1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zfs_dir.h> 43 #include <sys/zil.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/dmu.h> 46 #include <sys/dsl_prop.h> 47 #include <sys/dsl_dataset.h> 48 #include <sys/dsl_deleg.h> 49 #include <sys/spa.h> 50 #include <sys/zap.h> 51 #include <sys/sa.h> 52 #include <sys/sa_impl.h> 53 #include <sys/varargs.h> 54 #include <sys/policy.h> 55 #include <sys/atomic.h> 56 #include <sys/mkdev.h> 57 #include <sys/modctl.h> 58 #include <sys/refstr.h> 59 #include <sys/zfs_ioctl.h> 60 #include <sys/zfs_ctldir.h> 61 #include <sys/zfs_fuid.h> 62 #include <sys/bootconf.h> 63 #include <sys/sunddi.h> 64 #include <sys/dnlc.h> 65 #include <sys/dmu_objset.h> 66 #include <sys/spa_boot.h> 67 #include "zfs_comutil.h" 68 69 int zfsfstype; 70 vfsops_t *zfs_vfsops = NULL; 71 static major_t zfs_major; 72 static minor_t zfs_minor; 73 static kmutex_t zfs_dev_mtx; 74 75 extern int sys_shutdown; 76 77 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 78 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 79 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 80 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 81 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 82 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 83 static void zfs_freevfs(vfs_t *vfsp); 84 85 static const fs_operation_def_t zfs_vfsops_template[] = { 86 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 87 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 88 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 89 VFSNAME_ROOT, { .vfs_root = zfs_root }, 90 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 91 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 92 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 94 NULL, NULL 95 }; 96 97 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 98 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 99 NULL, NULL 100 }; 101 102 /* 103 * We need to keep a count of active fs's. 104 * This is necessary to prevent our module 105 * from being unloaded after a umount -f 106 */ 107 static uint32_t zfs_active_fs_count = 0; 108 109 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 110 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 111 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 112 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 113 114 /* 115 * MO_DEFAULT is not used since the default value is determined 116 * by the equivalent property. 117 */ 118 static mntopt_t mntopts[] = { 119 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 120 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 121 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 122 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 123 }; 124 125 static mntopts_t zfs_mntopts = { 126 sizeof (mntopts) / sizeof (mntopt_t), 127 mntopts 128 }; 129 130 /*ARGSUSED*/ 131 int 132 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 133 { 134 /* 135 * Data integrity is job one. We don't want a compromised kernel 136 * writing to the storage pool, so we never sync during panic. 137 */ 138 if (panicstr) 139 return (0); 140 141 /* 142 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 143 * to sync metadata, which they would otherwise cache indefinitely. 144 * Semantically, the only requirement is that the sync be initiated. 145 * The DMU syncs out txgs frequently, so there's nothing to do. 146 */ 147 if (flag & SYNC_ATTR) 148 return (0); 149 150 if (vfsp != NULL) { 151 /* 152 * Sync a specific filesystem. 153 */ 154 zfsvfs_t *zfsvfs = vfsp->vfs_data; 155 dsl_pool_t *dp; 156 157 ZFS_ENTER(zfsvfs); 158 dp = dmu_objset_pool(zfsvfs->z_os); 159 160 /* 161 * If the system is shutting down, then skip any 162 * filesystems which may exist on a suspended pool. 163 */ 164 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 165 ZFS_EXIT(zfsvfs); 166 return (0); 167 } 168 169 if (zfsvfs->z_log != NULL) 170 zil_commit(zfsvfs->z_log, 0); 171 172 ZFS_EXIT(zfsvfs); 173 } else { 174 /* 175 * Sync all ZFS filesystems. This is what happens when you 176 * run sync(1M). Unlike other filesystems, ZFS honors the 177 * request by waiting for all pools to commit all dirty data. 178 */ 179 spa_sync_allpools(); 180 } 181 182 return (0); 183 } 184 185 static int 186 zfs_create_unique_device(dev_t *dev) 187 { 188 major_t new_major; 189 190 do { 191 ASSERT3U(zfs_minor, <=, MAXMIN32); 192 minor_t start = zfs_minor; 193 do { 194 mutex_enter(&zfs_dev_mtx); 195 if (zfs_minor >= MAXMIN32) { 196 /* 197 * If we're still using the real major 198 * keep out of /dev/zfs and /dev/zvol minor 199 * number space. If we're using a getudev()'ed 200 * major number, we can use all of its minors. 201 */ 202 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 203 zfs_minor = ZFS_MIN_MINOR; 204 else 205 zfs_minor = 0; 206 } else { 207 zfs_minor++; 208 } 209 *dev = makedevice(zfs_major, zfs_minor); 210 mutex_exit(&zfs_dev_mtx); 211 } while (vfs_devismounted(*dev) && zfs_minor != start); 212 if (zfs_minor == start) { 213 /* 214 * We are using all ~262,000 minor numbers for the 215 * current major number. Create a new major number. 216 */ 217 if ((new_major = getudev()) == (major_t)-1) { 218 cmn_err(CE_WARN, 219 "zfs_mount: Can't get unique major " 220 "device number."); 221 return (-1); 222 } 223 mutex_enter(&zfs_dev_mtx); 224 zfs_major = new_major; 225 zfs_minor = 0; 226 227 mutex_exit(&zfs_dev_mtx); 228 } else { 229 break; 230 } 231 /* CONSTANTCONDITION */ 232 } while (1); 233 234 return (0); 235 } 236 237 static void 238 atime_changed_cb(void *arg, uint64_t newval) 239 { 240 zfsvfs_t *zfsvfs = arg; 241 242 if (newval == TRUE) { 243 zfsvfs->z_atime = TRUE; 244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 246 } else { 247 zfsvfs->z_atime = FALSE; 248 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 249 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 250 } 251 } 252 253 static void 254 xattr_changed_cb(void *arg, uint64_t newval) 255 { 256 zfsvfs_t *zfsvfs = arg; 257 258 if (newval == TRUE) { 259 /* XXX locking on vfs_flag? */ 260 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 261 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 262 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 263 } else { 264 /* XXX locking on vfs_flag? */ 265 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 266 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 267 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 268 } 269 } 270 271 static void 272 blksz_changed_cb(void *arg, uint64_t newval) 273 { 274 zfsvfs_t *zfsvfs = arg; 275 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); 276 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); 277 ASSERT(ISP2(newval)); 278 279 zfsvfs->z_max_blksz = newval; 280 zfsvfs->z_vfs->vfs_bsize = newval; 281 } 282 283 static void 284 readonly_changed_cb(void *arg, uint64_t newval) 285 { 286 zfsvfs_t *zfsvfs = arg; 287 288 if (newval) { 289 /* XXX locking on vfs_flag? */ 290 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 293 } else { 294 /* XXX locking on vfs_flag? */ 295 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 296 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 297 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 298 } 299 } 300 301 static void 302 devices_changed_cb(void *arg, uint64_t newval) 303 { 304 zfsvfs_t *zfsvfs = arg; 305 306 if (newval == FALSE) { 307 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 308 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 309 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 310 } else { 311 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 312 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 313 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 314 } 315 } 316 317 static void 318 setuid_changed_cb(void *arg, uint64_t newval) 319 { 320 zfsvfs_t *zfsvfs = arg; 321 322 if (newval == FALSE) { 323 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 324 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 