1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/pathname.h> 32 #include <sys/vnode.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/mntent.h> 36 #include <sys/mount.h> 37 #include <sys/cmn_err.h> 38 #include "fs/fs_subr.h" 39 #include <sys/zfs_znode.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/refstr.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa_boot.h> 63 64 int zfsfstype; 65 vfsops_t *zfs_vfsops = NULL; 66 static major_t zfs_major; 67 static minor_t zfs_minor; 68 static kmutex_t zfs_dev_mtx; 69 70 extern int sys_shutdown; 71 72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 78 static void zfs_freevfs(vfs_t *vfsp); 79 80 static const fs_operation_def_t zfs_vfsops_template[] = { 81 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 82 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 83 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 84 VFSNAME_ROOT, { .vfs_root = zfs_root }, 85 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 86 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 87 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 88 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 89 NULL, NULL 90 }; 91 92 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 94 NULL, NULL 95 }; 96 97 /* 98 * We need to keep a count of active fs's. 99 * This is necessary to prevent our module 100 * from being unloaded after a umount -f 101 */ 102 static uint32_t zfs_active_fs_count = 0; 103 104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 108 109 /* 110 * MO_DEFAULT is not used since the default value is determined 111 * by the equivalent property. 112 */ 113 static mntopt_t mntopts[] = { 114 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 115 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 116 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 117 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 118 }; 119 120 static mntopts_t zfs_mntopts = { 121 sizeof (mntopts) / sizeof (mntopt_t), 122 mntopts 123 }; 124 125 /*ARGSUSED*/ 126 int 127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 128 { 129 /* 130 * Data integrity is job one. We don't want a compromised kernel 131 * writing to the storage pool, so we never sync during panic. 132 */ 133 if (panicstr) 134 return (0); 135 136 /* 137 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 138 * to sync metadata, which they would otherwise cache indefinitely. 139 * Semantically, the only requirement is that the sync be initiated. 140 * The DMU syncs out txgs frequently, so there's nothing to do. 141 */ 142 if (flag & SYNC_ATTR) 143 return (0); 144 145 if (vfsp != NULL) { 146 /* 147 * Sync a specific filesystem. 148 */ 149 zfsvfs_t *zfsvfs = vfsp->vfs_data; 150 dsl_pool_t *dp; 151 152 ZFS_ENTER(zfsvfs); 153 dp = dmu_objset_pool(zfsvfs->z_os); 154 155 /* 156 * If the system is shutting down, then skip any 157 * filesystems which may exist on a suspended pool. 158 */ 159 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 160 ZFS_EXIT(zfsvfs); 161 return (0); 162 } 163 164 if (zfsvfs->z_log != NULL) 165 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 166 else 167 txg_wait_synced(dp, 0); 168 ZFS_EXIT(zfsvfs); 169 } else { 170 /* 171 * Sync all ZFS filesystems. This is what happens when you 172 * run sync(1M). Unlike other filesystems, ZFS honors the 173 * request by waiting for all pools to commit all dirty data. 174 */ 175 spa_sync_allpools(); 176 } 177 178 return (0); 179 } 180 181 static int 182 zfs_create_unique_device(dev_t *dev) 183 { 184 major_t new_major; 185 186 do { 187 ASSERT3U(zfs_minor, <=, MAXMIN32); 188 minor_t start = zfs_minor; 189 do { 190 mutex_enter(&zfs_dev_mtx); 191 if (zfs_minor >= MAXMIN32) { 192 /* 193 * If we're still using the real major 194 * keep out of /dev/zfs and /dev/zvol minor 195 * number space. If we're using a getudev()'ed 196 * major number, we can use all of its minors. 197 */ 198 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 199 zfs_minor = ZFS_MIN_MINOR; 200 else 201 zfs_minor = 0; 202 } else { 203 zfs_minor++; 204 } 205 *dev = makedevice(zfs_major, zfs_minor); 206 mutex_exit(&zfs_dev_mtx); 207 } while (vfs_devismounted(*dev) && zfs_minor != start); 208 if (zfs_minor == start) { 209 /* 210 * We are using all ~262,000 minor numbers for the 211 * current major number. Create a new major number. 212 */ 213 if ((new_major = getudev()) == (major_t)-1) { 214 cmn_err(CE_WARN, 215 "zfs_mount: Can't get unique major " 216 "device number."); 217 return (-1); 218 } 219 mutex_enter(&zfs_dev_mtx); 220 zfs_major = new_major; 221 zfs_minor = 0; 222 223 mutex_exit(&zfs_dev_mtx); 224 } else { 225 break; 226 } 227 /* CONSTANTCONDITION */ 228 } while (1); 229 230 return (0); 231 } 232 233 static void 234 atime_changed_cb(void *arg, uint64_t newval) 235 { 236 zfsvfs_t *zfsvfs = arg; 237 238 if (newval == TRUE) { 239 zfsvfs->z_atime = TRUE; 240 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 241 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 242 } else { 243 zfsvfs->z_atime = FALSE; 244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 246 } 247 } 248 249 static void 250 xattr_changed_cb(void *arg, uint64_t newval) 251 { 252 zfsvfs_t *zfsvfs = arg; 253 254 if (newval == TRUE) { 255 /* XXX locking on vfs_flag? */ 256 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 257 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 258 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 259 } else { 260 /* XXX locking on vfs_flag? */ 261 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 262 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 263 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 264 } 265 } 266 267 static void 268 blksz_changed_cb(void *arg, uint64_t newval) 269 { 270 zfsvfs_t *zfsvfs = arg; 271 272 if (newval < SPA_MINBLOCKSIZE || 273 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 274 newval = SPA_MAXBLOCKSIZE; 275 276 zfsvfs->z_max_blksz = newval; 277 zfsvfs->z_vfs->vfs_bsize = newval; 278 } 279 280 static void 281 readonly_changed_cb(void *arg, uint64_t newval) 282 { 283 zfsvfs_t *zfsvfs = arg; 284 285 if (newval) { 286 /* XXX locking on vfs_flag? */ 287 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 288 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 289 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 290 } else { 291 /* XXX locking on vfs_flag? */ 292 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 295 } 296 } 297 298 static void 299 devices_changed_cb(void *arg, uint64_t newval) 300 { 301 zfsvfs_t *zfsvfs = arg; 302 303 if (newval == FALSE) { 304 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 305 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 306 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 307 } else { 308 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 311 } 312 } 313 314 static void 315 setuid_changed_cb(void *arg, uint64_t newval) 316 { 317 zfsvfs_t *zfsvfs = arg; 318 319 if (newval == FALSE) { 320 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 321 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 322 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 323 } else { 324 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 327 } 328 } 329 330 static void 331 exec_changed_cb(void *arg, uint64_t newval) 332 { 333 zfsvfs_t *zfsvfs = arg; 334 335 if (newval == FALSE) { 336 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 337 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 338 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 339 } else { 340 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 343 } 344 } 345 346 /* 347 * The nbmand mount option can be changed at mount time. 348 * We can't allow it to be toggled on live file systems or incorrect 349 * behavior may be seen from cifs clients 350 * 351 * This property isn't registered via dsl_prop_register(), but this callback 352 * will be called when a file system is first mounted 353 */ 354 static void 355 nbmand_changed_cb(void *arg, uint64_t newval) 356 { 357 zfsvfs_t *zfsvfs = arg; 358 if (newval == FALSE) { 359 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 360 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 361 } else { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 364 } 365 } 366 367 static void 368 snapdir_changed_cb(void *arg, uint64_t newval) 369 { 370 zfsvfs_t *zfsvfs = arg; 371 372 zfsvfs->z_show_ctldir = newval; 373 } 374 375 static void 376 vscan_changed_cb(void *arg, uint64_t newval) 377 { 378 zfsvfs_t *zfsvfs = arg; 379 380 zfsvfs->z_vscan = newval; 381 } 382 383 static void 384 acl_mode_changed_cb(void *arg, uint64_t newval) 385 { 386 zfsvfs_t *zfsvfs = arg; 387 388 zfsvfs->z_acl_mode = newval; 389 } 390 391 static void 392 acl_inherit_changed_cb(void *arg, uint64_t newval) 393 { 394 zfsvfs_t *zfsvfs = arg; 395 396 zfsvfs->z_acl_inherit = newval; 397 } 398 399 static int 400 zfs_register_callbacks(vfs_t *vfsp) 401 { 402 struct dsl_dataset *ds = NULL; 403 objset_t *os = NULL; 404 zfsvfs_t *zfsvfs = NULL; 405 uint64_t nbmand; 406 int readonly, do_readonly = B_FALSE; 407 int setuid, do_setuid = B_FALSE; 408 int exec, do_exec = B_FALSE; 409 int devices, do_devices = B_FALSE; 410 int xattr, do_xattr = B_FALSE; 411 int atime, do_atime = B_FALSE; 412 int error = 0; 413 414 ASSERT(vfsp); 415 zfsvfs = vfsp->vfs_data; 416 ASSERT(zfsvfs); 417 os = zfsvfs->z_os; 418 419 /* 420 * The act of registering our callbacks will destroy any mount 421 * options we may have. In order to enable temporary overrides 422 * of mount options, we stash away the current values and 423 * restore them after we register the callbacks. 424 */ 425 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 426 readonly = B_TRUE; 427 do_readonly = B_TRUE; 428 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 429 readonly = B_FALSE; 430 do_readonly = B_TRUE; 431 } 432 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 433 devices = B_FALSE; 434 setuid = B_FALSE; 435 do_devices = B_TRUE; 436 do_setuid = B_TRUE; 437 } else { 438 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 439 devices = B_FALSE; 440 do_devices = B_TRUE; 441 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 442 devices = B_TRUE; 443 do_devices = B_TRUE; 444 } 445 446 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 447 setuid = B_FALSE; 448 do_setuid = B_TRUE; 449 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 450 setuid = B_TRUE; 451 do_setuid = B_TRUE; 452 } 453 } 454 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 455 exec = B_FALSE; 456 do_exec = B_TRUE; 457 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 458 exec = B_TRUE; 459 do_exec = B_TRUE; 460 } 461 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 462 xattr = B_FALSE; 463 do_xattr = B_TRUE; 464 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 465 xattr = B_TRUE; 466 do_xattr = B_TRUE; 467 } 468 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 469 atime = B_FALSE; 470 do_atime = B_TRUE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 472 atime = B_TRUE; 473 do_atime = B_TRUE; 474 } 475 476 /* 477 * nbmand is a special property. It can only be changed at 478 * mount time. 479 * 480 * This is weird, but it is documented to only be changeable 481 * at mount time. 482 */ 483 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 484 nbmand = B_FALSE; 485 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 486 nbmand = B_TRUE; 487 } else { 488 char osname[MAXNAMELEN]; 489 490 dmu_objset_name(os, osname); 491 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 492 NULL)) { 493 return (error); 494 } 495 } 496 497 /* 498 * Register property callbacks. 499 * 500 * It would probably be fine to just check for i/o error from 501 * the first prop_register(), but I guess I like to go 502 * overboard... 503 */ 504 ds = dmu_objset_ds(os); 505 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "xattr", xattr_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "recordsize", blksz_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "readonly", readonly_changed_cb, zfsvfs); 512 error = error ? error : dsl_prop_register(ds, 513 "devices", devices_changed_cb, zfsvfs); 514 error = error ? error : dsl_prop_register(ds, 515 "setuid", setuid_changed_cb, zfsvfs); 516 error = error ? error : dsl_prop_register(ds, 517 "exec", exec_changed_cb, zfsvfs); 518 error = error ? error : dsl_prop_register(ds, 519 "snapdir", snapdir_changed_cb, zfsvfs); 520 error = error ? error : dsl_prop_register(ds, 521 "aclmode", acl_mode_changed_cb, zfsvfs); 522 error = error ? error : dsl_prop_register(ds, 523 "aclinherit", acl_inherit_changed_cb, zfsvfs); 524 error = error ? error : dsl_prop_register(ds, 525 "vscan", vscan_changed_cb, zfsvfs); 526 if (error) 527 goto unregister; 528 529 /* 530 * Invoke our callbacks to restore temporary mount options. 531 */ 532 if (do_readonly) 533 readonly_changed_cb(zfsvfs, readonly); 534 if (do_setuid) 535 setuid_changed_cb(zfsvfs, setuid); 536 if (do_exec) 537 exec_changed_cb(zfsvfs, exec); 538 if (do_devices) 539 devices_changed_cb(zfsvfs, devices); 540 if (do_xattr) 541 xattr_changed_cb(zfsvfs, xattr); 542 if (do_atime) 543 atime_changed_cb(zfsvfs, atime); 544 545 nbmand_changed_cb(zfsvfs, nbmand); 546 547 return (0); 548 549 unregister: 550 /* 551 * We may attempt to unregister some callbacks that are not 552 * registered, but this is OK; it will simply return ENOMSG, 553 * which we will ignore. 