, bpath); 1282 1283 slashp = strchr(bpath, '/'); 1284 1285 /* if no '/', just return the pool name */ 1286 if (slashp == NULL) { 1287 return (0); 1288 } 1289 1290 /* if not a number, just return the root dataset name */ 1291 if (str_to_uint64(slashp+1, &objnum)) { 1292 return (0); 1293 } 1294 1295 *slashp = '\0'; 1296 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1297 *slashp = '/'; 1298 1299 return (error); 1300 } 1301 1302 /* 1303 * Check that the hex label string is appropriate for the dataset being 1304 * mounted into the global_zone proper. 1305 * 1306 * Return an error if the hex label string is not default or 1307 * admin_low/admin_high. For admin_low labels, the corresponding 1308 * dataset must be readonly. 1309 */ 1310 int 1311 zfs_check_global_label(const char *dsname, const char *hexsl) 1312 { 1313 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1314 return (0); 1315 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1316 return (0); 1317 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1318 /* must be readonly */ 1319 uint64_t rdonly; 1320 1321 if (dsl_prop_get_integer(dsname, 1322 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1323 return (SET_ERROR(EACCES)); 1324 return (rdonly ? 0 : EACCES); 1325 } 1326 return (SET_ERROR(EACCES)); 1327 } 1328 1329 /* 1330 * Determine whether the mount is allowed according to MAC check. 1331 * by comparing (where appropriate) label of the dataset against 1332 * the label of the zone being mounted into. If the dataset has 1333 * no label, create one. 1334 * 1335 * Returns 0 if access allowed, error otherwise (e.g. EACCES) 1336 */ 1337 static int 1338 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1339 { 1340 int error, retv; 1341 zone_t *mntzone = NULL; 1342 ts_label_t *mnt_tsl; 1343 bslabel_t *mnt_sl; 1344 bslabel_t ds_sl; 1345 char ds_hexsl[MAXNAMELEN]; 1346 1347 retv = EACCES; /* assume the worst */ 1348 1349 /* 1350 * Start by getting the dataset label if it exists. 1351 */ 1352 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1353 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1354 if (error) 1355 return (SET_ERROR(EACCES)); 1356 1357 /* 1358 * If labeling is NOT enabled, then disallow the mount of datasets 1359 * which have a non-default label already. No other label checks 1360 * are needed. 1361 */ 1362 if (!is_system_labeled()) { 1363 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1364 return (0); 1365 return (SET_ERROR(EACCES)); 1366 } 1367 1368 /* 1369 * Get the label of the mountpoint. If mounting into the global 1370 * zone (i.e. mountpoint is not within an active zone and the 1371 * zoned property is off), the label must be default or 1372 * admin_low/admin_high only; no other checks are needed. 1373 */ 1374 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1375 if (mntzone->zone_id == GLOBAL_ZONEID) { 1376 uint64_t zoned; 1377 1378 zone_rele(mntzone); 1379 1380 if (dsl_prop_get_integer(osname, 1381 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1382 return (SET_ERROR(EACCES)); 1383 if (!zoned) 1384 return (zfs_check_global_label(osname, ds_hexsl)); 1385 else 1386 /* 1387 * This is the case of a zone dataset being mounted 1388 * initially, before the zone has been fully created; 1389 * allow this mount into global zone. 1390 */ 1391 return (0); 1392 } 1393 1394 mnt_tsl = mntzone->zone_slabel; 1395 ASSERT(mnt_tsl != NULL); 1396 label_hold(mnt_tsl); 1397 mnt_sl = label2bslabel(mnt_tsl); 1398 1399 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1400 /* 1401 * The dataset doesn't have a real label, so fabricate one. 1402 */ 1403 char *str = NULL; 1404 1405 if (l_to_str_internal(mnt_sl, &str) == 0 && 1406 dsl_prop_set_string(osname, 1407 zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1408 ZPROP_SRC_LOCAL, str) == 0) 1409 retv = 0; 1410 if (str != NULL) 1411 kmem_free(str, strlen(str) + 1); 1412 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1413 /* 1414 * Now compare labels to complete the MAC check. If the 1415 * labels are equal then allow access. If the mountpoint 1416 * label dominates the dataset label, allow readonly access. 