1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zfs_dir.h> 43 #include <sys/zil.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/dmu.h> 46 #include <sys/dsl_prop.h> 47 #include <sys/dsl_dataset.h> 48 #include <sys/dsl_deleg.h> 49 #include <sys/spa.h> 50 #include <sys/zap.h> 51 #include <sys/varargs.h> 52 #include <sys/policy.h> 53 #include <sys/atomic.h> 54 #include <sys/mkdev.h> 55 #include <sys/modctl.h> 56 #include <sys/refstr.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/zfs_ctldir.h> 59 #include <sys/zfs_fuid.h> 60 #include <sys/bootconf.h> 61 #include <sys/sunddi.h> 62 #include <sys/dnlc.h> 63 #include <sys/dmu_objset.h> 64 65 int zfsfstype; 66 vfsops_t *zfs_vfsops = NULL; 67 static major_t zfs_major; 68 static minor_t zfs_minor; 69 static kmutex_t zfs_dev_mtx; 70 71 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 72 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 73 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 74 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 75 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 76 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 77 static void zfs_freevfs(vfs_t *vfsp); 78 79 static const fs_operation_def_t zfs_vfsops_template[] = { 80 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 81 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 82 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 83 VFSNAME_ROOT, { .vfs_root = zfs_root }, 84 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 85 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 86 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 87 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 88 NULL, NULL 89 }; 90 91 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 92 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 93 NULL, NULL 94 }; 95 96 /* 97 * We need to keep a count of active fs's. 98 * This is necessary to prevent our module 99 * from being unloaded after a umount -f 100 */ 101 static uint32_t zfs_active_fs_count = 0; 102 103 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 104 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 105 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 106 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 107 108 /* 109 * MO_DEFAULT is not used since the default value is determined 110 * by the equivalent property. 111 */ 112 static mntopt_t mntopts[] = { 113 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 114 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 115 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 116 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 117 }; 118 119 static mntopts_t zfs_mntopts = { 120 sizeof (mntopts) / sizeof (mntopt_t), 121 mntopts 122 }; 123 124 /*ARGSUSED*/ 125 int 126 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 127 { 128 /* 129 * Data integrity is job one. We don't want a compromised kernel 130 * writing to the storage pool, so we never sync during panic. 131 */ 132 if (panicstr) 133 return (0); 134 135 /* 136 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 137 * to sync metadata, which they would otherwise cache indefinitely. 138 * Semantically, the only requirement is that the sync be initiated. 139 * The DMU syncs out txgs frequently, so there's nothing to do. 140 */ 141 if (flag & SYNC_ATTR) 142 return (0); 143 144 if (vfsp != NULL) { 145 /* 146 * Sync a specific filesystem. 147 */ 148 zfsvfs_t *zfsvfs = vfsp->vfs_data; 149 150 ZFS_ENTER(zfsvfs); 151 if (zfsvfs->z_log != NULL) 152 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 153 else 154 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 155 ZFS_EXIT(zfsvfs); 156 } else { 157 /* 158 * Sync all ZFS filesystems. This is what happens when you 159 * run sync(1M). Unlike other filesystems, ZFS honors the 160 * request by waiting for all pools to commit all dirty data. 161 */ 162 spa_sync_allpools(); 163 } 164 165 return (0); 166 } 167 168 static int 169 zfs_create_unique_device(dev_t *dev) 170 { 171 major_t new_major; 172 173 do { 174 ASSERT3U(zfs_minor, <=, MAXMIN32); 175 minor_t start = zfs_minor; 176 do { 177 mutex_enter(&zfs_dev_mtx); 178 if (zfs_minor >= MAXMIN32) { 179 /* 180 * If we're still using the real major 181 * keep out of /dev/zfs and /dev/zvol minor 182 * number space. If we're using a getudev()'ed 183 * major number, we can use all of its minors. 184 */ 185 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 186 zfs_minor = ZFS_MIN_MINOR; 187 else 188 zfs_minor = 0; 189 } else { 190 zfs_minor++; 191 } 192 *dev = makedevice(zfs_major, zfs_minor); 193 mutex_exit(&zfs_dev_mtx); 194 } while (vfs_devismounted(*dev) && zfs_minor != start); 195 if (zfs_minor == start) { 196 /* 197 * We are using all ~262,000 minor numbers for the 198 * current major number. Create a new major number. 199 */ 200 if ((new_major = getudev()) == (major_t)-1) { 201 cmn_err(CE_WARN, 202 "zfs_mount: Can't get unique major " 203 "device number."); 204 return (-1); 205 } 206 mutex_enter(&zfs_dev_mtx); 207 zfs_major = new_major; 208 zfs_minor = 0; 209 210 mutex_exit(&zfs_dev_mtx); 211 } else { 212 break; 213 } 214 /* CONSTANTCONDITION */ 215 } while (1); 216 217 return (0); 218 } 219 220 static void 221 atime_changed_cb(void *arg, uint64_t newval) 222 { 223 zfsvfs_t *zfsvfs = arg; 224 225 if (newval == TRUE) { 226 zfsvfs->z_atime = TRUE; 227 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 228 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 229 } else { 230 zfsvfs->z_atime = FALSE; 231 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 232 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 233 } 234 } 235 236 static void 237 xattr_changed_cb(void *arg, uint64_t newval) 238 { 239 zfsvfs_t *zfsvfs = arg; 240 241 if (newval == TRUE) { 242 /* XXX locking on vfs_flag? */ 243 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 246 } else { 247 /* XXX locking on vfs_flag? */ 248 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 249 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 250 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 251 } 252 } 253 254 static void 255 blksz_changed_cb(void *arg, uint64_t newval) 256 { 257 zfsvfs_t *zfsvfs = arg; 258 259 if (newval < SPA_MINBLOCKSIZE || 260 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 261 newval = SPA_MAXBLOCKSIZE; 262 263 zfsvfs->z_max_blksz = newval; 264 zfsvfs->z_vfs->vfs_bsize = newval; 265 } 266 267 static void 268 readonly_changed_cb(void *arg, uint64_t newval) 269 { 270 zfsvfs_t *zfsvfs = arg; 271 272 if (newval) { 273 /* XXX locking on vfs_flag? */ 274 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 275 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 276 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 277 } else { 278 /* XXX locking on vfs_flag? */ 279 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 280 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 281 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 282 } 283 } 284 285 static void 286 devices_changed_cb(void *arg, uint64_t newval) 287 { 288 zfsvfs_t *zfsvfs = arg; 289 290 if (newval == FALSE) { 291 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 292 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 293 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 294 } else { 295 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 296 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 297 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 298 } 299 } 300 301 static void 302 setuid_changed_cb(void *arg, uint64_t newval) 303 { 304 zfsvfs_t *zfsvfs = arg; 305 306 if (newval == FALSE) { 307 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 308 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 309 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 310 } else { 311 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 312 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 313 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 314 } 315 } 316 317 static void 318 exec_changed_cb(void *arg, uint64_t newval) 319 { 320 zfsvfs_t *zfsvfs = arg; 321 322 if (newval == FALSE) { 323 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 324 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 325 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 326 } else { 327 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 328 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 329 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 330 } 331 } 332 333 /* 334 * The nbmand mount option can be changed at mount time. 335 * We can't allow it to be toggled on live file systems or incorrect 336 * behavior may be seen from cifs clients 337 * 338 * This property isn't registered via dsl_prop_register(), but this callback 339 * will be called when a file system is first mounted 340 */ 341 static void 342 nbmand_changed_cb(void *arg, uint64_t newval) 343 { 344 zfsvfs_t *zfsvfs = arg; 345 if (newval == FALSE) { 346 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 347 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 348 } else { 349 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 350 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 351 } 352 } 353 354 static void 355 snapdir_changed_cb(void *arg, uint64_t newval) 356 { 357 zfsvfs_t *zfsvfs = arg; 358 359 zfsvfs->z_show_ctldir = newval; 360 } 361 362 static void 363 vscan_changed_cb(void *arg, uint64_t newval) 364 { 365 zfsvfs_t *zfsvfs = arg; 366 367 zfsvfs->z_vscan = newval; 368 } 369 370 static void 371 acl_mode_changed_cb(void *arg, uint64_t newval) 372 { 373 zfsvfs_t *zfsvfs = arg; 374 375 zfsvfs->z_acl_mode = newval; 376 } 377 378 static void 379 acl_inherit_changed_cb(void *arg, uint64_t newval) 380 { 381 zfsvfs_t *zfsvfs = arg; 382 383 zfsvfs->z_acl_inherit = newval; 384 } 385 386 static int 387 zfs_register_callbacks(vfs_t *vfsp) 388 { 389 struct dsl_dataset *ds = NULL; 390 objset_t *os = NULL; 391 zfsvfs_t *zfsvfs = NULL; 392 uint64_t nbmand; 393 int readonly, do_readonly = B_FALSE; 394 int setuid, do_setuid = B_FALSE; 395 int exec, do_exec = B_FALSE; 396 int devices, do_devices = B_FALSE; 397 int xattr, do_xattr = B_FALSE; 398 int atime, do_atime = B_FALSE; 399 int error = 0; 400 401 ASSERT(vfsp); 402 zfsvfs = vfsp->vfs_data; 403 ASSERT(zfsvfs); 404 os = zfsvfs->z_os; 405 406 /* 407 * The act of registering our callbacks will destroy any mount 408 * options we may have. In order to enable temporary overrides 409 * of mount options, we stash away the current values and 410 * restore them after we register the callbacks. 411 */ 412 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 413 readonly = B_TRUE; 414 do_readonly = B_TRUE; 415 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 416 readonly = B_FALSE; 417 do_readonly = B_TRUE; 418 } 419 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 420 devices = B_FALSE; 421 setuid = B_FALSE; 422 do_devices = B_TRUE; 423 do_setuid = B_TRUE; 424 } else { 425 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 426 devices = B_FALSE; 427 do_devices = B_TRUE; 428 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 429 devices = B_TRUE; 430 do_devices = B_TRUE; 431 } 432 433 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 434 setuid = B_FALSE; 435 do_setuid = B_TRUE; 436 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 437 setuid = B_TRUE; 438 do_setuid = B_TRUE; 439 } 440 } 441 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 442 