325 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 326 } else { 327 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 328 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 329 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 330 } 331 } 332 333 static void 334 exec_changed_cb(void *arg, uint64_t newval) 335 { 336 zfsvfs_t *zfsvfs = arg; 337 338 if (newval == FALSE) { 339 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 340 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 341 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 342 } else { 343 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 344 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 345 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 346 } 347 } 348 349 /* 350 * The nbmand mount option can be changed at mount time. 351 * We can't allow it to be toggled on live file systems or incorrect 352 * behavior may be seen from cifs clients 353 * 354 * This property isn't registered via dsl_prop_register(), but this callback 355 * will be called when a file system is first mounted 356 */ 357 static void 358 nbmand_changed_cb(void *arg, uint64_t newval) 359 { 360 zfsvfs_t *zfsvfs = arg; 361 if (newval == FALSE) { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 364 } else { 365 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 366 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 367 } 368 } 369 370 static void 371 snapdir_changed_cb(void *arg, uint64_t newval) 372 { 373 zfsvfs_t *zfsvfs = arg; 374 375 zfsvfs->z_show_ctldir = newval; 376 } 377 378 static void 379 vscan_changed_cb(void *arg, uint64_t newval) 380 { 381 zfsvfs_t *zfsvfs = arg; 382 383 zfsvfs->z_vscan = newval; 384 } 385 386 static void 387 acl_mode_changed_cb(void *arg, uint64_t newval) 388 { 389 zfsvfs_t *zfsvfs = arg; 390 391 zfsvfs->z_acl_mode = newval; 392 } 393 394 static void 395 acl_inherit_changed_cb(void *arg, uint64_t newval) 396 { 397 zfsvfs_t *zfsvfs = arg; 398 399 zfsvfs->z_acl_inherit = newval; 400 } 401 402 static int 403 zfs_register_callbacks(vfs_t *vfsp) 404 { 405 struct dsl_dataset *ds = NULL; 406 objset_t *os = NULL; 407 zfsvfs_t *zfsvfs = NULL; 408 uint64_t nbmand; 409 boolean_t readonly = B_FALSE; 410 boolean_t do_readonly = B_FALSE; 411 boolean_t setuid = B_FALSE; 412 boolean_t do_setuid = B_FALSE; 413 boolean_t exec = B_FALSE; 414 boolean_t do_exec = B_FALSE; 415 boolean_t devices = B_FALSE; 416 boolean_t do_devices = B_FALSE; 417 boolean_t xattr = B_FALSE; 418 boolean_t do_xattr = B_FALSE; 419 boolean_t atime = B_FALSE; 420 boolean_t do_atime = B_FALSE; 421 int error = 0; 422 423 ASSERT(vfsp); 424 zfsvfs = vfsp->vfs_data; 425 ASSERT(zfsvfs); 426 os = zfsvfs->z_os; 427 428 /* 429 * The act of registering our callbacks will destroy any mount 430 * options we may have. In order to enable temporary overrides 431 * of mount options, we stash away the current values and 432 * restore them after we register the callbacks. 433 */ 434 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || 435 !spa_writeable(dmu_objset_spa(os))) { 436 readonly = B_TRUE; 437 do_readonly = B_TRUE; 438 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 439 readonly = B_FALSE; 440 do_readonly = B_TRUE; 441 } 442 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 443 devices = B_FALSE; 444 setuid = B_FALSE; 445 do_devices = B_TRUE; 446 do_setuid = B_TRUE; 447 } else { 448 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 449 devices = B_FALSE; 450 do_devices = B_TRUE; 451 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 452 devices = B_TRUE; 453 do_devices = B_TRUE; 454 } 455 456 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 457 setuid = B_FALSE; 458 do_setuid = B_TRUE; 459 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 460 setuid = B_TRUE; 461 do_setuid = B_TRUE; 462 } 463 } 464 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 465 exec = B_FALSE; 466 do_exec = B_TRUE; 467 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 468 exec = B_TRUE; 469 do_exec = B_TRUE; 470 } 471 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 472 xattr = B_FALSE; 473 do_xattr = B_TRUE; 474 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 475 xattr = B_TRUE; 476 do_xattr = B_TRUE; 477 } 478 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 479 atime = B_FALSE; 480 do_atime = B_TRUE; 481 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 482 atime = B_TRUE; 483 do_atime = B_TRUE; 484 } 485 486 /* 487 * nbmand is a special property. It can only be changed at 488 * mount time. 489 * 490 * This is weird, but it is documented to only be changeable 491 * at mount time. 492 */ 493 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 494 nbmand = B_FALSE; 495 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 496 nbmand = B_TRUE; 497 } else { 498 char osname[MAXNAMELEN]; 499 500 dmu_objset_name(os, osname); 501 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 502 NULL)) { 503 return (error); 504 } 505 } 506 507 /* 508 * Register property callbacks. 509 * 510 * It would probably be fine to just check for i/o error from 511 * the first prop_register(), but I guess I like to go 512 * overboard... 513 */ 514 ds = dmu_objset_ds(os); 515 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 516 error = dsl_prop_register(ds, 517 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 518 error = error ? error : dsl_prop_register(ds, 519 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 520 error = error ? error : dsl_prop_register(ds, 521 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 522 error = error ? error : dsl_prop_register(ds, 523 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 524 error = error ? error : dsl_prop_register(ds, 525 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 526 error = error ? error : dsl_prop_register(ds, 527 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 528 error = error ? error : dsl_prop_register(ds, 529 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 530 error = error ? error : dsl_prop_register(ds, 531 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 532 error = error ? error : dsl_prop_register(ds, 533 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 534 error = error ? error : dsl_prop_register(ds, 535 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 536 zfsvfs); 537 error = error ? error : dsl_prop_register(ds, 538 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); 539 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 540 if (error) 541 goto unregister; 542 543 /* 544 * Invoke our callbacks to restore temporary mount options. 545 */ 546 if (do_readonly) 547 readonly_changed_cb(zfsvfs, readonly); 548 if (do_setuid) 549 setuid_changed_cb(zfsvfs, setuid); 550 if (do_exec) 551 exec_changed_cb(zfsvfs, exec); 552 if (do_devices) 553 devices_changed_cb(zfsvfs, devices); 554 if (do_xattr) 555 xattr_changed_cb(zfsvfs, xattr); 556 if (do_atime) 557 atime_changed_cb(zfsvfs, atime); 558 559 nbmand_changed_cb(zfsvfs, nbmand); 560 561 return (0); 562 563 unregister: 564 dsl_prop_unregister_all(ds, zfsvfs); 565 return (error); 566 } 567 568 static int 569 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 570 uint64_t *userp, uint64_t *groupp) 571 { 572 /* 573 * Is it a valid type of object to track? 