1417 * Otherwise, access is denied. 1418 */ 1419 if (blequal(mnt_sl, &ds_sl)) 1420 retv = 0; 1421 else if (bldominates(mnt_sl, &ds_sl)) { 1422 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1423 retv = 0; 1424 } 1425 } 1426 1427 label_rele(mnt_tsl); 1428 zone_rele(mntzone); 1429 return (retv); 1430 } 1431 1432 static int 1433 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1434 { 1435 int error = 0; 1436 static int zfsrootdone = 0; 1437 zfsvfs_t *zfsvfs = NULL; 1438 znode_t *zp = NULL; 1439 vnode_t *vp = NULL; 1440 char *zfs_bootfs; 1441 char *zfs_devid; 1442 1443 ASSERT(vfsp); 1444 1445 /* 1446 * The filesystem that we mount as root is defined in the 1447 * boot property "zfs-bootfs" with a format of 1448 * "poolname/root-dataset-objnum". 1449 */ 1450 if (why == ROOT_INIT) { 1451 if (zfsrootdone++) 1452 return (SET_ERROR(EBUSY)); 1453 /* 1454 * the process of doing a spa_load will require the 1455 * clock to be set before we could (for example) do 1456 * something better by looking at the timestamp on 1457 * an uberblock, so just set it to -1. 1458 */ 1459 clkset(-1); 1460 1461 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1462 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1463 "bootfs name"); 1464 return (SET_ERROR(EINVAL)); 1465 } 1466 zfs_devid = spa_get_bootprop("diskdevid"); 1467 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1468 if (zfs_devid) 1469 spa_free_bootprop(zfs_devid); 1470 if (error) { 1471 spa_free_bootprop(zfs_bootfs); 1472 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1473 error); 1474 return (error); 1475 } 1476 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1477 spa_free_bootprop(zfs_bootfs); 1478 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1479 error); 1480 return (error); 1481 } 1482 1483 spa_free_bootprop(zfs_bootfs); 1484 1485 if (error = vfs_lock(vfsp)) 1486 return (error); 1487 1488 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1489 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1490 goto out; 1491 } 1492 1493 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1494 ASSERT(zfsvfs); 1495 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1496 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1497 goto out; 1498 } 1499 1500 vp = ZTOV(zp); 1501 mutex_enter(&vp->v_lock); 1502 vp->v_flag |= VROOT; 1503 mutex_exit(&vp->v_lock); 1504 rootvp = vp; 1505 1506 /* 1507 * Leave rootvp held. The root file system is never unmounted. 1508 */ 1509 1510 vfs_add((struct vnode *)0, vfsp, 1511 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1512 out: 1513 vfs_unlock(vfsp); 1514 return (error); 1515 } else if (why == ROOT_REMOUNT) { 1516 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1517 vfsp->vfs_flag |= VFS_REMOUNT; 1518 1519 /* refresh mount options */ 1520 zfs_unregister_callbacks(vfsp->vfs_data); 1521 return (zfs_register_callbacks(vfsp)); 1522 1523 } else if (why == ROOT_UNMOUNT) { 1524 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1525 (void) zfs_sync(vfsp, 0, 0); 1526 return (0); 1527 } 1528 1529 /* 1530 * if "why" is equal to anything else other than ROOT_INIT, 1531 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1532 */ 1533 return (SET_ERROR(ENOTSUP)); 1534 } 1535 1536 /*ARGSUSED*/ 1537 static int 1538 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1539 { 1540 char *osname; 1541 pathname_t spn; 1542 int error = 0; 1543 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1544 UIO_SYSSPACE : UIO_USERSPACE; 1545 int canwrite; 1546 1547 if (mvp->v_type != VDIR) 1548 return (SET_ERROR(ENOTDIR)); 1549 1550 mutex_enter(&mvp->v_lock); 1551 if ((uap->flags & MS_REMOUNT) == 0 && 1552 (uap->flags & MS_OVERLAY) == 0 && 1553 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1554 mutex_exit(&mvp->v_lock); 1555 return (SET_ERROR(EBUSY)); 1556 } 1557 mutex_exit(&mvp->v_lock); 1558 1559 /* 1560 * ZFS does not support passing unparsed data in via MS_DATA. 1561 * Users should use the MS_OPTIONSTR interface; this means 1562 * that all option parsing is already done and the options struct 1563 * can be interrogated. 