exec = B_FALSE; 443 do_exec = B_TRUE; 444 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 445 exec = B_TRUE; 446 do_exec = B_TRUE; 447 } 448 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 449 xattr = B_FALSE; 450 do_xattr = B_TRUE; 451 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 452 xattr = B_TRUE; 453 do_xattr = B_TRUE; 454 } 455 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 456 atime = B_FALSE; 457 do_atime = B_TRUE; 458 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 459 atime = B_TRUE; 460 do_atime = B_TRUE; 461 } 462 463 /* 464 * nbmand is a special property. It can only be changed at 465 * mount time. 466 * 467 * This is weird, but it is documented to only be changeable 468 * at mount time. 469 */ 470 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 471 nbmand = B_FALSE; 472 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 473 nbmand = B_TRUE; 474 } else { 475 char osname[MAXNAMELEN]; 476 477 dmu_objset_name(os, osname); 478 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 479 NULL)) 480 return (error); 481 } 482 483 /* 484 * Register property callbacks. 485 * 486 * It would probably be fine to just check for i/o error from 487 * the first prop_register(), but I guess I like to go 488 * overboard... 489 */ 490 ds = dmu_objset_ds(os); 491 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 492 error = error ? error : dsl_prop_register(ds, 493 "xattr", xattr_changed_cb, zfsvfs); 494 error = error ? error : dsl_prop_register(ds, 495 "recordsize", blksz_changed_cb, zfsvfs); 496 error = error ? error : dsl_prop_register(ds, 497 "readonly", readonly_changed_cb, zfsvfs); 498 error = error ? error : dsl_prop_register(ds, 499 "devices", devices_changed_cb, zfsvfs); 500 error = error ? error : dsl_prop_register(ds, 501 "setuid", setuid_changed_cb, zfsvfs); 502 error = error ? error : dsl_prop_register(ds, 503 "exec", exec_changed_cb, zfsvfs); 504 error = error ? error : dsl_prop_register(ds, 505 "snapdir", snapdir_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "aclmode", acl_mode_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "aclinherit", acl_inherit_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "vscan", vscan_changed_cb, zfsvfs); 512 if (error) 513 goto unregister; 514 515 /* 516 * Invoke our callbacks to restore temporary mount options. 517 */ 518 if (do_readonly) 519 readonly_changed_cb(zfsvfs, readonly); 520 if (do_setuid) 521 setuid_changed_cb(zfsvfs, setuid); 522 if (do_exec) 523 exec_changed_cb(zfsvfs, exec); 524 if (do_devices) 525 devices_changed_cb(zfsvfs, devices); 526 if (do_xattr) 527 xattr_changed_cb(zfsvfs, xattr); 528 if (do_atime) 529 atime_changed_cb(zfsvfs, atime); 530 531 nbmand_changed_cb(zfsvfs, nbmand); 532 533 return (0); 534 535 unregister: 536 /* 537 * We may attempt to unregister some callbacks that are not 538 * registered, but this is OK; it will simply return ENOMSG, 539 * which we will ignore. 540 */ 541 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 542 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 543 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 544 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 545 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 546 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 547 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 548 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 549 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 551 zfsvfs); 552 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 553 return (error); 554 555 } 556 557 static int 558 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 559 { 560 uint_t readonly; 561 int error; 562 563 error = zfs_register_callbacks(zfsvfs->z_vfs); 564 if (error) 565 return (error); 566 567 /* 568 * Set the objset user_ptr to track its zfsvfs. 569 */ 570 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 571 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 572 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 573 574 /* 575 * If we are not mounting (ie: online recv), then we don't 576 * have to worry about replaying the log as we blocked all 577 * operations out since we closed the ZIL. 578 */ 579 if (mounting) { 580 /* 581 * During replay we remove the read only flag to 582 * allow replays to succeed. 583 */ 584 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 585 if (readonly != 0) 586 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 587 else 588 zfs_unlinked_drain(zfsvfs); 589 590 /* 591 * Parse and replay the intent log. 592 * 593 * Because of ziltest, this must be done after 594 * zfs_unlinked_drain(). (Further note: ziltest doesn't 595 * use readonly mounts, where zfs_unlinked_drain() isn't 596 * called.) This is because ziltest causes spa_sync() 597 * to think it's committed, but actually it is not, so 598 * the intent log contains many txg's worth of changes. 599 * 600 * In particular, if object N is in the unlinked set in 601 * the last txg to actually sync, then it could be 602 * actually freed in a later txg and then reallocated in 603 * a yet later txg. This would write a "create object 604 * N" record to the intent log. Normally, this would be 605 * fine because the spa_sync() would have written out 606 * the fact that object N is free, before we could write 607 * the "create object N" intent log record. 