574 */ 575 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 576 return (SET_ERROR(ENOENT)); 577 578 /* 579 * If we have a NULL data pointer 580 * then assume the id's aren't changing and 581 * return EEXIST to the dmu to let it know to 582 * use the same ids 583 */ 584 if (data == NULL) 585 return (SET_ERROR(EEXIST)); 586 587 if (bonustype == DMU_OT_ZNODE) { 588 znode_phys_t *znp = data; 589 *userp = znp->zp_uid; 590 *groupp = znp->zp_gid; 591 } else { 592 int hdrsize; 593 sa_hdr_phys_t *sap = data; 594 sa_hdr_phys_t sa = *sap; 595 boolean_t swap = B_FALSE; 596 597 ASSERT(bonustype == DMU_OT_SA); 598 599 if (sa.sa_magic == 0) { 600 /* 601 * This should only happen for newly created 602 * files that haven't had the znode data filled 603 * in yet. 604 */ 605 *userp = 0; 606 *groupp = 0; 607 return (0); 608 } 609 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) { 610 sa.sa_magic = SA_MAGIC; 611 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info); 612 swap = B_TRUE; 613 } else { 614 VERIFY3U(sa.sa_magic, ==, SA_MAGIC); 615 } 616 617 hdrsize = sa_hdrsize(&sa); 618 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t)); 619 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 620 SA_UID_OFFSET)); 621 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 622 SA_GID_OFFSET)); 623 if (swap) { 624 *userp = BSWAP_64(*userp); 625 *groupp = BSWAP_64(*groupp); 626 } 627 } 628 return (0); 629 } 630 631 static void 632 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 633 char *domainbuf, int buflen, uid_t *ridp) 634 { 635 uint64_t fuid; 636 const char *domain; 637 638 fuid = strtonum(fuidstr, NULL); 639 640 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 641 if (domain) 642 (void) strlcpy(domainbuf, domain, buflen); 643 else 644 domainbuf[0] = '\0'; 645 *ridp = FUID_RID(fuid); 646 } 647 648 static uint64_t 649 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 650 { 651 switch (type) { 652 case ZFS_PROP_USERUSED: 653 return (DMU_USERUSED_OBJECT); 654 case ZFS_PROP_GROUPUSED: 655 return (DMU_GROUPUSED_OBJECT); 656 case ZFS_PROP_USERQUOTA: 657 return (zfsvfs->z_userquota_obj); 658 case ZFS_PROP_GROUPQUOTA: 659 return (zfsvfs->z_groupquota_obj); 660 } 661 return (0); 662 } 663 664 int 665 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 666 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 667 { 668 int error; 669 zap_cursor_t zc; 670 zap_attribute_t za; 671 zfs_useracct_t *buf = vbuf; 672 uint64_t obj; 673 674 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 675 return (SET_ERROR(ENOTSUP)); 676 677 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 678 if (obj == 0) { 679 *bufsizep = 0; 680 return (0); 681 } 682 683 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 684 (error = zap_cursor_retrieve(&zc, &za)) == 0; 685 zap_cursor_advance(&zc)) { 686 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 687 *bufsizep) 688 break; 689 690 fuidstr_to_sid(zfsvfs, za.za_name, 691 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 692 693 buf->zu_space = za.za_first_integer; 694 buf++; 695 } 696 if (error == ENOENT) 697 error = 0; 698 699 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 700 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 701 *cookiep = zap_cursor_serialize(&zc); 702 zap_cursor_fini(&zc); 703 return (error); 704 } 705 706 /* 707 * buf must be big enough (eg, 32 bytes) 708 */ 709 static int 710 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 711 char *buf, boolean_t addok) 712 { 713 uint64_t fuid; 714 int domainid = 0; 715 716 if (domain && domain[0]) { 717 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 718 if (domainid == -1) 719 return (SET_ERROR(ENOENT)); 720 } 721 fuid = FUID_ENCODE(domainid, rid); 722 (void) sprintf(buf, "%llx", (longlong_t)fuid); 723 return (0); 724 } 725 726 int 727 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 728 const char *domain, uint64_t rid, uint64_t *valp) 729 { 730 char buf[32]; 731 int err; 732 uint64_t obj; 733 734 *valp = 0; 735 736 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 737 return (SET_ERROR(ENOTSUP)); 738 739 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 740 if (obj == 0) 741 return (0); 742 743 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 744 if (err) 745 return (err); 746 747 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 748 if (err == ENOENT) 749 err = 0; 750 return (err); 751 } 752 753 int 754 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 755 const char *domain, uint64_t rid, uint64_t quota) 756 { 757 char buf[32]; 758 int err; 759 dmu_tx_t *tx; 760 uint64_t *objp; 761 boolean_t fuid_dirtied; 762 763 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 764 return (SET_ERROR(EINVAL)); 765 766 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 767 return (SET_ERROR(ENOTSUP)); 768 769 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 770 &zfsvfs->z_groupquota_obj; 771 772 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 773 if (err) 774 return (err); 775 fuid_dirtied = zfsvfs->z_fuid_dirty; 776 777 tx = dmu_tx_create(zfsvfs->z_os); 778 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 779 if (*objp == 0) { 780 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 781 zfs_userquota_prop_prefixes[type]); 782 } 783 if (fuid_dirtied) 784 zfs_fuid_txhold(zfsvfs, tx); 785 err = dmu_tx_assign(tx, TXG_WAIT); 786 if (err) { 787 dmu_tx_abort(tx); 788 return (err); 789 } 790 791 mutex_enter(&zfsvfs->z_lock); 792 if (*objp == 0) { 793 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 794 DMU_OT_NONE, 0, tx); 795 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 796 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 797 } 798 mutex_exit(&zfsvfs->z_lock); 799 800 if (quota == 0) { 801 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 802 if (err == ENOENT) 803 err = 0; 804 } else { 805 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 806 } 807 ASSERT(err == 0); 808 if (fuid_dirtied) 809 zfs_fuid_sync(zfsvfs, tx); 810 dmu_tx_commit(tx); 811 return (err); 812 } 813 814 boolean_t 815 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 816 { 817 char buf[32]; 818 uint64_t used, quota, usedobj, quotaobj; 819 int err; 820 821 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 822 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 823 824 if (quotaobj == 0 || zfsvfs->z_replay) 825 return (B_FALSE); 826 827 (void) sprintf(buf, "%llx", (longlong_t)fuid); 828 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 829 if (err != 0) 830 return (B_FALSE); 831 832 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 833 if (err != 0) 834 return (B_FALSE); 835 return (used >= quota); 836 } 837 838 boolean_t 839 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 840 { 841 uint64_t fuid; 842 uint64_t quotaobj; 843 844 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 845 846 fuid = isgroup ? zp->z_gid : zp->z_uid; 847 848 if (quotaobj == 0 || zfsvfs->z_replay) 849 return (B_FALSE); 850 851 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 852 } 853 854 int 855 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 856 { 857 objset_t *os; 858 zfsvfs_t *zfsvfs; 859 uint64_t zval; 860 int i, error; 861 uint64_t sa_obj; 862 863 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 864 865 /* 866 * We claim to always be readonly so we can open snapshots; 867 * other ZPL code will prevent us from writing to snapshots. 868 */ 869 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 870 if (error) { 871 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 872 return (error); 873 } 874 875 /* 876 * Initialize the zfs-specific filesystem structure. 877 * Should probably make this a kmem cache, shuffle fields, 878 * and just bzero up to z_hold_mtx[]. 879 */ 880 zfsvfs->z_vfs = NULL; 881 zfsvfs->z_parent = zfsvfs; 882 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; 883 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 884 zfsvfs->z_os = os; 885 886 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 887 if (error) { 888 goto out; 889 } else if (zfsvfs->z_version > 890 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 891 (void) printf("Can't mount a version %lld file system " 892 "on a version %lld pool\n. Pool must be upgraded to mount " 893 "this file system.", (u_longlong_t)zfsvfs->z_version, 894 (u_longlong_t)spa_version(dmu_objset_spa(os))); 895 error = SET_ERROR(ENOTSUP); 896 goto out; 897 } 898 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 899 goto out; 900 zfsvfs->z_norm = (int)zval; 901 902 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 903 goto out; 904 zfsvfs->z_utf8 = (zval != 0); 905 906 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 907 goto out; 908 zfsvfs->z_case = (uint_t)zval; 909 910 /* 911 * Fold case on file systems that are always or sometimes case 912 * insensitive. 