1564 */ 1565 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1566 return (SET_ERROR(EINVAL)); 1567 1568 /* 1569 * Get the objset name (the "special" mount argument). 1570 */ 1571 if (error = pn_get(uap->spec, fromspace, &spn)) 1572 return (error); 1573 1574 osname = spn.pn_path; 1575 1576 /* 1577 * Check for mount privilege? 1578 * 1579 * If we don't have privilege then see if 1580 * we have local permission to allow it 1581 */ 1582 error = secpolicy_fs_mount(cr, mvp, vfsp); 1583 if (error) { 1584 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1585 vattr_t vattr; 1586 1587 /* 1588 * Make sure user is the owner of the mount point 1589 * or has sufficient privileges. 1590 */ 1591 1592 vattr.va_mask = AT_UID; 1593 1594 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1595 goto out; 1596 } 1597 1598 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1599 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1600 goto out; 1601 } 1602 secpolicy_fs_mount_clearopts(cr, vfsp); 1603 } else { 1604 goto out; 1605 } 1606 } 1607 1608 /* 1609 * Refuse to mount a filesystem if we are in a local zone and the 1610 * dataset is not visible. 1611 */ 1612 if (!INGLOBALZONE(curproc) && 1613 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1614 error = SET_ERROR(EPERM); 1615 goto out; 1616 } 1617 1618 error = zfs_mount_label_policy(vfsp, osname); 1619 if (error) 1620 goto out; 1621 1622 /* 1623 * When doing a remount, we simply refresh our temporary properties 1624 * according to those options set in the current VFS options. 1625 */ 1626 if (uap->flags & MS_REMOUNT) { 1627 /* refresh mount options */ 1628 zfs_unregister_callbacks(vfsp->vfs_data); 1629 error = zfs_register_callbacks(vfsp); 1630 goto out; 1631 } 1632 1633 error = zfs_domount(vfsp, osname); 1634 1635 /* 1636 * Add an extra VFS_HOLD on our parent vfs so that it can't 1637 * disappear due to a forced unmount. 1638 */ 1639 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1640 VFS_HOLD(mvp->v_vfsp); 1641 1642 out: 1643 pn_free(&spn); 1644 return (error); 1645 } 1646 1647 static int 1648 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1649 { 1650 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1651 dev32_t d32; 1652 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1653 1654 ZFS_ENTER(zfsvfs); 1655 1656 dmu_objset_space(zfsvfs->z_os, 1657 &refdbytes, &availbytes, &usedobjs, &availobjs); 1658 1659 /* 1660 * The underlying storage pool actually uses multiple block sizes. 1661 * We report the fragsize as the smallest block size we support, 1662 * and we report our blocksize as the filesystem's maximum blocksize. 1663 */ 1664 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1665 statp->f_bsize = zfsvfs->z_max_blksz; 1666 1667 /* 1668 * The following report "total" blocks of various kinds in the 1669 * file system, but reported in terms of f_frsize - the 1670 * "fragment" size. 1671 */ 1672 1673 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1674 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1675 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1676 1677 /* 1678 * statvfs() should really be called statufs(), because it assumes 1679 * static metadata. ZFS doesn't preallocate files, so the best 1680 * we can do is report the max that could possibly fit in f_files, 1681 * and that minus the number actually used in f_ffree. 1682 * For f_ffree, report the smaller of the number of object available 1683 * and the number of blocks (each object will take at least a block). 1684 */ 1685 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1686 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1687 statp->f_files = statp->f_ffree + usedobjs; 1688 1689 (void) cmpldev(&d32, vfsp->vfs_dev); 1690 statp->f_fsid = d32; 1691 1692 /* 1693 * We're a zfs filesystem. 