608 * 609 * But when we are in ziltest mode, we advance the "open 610 * txg" without actually spa_sync()-ing the changes to 611 * disk. So we would see that object N is still 612 * allocated and in the unlinked set, and there is an 613 * intent log record saying to allocate it. 614 */ 615 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 616 zfs_replay_vector); 617 618 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 619 } 620 621 if (!zil_disable) 622 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 623 624 return (0); 625 } 626 627 static int 628 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr) 629 { 630 dev_t mount_dev; 631 uint64_t recordsize, readonly; 632 int error = 0; 633 int mode; 634 zfsvfs_t *zfsvfs; 635 znode_t *zp = NULL; 636 637 ASSERT(vfsp); 638 ASSERT(osname); 639 640 /* 641 * Initialize the zfs-specific filesystem structure. 642 * Should probably make this a kmem cache, shuffle fields, 643 * and just bzero up to z_hold_mtx[]. 644 */ 645 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 646 zfsvfs->z_vfs = vfsp; 647 zfsvfs->z_parent = zfsvfs; 648 zfsvfs->z_assign = TXG_NOWAIT; 649 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 650 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 651 652 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 653 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 654 offsetof(znode_t, z_link_node)); 655 rrw_init(&zfsvfs->z_teardown_lock); 656 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 657 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 658 659 /* Initialize the generic filesystem structure. */ 660 vfsp->vfs_bcount = 0; 661 vfsp->vfs_data = NULL; 662 663 if (zfs_create_unique_device(&mount_dev) == -1) { 664 error = ENODEV; 665 goto out; 666 } 667 ASSERT(vfs_devismounted(mount_dev) == 0); 668 669 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 670 NULL)) 671 goto out; 672 673 vfsp->vfs_dev = mount_dev; 674 vfsp->vfs_fstype = zfsfstype; 675 vfsp->vfs_bsize = recordsize; 676 vfsp->vfs_flag |= VFS_NOTRUNC; 677 vfsp->vfs_data = zfsvfs; 678 679 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 680 goto out; 681 682 if (readonly) 683 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 684 else 685 mode = DS_MODE_PRIMARY; 686 687 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 688 if (error == EROFS) { 689 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 690 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 691 &zfsvfs->z_os); 692 } 693 694 if (error) 695 goto out; 696 697 if (error = zfs_init_fs(zfsvfs, &zp, cr)) 698 goto out; 699 700 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 701 VN_RELE(ZTOV(zp)); 702 703 /* 704 * Set features for file system. 705 */ 706 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 707 if (zfsvfs->z_use_fuids) { 708 vfs_set_feature(vfsp, VFSFT_XVATTR); 709 vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS); 710 vfs_set_feature(vfsp, VFSFT_ACLONCREATE); 711 } 712 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 713 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 714 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 715 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 716 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 717 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 718 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 719 } 720 721 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 722 uint64_t pval; 723 724 ASSERT(mode & DS_MODE_READONLY); 725 atime_changed_cb(zfsvfs, B_FALSE); 726 readonly_changed_cb(zfsvfs, B_TRUE); 727 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 728 goto out; 729 xattr_changed_cb(zfsvfs, pval); 730 zfsvfs->z_issnap = B_TRUE; 731 } else { 732 error = zfsvfs_setup(zfsvfs, B_TRUE); 733 } 734 735 if (!zfsvfs->z_issnap) 736 zfsctl_create(zfsvfs); 737 out: 738 if (error) { 739 if (zfsvfs->z_os) 740 dmu_objset_close(zfsvfs->z_os); 741 mutex_destroy(&zfsvfs->z_znodes_lock); 742 list_destroy(&zfsvfs->z_all_znodes); 743 rrw_destroy(&zfsvfs->z_teardown_lock); 744 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 745 rw_destroy(&zfsvfs->z_fuid_lock); 746 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 747 } else { 748 atomic_add_32(&zfs_active_fs_count, 1); 749 } 750 751 return (error); 752 } 753 754 void 755 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 756 { 757 objset_t *os = zfsvfs->z_os; 758 struct dsl_dataset *ds; 759 760 /* 761 * Unregister properties. 762 */ 763 if (!dmu_objset_is_snapshot(os)) { 764 ds = dmu_objset_ds(os); 765 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 766 zfsvfs) == 0); 767 768 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 769 zfsvfs) == 0); 770 771 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 772 zfsvfs) == 0); 773 774 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 775 zfsvfs) == 0); 776 777 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 778 zfsvfs) == 0); 779 780 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 781 zfsvfs) == 0); 782 783 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 784 zfsvfs) == 0); 785 786 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 787 zfsvfs) == 0); 788 789 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 790 zfsvfs) == 0); 791 792 VERIFY(dsl_prop_unregister(ds, "aclinherit", 793 acl_inherit_changed_cb, zfsvfs) == 0); 794 795 VERIFY(dsl_prop_unregister(ds, "vscan", 796 vscan_changed_cb, zfsvfs) == 0); 797 } 798 } 799 800 /* 801 * Convert a decimal digit string to a uint64_t integer. 802 */ 803 static int 804 str_to_uint64(char *str, uint64_t *objnum) 805 { 806 uint64_t num = 0; 807 808 while (*str) { 809 if (*str < '0' || *str > '9') 810 return (EINVAL); 811 812 num = num*10 + *str++ - '0'; 813 } 814 815 *objnum = num; 816 return (0); 817 } 818 819 /* 820 * The boot path passed from the boot loader is in the form of 821 * "rootpool-name/root-filesystem-object-number'. Convert this 822 * string to a dataset name: "rootpool-name/root-filesystem-name". 