554 */ 555 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 556 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 557 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 558 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 559 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 560 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 561 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 562 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 563 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 564 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 565 zfsvfs); 566 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 567 return (error); 568 569 } 570 571 static void 572 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid, 573 int64_t delta, dmu_tx_t *tx) 574 { 575 uint64_t used = 0; 576 char buf[32]; 577 int err; 578 uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 579 580 if (delta == 0) 581 return; 582 583 (void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid); 584 err = zap_lookup(os, obj, buf, 8, 1, &used); 585 ASSERT(err == 0 || err == ENOENT); 586 /* no underflow/overflow */ 587 ASSERT(delta > 0 || used >= -delta); 588 ASSERT(delta < 0 || used + delta > used); 589 used += delta; 590 if (used == 0) 591 err = zap_remove(os, obj, buf, tx); 592 else 593 err = zap_update(os, obj, buf, 8, 1, &used, tx); 594 ASSERT(err == 0); 595 } 596 597 static void 598 zfs_space_delta_cb(objset_t *os, dmu_object_type_t bonustype, 599 void *oldbonus, void *newbonus, 600 uint64_t oldused, uint64_t newused, dmu_tx_t *tx) 601 { 602 znode_phys_t *oldznp = oldbonus; 603 znode_phys_t *newznp = newbonus; 604 605 if (bonustype != DMU_OT_ZNODE) 606 return; 607 608 /* We charge 512 for the dnode (if it's allocated). */ 609 if (oldznp->zp_gen != 0) 610 oldused += DNODE_SIZE; 611 if (newznp->zp_gen != 0) 612 newused += DNODE_SIZE; 613 614 if (oldznp->zp_uid == newznp->zp_uid) { 615 uidacct(os, B_FALSE, oldznp->zp_uid, newused-oldused, tx); 616 } else { 617 uidacct(os, B_FALSE, oldznp->zp_uid, -oldused, tx); 618 uidacct(os, B_FALSE, newznp->zp_uid, newused, tx); 619 } 620 621 if (oldznp->zp_gid == newznp->zp_gid) { 622 uidacct(os, B_TRUE, oldznp->zp_gid, newused-oldused, tx); 623 } else { 624 uidacct(os, B_TRUE, oldznp->zp_gid, -oldused, tx); 625 uidacct(os, B_TRUE, newznp->zp_gid, newused, tx); 626 } 627 } 628 629 static void 630 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 631 char *domainbuf, int buflen, uid_t *ridp) 632 { 633 extern uint64_t strtonum(const char *str, char **nptr); 634 uint64_t fuid; 635 const char *domain; 636 637 fuid = strtonum(fuidstr, NULL); 638 639 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 640 if (domain) 641 (void) strlcpy(domainbuf, domain, buflen); 642 else 643 domainbuf[0] = '\0'; 644 *ridp = FUID_RID(fuid); 645 } 646 647 static uint64_t 648 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 649 { 650 switch (type) { 651 case ZFS_PROP_USERUSED: 652 return (DMU_USERUSED_OBJECT); 653 case ZFS_PROP_GROUPUSED: 654 return (DMU_GROUPUSED_OBJECT); 655 case ZFS_PROP_USERQUOTA: 656 return (zfsvfs->z_userquota_obj); 657 case ZFS_PROP_GROUPQUOTA: 658 return (zfsvfs->z_groupquota_obj); 659 } 660 return (0); 661 } 662 663 int 664 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 665 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 666 { 667 int error; 668 zap_cursor_t zc; 669 zap_attribute_t za; 670 zfs_useracct_t *buf = vbuf; 671 uint64_t obj; 672 673 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 674 return (ENOTSUP); 675 676 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 677 if (obj == 0) { 678 *bufsizep = 0; 679 return (0); 680 } 681 682 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 683 (error = zap_cursor_retrieve(&zc, &za)) == 0; 684 zap_cursor_advance(&zc)) { 685 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 686 *bufsizep) 687 break; 688 689 fuidstr_to_sid(zfsvfs, za.za_name, 690 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 691 692 buf->zu_space = za.za_first_integer; 693 buf++; 694 } 695 if (error == ENOENT) 696 error = 0; 697 698 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 699 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 700 *cookiep = zap_cursor_serialize(&zc); 701 zap_cursor_fini(&zc); 702 return (error); 703 } 704 705 /* 706 * buf must be big enough (eg, 32 bytes) 707 */ 708 static int 709 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 710 char *buf, boolean_t addok) 711 { 712 uint64_t fuid; 713 int domainid = 0; 714 715 if (domain && domain[0]) { 716 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 717 if (domainid == -1) 718 return (ENOENT); 719 } 720 fuid = FUID_ENCODE(domainid, rid); 721 (void) sprintf(buf, "%llx", (longlong_t)fuid); 722 return (0); 723 } 724 725 int 726 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 727 const char *domain, uint64_t rid, uint64_t *valp) 728 { 729 char buf[32]; 730 int err; 731 uint64_t obj; 732 733 *valp = 0; 734 735 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 736 return (ENOTSUP); 737 738 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 739 if (obj == 0) 740 return (0); 741 742 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 743 if (err) 744 return (err); 745 746 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 747 if (err == ENOENT) 748 err = 0; 749 return (err); 750 } 751 752 int 753 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 754 const char *domain, uint64_t rid, uint64_t quota) 755 { 756 char buf[32]; 757 int err; 758 dmu_tx_t *tx; 759 uint64_t *objp; 760 boolean_t fuid_dirtied; 761 762 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 763 return (EINVAL); 764 765 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 766 return (ENOTSUP); 767 768 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 769 &zfsvfs->z_groupquota_obj; 770 771 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 772 if (err) 773 return (err); 774 fuid_dirtied = zfsvfs->z_fuid_dirty; 775 776 tx = dmu_tx_create(zfsvfs->z_os); 777 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 778 if (*objp == 0) { 779 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 780 zfs_userquota_prop_prefixes[type]); 781 } 782 if (fuid_dirtied) 783 zfs_fuid_txhold(zfsvfs, tx); 784 err = dmu_tx_assign(tx, TXG_WAIT); 785 if (err) { 786 dmu_tx_abort(tx); 787 return (err); 788 } 789 790 mutex_enter(&zfsvfs->z_lock); 791 if (*objp == 0) { 792 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 793 DMU_OT_NONE, 0, tx); 794 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 795 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 796 } 797 mutex_exit(&zfsvfs->z_lock); 798 799 if (quota == 0) { 800 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 801 if (err == ENOENT) 802 err = 0; 803 } else { 804 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 805 } 806 ASSERT(err == 0); 807 if (fuid_dirtied) 808 zfs_fuid_sync(zfsvfs, tx); 809 dmu_tx_commit(tx); 810 return (err); 811 } 812 813 boolean_t 814 zfs_usergroup_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 815 { 816 char buf[32]; 817 uint64_t used, quota, usedobj, quotaobj; 818 int err; 819 820 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 821 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 822 823 if (quotaobj == 0 || zfsvfs->z_replay) 824 return (B_FALSE); 825 826 (void) sprintf(buf, "%llx", (longlong_t)fuid); 827 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 828 if (err != 0) 829 return (B_FALSE); 830 831 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 832 if (err != 0) 833 return (B_FALSE); 834 return (used >= quota); 835 } 836 837 int 838 zfsvfs_create(const char *osname, int mode, zfsvfs_t **zvp) 839 { 840 objset_t *os; 841 zfsvfs_t *zfsvfs; 842 uint64_t zval; 843 int i, error; 844 845 if (error = dsl_prop_get_integer(osname, "readonly", &zval, NULL)) 846 return (error); 847 if (zval) 848 mode |= DS_MODE_READONLY; 849 850 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &os); 851 if (error == EROFS) { 852 mode |= DS_MODE_READONLY; 853 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &os); 854 } 855 if (error) 856 return (error); 857 858 /* 859 * Initialize the zfs-specific filesystem structure. 