1694 */ 1695 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1696 1697 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1698 1699 statp->f_namemax = MAXNAMELEN - 1; 1700 1701 /* 1702 * We have all of 32 characters to stuff a string here. 1703 * Is there anything useful we could/should provide? 1704 */ 1705 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1706 1707 ZFS_EXIT(zfsvfs); 1708 return (0); 1709 } 1710 1711 static int 1712 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1713 { 1714 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1715 znode_t *rootzp; 1716 int error; 1717 1718 ZFS_ENTER(zfsvfs); 1719 1720 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1721 if (error == 0) 1722 *vpp = ZTOV(rootzp); 1723 1724 ZFS_EXIT(zfsvfs); 1725 return (error); 1726 } 1727 1728 /* 1729 * Teardown the zfsvfs::z_os. 1730 * 1731 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1732 * and 'z_teardown_inactive_lock' held. 1733 */ 1734 static int 1735 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1736 { 1737 znode_t *zp; 1738 1739 rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1740 1741 if (!unmounting) { 1742 /* 1743 * We purge the parent filesystem's vfsp as the parent 1744 * filesystem and all of its snapshots have their vnode's 1745 * v_vfsp set to the parent's filesystem's vfsp. Note, 1746 * 'z_parent' is self referential for non-snapshots. 1747 */ 1748 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1749 } 1750 1751 /* 1752 * Close the zil. NB: Can't close the zil while zfs_inactive 1753 * threads are blocked as zil_close can call zfs_inactive. 1754 */ 1755 if (zfsvfs->z_log) { 1756 zil_close(zfsvfs->z_log); 1757 zfsvfs->z_log = NULL; 1758 } 1759 1760 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1761 1762 /* 1763 * If we are not unmounting (ie: online recv) and someone already 1764 * unmounted this file system while we were doing the switcheroo, 1765 * or a reopen of z_os failed then just bail out now. 1766 */ 1767 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1768 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1769 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1770 return (SET_ERROR(EIO)); 1771 } 1772 1773 /* 1774 * At this point there are no vops active, and any new vops will 1775 * fail with EIO since we have z_teardown_lock for writer (only 1776 * relavent for forced unmount). 1777 * 1778 * Release all holds on dbufs. 1779 */ 1780 mutex_enter(&zfsvfs->z_znodes_lock); 1781 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1782 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1783 if (zp->z_sa_hdl) { 1784 ASSERT(ZTOV(zp)->v_count > 0); 1785 zfs_znode_dmu_fini(zp); 1786 } 1787 mutex_exit(&zfsvfs->z_znodes_lock); 1788 1789 /* 1790 * If we are unmounting, set the unmounted flag and let new vops 1791 * unblock. zfs_inactive will have the unmounted behavior, and all 1792 * other vops will fail with EIO. 1793 */ 1794 if (unmounting) { 1795 zfsvfs->z_unmounted = B_TRUE; 1796 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1797 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1798 } 1799 1800 /* 1801 * z_os will be NULL if there was an error in attempting to reopen 1802 * zfsvfs, so just return as the properties had already been 1803 * unregistered and cached data had been evicted before. 1804 */ 1805 if (zfsvfs->z_os == NULL) 1806 return (0); 1807 1808 /* 1809 * Unregister properties. 1810 */ 1811 zfs_unregister_callbacks(zfsvfs); 1812 1813 /* 1814 * Evict cached data 1815 */ 1816 if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) && 1817 !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 1818 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1819 dmu_objset_evict_dbufs(zfsvfs->z_os); 1820 1821 return (0); 1822 } 1823 1824 /*ARGSUSED*/ 1825 static int 1826 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1827 { 1828 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1829 objset_t *os; 1830 int ret; 1831 1832 ret = secpolicy_fs_unmount(cr, vfsp); 1833 if (ret) { 1834 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1835 ZFS_DELEG_PERM_MOUNT, cr)) 1836 return (ret); 1837 } 1838 1839 /* 1840 * We purge the parent filesystem's vfsp as the parent filesystem 1841 * and all of its snapshots have their vnode's v_vfsp set to the 1842 * parent's filesystem's vfsp. Note, 'z_parent' is self 1843 * referential for non-snapshots. 