913 */ 914 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 915 zfsvfs->z_case == ZFS_CASE_MIXED) 916 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 917 918 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 919 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 920 921 if (zfsvfs->z_use_sa) { 922 /* should either have both of these objects or none */ 923 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 924 &sa_obj); 925 if (error) 926 goto out; 927 } else { 928 /* 929 * Pre SA versions file systems should never touch 930 * either the attribute registration or layout objects. 931 */ 932 sa_obj = 0; 933 } 934 935 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 936 &zfsvfs->z_attr_table); 937 if (error) 938 goto out; 939 940 if (zfsvfs->z_version >= ZPL_VERSION_SA) 941 sa_register_update_callback(os, zfs_sa_upgrade); 942 943 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 944 &zfsvfs->z_root); 945 if (error) 946 goto out; 947 ASSERT(zfsvfs->z_root != 0); 948 949 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 950 &zfsvfs->z_unlinkedobj); 951 if (error) 952 goto out; 953 954 error = zap_lookup(os, MASTER_NODE_OBJ, 955 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 956 8, 1, &zfsvfs->z_userquota_obj); 957 if (error && error != ENOENT) 958 goto out; 959 960 error = zap_lookup(os, MASTER_NODE_OBJ, 961 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 962 8, 1, &zfsvfs->z_groupquota_obj); 963 if (error && error != ENOENT) 964 goto out; 965 966 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 967 &zfsvfs->z_fuid_obj); 968 if (error && error != ENOENT) 969 goto out; 970 971 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 972 &zfsvfs->z_shares_dir); 973 if (error && error != ENOENT) 974 goto out; 975 976 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 977 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 978 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 979 offsetof(znode_t, z_link_node)); 980 rrm_init(&zfsvfs->z_teardown_lock, B_FALSE); 981 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 982 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 983 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 984 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 985 986 *zfvp = zfsvfs; 987 return (0); 988 989 out: 990 dmu_objset_disown(os, zfsvfs); 991 *zfvp = NULL; 992 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 993 return (error); 994 } 995 996 static int 997 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 998 { 999 int error; 1000 1001 error = zfs_register_callbacks(zfsvfs->z_vfs); 1002 if (error) 1003 return (error); 1004 1005 /* 1006 * Set the objset user_ptr to track its zfsvfs. 1007 */ 1008 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1009 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1010 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1011 1012 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1013 1014 /* 1015 * If we are not mounting (ie: online recv), then we don't 1016 * have to worry about replaying the log as we blocked all 1017 * operations out since we closed the ZIL. 1018 */ 1019 if (mounting) { 1020 boolean_t readonly; 1021 1022 /* 1023 * During replay we remove the read only flag to 1024 * allow replays to succeed. 1025 */ 1026 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1027 if (readonly != 0) 1028 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1029 else 1030 zfs_unlinked_drain(zfsvfs); 1031 1032 /* 1033 * Parse and replay the intent log. 1034 * 1035 * Because of ziltest, this must be done after 1036 * zfs_unlinked_drain(). (Further note: ziltest 1037 * doesn't use readonly mounts, where 1038 * zfs_unlinked_drain() isn't called.) This is because 1039 * ziltest causes spa_sync() to think it's committed, 1040 * but actually it is not, so the intent log contains 1041 * many txg's worth of changes. 1042 * 1043 * In particular, if object N is in the unlinked set in 1044 * the last txg to actually sync, then it could be 1045 * actually freed in a later txg and then reallocated 1046 * in a yet later txg. This would write a "create 1047 * object N" record to the intent log. Normally, this 1048 * would be fine because the spa_sync() would have 1049 * written out the fact that object N is free, before 1050 * we could write the "create object N" intent log 1051 * record. 1052 * 1053 * But when we are in ziltest mode, we advance the "open 1054 * txg" without actually spa_sync()-ing the changes to 1055 * disk. So we would see that object N is still 1056 * allocated and in the unlinked set, and there is an 1057 * intent log record saying to allocate it. 1058 */ 1059 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 1060 if (zil_replay_disable) { 1061 zil_destroy(zfsvfs->z_log, B_FALSE); 1062 } else { 1063 zfsvfs->z_replay = B_TRUE; 1064 zil_replay(zfsvfs->z_os, zfsvfs, 1065 zfs_replay_vector); 1066 zfsvfs->z_replay = B_FALSE; 1067 } 1068 } 1069 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1070 } 1071 1072 return (0); 1073 } 1074 1075 void 1076 zfsvfs_free(zfsvfs_t *zfsvfs) 1077 { 1078 int i; 1079 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1080 1081 /* 1082 * This is a barrier to prevent the filesystem from going away in 1083 * zfs_znode_move() until we can safely ensure that the filesystem is 1084 * not unmounted. We consider the filesystem valid before the barrier 1085 * and invalid after the barrier. 1086 */ 1087 rw_enter(&zfsvfs_lock, RW_READER); 1088 rw_exit(&zfsvfs_lock); 1089 1090 zfs_fuid_destroy(zfsvfs); 1091 1092 mutex_destroy(&zfsvfs->z_znodes_lock); 1093 mutex_destroy(&zfsvfs->z_lock); 1094 list_destroy(&zfsvfs->z_all_znodes); 1095 rrm_destroy(&zfsvfs->z_teardown_lock); 1096 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1097 rw_destroy(&zfsvfs->z_fuid_lock); 1098 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1099 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1100 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1101 } 1102 1103 static void 1104 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1105 { 1106 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1107 if (zfsvfs->z_vfs) { 1108 if (zfsvfs->z_use_fuids) { 1109 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1110 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1111 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1112 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1113 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1114 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1115 } else { 1116 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1117 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1118 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1119 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1120 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1121 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1122 } 1123 } 1124 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1125 } 1126 1127 static int 1128 zfs_domount(vfs_t *vfsp, char *osname) 1129 { 1130 dev_t mount_dev; 1131 uint64_t recordsize, fsid_guid; 1132 int error = 0; 1133 zfsvfs_t *zfsvfs; 1134 1135 ASSERT(vfsp); 1136 ASSERT(osname); 1137 1138 error = zfsvfs_create(osname, &zfsvfs); 1139 if (error) 1140 return (error); 1141 zfsvfs->z_vfs = vfsp; 1142 1143 /* Initialize the generic filesystem structure. */ 1144 vfsp->vfs_bcount = 0; 1145 vfsp->vfs_data = NULL; 1146 1147 if (zfs_create_unique_device(&mount_dev) == -1) { 1148 error = SET_ERROR(ENODEV); 1149 goto out; 1150 } 1151 ASSERT(vfs_devismounted(mount_dev) == 0); 1152 1153 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1154 NULL)) 1155 goto out; 1156 1157 vfsp->vfs_dev = mount_dev; 1158 vfsp->vfs_fstype = zfsfstype; 1159 vfsp->vfs_bsize = recordsize; 1160 vfsp->vfs_flag |= VFS_NOTRUNC; 1161 vfsp->vfs_data = zfsvfs; 1162 1163 /* 1164 * The fsid is 64 bits, composed of an 8-bit fs type, which 1165 * separates our fsid from any other filesystem types, and a 1166 * 56-bit objset unique ID. The objset unique ID is unique to 1167 * all objsets open on this system, provided by unique_create(). 