860 * Should probably make this a kmem cache, shuffle fields, 861 * and just bzero up to z_hold_mtx[]. 862 */ 863 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 864 zfsvfs->z_vfs = NULL; 865 zfsvfs->z_parent = zfsvfs; 866 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 867 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 868 zfsvfs->z_os = os; 869 870 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 871 if (error) { 872 goto out; 873 } else if (zfsvfs->z_version > ZPL_VERSION) { 874 (void) printf("Mismatched versions: File system " 875 "is version %llu on-disk format, which is " 876 "incompatible with this software version %lld!", 877 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 878 error = ENOTSUP; 879 goto out; 880 } 881 882 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 883 goto out; 884 zfsvfs->z_norm = (int)zval; 885 886 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 887 goto out; 888 zfsvfs->z_utf8 = (zval != 0); 889 890 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 891 goto out; 892 zfsvfs->z_case = (uint_t)zval; 893 894 /* 895 * Fold case on file systems that are always or sometimes case 896 * insensitive. 897 */ 898 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 899 zfsvfs->z_case == ZFS_CASE_MIXED) 900 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 901 902 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 903 904 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 905 &zfsvfs->z_root); 906 if (error) 907 goto out; 908 ASSERT(zfsvfs->z_root != 0); 909 910 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 911 &zfsvfs->z_unlinkedobj); 912 if (error) 913 goto out; 914 915 error = zap_lookup(os, MASTER_NODE_OBJ, 916 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 917 8, 1, &zfsvfs->z_userquota_obj); 918 if (error && error != ENOENT) 919 goto out; 920 921 error = zap_lookup(os, MASTER_NODE_OBJ, 922 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 923 8, 1, &zfsvfs->z_groupquota_obj); 924 if (error && error != ENOENT) 925 goto out; 926 927 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 928 &zfsvfs->z_fuid_obj); 929 if (error && error != ENOENT) 930 goto out; 931 932 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 933 &zfsvfs->z_shares_dir); 934 if (error && error != ENOENT) 935 goto out; 936 937 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 938 mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL); 939 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 940 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 941 offsetof(znode_t, z_link_node)); 942 rrw_init(&zfsvfs->z_teardown_lock); 943 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 944 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 945 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 946 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 947 948 *zvp = zfsvfs; 949 return (0); 950 951 out: 952 dmu_objset_close(os); 953 *zvp = NULL; 954 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 955 return (error); 956 } 957 958 static int 959 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 960 { 961 int error; 962 963 error = zfs_register_callbacks(zfsvfs->z_vfs); 964 if (error) 965 return (error); 966 967 /* 968 * Set the objset user_ptr to track its zfsvfs. 969 */ 970 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 971 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 972 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 973 974 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 975 if (zil_disable) { 976 zil_destroy(zfsvfs->z_log, 0); 977 zfsvfs->z_log = NULL; 978 } 979 980 /* 981 * If we are not mounting (ie: online recv), then we don't 982 * have to worry about replaying the log as we blocked all 983 * operations out since we closed the ZIL. 984 */ 985 if (mounting) { 986 boolean_t readonly; 987 988 /* 989 * During replay we remove the read only flag to 990 * allow replays to succeed. 991 */ 992 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 993 if (readonly != 0) 994 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 995 else 996 zfs_unlinked_drain(zfsvfs); 997 998 if (zfsvfs->z_log) { 999 /* 1000 * Parse and replay the intent log. 1001 * 1002 * Because of ziltest, this must be done after 1003 * zfs_unlinked_drain(). (Further note: ziltest 1004 * doesn't use readonly mounts, where 1005 * zfs_unlinked_drain() isn't called.) This is because 1006 * ziltest causes spa_sync() to think it's committed, 1007 * but actually it is not, so the intent log contains 1008 * many txg's worth of changes. 1009 * 1010 * In particular, if object N is in the unlinked set in 1011 * the last txg to actually sync, then it could be 1012 * actually freed in a later txg and then reallocated 1013 * in a yet later txg. This would write a "create 1014 * object N" record to the intent log. Normally, this 1015 * would be fine because the spa_sync() would have 1016 * written out the fact that object N is free, before 1017 * we could write the "create object N" intent log 1018 * record. 