1844 */ 1845 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1846 1847 /* 1848 * Unmount any snapshots mounted under .zfs before unmounting the 1849 * dataset itself. 1850 */ 1851 if (zfsvfs->z_ctldir != NULL && 1852 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1853 return (ret); 1854 } 1855 1856 if (!(fflag & MS_FORCE)) { 1857 /* 1858 * Check the number of active vnodes in the file system. 1859 * Our count is maintained in the vfs structure, but the 1860 * number is off by 1 to indicate a hold on the vfs 1861 * structure itself. 1862 * 1863 * The '.zfs' directory maintains a reference of its 1864 * own, and any active references underneath are 1865 * reflected in the vnode count. 1866 */ 1867 if (zfsvfs->z_ctldir == NULL) { 1868 if (vfsp->vfs_count > 1) 1869 return (SET_ERROR(EBUSY)); 1870 } else { 1871 if (vfsp->vfs_count > 2 || 1872 zfsvfs->z_ctldir->v_count > 1) 1873 return (SET_ERROR(EBUSY)); 1874 } 1875 } 1876 1877 vfsp->vfs_flag |= VFS_UNMOUNTED; 1878 1879 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1880 os = zfsvfs->z_os; 1881 1882 /* 1883 * z_os will be NULL if there was an error in 1884 * attempting to reopen zfsvfs. 1885 */ 1886 if (os != NULL) { 1887 /* 1888 * Unset the objset user_ptr. 1889 */ 1890 mutex_enter(&os->os_user_ptr_lock); 1891 dmu_objset_set_user(os, NULL); 1892 mutex_exit(&os->os_user_ptr_lock); 1893 1894 /* 1895 * Finally release the objset 1896 */ 1897 dmu_objset_disown(os, zfsvfs); 1898 } 1899 1900 /* 1901 * We can now safely destroy the '.zfs' directory node. 1902 */ 1903 if (zfsvfs->z_ctldir != NULL) 1904 zfsctl_destroy(zfsvfs); 1905 1906 return (0); 1907 } 1908 1909 static int 1910 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1911 { 1912 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1913 znode_t *zp; 1914 uint64_t object = 0; 1915 uint64_t fid_gen = 0; 1916 uint64_t gen_mask; 1917 uint64_t zp_gen; 1918 int i, err; 1919 1920 *vpp = NULL; 1921 1922 ZFS_ENTER(zfsvfs); 1923 1924 if (fidp->fid_len == LONG_FID_LEN) { 1925 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1926 uint64_t objsetid = 0; 1927 uint64_t setgen = 0; 1928 1929 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1930 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1931 1932 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1933 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1934 1935 ZFS_EXIT(zfsvfs); 1936 1937 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1938 if (err) 1939 return (SET_ERROR(EINVAL)); 1940 ZFS_ENTER(zfsvfs); 1941 } 1942 1943 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1944 zfid_short_t *zfid = (zfid_short_t *)fidp; 1945 1946 for (i = 0; i < sizeof (zfid->zf_object); i++) 1947 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1948 1949 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1950 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1951 } else { 1952 ZFS_EXIT(zfsvfs); 1953 return (SET_ERROR(EINVAL)); 1954 } 1955 1956 /* A zero fid_gen means we are in the .zfs control directories */ 1957 if (fid_gen == 0 && 1958 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1959 *vpp = zfsvfs->z_ctldir; 1960 ASSERT(*vpp != NULL); 1961 if (object == ZFSCTL_INO_SNAPDIR) { 1962 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1963 0, NULL, NULL, NULL, NULL, NULL) == 0); 1964 } else { 1965 VN_HOLD(*vpp); 1966 } 1967 ZFS_EXIT(zfsvfs); 1968 return (0); 1969 } 1970 1971 gen_mask = -1ULL >> (64 - 8 * i); 1972 1973 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1974 if (err = zfs_zget(zfsvfs, object, &zp)) { 1975 ZFS_EXIT(zfsvfs); 1976 return (err); 1977 } 1978 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1979 sizeof (uint64_t)); 1980 zp_gen = zp_gen & gen_mask; 1981 if (zp_gen == 0) 1982 zp_gen = 1; 1983 if (zp->z_unlinked || zp_gen != fid_gen) { 1984 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1985 VN_RELE(ZTOV(zp)); 1986 ZFS_EXIT(zfsvfs); 1987 return (SET_ERROR(EINVAL)); 1988 } 1989 1990 *vpp = ZTOV(zp); 1991 ZFS_EXIT(zfsvfs); 1992 return (0); 1993 } 1994 1995 /* 1996 * Block out VOPs and close zfsvfs_t::z_os 1997 * 1998 * Note, if successful, then we return with the 'z_teardown_lock' and 1999 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying 2000 * dataset and objset intact so that they can be atomically handed off during 2001 * a subsequent rollback or recv operation and the resume thereafter. 2002 */ 2003 int 2004 zfs_suspend_fs(zfsvfs_t *zfsvfs) 2005 { 2006 int error; 2007 2008 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2009 return (error); 2010 2011 return (0); 2012 } 2013 2014 /* 2015 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset 2016 * is an invariant across any of the operations that can be performed while the 2017 * filesystem was suspended. Whether it succeeded or failed, the preconditions 2018 * are the same: the relevant objset and associated dataset are owned by 2019 * zfsvfs, held, and long held on entry. 2020 */ 2021 int 2022 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2023 { 2024 int err; 2025 znode_t *zp; 2026 2027 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2028 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2029 2030 /* 2031 * We already own this, so just hold and rele it to update the 2032 * objset_t, as the one we had before may have been evicted. 2033 */ 2034 objset_t *os; 2035 VERIFY0(dmu_objset_hold(osname, zfsvfs, &os)); 2036 VERIFY3P(os->os_dsl_dataset->ds_owner, ==, zfsvfs); 2037 VERIFY(dsl_dataset_long_held(os->os_dsl_dataset)); 2038 dmu_objset_rele(os, zfsvfs); 2039 2040 err = zfsvfs_init(zfsvfs, os); 2041 if (err != 0) 2042 goto bail; 2043 2044 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2045 2046 zfs_set_fuid_feature(zfsvfs); 2047 2048 /* 2049 * Attempt to re-establish all the active znodes with 2050 * their dbufs. If a zfs_rezget() fails, then we'll let 2051 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2052 * when they try to use their znode. 2053 */ 2054 mutex_enter(&zfsvfs->z_znodes_lock); 2055 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2056 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2057 (void) zfs_rezget(zp); 2058 } 2059 mutex_exit(&zfsvfs->z_znodes_lock); 2060 2061 bail: 2062 /* release the VOPs */ 2063 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2064 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 2065 2066 if (err) { 2067 /* 2068 * Since we couldn't setup the sa framework, try to force 2069 * unmount this file system. 2070 */ 2071 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2072 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2073 } 2074 return (err); 2075 } 2076 2077 static void 2078 zfs_freevfs(vfs_t *vfsp) 2079 { 2080 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2081 2082 /* 2083 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2084 * from zfs_mount(). Release it here. If we came through 2085 * zfs_mountroot() instead, we didn't grab an extra hold, so 2086 * skip the VFS_RELE for rootvfs. 2087 */ 2088 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2089 VFS_RELE(zfsvfs->z_parent->z_vfs); 2090 2091 zfsvfs_free(zfsvfs); 2092 2093 atomic_dec_32(&zfs_active_fs_count); 2094 } 2095 2096 /* 2097 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2098 * so we can't safely do any non-idempotent initialization here. 2099 * Leave that to zfs_init() and zfs_fini(), which are called 2100 * from the module's _init() and _fini() entry points. 2101 */ 2102 /*ARGSUSED*/ 2103 static int 2104 zfs_vfsinit(int fstype, char *name) 2105 { 2106 int error; 2107 2108 zfsfstype = fstype; 2109 2110 /* 2111 * Setup vfsops and vnodeops tables. 