823 */ 824 static int 825 parse_bootpath(char *bpath, char *outpath) 826 { 827 char *slashp; 828 uint64_t objnum; 829 int error; 830 831 if (*bpath == 0 || *bpath == '/') 832 return (EINVAL); 833 834 slashp = strchr(bpath, '/'); 835 836 /* if no '/', just return the pool name */ 837 if (slashp == NULL) { 838 (void) strcpy(outpath, bpath); 839 return (0); 840 } 841 842 if (error = str_to_uint64(slashp+1, &objnum)) 843 return (error); 844 845 *slashp = '\0'; 846 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 847 *slashp = '/'; 848 849 return (error); 850 } 851 852 static int 853 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 854 { 855 int error = 0; 856 int ret = 0; 857 static int zfsrootdone = 0; 858 zfsvfs_t *zfsvfs = NULL; 859 znode_t *zp = NULL; 860 vnode_t *vp = NULL; 861 char *zfs_bootpath; 862 863 ASSERT(vfsp); 864 865 /* 866 * The filesystem that we mount as root is defined in the 867 * "zfs-bootfs" property. 868 */ 869 if (why == ROOT_INIT) { 870 if (zfsrootdone++) 871 return (EBUSY); 872 873 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 874 DDI_PROP_DONTPASS, "zfs-bootfs", &zfs_bootpath) != 875 DDI_SUCCESS) 876 return (EIO); 877 878 error = parse_bootpath(zfs_bootpath, rootfs.bo_name); 879 ddi_prop_free(zfs_bootpath); 880 881 if (error) 882 return (error); 883 884 if (error = vfs_lock(vfsp)) 885 return (error); 886 887 if (error = zfs_domount(vfsp, rootfs.bo_name, CRED())) 888 goto out; 889 890 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 891 ASSERT(zfsvfs); 892 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) 893 goto out; 894 895 vp = ZTOV(zp); 896 mutex_enter(&vp->v_lock); 897 vp->v_flag |= VROOT; 898 mutex_exit(&vp->v_lock); 899 rootvp = vp; 900 901 /* 902 * The zfs_zget call above returns with a hold on vp, we release 903 * it here. 904 */ 905 VN_RELE(vp); 906 907 /* 908 * Mount root as readonly initially, it will be remouted 909 * read/write by /lib/svc/method/fs-usr. 910 */ 911 readonly_changed_cb(vfsp->vfs_data, B_TRUE); 912 vfs_add((struct vnode *)0, vfsp, 913 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 914 out: 915 vfs_unlock(vfsp); 916 ret = (error) ? error : 0; 917 return (ret); 918 } else if (why == ROOT_REMOUNT) { 919 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 920 vfsp->vfs_flag |= VFS_REMOUNT; 921 922 /* refresh mount options */ 923 zfs_unregister_callbacks(vfsp->vfs_data); 924 return (zfs_register_callbacks(vfsp)); 925 926 } else if (why == ROOT_UNMOUNT) { 927 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 928 (void) zfs_sync(vfsp, 0, 0); 929 return (0); 930 } 931 932 /* 933 * if "why" is equal to anything else other than ROOT_INIT, 934 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 935 */ 936 return (ENOTSUP); 937 } 938 939 /*ARGSUSED*/ 940 static int 941 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 942 { 943 char *osname; 944 pathname_t spn; 945 int error = 0; 946 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 947 UIO_SYSSPACE : UIO_USERSPACE; 948 int canwrite; 949 950 if (mvp->v_type != VDIR) 951 return (ENOTDIR); 952 953 mutex_enter(&mvp->v_lock); 954 if ((uap->flags & MS_REMOUNT) == 0 && 955 (uap->flags & MS_OVERLAY) == 0 && 956 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 957 mutex_exit(&mvp->v_lock); 958 return (EBUSY); 959 } 960 mutex_exit(&mvp->v_lock); 961 962 /* 963 * ZFS does not support passing unparsed data in via MS_DATA. 964 * Users should use the MS_OPTIONSTR interface; this means 965 * that all option parsing is already done and the options struct 966 * can be interrogated. 967 */ 968 if ((uap->flags & MS_DATA) && uap->datalen > 0) 969 return (EINVAL); 970 971 /* 972 * Get the objset name (the "special" mount argument). 973 */ 974 if (error = pn_get(uap->spec, fromspace, &spn)) 975 return (error); 976 977 osname = spn.pn_path; 978 979 /* 980 * Check for mount privilege? 981 * 982 * If we don't have privilege then see if 983 * we have local permission to allow it 984 */ 985 error = secpolicy_fs_mount(cr, mvp, vfsp); 986 if (error) { 987 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 988 if (error == 0) { 989 vattr_t vattr; 990 991 /* 992 * Make sure user is the owner of the mount point 993 * or has sufficient privileges. 994 */ 995 996 vattr.va_mask = AT_UID; 997 998 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 999 goto out; 1000 } 1001 1002 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1003 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1004 error = EPERM; 1005 goto out; 1006 } 1007 1008 secpolicy_fs_mount_clearopts(cr, vfsp); 1009 } else { 1010 goto out; 1011 } 1012 } 1013 1014 /* 1015 * Refuse to mount a filesystem if we are in a local zone and the 1016 * dataset is not visible. 1017 */ 1018 if (!INGLOBALZONE(curproc) && 1019 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1020 error = EPERM; 1021 goto out; 1022 } 1023 1024 /* 1025 * When doing a remount, we simply refresh our temporary properties 1026 * according to those options set in the current VFS options. 1027 */ 1028 if (uap->flags & MS_REMOUNT) { 1029 /* refresh mount options */ 1030 zfs_unregister_callbacks(vfsp->vfs_data); 1031 error = zfs_register_callbacks(vfsp); 1032 goto out; 1033 } 1034 1035 error = zfs_domount(vfsp, osname, cr); 1036 1037 out: 1038 pn_free(&spn); 1039 return (error); 1040 } 1041 1042 static int 1043 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1044 { 1045 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1046 dev32_t d32; 1047 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1048 1049 ZFS_ENTER(zfsvfs); 1050 1051 dmu_objset_space(zfsvfs->z_os, 1052 &refdbytes, &availbytes, &usedobjs, &availobjs); 1053 1054 /* 1055 * The underlying storage pool actually uses multiple block sizes. 1056 * We report the fragsize as the smallest block size we support, 1057 * and we report our blocksize as the filesystem's maximum blocksize. 