1168 * The 8-bit fs type must be put in the low bits of fsid[1] 1169 * because that's where other Solaris filesystems put it. 1170 */ 1171 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1172 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1173 vfsp->vfs_fsid.val[0] = fsid_guid; 1174 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1175 zfsfstype & 0xFF; 1176 1177 /* 1178 * Set features for file system. 1179 */ 1180 zfs_set_fuid_feature(zfsvfs); 1181 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1182 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1183 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1184 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1185 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1186 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1187 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1188 } 1189 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1190 1191 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1192 uint64_t pval; 1193 1194 atime_changed_cb(zfsvfs, B_FALSE); 1195 readonly_changed_cb(zfsvfs, B_TRUE); 1196 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1197 goto out; 1198 xattr_changed_cb(zfsvfs, pval); 1199 zfsvfs->z_issnap = B_TRUE; 1200 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1201 1202 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1203 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1204 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1205 } else { 1206 error = zfsvfs_setup(zfsvfs, B_TRUE); 1207 } 1208 1209 if (!zfsvfs->z_issnap) 1210 zfsctl_create(zfsvfs); 1211 out: 1212 if (error) { 1213 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1214 zfsvfs_free(zfsvfs); 1215 } else { 1216 atomic_inc_32(&zfs_active_fs_count); 1217 } 1218 1219 return (error); 1220 } 1221 1222 void 1223 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1224 { 1225 objset_t *os = zfsvfs->z_os; 1226 1227 if (!dmu_objset_is_snapshot(os)) 1228 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); 1229 } 1230 1231 /* 1232 * Convert a decimal digit string to a uint64_t integer. 1233 */ 1234 static int 1235 str_to_uint64(char *str, uint64_t *objnum) 1236 { 1237 uint64_t num = 0; 1238 1239 while (*str) { 1240 if (*str < '0' || *str > '9') 1241 return (SET_ERROR(EINVAL)); 1242 1243 num = num*10 + *str++ - '0'; 1244 } 1245 1246 *objnum = num; 1247 return (0); 1248 } 1249 1250 /* 1251 * The boot path passed from the boot loader is in the form of 1252 * "rootpool-name/root-filesystem-object-number'. Convert this 1253 * string to a dataset name: "rootpool-name/root-filesystem-name". 1254 */ 1255 static int 1256 zfs_parse_bootfs(char *bpath, char *outpath) 1257 { 1258 char *slashp; 1259 uint64_t objnum; 1260 int error; 1261 1262 if (*bpath == 0 || *bpath == '/') 1263 return (SET_ERROR(EINVAL)); 1264 1265 (void) strcpy(outpath, bpath); 1266 1267 slashp = strchr(bpath, '/'); 1268 1269 /* if no '/', just return the pool name */ 1270 if (slashp == NULL) { 1271 return (0); 1272 } 1273 1274 /* if not a number, just return the root dataset name */ 1275 if (str_to_uint64(slashp+1, &objnum)) { 1276 return (0); 1277 } 1278 1279 *slashp = '\0'; 1280 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1281 *slashp = '/'; 1282 1283 return (error); 1284 } 1285 1286 /* 1287 * Check that the hex label string is appropriate for the dataset being 1288 * mounted into the global_zone proper. 1289 * 1290 * Return an error if the hex label string is not default or 1291 * admin_low/admin_high. For admin_low labels, the corresponding 1292 * dataset must be readonly. 1293 */ 1294 int 1295 zfs_check_global_label(const char *dsname, const char *hexsl) 1296 { 1297 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1298 return (0); 1299 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1300 return (0); 1301 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1302 /* must be readonly */ 1303 uint64_t rdonly; 1304 1305 if (dsl_prop_get_integer(dsname, 1306 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1307 return (SET_ERROR(EACCES)); 1308 return (rdonly ? 0 : EACCES); 1309 } 1310 return (SET_ERROR(EACCES)); 1311 } 1312 1313 /* 1314 * Determine whether the mount is allowed according to MAC check. 1315 * by comparing (where appropriate) label of the dataset against 1316 * the label of the zone being mounted into. If the dataset has 1317 * no label, create one. 1318 * 1319 * Returns 0 if access allowed, error otherwise (e.g. EACCES) 1320 */ 1321 static int 1322 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1323 { 1324 int error, retv; 1325 zone_t *mntzone = NULL; 1326 ts_label_t *mnt_tsl; 1327 bslabel_t *mnt_sl; 1328 bslabel_t ds_sl; 1329 char ds_hexsl[MAXNAMELEN]; 1330 1331 retv = EACCES; /* assume the worst */ 1332 1333 /* 1334 * Start by getting the dataset label if it exists. 1335 */ 1336 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1337 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1338 if (error) 1339 return (SET_ERROR(EACCES)); 1340 1341 /* 1342 * If labeling is NOT enabled, then disallow the mount of datasets 1343 * which have a non-default label already. No other label checks 1344 * are needed. 1345 */ 1346 if (!is_system_labeled()) { 1347 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1348 return (0); 1349 return (SET_ERROR(EACCES)); 1350 } 1351 1352 /* 1353 * Get the label of the mountpoint. If mounting into the global 1354 * zone (i.e. mountpoint is not within an active zone and the 1355 * zoned property is off), the label must be default or 1356 * admin_low/admin_high only; no other checks are needed. 1357 */ 1358 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1359 if (mntzone->zone_id == GLOBAL_ZONEID) { 1360 uint64_t zoned; 1361 1362 zone_rele(mntzone); 1363 1364 if (dsl_prop_get_integer(osname, 1365 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1366 return (SET_ERROR(EACCES)); 1367 if (!zoned) 1368 return (zfs_check_global_label(osname, ds_hexsl)); 1369 else 1370 /* 1371 * This is the case of a zone dataset being mounted 1372 * initially, before the zone has been fully created; 1373 * allow this mount into global zone. 1374 */ 1375 return (0); 1376 } 1377 1378 mnt_tsl = mntzone->zone_slabel; 1379 ASSERT(mnt_tsl != NULL); 1380 label_hold(mnt_tsl); 1381 mnt_sl = label2bslabel(mnt_tsl); 1382 1383 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1384 /* 1385 * The dataset doesn't have a real label, so fabricate one. 1386 */ 1387 char *str = NULL; 1388 1389 if (l_to_str_internal(mnt_sl, &str) == 0 && 1390 dsl_prop_set_string(osname, 1391 zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1392 ZPROP_SRC_LOCAL, str) == 0) 1393 retv = 0; 1394 if (str != NULL) 1395 kmem_free(str, strlen(str) + 1); 1396 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1397 /* 1398 * Now compare labels to complete the MAC check. If the 1399 * labels are equal then allow access. If the mountpoint 1400 * label dominates the dataset label, allow readonly access. 1401 * Otherwise, access is denied. 1402 */ 1403 if (blequal(mnt_sl, &ds_sl)) 1404 retv = 0; 1405 else if (bldominates(mnt_sl, &ds_sl)) { 1406 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1407 retv = 0; 1408 } 1409 } 1410 1411 label_rele(mnt_tsl); 1412 zone_rele(mntzone); 1413 return (retv); 1414 } 1415 1416 static int 1417 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1418 { 1419 int error = 0; 1420 static int zfsrootdone = 0; 1421 zfsvfs_t *zfsvfs = NULL; 1422 znode_t *zp = NULL; 1423 vnode_t *vp = NULL; 1424 char *zfs_bootfs; 1425 char *zfs_devid; 1426 1427 ASSERT(vfsp); 1428 1429 /* 1430 * The filesystem that we mount as root is defined in the 1431 * boot property "zfs-bootfs" with a format of 1432 * "poolname/root-dataset-objnum". 