2112 */ 2113 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2114 if (error != 0) { 2115 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2116 } 2117 2118 error = zfs_create_op_tables(); 2119 if (error) { 2120 zfs_remove_op_tables(); 2121 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2122 (void) vfs_freevfsops_by_type(zfsfstype); 2123 return (error); 2124 } 2125 2126 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2127 2128 /* 2129 * Unique major number for all zfs mounts. 2130 * If we run out of 32-bit minors, we'll getudev() another major. 2131 */ 2132 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2133 zfs_minor = ZFS_MIN_MINOR; 2134 2135 return (0); 2136 } 2137 2138 void 2139 zfs_init(void) 2140 { 2141 /* 2142 * Initialize .zfs directory structures 2143 */ 2144 zfsctl_init(); 2145 2146 /* 2147 * Initialize znode cache, vnode ops, etc... 2148 */ 2149 zfs_znode_init(); 2150 2151 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2152 } 2153 2154 void 2155 zfs_fini(void) 2156 { 2157 zfsctl_fini(); 2158 zfs_znode_fini(); 2159 } 2160 2161 int 2162 zfs_busy(void) 2163 { 2164 return (zfs_active_fs_count != 0); 2165 } 2166 2167 int 2168 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2169 { 2170 int error; 2171 objset_t *os = zfsvfs->z_os; 2172 dmu_tx_t *tx; 2173 2174 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2175 return (SET_ERROR(EINVAL)); 2176 2177 if (newvers < zfsvfs->z_version) 2178 return (SET_ERROR(EINVAL)); 2179 2180 if (zfs_spa_version_map(newvers) > 2181 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2182 return (SET_ERROR(ENOTSUP)); 2183 2184 tx = dmu_tx_create(os); 2185 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2186 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2187 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2188 ZFS_SA_ATTRS); 2189 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2190 } 2191 error = dmu_tx_assign(tx, TXG_WAIT); 2192 if (error) { 2193 dmu_tx_abort(tx); 2194 return (error); 2195 } 2196 2197 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2198 8, 1, &newvers, tx); 2199 2200 if (error) { 2201 dmu_tx_commit(tx); 2202 return (error); 2203 } 2204 2205 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2206 uint64_t sa_obj; 2207 2208 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2209 SPA_VERSION_SA); 2210 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2211 DMU_OT_NONE, 0, tx); 2212 2213 error = zap_add(os, MASTER_NODE_OBJ, 2214 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2215 ASSERT0(error); 2216 2217 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2218 sa_register_update_callback(os, zfs_sa_upgrade); 2219 } 2220 2221 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2222 "from %llu to %llu", zfsvfs->z_version, newvers); 2223 2224 dmu_tx_commit(tx); 2225 2226 zfsvfs->z_version = newvers; 2227 2228 zfs_set_fuid_feature(zfsvfs); 2229 2230 return (0); 2231 } 2232 2233 /* 2234 * Read a property stored within the master node. 2235 */ 2236 int 2237 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2238 { 2239 const char *pname; 2240 int error = ENOENT; 2241 2242 /* 2243 * Look up the file system's value for the property. For the 2244 * version property, we look up a slightly different string. 2245 */ 2246 if (prop == ZFS_PROP_VERSION) 2247 pname = ZPL_VERSION_STR; 2248 else 2249 pname = zfs_prop_to_name(prop); 2250 2251 if (os != NULL) 2252 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2253 2254 if (error == ENOENT) { 2255 /* No value set, use the default value */ 2256 switch (prop) { 2257 case ZFS_PROP_VERSION: 2258 *value = ZPL_VERSION; 2259 break; 2260 case ZFS_PROP_NORMALIZE: 2261 case ZFS_PROP_UTF8ONLY: 2262 *value = 0; 2263 break; 2264 case ZFS_PROP_CASE: 2265 *value = ZFS_CASE_SENSITIVE; 2266 break; 2267 default: 2268 return (error); 2269 } 2270 error = 0; 2271 } 2272 return (error); 2273 } 2274 2275 static vfsdef_t vfw = { 2276 VFSDEF_VERSION, 2277 MNTTYPE_ZFS, 2278 zfs_vfsinit, 2279 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2280 VSW_XID|VSW_ZMOUNT, 2281 &zfs_mntopts 2282 }; 2283 2284 struct modlfs zfs_modlfs = { 2285 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2286 }; 2287