1058 */ 1059 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1060 statp->f_bsize = zfsvfs->z_max_blksz; 1061 1062 /* 1063 * The following report "total" blocks of various kinds in the 1064 * file system, but reported in terms of f_frsize - the 1065 * "fragment" size. 1066 */ 1067 1068 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1069 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1070 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1071 1072 /* 1073 * statvfs() should really be called statufs(), because it assumes 1074 * static metadata. ZFS doesn't preallocate files, so the best 1075 * we can do is report the max that could possibly fit in f_files, 1076 * and that minus the number actually used in f_ffree. 1077 * For f_ffree, report the smaller of the number of object available 1078 * and the number of blocks (each object will take at least a block). 1079 */ 1080 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1081 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1082 statp->f_files = statp->f_ffree + usedobjs; 1083 1084 (void) cmpldev(&d32, vfsp->vfs_dev); 1085 statp->f_fsid = d32; 1086 1087 /* 1088 * We're a zfs filesystem. 1089 */ 1090 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1091 1092 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1093 1094 statp->f_namemax = ZFS_MAXNAMELEN; 1095 1096 /* 1097 * We have all of 32 characters to stuff a string here. 1098 * Is there anything useful we could/should provide? 1099 */ 1100 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1101 1102 ZFS_EXIT(zfsvfs); 1103 return (0); 1104 } 1105 1106 static int 1107 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1108 { 1109 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1110 znode_t *rootzp; 1111 int error; 1112 1113 ZFS_ENTER(zfsvfs); 1114 1115 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1116 if (error == 0) 1117 *vpp = ZTOV(rootzp); 1118 1119 ZFS_EXIT(zfsvfs); 1120 return (error); 1121 } 1122 1123 /* 1124 * Teardown the zfsvfs::z_os. 1125 * 1126 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1127 * and 'z_teardown_inactive_lock' held. 1128 */ 1129 static int 1130 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1131 { 1132 objset_t *os = zfsvfs->z_os; 1133 znode_t *zp, *nextzp; 1134 znode_t markerzp; 1135 1136 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1137 1138 if (!unmounting) { 1139 /* 1140 * We purge the parent filesystem's vfsp as the parent 1141 * filesystem and all of its snapshots have their vnode's 1142 * v_vfsp set to the parent's filesystem's vfsp. Note, 1143 * 'z_parent' is self referential for non-snapshots. 1144 */ 1145 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1146 } 1147 1148 /* 1149 * Close the zil. NB: Can't close the zil while zfs_inactive 1150 * threads are blocked as zil_close can call zfs_inactive. 1151 */ 1152 if (zfsvfs->z_log) { 1153 zil_close(zfsvfs->z_log); 1154 zfsvfs->z_log = NULL; 1155 } 1156 1157 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1158 1159 /* 1160 * If we are not unmounting (ie: online recv) and someone already 1161 * unmounted this file system while we were doing the switcheroo, 1162 * or a reopen of z_os failed then just bail out now. 1163 */ 1164 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1165 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1166 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1167 return (EIO); 1168 } 1169 1170 /* 1171 * At this point there are no vops active, and any new vops will 1172 * fail with EIO since we have z_teardown_lock for writer (only 1173 * relavent for forced unmount). 1174 * 1175 * Release all holds on dbufs. 1176 * Note, the dmu can still callback via znode_pageout_func() 1177 * which can zfs_znode_free() the znode. So we lock 1178 * z_all_znodes; search the list for a held dbuf; drop the lock 1179 * (we know zp can't disappear if we hold a dbuf lock) then 1180 * regrab the lock and restart. 1181 * 1182 * Since we have to restart the search after finding each held dbuf, 1183 * we do two things to speed up searching: we insert a dummy znode 1184 * ('markerzp') to detect the original tail of the list, and move 1185 * non-held znodes to the end of the list. Once we hit 'markerzp', 1186 * we know we've looked at each znode and can break out. 1187 */ 1188 mutex_enter(&zfsvfs->z_znodes_lock); 1189 list_insert_tail(&zfsvfs->z_all_znodes, &markerzp); 1190 for (zp = list_head(&zfsvfs->z_all_znodes); zp != &markerzp; 1191 zp = nextzp) { 1192 nextzp = list_next(&zfsvfs->z_all_znodes, zp); 1193 if (zp->z_dbuf) { 1194 /* dbufs should only be held when force unmounting */ 1195 mutex_exit(&zfsvfs->z_znodes_lock); 1196 dmu_buf_rele(zp->z_dbuf, NULL); 1197 zp->z_dbuf = NULL; 1198 mutex_enter(&zfsvfs->z_znodes_lock); 1199 /* Start again */ 1200 nextzp = list_head(&zfsvfs->z_all_znodes); 1201 } else { 1202 list_remove(&zfsvfs->z_all_znodes, zp); 1203 list_insert_tail(&zfsvfs->z_all_znodes, zp); 1204 } 1205 } 1206 list_remove(&zfsvfs->z_all_znodes, &markerzp); 1207 mutex_exit(&zfsvfs->z_znodes_lock); 1208 1209 /* 1210 * If we are unmounting, set the unmounted flag and let new vops 1211 * unblock. zfs_inactive will have the unmounted behavior, and all 1212 * other vops will fail with EIO. 1213 */ 1214 if (unmounting) { 1215 zfsvfs->z_unmounted = B_TRUE; 1216 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1217 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1218 } 1219 1220 /* 1221 * z_os will be NULL if there was an error in attempting to reopen 1222 * zfsvfs, so just return as the properties had already been 1223 * unregistered and cached data had been evicted before. 1224 */ 1225 if (zfsvfs->z_os == NULL) 1226 return (0); 1227 1228 /* 1229 * Unregister properties. 