1433 */ 1434 if (why == ROOT_INIT) { 1435 if (zfsrootdone++) 1436 return (SET_ERROR(EBUSY)); 1437 /* 1438 * the process of doing a spa_load will require the 1439 * clock to be set before we could (for example) do 1440 * something better by looking at the timestamp on 1441 * an uberblock, so just set it to -1. 1442 */ 1443 clkset(-1); 1444 1445 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1446 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1447 "bootfs name"); 1448 return (SET_ERROR(EINVAL)); 1449 } 1450 zfs_devid = spa_get_bootprop("diskdevid"); 1451 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1452 if (zfs_devid) 1453 spa_free_bootprop(zfs_devid); 1454 if (error) { 1455 spa_free_bootprop(zfs_bootfs); 1456 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1457 error); 1458 return (error); 1459 } 1460 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1461 spa_free_bootprop(zfs_bootfs); 1462 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1463 error); 1464 return (error); 1465 } 1466 1467 spa_free_bootprop(zfs_bootfs); 1468 1469 if (error = vfs_lock(vfsp)) 1470 return (error); 1471 1472 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1473 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1474 goto out; 1475 } 1476 1477 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1478 ASSERT(zfsvfs); 1479 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1480 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1481 goto out; 1482 } 1483 1484 vp = ZTOV(zp); 1485 mutex_enter(&vp->v_lock); 1486 vp->v_flag |= VROOT; 1487 mutex_exit(&vp->v_lock); 1488 rootvp = vp; 1489 1490 /* 1491 * Leave rootvp held. The root file system is never unmounted. 1492 */ 1493 1494 vfs_add((struct vnode *)0, vfsp, 1495 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1496 out: 1497 vfs_unlock(vfsp); 1498 return (error); 1499 } else if (why == ROOT_REMOUNT) { 1500 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1501 vfsp->vfs_flag |= VFS_REMOUNT; 1502 1503 /* refresh mount options */ 1504 zfs_unregister_callbacks(vfsp->vfs_data); 1505 return (zfs_register_callbacks(vfsp)); 1506 1507 } else if (why == ROOT_UNMOUNT) { 1508 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1509 (void) zfs_sync(vfsp, 0, 0); 1510 return (0); 1511 } 1512 1513 /* 1514 * if "why" is equal to anything else other than ROOT_INIT, 1515 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1516 */ 1517 return (SET_ERROR(ENOTSUP)); 1518 } 1519 1520 /*ARGSUSED*/ 1521 static int 1522 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1523 { 1524 char *osname; 1525 pathname_t spn; 1526 int error = 0; 1527 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1528 UIO_SYSSPACE : UIO_USERSPACE; 1529 int canwrite; 1530 1531 if (mvp->v_type != VDIR) 1532 return (SET_ERROR(ENOTDIR)); 1533 1534 mutex_enter(&mvp->v_lock); 1535 if ((uap->flags & MS_REMOUNT) == 0 && 1536 (uap->flags & MS_OVERLAY) == 0 && 1537 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1538 mutex_exit(&mvp->v_lock); 1539 return (SET_ERROR(EBUSY)); 1540 } 1541 mutex_exit(&mvp->v_lock); 1542 1543 /* 1544 * ZFS does not support passing unparsed data in via MS_DATA. 1545 * Users should use the MS_OPTIONSTR interface; this means 1546 * that all option parsing is already done and the options struct 1547 * can be interrogated. 1548 */ 1549 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1550 return (SET_ERROR(EINVAL)); 1551 1552 /* 1553 * Get the objset name (the "special" mount argument). 1554 */ 1555 if (error = pn_get(uap->spec, fromspace, &spn)) 1556 return (error); 1557 1558 osname = spn.pn_path; 1559 1560 /* 1561 * Check for mount privilege? 1562 * 1563 * If we don't have privilege then see if 1564 * we have local permission to allow it 1565 */ 1566 error = secpolicy_fs_mount(cr, mvp, vfsp); 1567 if (error) { 1568 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1569 vattr_t vattr; 1570 1571 /* 1572 * Make sure user is the owner of the mount point 1573 * or has sufficient privileges. 1574 */ 1575 1576 vattr.va_mask = AT_UID; 1577 1578 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1579 goto out; 1580 } 1581 1582 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1583 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1584 goto out; 1585 } 1586 secpolicy_fs_mount_clearopts(cr, vfsp); 1587 } else { 1588 goto out; 1589 } 1590 } 1591 1592 /* 1593 * Refuse to mount a filesystem if we are in a local zone and the 1594 * dataset is not visible. 1595 */ 1596 if (!INGLOBALZONE(curproc) && 1597 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1598 error = SET_ERROR(EPERM); 1599 goto out; 1600 } 1601 1602 error = zfs_mount_label_policy(vfsp, osname); 1603 if (error) 1604 goto out; 1605 1606 /* 1607 * When doing a remount, we simply refresh our temporary properties 1608 * according to those options set in the current VFS options. 1609 */ 1610 if (uap->flags & MS_REMOUNT) { 1611 /* refresh mount options */ 1612 zfs_unregister_callbacks(vfsp->vfs_data); 1613 error = zfs_register_callbacks(vfsp); 1614 goto out; 1615 } 1616 1617 error = zfs_domount(vfsp, osname); 1618 1619 /* 1620 * Add an extra VFS_HOLD on our parent vfs so that it can't 1621 * disappear due to a forced unmount. 1622 */ 1623 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1624 VFS_HOLD(mvp->v_vfsp); 1625 1626 out: 1627 pn_free(&spn); 1628 return (error); 1629 } 1630 1631 static int 1632 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1633 { 1634 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1635 dev32_t d32; 1636 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1637 1638 ZFS_ENTER(zfsvfs); 1639 1640 dmu_objset_space(zfsvfs->z_os, 1641 &refdbytes, &availbytes, &usedobjs, &availobjs); 1642 1643 /* 1644 * The underlying storage pool actually uses multiple block sizes. 1645 * We report the fragsize as the smallest block size we support, 1646 * and we report our blocksize as the filesystem's maximum blocksize. 1647 */ 1648 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1649 statp->f_bsize = zfsvfs->z_max_blksz; 1650 1651 /* 1652 * The following report "total" blocks of various kinds in the 1653 * file system, but reported in terms of f_frsize - the 1654 * "fragment" size. 1655 */ 1656 1657 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1658 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1659 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1660 1661 /* 1662 * statvfs() should really be called statufs(), because it assumes 1663 * static metadata. ZFS doesn't preallocate files, so the best 1664 * we can do is report the max that could possibly fit in f_files, 1665 * and that minus the number actually used in f_ffree. 1666 * For f_ffree, report the smaller of the number of object available 1667 * and the number of blocks (each object will take at least a block). 1668 */ 1669 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1670 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1671 statp->f_files = statp->f_ffree + usedobjs; 1672 1673 (void) cmpldev(&d32, vfsp->vfs_dev); 1674 statp->f_fsid = d32; 1675 1676 /* 1677 * We're a zfs filesystem. 1678 */ 1679 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1680 1681 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1682 1683 statp->f_namemax = ZFS_MAXNAMELEN; 1684 1685 /* 1686 * We have all of 32 characters to stuff a string here. 1687 * Is there anything useful we could/should provide? 