1019 * 1020 * But when we are in ziltest mode, we advance the "open 1021 * txg" without actually spa_sync()-ing the changes to 1022 * disk. So we would see that object N is still 1023 * allocated and in the unlinked set, and there is an 1024 * intent log record saying to allocate it. 1025 */ 1026 zfsvfs->z_replay = B_TRUE; 1027 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 1028 zfsvfs->z_replay = B_FALSE; 1029 } 1030 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1031 } 1032 1033 return (0); 1034 } 1035 1036 void 1037 zfsvfs_free(zfsvfs_t *zfsvfs) 1038 { 1039 int i; 1040 1041 zfs_fuid_destroy(zfsvfs); 1042 1043 mutex_destroy(&zfsvfs->z_znodes_lock); 1044 mutex_destroy(&zfsvfs->z_online_recv_lock); 1045 mutex_destroy(&zfsvfs->z_lock); 1046 list_destroy(&zfsvfs->z_all_znodes); 1047 rrw_destroy(&zfsvfs->z_teardown_lock); 1048 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1049 rw_destroy(&zfsvfs->z_fuid_lock); 1050 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1051 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1052 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1053 } 1054 1055 static void 1056 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1057 { 1058 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1059 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) { 1060 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1061 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1062 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1063 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1064 } 1065 } 1066 1067 static int 1068 zfs_domount(vfs_t *vfsp, char *osname) 1069 { 1070 dev_t mount_dev; 1071 uint64_t recordsize, fsid_guid; 1072 int error = 0; 1073 zfsvfs_t *zfsvfs; 1074 1075 ASSERT(vfsp); 1076 ASSERT(osname); 1077 1078 error = zfsvfs_create(osname, DS_MODE_OWNER, &zfsvfs); 1079 if (error) 1080 return (error); 1081 zfsvfs->z_vfs = vfsp; 1082 1083 /* Initialize the generic filesystem structure. */ 1084 vfsp->vfs_bcount = 0; 1085 vfsp->vfs_data = NULL; 1086 1087 if (zfs_create_unique_device(&mount_dev) == -1) { 1088 error = ENODEV; 1089 goto out; 1090 } 1091 ASSERT(vfs_devismounted(mount_dev) == 0); 1092 1093 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1094 NULL)) 1095 goto out; 1096 1097 vfsp->vfs_dev = mount_dev; 1098 vfsp->vfs_fstype = zfsfstype; 1099 vfsp->vfs_bsize = recordsize; 1100 vfsp->vfs_flag |= VFS_NOTRUNC; 1101 vfsp->vfs_data = zfsvfs; 1102 1103 /* 1104 * The fsid is 64 bits, composed of an 8-bit fs type, which 1105 * separates our fsid from any other filesystem types, and a 1106 * 56-bit objset unique ID. The objset unique ID is unique to 1107 * all objsets open on this system, provided by unique_create(). 1108 * The 8-bit fs type must be put in the low bits of fsid[1] 1109 * because that's where other Solaris filesystems put it. 1110 */ 1111 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1112 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1113 vfsp->vfs_fsid.val[0] = fsid_guid; 1114 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1115 zfsfstype & 0xFF; 1116 1117 /* 1118 * Set features for file system. 1119 */ 1120 zfs_set_fuid_feature(zfsvfs); 1121 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1122 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1123 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1124 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1125 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1126 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1127 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1128 } 1129 1130 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1131 uint64_t pval; 1132 1133 atime_changed_cb(zfsvfs, B_FALSE); 1134 readonly_changed_cb(zfsvfs, B_TRUE); 1135 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1136 goto out; 1137 xattr_changed_cb(zfsvfs, pval); 1138 zfsvfs->z_issnap = B_TRUE; 1139 1140 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 1141 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1142 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 1143 } else { 1144 error = zfsvfs_setup(zfsvfs, B_TRUE); 1145 } 1146 1147 if (!zfsvfs->z_issnap) 1148 zfsctl_create(zfsvfs); 1149 out: 1150 if (error) { 1151 dmu_objset_close(zfsvfs->z_os); 1152 zfsvfs_free(zfsvfs); 1153 } else { 1154 atomic_add_32(&zfs_active_fs_count, 1); 1155 } 1156 1157 return (error); 1158 } 1159 1160 void 1161 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1162 { 1163 objset_t *os = zfsvfs->z_os; 1164 struct dsl_dataset *ds; 1165 1166 /* 1167 * Unregister properties. 1168 */ 1169 if (!dmu_objset_is_snapshot(os)) { 1170 ds = dmu_objset_ds(os); 1171 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1172 zfsvfs) == 0); 1173 1174 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1175 zfsvfs) == 0); 1176 1177 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1178 zfsvfs) == 0); 1179 1180 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1181 zfsvfs) == 0); 1182 1183 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1184 zfsvfs) == 0); 1185 1186 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1187 zfsvfs) == 0); 1188 1189 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1190 zfsvfs) == 0); 1191 1192 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1193 zfsvfs) == 0); 1194 1195 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 1196 zfsvfs) == 0); 1197 1198 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1199 acl_inherit_changed_cb, zfsvfs) == 0); 1200 1201 VERIFY(dsl_prop_unregister(ds, "vscan", 1202 vscan_changed_cb, zfsvfs) == 0); 1203 } 1204 } 1205 1206 /* 1207 * Convert a decimal digit string to a uint64_t integer. 1208 */ 1209 static int 1210 str_to_uint64(char *str, uint64_t *objnum) 1211 { 1212 uint64_t num = 0; 1213 1214 while (*str) { 1215 if (*str < '0' || *str > '9') 1216 return (EINVAL); 1217 1218 num = num*10 + *str++ - '0'; 1219 } 1220 1221 *objnum = num; 1222 return (0); 1223 } 1224 1225 /* 1226 * The boot path passed from the boot loader is in the form of 1227 * "rootpool-name/root-filesystem-object-number'. Convert this 1228 * string to a dataset name: "rootpool-name/root-filesystem-name". 1229 */ 1230 static int 1231 zfs_parse_bootfs(char *bpath, char *outpath) 1232 { 1233 char *slashp; 1234 uint64_t objnum; 1235 int error; 1236 1237 if (*bpath == 0 || *bpath == '/') 1238 return (EINVAL); 1239 1240 (void) strcpy(outpath, bpath); 1241 1242 slashp = strchr(bpath, '/'); 1243 1244 /* if no '/', just return the pool name */ 1245 if (slashp == NULL) { 1246 return (0); 1247 } 1248 1249 /* if not a number, just return the root dataset name */ 1250 if (str_to_uint64(slashp+1, &objnum)) { 1251 return (0); 1252 } 1253 1254 *slashp = '\0'; 1255 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1256 *slashp = '/'; 1257 1258 return (error); 1259 } 1260 1261 static int 1262 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1263 { 1264 int error = 0; 1265 static int zfsrootdone = 0; 1266 zfsvfs_t *zfsvfs = NULL; 1267 znode_t *zp = NULL; 1268 vnode_t *vp = NULL; 1269 char *zfs_bootfs; 1270 char *zfs_devid; 1271 1272 ASSERT(vfsp); 1273 1274 /* 1275 * The filesystem that we mount as root is defined in the 1276 * boot property "zfs-bootfs" with a format of 1277 * "poolname/root-dataset-objnum". 1278 */ 1279 if (why == ROOT_INIT) { 1280 if (zfsrootdone++) 1281 return (EBUSY); 1282 /* 1283 * the process of doing a spa_load will require the 1284 * clock to be set before we could (for example) do 1285 * something better by looking at the timestamp on 1286 * an uberblock, so just set it to -1. 