1230 */ 1231 zfs_unregister_callbacks(zfsvfs); 1232 1233 /* 1234 * Evict cached data 1235 */ 1236 if (dmu_objset_evict_dbufs(os)) { 1237 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1238 (void) dmu_objset_evict_dbufs(os); 1239 } 1240 1241 return (0); 1242 } 1243 1244 /*ARGSUSED*/ 1245 static int 1246 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1247 { 1248 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1249 objset_t *os; 1250 int ret; 1251 1252 ret = secpolicy_fs_unmount(cr, vfsp); 1253 if (ret) { 1254 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1255 ZFS_DELEG_PERM_MOUNT, cr); 1256 if (ret) 1257 return (ret); 1258 } 1259 1260 /* 1261 * We purge the parent filesystem's vfsp as the parent filesystem 1262 * and all of its snapshots have their vnode's v_vfsp set to the 1263 * parent's filesystem's vfsp. Note, 'z_parent' is self 1264 * referential for non-snapshots. 1265 */ 1266 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1267 1268 /* 1269 * Unmount any snapshots mounted under .zfs before unmounting the 1270 * dataset itself. 1271 */ 1272 if (zfsvfs->z_ctldir != NULL && 1273 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1274 return (ret); 1275 } 1276 1277 if (!(fflag & MS_FORCE)) { 1278 /* 1279 * Check the number of active vnodes in the file system. 1280 * Our count is maintained in the vfs structure, but the 1281 * number is off by 1 to indicate a hold on the vfs 1282 * structure itself. 1283 * 1284 * The '.zfs' directory maintains a reference of its 1285 * own, and any active references underneath are 1286 * reflected in the vnode count. 1287 */ 1288 if (zfsvfs->z_ctldir == NULL) { 1289 if (vfsp->vfs_count > 1) 1290 return (EBUSY); 1291 } else { 1292 if (vfsp->vfs_count > 2 || 1293 zfsvfs->z_ctldir->v_count > 1) 1294 return (EBUSY); 1295 } 1296 } 1297 1298 vfsp->vfs_flag |= VFS_UNMOUNTED; 1299 1300 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1301 os = zfsvfs->z_os; 1302 1303 /* 1304 * z_os will be NULL if there was an error in 1305 * attempting to reopen zfsvfs. 1306 */ 1307 if (os != NULL) { 1308 /* 1309 * Unset the objset user_ptr. 1310 */ 1311 mutex_enter(&os->os->os_user_ptr_lock); 1312 dmu_objset_set_user(os, NULL); 1313 mutex_exit(&os->os->os_user_ptr_lock); 1314 1315 /* 1316 * Finally close the objset 1317 */ 1318 dmu_objset_close(os); 1319 } 1320 1321 /* 1322 * We can now safely destroy the '.zfs' directory node. 1323 */ 1324 if (zfsvfs->z_ctldir != NULL) 1325 zfsctl_destroy(zfsvfs); 1326 1327 return (0); 1328 } 1329 1330 static int 1331 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1332 { 1333 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1334 znode_t *zp; 1335 uint64_t object = 0; 1336 uint64_t fid_gen = 0; 1337 uint64_t gen_mask; 1338 uint64_t zp_gen; 1339 int i, err; 1340 1341 *vpp = NULL; 1342 1343 ZFS_ENTER(zfsvfs); 1344 1345 if (fidp->fid_len == LONG_FID_LEN) { 1346 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1347 uint64_t objsetid = 0; 1348 uint64_t setgen = 0; 1349 1350 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1351 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1352 1353 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1354 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1355 1356 ZFS_EXIT(zfsvfs); 1357 1358 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1359 if (err) 1360 return (EINVAL); 1361 ZFS_ENTER(zfsvfs); 1362 } 1363 1364 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1365 zfid_short_t *zfid = (zfid_short_t *)fidp; 1366 1367 for (i = 0; i < sizeof (zfid->zf_object); i++) 1368 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1369 1370 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1371 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1372 } else { 1373 ZFS_EXIT(zfsvfs); 1374 return (EINVAL); 1375 } 1376 1377 /* A zero fid_gen means we are in the .zfs control directories */ 1378 if (fid_gen == 0 && 1379 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1380 *vpp = zfsvfs->z_ctldir; 1381 ASSERT(*vpp != NULL); 1382 if (object == ZFSCTL_INO_SNAPDIR) { 1383 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1384 0, NULL, NULL, NULL, NULL, NULL) == 0); 1385 } else { 1386 VN_HOLD(*vpp); 1387 } 1388 ZFS_EXIT(zfsvfs); 1389 return (0); 1390 } 1391 1392 gen_mask = -1ULL >> (64 - 8 * i); 1393 1394 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1395 if (err = zfs_zget(zfsvfs, object, &zp)) { 1396 ZFS_EXIT(zfsvfs); 1397 return (err); 1398 } 1399 zp_gen = zp->z_phys->zp_gen & gen_mask; 1400 if (zp_gen == 0) 1401 zp_gen = 1; 1402 if (zp->z_unlinked || zp_gen != fid_gen) { 1403 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1404 VN_RELE(ZTOV(zp)); 1405 ZFS_EXIT(zfsvfs); 1406 return (EINVAL); 1407 } 1408 1409 *vpp = ZTOV(zp); 1410 ZFS_EXIT(zfsvfs); 1411 return (0); 1412 } 1413 1414 /* 1415 * Block out VOPs and close zfsvfs_t::z_os 1416 * 1417 * Note, if successful, then we return with the 'z_teardown_lock' and 1418 * 'z_teardown_inactive_lock' write held. 1419 */ 1420 int 1421 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode) 1422 { 1423 int error; 1424 1425 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1426 return (error); 1427 1428 *mode = zfsvfs->z_os->os_mode; 1429 dmu_objset_name(zfsvfs->z_os, name); 1430 dmu_objset_close(zfsvfs->z_os); 1431 1432 return (0); 1433 } 1434 1435 /* 1436 * Reopen zfsvfs_t::z_os and release VOPs. 1437 */ 1438 int 1439 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) 1440 { 1441 int err; 1442 1443 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1444 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1445 1446 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 1447 if (err) { 1448 zfsvfs->z_os = NULL; 1449 } else { 1450 znode_t *zp; 1451 1452 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1453 1454 /* 1455 * Attempt to re-establish all the active znodes with 1456 * their dbufs. If a zfs_rezget() fails, then we'll let 1457 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1458 * when they try to use their znode. 