1688 */ 1689 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1690 1691 ZFS_EXIT(zfsvfs); 1692 return (0); 1693 } 1694 1695 static int 1696 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1697 { 1698 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1699 znode_t *rootzp; 1700 int error; 1701 1702 ZFS_ENTER(zfsvfs); 1703 1704 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1705 if (error == 0) 1706 *vpp = ZTOV(rootzp); 1707 1708 ZFS_EXIT(zfsvfs); 1709 return (error); 1710 } 1711 1712 /* 1713 * Teardown the zfsvfs::z_os. 1714 * 1715 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1716 * and 'z_teardown_inactive_lock' held. 1717 */ 1718 static int 1719 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1720 { 1721 znode_t *zp; 1722 1723 rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1724 1725 if (!unmounting) { 1726 /* 1727 * We purge the parent filesystem's vfsp as the parent 1728 * filesystem and all of its snapshots have their vnode's 1729 * v_vfsp set to the parent's filesystem's vfsp. Note, 1730 * 'z_parent' is self referential for non-snapshots. 1731 */ 1732 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1733 } 1734 1735 /* 1736 * Close the zil. NB: Can't close the zil while zfs_inactive 1737 * threads are blocked as zil_close can call zfs_inactive. 1738 */ 1739 if (zfsvfs->z_log) { 1740 zil_close(zfsvfs->z_log); 1741 zfsvfs->z_log = NULL; 1742 } 1743 1744 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1745 1746 /* 1747 * If we are not unmounting (ie: online recv) and someone already 1748 * unmounted this file system while we were doing the switcheroo, 1749 * or a reopen of z_os failed then just bail out now. 1750 */ 1751 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1752 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1753 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1754 return (SET_ERROR(EIO)); 1755 } 1756 1757 /* 1758 * At this point there are no vops active, and any new vops will 1759 * fail with EIO since we have z_teardown_lock for writer (only 1760 * relavent for forced unmount). 1761 * 1762 * Release all holds on dbufs. 1763 */ 1764 mutex_enter(&zfsvfs->z_znodes_lock); 1765 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1766 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1767 if (zp->z_sa_hdl) { 1768 ASSERT(ZTOV(zp)->v_count > 0); 1769 zfs_znode_dmu_fini(zp); 1770 } 1771 mutex_exit(&zfsvfs->z_znodes_lock); 1772 1773 /* 1774 * If we are unmounting, set the unmounted flag and let new vops 1775 * unblock. zfs_inactive will have the unmounted behavior, and all 1776 * other vops will fail with EIO. 1777 */ 1778 if (unmounting) { 1779 zfsvfs->z_unmounted = B_TRUE; 1780 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1781 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1782 } 1783 1784 /* 1785 * z_os will be NULL if there was an error in attempting to reopen 1786 * zfsvfs, so just return as the properties had already been 1787 * unregistered and cached data had been evicted before. 1788 */ 1789 if (zfsvfs->z_os == NULL) 1790 return (0); 1791 1792 /* 1793 * Unregister properties. 1794 */ 1795 zfs_unregister_callbacks(zfsvfs); 1796 1797 /* 1798 * Evict cached data 1799 */ 1800 if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) && 1801 !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 1802 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1803 dmu_objset_evict_dbufs(zfsvfs->z_os); 1804 1805 return (0); 1806 } 1807 1808 /*ARGSUSED*/ 1809 static int 1810 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1811 { 1812 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1813 objset_t *os; 1814 int ret; 1815 1816 ret = secpolicy_fs_unmount(cr, vfsp); 1817 if (ret) { 1818 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1819 ZFS_DELEG_PERM_MOUNT, cr)) 1820 return (ret); 1821 } 1822 1823 /* 1824 * We purge the parent filesystem's vfsp as the parent filesystem 1825 * and all of its snapshots have their vnode's v_vfsp set to the 1826 * parent's filesystem's vfsp. Note, 'z_parent' is self 1827 * referential for non-snapshots. 1828 */ 1829 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1830 1831 /* 1832 * Unmount any snapshots mounted under .zfs before unmounting the 1833 * dataset itself. 1834 */ 1835 if (zfsvfs->z_ctldir != NULL && 1836 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1837 return (ret); 1838 } 1839 1840 if (!(fflag & MS_FORCE)) { 1841 /* 1842 * Check the number of active vnodes in the file system. 1843 * Our count is maintained in the vfs structure, but the 1844 * number is off by 1 to indicate a hold on the vfs 1845 * structure itself. 1846 * 1847 * The '.zfs' directory maintains a reference of its 1848 * own, and any active references underneath are 1849 * reflected in the vnode count. 1850 */ 1851 if (zfsvfs->z_ctldir == NULL) { 1852 if (vfsp->vfs_count > 1) 1853 return (SET_ERROR(EBUSY)); 1854 } else { 1855 if (vfsp->vfs_count > 2 || 1856 zfsvfs->z_ctldir->v_count > 1) 1857 return (SET_ERROR(EBUSY)); 1858 } 1859 } 1860 1861 vfsp->vfs_flag |= VFS_UNMOUNTED; 1862 1863 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1864 os = zfsvfs->z_os; 1865 1866 /* 1867 * z_os will be NULL if there was an error in 1868 * attempting to reopen zfsvfs. 1869 */ 1870 if (os != NULL) { 1871 /* 1872 * Unset the objset user_ptr. 1873 */ 1874 mutex_enter(&os->os_user_ptr_lock); 1875 dmu_objset_set_user(os, NULL); 1876 mutex_exit(&os->os_user_ptr_lock); 1877 1878 /* 1879 * Finally release the objset 1880 */ 1881 dmu_objset_disown(os, zfsvfs); 1882 } 1883 1884 /* 1885 * We can now safely destroy the '.zfs' directory node. 1886 */ 1887 if (zfsvfs->z_ctldir != NULL) 1888 zfsctl_destroy(zfsvfs); 1889 1890 return (0); 1891 } 1892 1893 static int 1894 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1895 { 1896 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1897 znode_t *zp; 1898 uint64_t object = 0; 1899 uint64_t fid_gen = 0; 1900 uint64_t gen_mask; 1901 uint64_t zp_gen; 1902 int i, err; 1903 1904 *vpp = NULL; 1905 1906 ZFS_ENTER(zfsvfs); 1907 1908 if (fidp->fid_len == LONG_FID_LEN) { 1909 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1910 uint64_t objsetid = 0; 1911 uint64_t setgen = 0; 1912 1913 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1914 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1915 1916 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1917 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1918 1919 ZFS_EXIT(zfsvfs); 1920 1921 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1922 if (err) 1923 return (SET_ERROR(EINVAL)); 1924 ZFS_ENTER(zfsvfs); 1925 } 1926 1927 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1928 zfid_short_t *zfid = (zfid_short_t *)fidp; 1929 1930 for (i = 0; i < sizeof (zfid->zf_object); i++) 1931 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1932 1933 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1934 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1935 } else { 1936 ZFS_EXIT(zfsvfs); 1937 return (SET_ERROR(EINVAL)); 1938 } 1939 1940 /* A zero fid_gen means we are in the .zfs control directories */ 1941 if (fid_gen == 0 && 1942 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1943 *vpp = zfsvfs->z_ctldir; 1944 ASSERT(*vpp != NULL); 1945 if (object == ZFSCTL_INO_SNAPDIR) { 1946 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1947 0, NULL, NULL, NULL, NULL, NULL) == 0); 1948 } else { 1949 VN_HOLD(*vpp); 1950 } 1951 ZFS_EXIT(zfsvfs); 1952 return (0); 1953 } 1954 1955 gen_mask = -1ULL >> (64 - 8 * i); 1956 1957 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1958 if (err = zfs_zget(zfsvfs, object, &zp)) { 1959 ZFS_EXIT(zfsvfs); 1960 return (err); 1961 } 1962 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1963 sizeof (uint64_t)); 1964 zp_gen = zp_gen & gen_mask; 1965 if (zp_gen == 0) 1966 zp_gen = 1; 1967 if (zp->z_unlinked || zp_gen != fid_gen) { 1968 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1969 VN_RELE(ZTOV(zp)); 1970 ZFS_EXIT(zfsvfs); 1971 return (SET_ERROR(EINVAL)); 1972 } 1973 1974 *vpp = ZTOV(zp); 1975 ZFS_EXIT(zfsvfs); 1976 return (0); 1977 } 1978 1979 /* 1980 * Block out VOPs and close zfsvfs_t::z_os 1981 * 1982 * Note, if successful, then we return with the 'z_teardown_lock' and 1983 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying 1984 * dataset and objset intact so that they can be atomically handed off during 1985 * a subsequent rollback or recv operation and the resume thereafter. 