1287 */ 1288 clkset(-1); 1289 1290 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1291 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1292 "bootfs name"); 1293 return (EINVAL); 1294 } 1295 zfs_devid = spa_get_bootprop("diskdevid"); 1296 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1297 if (zfs_devid) 1298 spa_free_bootprop(zfs_devid); 1299 if (error) { 1300 spa_free_bootprop(zfs_bootfs); 1301 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1302 error); 1303 return (error); 1304 } 1305 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1306 spa_free_bootprop(zfs_bootfs); 1307 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1308 error); 1309 return (error); 1310 } 1311 1312 spa_free_bootprop(zfs_bootfs); 1313 1314 if (error = vfs_lock(vfsp)) 1315 return (error); 1316 1317 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1318 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1319 goto out; 1320 } 1321 1322 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1323 ASSERT(zfsvfs); 1324 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1325 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1326 goto out; 1327 } 1328 1329 vp = ZTOV(zp); 1330 mutex_enter(&vp->v_lock); 1331 vp->v_flag |= VROOT; 1332 mutex_exit(&vp->v_lock); 1333 rootvp = vp; 1334 1335 /* 1336 * Leave rootvp held. The root file system is never unmounted. 1337 */ 1338 1339 vfs_add((struct vnode *)0, vfsp, 1340 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1341 out: 1342 vfs_unlock(vfsp); 1343 return (error); 1344 } else if (why == ROOT_REMOUNT) { 1345 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1346 vfsp->vfs_flag |= VFS_REMOUNT; 1347 1348 /* refresh mount options */ 1349 zfs_unregister_callbacks(vfsp->vfs_data); 1350 return (zfs_register_callbacks(vfsp)); 1351 1352 } else if (why == ROOT_UNMOUNT) { 1353 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1354 (void) zfs_sync(vfsp, 0, 0); 1355 return (0); 1356 } 1357 1358 /* 1359 * if "why" is equal to anything else other than ROOT_INIT, 1360 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1361 */ 1362 return (ENOTSUP); 1363 } 1364 1365 /*ARGSUSED*/ 1366 static int 1367 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1368 { 1369 char *osname; 1370 pathname_t spn; 1371 int error = 0; 1372 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1373 UIO_SYSSPACE : UIO_USERSPACE; 1374 int canwrite; 1375 1376 if (mvp->v_type != VDIR) 1377 return (ENOTDIR); 1378 1379 mutex_enter(&mvp->v_lock); 1380 if ((uap->flags & MS_REMOUNT) == 0 && 1381 (uap->flags & MS_OVERLAY) == 0 && 1382 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1383 mutex_exit(&mvp->v_lock); 1384 return (EBUSY); 1385 } 1386 mutex_exit(&mvp->v_lock); 1387 1388 /* 1389 * ZFS does not support passing unparsed data in via MS_DATA. 1390 * Users should use the MS_OPTIONSTR interface; this means 1391 * that all option parsing is already done and the options struct 1392 * can be interrogated. 1393 */ 1394 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1395 return (EINVAL); 1396 1397 /* 1398 * Get the objset name (the "special" mount argument). 1399 */ 1400 if (error = pn_get(uap->spec, fromspace, &spn)) 1401 return (error); 1402 1403 osname = spn.pn_path; 1404 1405 /* 1406 * Check for mount privilege? 1407 * 1408 * If we don't have privilege then see if 1409 * we have local permission to allow it 1410 */ 1411 error = secpolicy_fs_mount(cr, mvp, vfsp); 1412 if (error) { 1413 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 1414 if (error == 0) { 1415 vattr_t vattr; 1416 1417 /* 1418 * Make sure user is the owner of the mount point 1419 * or has sufficient privileges. 1420 */ 1421 1422 vattr.va_mask = AT_UID; 1423 1424 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1425 goto out; 1426 } 1427 1428 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1429 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1430 error = EPERM; 1431 goto out; 1432 } 1433 1434 secpolicy_fs_mount_clearopts(cr, vfsp); 1435 } else { 1436 goto out; 1437 } 1438 } 1439 1440 /* 1441 * Refuse to mount a filesystem if we are in a local zone and the 1442 * dataset is not visible. 1443 */ 1444 if (!INGLOBALZONE(curproc) && 1445 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1446 error = EPERM; 1447 goto out; 1448 } 1449 1450 /* 1451 * When doing a remount, we simply refresh our temporary properties 1452 * according to those options set in the current VFS options. 1453 */ 1454 if (uap->flags & MS_REMOUNT) { 1455 /* refresh mount options */ 1456 zfs_unregister_callbacks(vfsp->vfs_data); 1457 error = zfs_register_callbacks(vfsp); 1458 goto out; 1459 } 1460 1461 error = zfs_domount(vfsp, osname); 1462 1463 /* 1464 * Add an extra VFS_HOLD on our parent vfs so that it can't 1465 * disappear due to a forced unmount. 1466 */ 1467 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1468 VFS_HOLD(mvp->v_vfsp); 1469 1470 out: 1471 pn_free(&spn); 1472 return (error); 1473 } 1474 1475 static int 1476 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1477 { 1478 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1479 dev32_t d32; 1480 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1481 1482 ZFS_ENTER(zfsvfs); 1483 1484 dmu_objset_space(zfsvfs->z_os, 1485 &refdbytes, &availbytes, &usedobjs, &availobjs); 1486 1487 /* 1488 * The underlying storage pool actually uses multiple block sizes. 1489 * We report the fragsize as the smallest block size we support, 1490 * and we report our blocksize as the filesystem's maximum blocksize. 1491 */ 1492 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1493 statp->f_bsize = zfsvfs->z_max_blksz; 1494 1495 /* 1496 * The following report "total" blocks of various kinds in the 1497 * file system, but reported in terms of f_frsize - the 1498 * "fragment" size. 1499 */ 1500 1501 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1502 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1503 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1504 1505 /* 1506 * statvfs() should really be called statufs(), because it assumes 1507 * static metadata. ZFS doesn't preallocate files, so the best 1508 * we can do is report the max that could possibly fit in f_files, 1509 * and that minus the number actually used in f_ffree. 1510 * For f_ffree, report the smaller of the number of object available 1511 * and the number of blocks (each object will take at least a block). 1512 */ 1513 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1514 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1515 statp->f_files = statp->f_ffree + usedobjs; 1516 1517 (void) cmpldev(&d32, vfsp->vfs_dev); 1518 statp->f_fsid = d32; 1519 1520 /* 1521 * We're a zfs filesystem. 1522 */ 1523 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1524 1525 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1526 1527 statp->f_namemax = ZFS_MAXNAMELEN; 1528 1529 /* 1530 * We have all of 32 characters to stuff a string here. 1531 * Is there anything useful we could/should provide? 