1459 */ 1460 mutex_enter(&zfsvfs->z_znodes_lock); 1461 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1462 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1463 (void) zfs_rezget(zp); 1464 } 1465 mutex_exit(&zfsvfs->z_znodes_lock); 1466 1467 } 1468 1469 /* release the VOPs */ 1470 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1471 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1472 1473 if (err) { 1474 /* 1475 * Since we couldn't reopen zfsvfs::z_os, force 1476 * unmount this file system. 1477 */ 1478 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1479 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1480 } 1481 return (err); 1482 } 1483 1484 static void 1485 zfs_freevfs(vfs_t *vfsp) 1486 { 1487 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1488 int i; 1489 1490 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1491 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1492 1493 mutex_destroy(&zfsvfs->z_znodes_lock); 1494 list_destroy(&zfsvfs->z_all_znodes); 1495 rrw_destroy(&zfsvfs->z_teardown_lock); 1496 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1497 zfs_fuid_destroy(zfsvfs); 1498 rw_destroy(&zfsvfs->z_fuid_lock); 1499 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1500 1501 atomic_add_32(&zfs_active_fs_count, -1); 1502 } 1503 1504 /* 1505 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1506 * so we can't safely do any non-idempotent initialization here. 1507 * Leave that to zfs_init() and zfs_fini(), which are called 1508 * from the module's _init() and _fini() entry points. 1509 */ 1510 /*ARGSUSED*/ 1511 static int 1512 zfs_vfsinit(int fstype, char *name) 1513 { 1514 int error; 1515 1516 zfsfstype = fstype; 1517 1518 /* 1519 * Setup vfsops and vnodeops tables. 1520 */ 1521 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1522 if (error != 0) { 1523 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1524 } 1525 1526 error = zfs_create_op_tables(); 1527 if (error) { 1528 zfs_remove_op_tables(); 1529 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1530 (void) vfs_freevfsops_by_type(zfsfstype); 1531 return (error); 1532 } 1533 1534 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1535 1536 /* 1537 * Unique major number for all zfs mounts. 1538 * If we run out of 32-bit minors, we'll getudev() another major. 1539 */ 1540 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1541 zfs_minor = ZFS_MIN_MINOR; 1542 1543 return (0); 1544 } 1545 1546 void 1547 zfs_init(void) 1548 { 1549 /* 1550 * Initialize .zfs directory structures 1551 */ 1552 zfsctl_init(); 1553 1554 /* 1555 * Initialize znode cache, vnode ops, etc... 1556 */ 1557 zfs_znode_init(); 1558 } 1559 1560 void 1561 zfs_fini(void) 1562 { 1563 zfsctl_fini(); 1564 zfs_znode_fini(); 1565 } 1566 1567 int 1568 zfs_busy(void) 1569 { 1570 return (zfs_active_fs_count != 0); 1571 } 1572 1573 int 1574 zfs_set_version(const char *name, uint64_t newvers) 1575 { 1576 int error; 1577 objset_t *os; 1578 dmu_tx_t *tx; 1579 uint64_t curvers; 1580 1581 /* 1582 * XXX for now, require that the filesystem be unmounted. Would 1583 * be nice to find the zfsvfs_t and just update that if 1584 * possible. 1585 */ 1586 1587 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1588 return (EINVAL); 1589 1590 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_PRIMARY, &os); 1591 if (error) 1592 return (error); 1593 1594 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1595 8, 1, &curvers); 1596 if (error) 1597 goto out; 1598 if (newvers < curvers) { 1599 error = EINVAL; 1600 goto out; 1601 } 1602 1603 tx = dmu_tx_create(os); 1604 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1605 error = dmu_tx_assign(tx, TXG_WAIT); 1606 if (error) { 1607 dmu_tx_abort(tx); 1608 goto out; 1609 } 1610 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1611 &newvers, tx); 1612 1613 spa_history_internal_log(LOG_DS_UPGRADE, 1614 dmu_objset_spa(os), tx, CRED(), 1615 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1616 dmu_objset_id(os)); 1617 dmu_tx_commit(tx); 1618 1619 out: 1620 dmu_objset_close(os); 1621 return (error); 1622 } 1623 1624 /* 1625 * Read a property stored within the master node. 1626 */ 1627 int 1628 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 1629 { 1630 const char *pname; 1631 int error; 1632 1633 /* 1634 * Look up the file system's value for the property. For the 1635 * version property, we look up a slightly different string. 1636 * Also, there is no default VERSION value, so if we don't 1637 * find it, return the error. 1638 */ 1639 if (prop == ZFS_PROP_VERSION) 1640 pname = ZPL_VERSION_STR; 1641 else 1642 pname = zfs_prop_to_name(prop); 1643 1644 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 1645 1646 if (!error) { 1647 return (0); 1648 } else if (prop == ZFS_PROP_VERSION || error != ENOENT) { 1649 return (error); 1650 } else { 1651 /* No value set, use the default value */ 1652 switch (prop) { 1653 case ZFS_PROP_NORMALIZE: 1654 case ZFS_PROP_UTF8ONLY: 1655 *value = 0; 1656 break; 1657 case ZFS_PROP_CASE: 1658 *value = ZFS_CASE_SENSITIVE; 1659 break; 1660 default: 1661 return (ENOENT); 1662 } 1663 } 1664 return (0); 1665 } 1666 1667 static vfsdef_t vfw = { 1668 VFSDEF_VERSION, 1669 MNTTYPE_ZFS, 1670 zfs_vfsinit, 1671 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 1672 VSW_XID, 1673 &zfs_mntopts 1674 }; 1675 1676 struct modlfs zfs_modlfs = { 1677 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1678 }; 1679