1986 */ 1987 int 1988 zfs_suspend_fs(zfsvfs_t *zfsvfs) 1989 { 1990 int error; 1991 1992 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1993 return (error); 1994 1995 return (0); 1996 } 1997 1998 /* 1999 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset 2000 * is an invariant across any of the operations that can be performed while the 2001 * filesystem was suspended. Whether it succeeded or failed, the preconditions 2002 * are the same: the relevant objset and associated dataset are owned by 2003 * zfsvfs, held, and long held on entry. 2004 */ 2005 int 2006 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2007 { 2008 int err; 2009 znode_t *zp; 2010 uint64_t sa_obj = 0; 2011 2012 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2013 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2014 2015 /* 2016 * We already own this, so just hold and rele it to update the 2017 * objset_t, as the one we had before may have been evicted. 2018 */ 2019 VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os)); 2020 VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs); 2021 VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset)); 2022 dmu_objset_rele(zfsvfs->z_os, zfsvfs); 2023 2024 /* 2025 * Make sure version hasn't changed 2026 */ 2027 2028 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION, 2029 &zfsvfs->z_version); 2030 2031 if (err) 2032 goto bail; 2033 2034 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 2035 ZFS_SA_ATTRS, 8, 1, &sa_obj); 2036 2037 if (err && zfsvfs->z_version >= ZPL_VERSION_SA) 2038 goto bail; 2039 2040 if ((err = sa_setup(zfsvfs->z_os, sa_obj, 2041 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0) 2042 goto bail; 2043 2044 if (zfsvfs->z_version >= ZPL_VERSION_SA) 2045 sa_register_update_callback(zfsvfs->z_os, 2046 zfs_sa_upgrade); 2047 2048 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2049 2050 zfs_set_fuid_feature(zfsvfs); 2051 2052 /* 2053 * Attempt to re-establish all the active znodes with 2054 * their dbufs. If a zfs_rezget() fails, then we'll let 2055 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2056 * when they try to use their znode. 2057 */ 2058 mutex_enter(&zfsvfs->z_znodes_lock); 2059 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2060 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2061 (void) zfs_rezget(zp); 2062 } 2063 mutex_exit(&zfsvfs->z_znodes_lock); 2064 2065 bail: 2066 /* release the VOPs */ 2067 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2068 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 2069 2070 if (err) { 2071 /* 2072 * Since we couldn't setup the sa framework, try to force 2073 * unmount this file system. 2074 */ 2075 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2076 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2077 } 2078 return (err); 2079 } 2080 2081 static void 2082 zfs_freevfs(vfs_t *vfsp) 2083 { 2084 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2085 2086 /* 2087 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2088 * from zfs_mount(). Release it here. If we came through 2089 * zfs_mountroot() instead, we didn't grab an extra hold, so 2090 * skip the VFS_RELE for rootvfs. 2091 */ 2092 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2093 VFS_RELE(zfsvfs->z_parent->z_vfs); 2094 2095 zfsvfs_free(zfsvfs); 2096 2097 atomic_dec_32(&zfs_active_fs_count); 2098 } 2099 2100 /* 2101 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2102 * so we can't safely do any non-idempotent initialization here. 2103 * Leave that to zfs_init() and zfs_fini(), which are called 2104 * from the module's _init() and _fini() entry points. 2105 */ 2106 /*ARGSUSED*/ 2107 static int 2108 zfs_vfsinit(int fstype, char *name) 2109 { 2110 int error; 2111 2112 zfsfstype = fstype; 2113 2114 /* 2115 * Setup vfsops and vnodeops tables. 2116 */ 2117 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2118 if (error != 0) { 2119 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2120 } 2121 2122 error = zfs_create_op_tables(); 2123 if (error) { 2124 zfs_remove_op_tables(); 2125 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2126 (void) vfs_freevfsops_by_type(zfsfstype); 2127 return (error); 2128 } 2129 2130 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2131 2132 /* 2133 * Unique major number for all zfs mounts. 2134 * If we run out of 32-bit minors, we'll getudev() another major. 2135 */ 2136 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2137 zfs_minor = ZFS_MIN_MINOR; 2138 2139 return (0); 2140 } 2141 2142 void 2143 zfs_init(void) 2144 { 2145 /* 2146 * Initialize .zfs directory structures 2147 */ 2148 zfsctl_init(); 2149 2150 /* 2151 * Initialize znode cache, vnode ops, etc... 2152 */ 2153 zfs_znode_init(); 2154 2155 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2156 } 2157 2158 void 2159 zfs_fini(void) 2160 { 2161 zfsctl_fini(); 2162 zfs_znode_fini(); 2163 } 2164 2165 int 2166 zfs_busy(void) 2167 { 2168 return (zfs_active_fs_count != 0); 2169 } 2170 2171 int 2172 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2173 { 2174 int error; 2175 objset_t *os = zfsvfs->z_os; 2176 dmu_tx_t *tx; 2177 2178 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2179 return (SET_ERROR(EINVAL)); 2180 2181 if (newvers < zfsvfs->z_version) 2182 return (SET_ERROR(EINVAL)); 2183 2184 if (zfs_spa_version_map(newvers) > 2185 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2186 return (SET_ERROR(ENOTSUP)); 2187 2188 tx = dmu_tx_create(os); 2189 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2190 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2191 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2192 ZFS_SA_ATTRS); 2193 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2194 } 2195 error = dmu_tx_assign(tx, TXG_WAIT); 2196 if (error) { 2197 dmu_tx_abort(tx); 2198 return (error); 2199 } 2200 2201 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2202 8, 1, &newvers, tx); 2203 2204 if (error) { 2205 dmu_tx_commit(tx); 2206 return (error); 2207 } 2208 2209 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2210 uint64_t sa_obj; 2211 2212 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2213 SPA_VERSION_SA); 2214 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2215 DMU_OT_NONE, 0, tx); 2216 2217 error = zap_add(os, MASTER_NODE_OBJ, 2218 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2219 ASSERT0(error); 2220 2221 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2222 sa_register_update_callback(os, zfs_sa_upgrade); 2223 } 2224 2225 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2226 "from %llu to %llu", zfsvfs->z_version, newvers); 2227 2228 dmu_tx_commit(tx); 2229 2230 zfsvfs->z_version = newvers; 2231 2232 zfs_set_fuid_feature(zfsvfs); 2233 2234 return (0); 2235 } 2236 2237 /* 2238 * Read a property stored within the master node. 2239 */ 2240 int 2241 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2242 { 2243 const char *pname; 2244 int error = ENOENT; 2245 2246 /* 2247 * Look up the file system's value for the property. For the 2248 * version property, we look up a slightly different string. 2249 */ 2250 if (prop == ZFS_PROP_VERSION) 2251 pname = ZPL_VERSION_STR; 2252 else 2253 pname = zfs_prop_to_name(prop); 2254 2255 if (os != NULL) 2256 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2257 2258 if (error == ENOENT) { 2259 /* No value set, use the default value */ 2260 switch (prop) { 2261 case ZFS_PROP_VERSION: 2262 *value = ZPL_VERSION; 2263 break; 2264 case ZFS_PROP_NORMALIZE: 2265 case ZFS_PROP_UTF8ONLY: 2266 *value = 0; 2267 break; 2268 case ZFS_PROP_CASE: 2269 *value = ZFS_CASE_SENSITIVE; 2270 break; 2271 default: 2272 return (error); 2273 } 2274 error = 0; 2275 } 2276 return (error); 2277 } 2278 2279 static vfsdef_t vfw = { 2280 VFSDEF_VERSION, 2281 MNTTYPE_ZFS, 2282 zfs_vfsinit, 2283 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2284 VSW_XID|VSW_ZMOUNT, 2285 &zfs_mntopts 2286 }; 2287 2288 struct modlfs zfs_modlfs = { 2289 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2290 }; 2291