1532 */ 1533 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1534 1535 ZFS_EXIT(zfsvfs); 1536 return (0); 1537 } 1538 1539 static int 1540 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1541 { 1542 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1543 znode_t *rootzp; 1544 int error; 1545 1546 ZFS_ENTER(zfsvfs); 1547 1548 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1549 if (error == 0) 1550 *vpp = ZTOV(rootzp); 1551 1552 ZFS_EXIT(zfsvfs); 1553 return (error); 1554 } 1555 1556 /* 1557 * Teardown the zfsvfs::z_os. 1558 * 1559 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1560 * and 'z_teardown_inactive_lock' held. 1561 */ 1562 static int 1563 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1564 { 1565 znode_t *zp; 1566 1567 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1568 1569 if (!unmounting) { 1570 /* 1571 * We purge the parent filesystem's vfsp as the parent 1572 * filesystem and all of its snapshots have their vnode's 1573 * v_vfsp set to the parent's filesystem's vfsp. Note, 1574 * 'z_parent' is self referential for non-snapshots. 1575 */ 1576 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1577 } 1578 1579 /* 1580 * Close the zil. NB: Can't close the zil while zfs_inactive 1581 * threads are blocked as zil_close can call zfs_inactive. 1582 */ 1583 if (zfsvfs->z_log) { 1584 zil_close(zfsvfs->z_log); 1585 zfsvfs->z_log = NULL; 1586 } 1587 1588 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1589 1590 /* 1591 * If we are not unmounting (ie: online recv) and someone already 1592 * unmounted this file system while we were doing the switcheroo, 1593 * or a reopen of z_os failed then just bail out now. 1594 */ 1595 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1596 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1597 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1598 return (EIO); 1599 } 1600 1601 /* 1602 * At this point there are no vops active, and any new vops will 1603 * fail with EIO since we have z_teardown_lock for writer (only 1604 * relavent for forced unmount). 1605 * 1606 * Release all holds on dbufs. 1607 */ 1608 mutex_enter(&zfsvfs->z_znodes_lock); 1609 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1610 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1611 if (zp->z_dbuf) { 1612 ASSERT(ZTOV(zp)->v_count > 0); 1613 zfs_znode_dmu_fini(zp); 1614 } 1615 mutex_exit(&zfsvfs->z_znodes_lock); 1616 1617 /* 1618 * If we are unmounting, set the unmounted flag and let new vops 1619 * unblock. zfs_inactive will have the unmounted behavior, and all 1620 * other vops will fail with EIO. 1621 */ 1622 if (unmounting) { 1623 zfsvfs->z_unmounted = B_TRUE; 1624 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1625 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1626 } 1627 1628 /* 1629 * z_os will be NULL if there was an error in attempting to reopen 1630 * zfsvfs, so just return as the properties had already been 1631 * unregistered and cached data had been evicted before. 1632 */ 1633 if (zfsvfs->z_os == NULL) 1634 return (0); 1635 1636 /* 1637 * Unregister properties. 1638 */ 1639 zfs_unregister_callbacks(zfsvfs); 1640 1641 /* 1642 * Evict cached data 1643 */ 1644 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1645 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1646 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1647 } 1648 1649 return (0); 1650 } 1651 1652 /*ARGSUSED*/ 1653 static int 1654 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1655 { 1656 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1657 objset_t *os; 1658 int ret; 1659 1660 ret = secpolicy_fs_unmount(cr, vfsp); 1661 if (ret) { 1662 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1663 ZFS_DELEG_PERM_MOUNT, cr); 1664 if (ret) 1665 return (ret); 1666 } 1667 1668 /* 1669 * We purge the parent filesystem's vfsp as the parent filesystem 1670 * and all of its snapshots have their vnode's v_vfsp set to the 1671 * parent's filesystem's vfsp. Note, 'z_parent' is self 1672 * referential for non-snapshots. 1673 */ 1674 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1675 1676 /* 1677 * Unmount any snapshots mounted under .zfs before unmounting the 1678 * dataset itself. 1679 */ 1680 if (zfsvfs->z_ctldir != NULL && 1681 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1682 return (ret); 1683 } 1684 1685 if (!(fflag & MS_FORCE)) { 1686 /* 1687 * Check the number of active vnodes in the file system. 1688 * Our count is maintained in the vfs structure, but the 1689 * number is off by 1 to indicate a hold on the vfs 1690 * structure itself. 1691 * 1692 * The '.zfs' directory maintains a reference of its 1693 * own, and any active references underneath are 1694 * reflected in the vnode count. 1695 */ 1696 if (zfsvfs->z_ctldir == NULL) { 1697 if (vfsp->vfs_count > 1) 1698 return (EBUSY); 1699 } else { 1700 if (vfsp->vfs_count > 2 || 1701 zfsvfs->z_ctldir->v_count > 1) 1702 return (EBUSY); 1703 } 1704 } 1705 1706 vfsp->vfs_flag |= VFS_UNMOUNTED; 1707 1708 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1709 os = zfsvfs->z_os; 1710 1711 /* 1712 * z_os will be NULL if there was an error in 1713 * attempting to reopen zfsvfs. 1714 */ 1715 if (os != NULL) { 1716 /* 1717 * Unset the objset user_ptr. 1718 */ 1719 mutex_enter(&os->os->os_user_ptr_lock); 1720 dmu_objset_set_user(os, NULL); 1721 mutex_exit(&os->os->os_user_ptr_lock); 1722 1723 /* 1724 * Finally release the objset 1725 */ 1726 dmu_objset_close(os); 1727 } 1728 1729 /* 1730 * We can now safely destroy the '.zfs' directory node. 1731 */ 1732 if (zfsvfs->z_ctldir != NULL) 1733 zfsctl_destroy(zfsvfs); 1734 1735 return (0); 1736 } 1737 1738 static int 1739 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1740 { 1741 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1742 znode_t *zp; 1743 uint64_t object = 0; 1744 uint64_t fid_gen = 0; 1745 uint64_t gen_mask; 1746 uint64_t zp_gen; 1747 int i, err; 1748 1749 *vpp = NULL; 1750 1751 ZFS_ENTER(zfsvfs); 1752 1753 if (fidp->fid_len == LONG_FID_LEN) { 1754 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1755 uint64_t objsetid = 0; 1756 uint64_t setgen = 0; 1757 1758 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1759 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1760 1761 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1762 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1763 1764 ZFS_EXIT(zfsvfs); 1765 1766 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1767 if (err) 1768 return (EINVAL); 1769 ZFS_ENTER(zfsvfs); 1770 } 1771 1772 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1773 zfid_short_t *zfid = (zfid_short_t *)fidp; 1774 1775 for (i = 0; i < sizeof (zfid->zf_object); i++) 1776 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1777 1778 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1779 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1780 } else { 1781 ZFS_EXIT(zfsvfs); 1782 return (EINVAL); 1783 } 1784 1785 /* A zero fid_gen means we are in the .zfs control directories */ 1786 if (fid_gen == 0 && 1787 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1788 *vpp = zfsvfs->z_ctldir; 1789 ASSERT(*vpp != NULL); 1790 if (object == ZFSCTL_INO_SNAPDIR) { 1791 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1792 0, NULL, NULL, NULL, NULL, NULL) == 0); 1793 } else { 1794 VN_HOLD(*vpp); 1795 } 1796 ZFS_EXIT(zfsvfs); 1797 return (0); 1798 } 1799 1800 gen_mask = -1ULL >> (64 - 8 * i); 1801 1802 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1803 if (err = zfs_zget(zfsvfs, object, &zp)) { 1804 ZFS_EXIT(zfsvfs); 1805 return (err); 1806 } 1807 zp_gen = zp->z_phys->zp_gen & gen_mask; 1808 if (zp_gen == 0) 1809 zp_gen = 1; 1810 if (zp->z_unlinked || zp_gen != fid_gen) { 1811 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1812 VN_RELE(ZTOV(zp)); 1813 ZFS_EXIT(zfsvfs); 1814 return (EINVAL); 1815 } 1816 1817 *vpp = ZTOV(zp); 1818 ZFS_EXIT(zfsvfs); 1819 return (0); 1820 } 1821 1822 /* 1823 * Block out VOPs and close zfsvfs_t::z_os 1824 * 1825 * Note, if successful, then we return with the 'z_teardown_lock' and 1826 * 'z_teardown_inactive_lock' write held. 1827 */ 1828 int 1829 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *modep) 1830 { 1831 int error; 1832 1833 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1834 return (error); 1835 1836 *modep = zfsvfs->z_os->os_mode; 1837 if (name) 1838 dmu_objset_name(zfsvfs->z_os, name); 1839 dmu_objset_close(zfsvfs->z_os); 1840 1841 return (0); 1842 } 1843 1844 /* 1845 * Reopen zfsvfs_t::z_os and release VOPs. 1846 */ 1847 int 1848 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) 1849 { 1850 int err; 1851 1852 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1853 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1854 1855 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 1856 if (err) { 1857 zfsvfs->z_os = NULL; 1858 } else { 1859 znode_t *zp; 1860 1861 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1862 1863 /* 1864 * Attempt to re-establish all the active znodes with 1865 * their dbufs. If a zfs_rezget() fails, then we'll let 1866 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1867 * when they try to use their znode. 1868 */ 1869 mutex_enter(&zfsvfs->z_znodes_lock); 1870 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1871 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1872 (void) zfs_rezget(zp); 1873 } 1874 mutex_exit(&zfsvfs->z_znodes_lock); 1875 1876 } 1877 1878 /* release the VOPs */ 1879 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1880 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1881 1882 if (err) { 1883 /* 1884 * Since we couldn't reopen zfsvfs::z_os, force 1885 * unmount this file system. 1886 */ 1887 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1888 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1889 } 1890 return (err); 1891 } 1892 1893 static void 1894 zfs_freevfs(vfs_t *vfsp) 1895 { 1896 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1897 1898 /* 1899 * If this is a snapshot, we have an extra VFS_HOLD on our parent 1900 * from zfs_mount(). Release it here. 1901 */ 1902 if (zfsvfs->z_issnap) 1903 VFS_RELE(zfsvfs->z_parent->z_vfs); 1904 1905 zfsvfs_free(zfsvfs); 1906 1907 atomic_add_32(&zfs_active_fs_count, -1); 1908 } 1909 1910 /* 1911 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1912 * so we can't safely do any non-idempotent initialization here. 1913 * Leave that to zfs_init() and zfs_fini(), which are called 1914 * from the module's _init() and _fini() entry points. 1915 */ 1916 /*ARGSUSED*/ 1917 static int 1918 zfs_vfsinit(int fstype, char *name) 1919 { 1920 int error; 1921 1922 zfsfstype = fstype; 1923 1924 /* 1925 * Setup vfsops and vnodeops tables. 1926 */ 1927 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1928 if (error != 0) { 1929 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1930 } 1931 1932 error = zfs_create_op_tables(); 1933 if (error) { 1934 zfs_remove_op_tables(); 1935 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1936 (void) vfs_freevfsops_by_type(zfsfstype); 1937 return (error); 1938 } 1939 1940 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1941 1942 /* 1943 * Unique major number for all zfs mounts. 1944 * If we run out of 32-bit minors, we'll getudev() another major. 1945 */ 1946 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1947 zfs_minor = ZFS_MIN_MINOR; 1948 1949 return (0); 1950 } 1951 1952 void 1953 zfs_init(void) 1954 { 1955 /* 1956 * Initialize .zfs directory structures 1957 */ 1958 zfsctl_init(); 1959 1960 /* 1961 * Initialize znode cache, vnode ops, etc... 1962 */ 1963 zfs_znode_init(); 1964 1965 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 1966 } 1967 1968 void 1969 zfs_fini(void) 1970 { 1971 zfsctl_fini(); 1972 zfs_znode_fini(); 1973 } 1974 1975 int 1976 zfs_busy(void) 1977 { 1978 return (zfs_active_fs_count != 0); 1979 } 1980 1981 int 1982 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 1983 { 1984 int error; 1985 objset_t *os = zfsvfs->z_os; 1986 dmu_tx_t *tx; 1987 1988 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1989 return (EINVAL); 1990 1991 if (newvers < zfsvfs->z_version) 1992 return (EINVAL); 1993 1994 tx = dmu_tx_create(os); 1995 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 1996 error = dmu_tx_assign(tx, TXG_WAIT); 1997 if (error) { 1998 dmu_tx_abort(tx); 1999 return (error); 2000 } 2001 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2002 8, 1, &newvers, tx); 2003 2004 if (error) { 2005 dmu_tx_commit(tx); 2006 return (error); 2007 } 2008 2009 spa_history_internal_log(LOG_DS_UPGRADE, 2010 dmu_objset_spa(os), tx, CRED(), 2011 "oldver=%llu newver=%llu dataset = %llu", 2012 zfsvfs->z_version, newvers, dmu_objset_id(os)); 2013 2014 dmu_tx_commit(tx); 2015 2016 zfsvfs->z_version = newvers; 2017 2018 if (zfsvfs->z_version >= ZPL_VERSION_FUID) 2019 zfs_set_fuid_feature(zfsvfs); 2020 2021 return (0); 2022 } 2023 2024 /* 2025 * Read a property stored within the master node. 2026 */ 2027 int 2028 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2029 { 2030 const char *pname; 2031 int error = ENOENT; 2032 2033 /* 2034 * Look up the file system's value for the property. For the 2035 * version property, we look up a slightly different string. 2036 */ 2037 if (prop == ZFS_PROP_VERSION) 2038 pname = ZPL_VERSION_STR; 2039 else 2040 pname = zfs_prop_to_name(prop); 2041 2042 if (os != NULL) 2043 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2044 2045 if (error == ENOENT) { 2046 /* No value set, use the default value */ 2047 switch (prop) { 2048 case ZFS_PROP_VERSION: 2049 *value = ZPL_VERSION; 2050 break; 2051 case ZFS_PROP_NORMALIZE: 2052 case ZFS_PROP_UTF8ONLY: 2053 *value = 0; 2054 break; 2055 case ZFS_PROP_CASE: 2056 *value = ZFS_CASE_SENSITIVE; 2057 break; 2058 default: 2059 return (error); 2060 } 2061 error = 0; 2062 } 2063 return (error); 2064 } 2065 2066 static vfsdef_t vfw = { 2067 VFSDEF_VERSION, 2068 MNTTYPE_ZFS, 2069 zfs_vfsinit, 2070 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2071 VSW_XID, 2072 &zfs_mntopts 2073 }; 2074 2075 struct modlfs zfs_modlfs = { 2076 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2077 }; 2078