1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2010 Robert Milkowski */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/systm.h> 30 #include <sys/sysmacros.h> 31 #include <sys/kmem.h> 32 #include <sys/pathname.h> 33 #include <sys/vnode.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/mntent.h> 37 #include <sys/mount.h> 38 #include <sys/cmn_err.h> 39 #include "fs/fs_subr.h" 40 #include <sys/zfs_znode.h> 41 #include <sys/zfs_dir.h> 42 #include <sys/zil.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/dmu.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dsl_dataset.h> 47 #include <sys/dsl_deleg.h> 48 #include <sys/spa.h> 49 #include <sys/zap.h> 50 #include <sys/sa.h> 51 #include <sys/varargs.h> 52 #include <sys/policy.h> 53 #include <sys/atomic.h> 54 #include <sys/mkdev.h> 55 #include <sys/modctl.h> 56 #include <sys/refstr.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/zfs_ctldir.h> 59 #include <sys/zfs_fuid.h> 60 #include <sys/bootconf.h> 61 #include <sys/sunddi.h> 62 #include <sys/dnlc.h> 63 #include <sys/dmu_objset.h> 64 #include <sys/spa_boot.h> 65 #include <sys/sa.h> 66 #include "zfs_comutil.h" 67 68 int zfsfstype; 69 vfsops_t *zfs_vfsops = NULL; 70 static major_t zfs_major; 71 static minor_t zfs_minor; 72 static kmutex_t zfs_dev_mtx; 73 74 extern int sys_shutdown; 75 76 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 77 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 78 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 79 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 80 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 81 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 82 static void zfs_freevfs(vfs_t *vfsp); 83 84 static const fs_operation_def_t zfs_vfsops_template[] = { 85 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 86 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 87 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 88 VFSNAME_ROOT, { .vfs_root = zfs_root }, 89 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 90 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 91 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 92 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 93 NULL, NULL 94 }; 95 96 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 97 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 98 NULL, NULL 99 }; 100 101 /* 102 * We need to keep a count of active fs's. 103 * This is necessary to prevent our module 104 * from being unloaded after a umount -f 105 */ 106 static uint32_t zfs_active_fs_count = 0; 107 108 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 109 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 110 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 111 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 112 113 /* 114 * MO_DEFAULT is not used since the default value is determined 115 * by the equivalent property. 116 */ 117 static mntopt_t mntopts[] = { 118 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 119 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 120 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 121 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 122 }; 123 124 static mntopts_t zfs_mntopts = { 125 sizeof (mntopts) / sizeof (mntopt_t), 126 mntopts 127 }; 128 129 /*ARGSUSED*/ 130 int 131 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 132 { 133 /* 134 * Data integrity is job one. We don't want a compromised kernel 135 * writing to the storage pool, so we never sync during panic. 136 */ 137 if (panicstr) 138 return (0); 139 140 /* 141 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 142 * to sync metadata, which they would otherwise cache indefinitely. 143 * Semantically, the only requirement is that the sync be initiated. 144 * The DMU syncs out txgs frequently, so there's nothing to do. 145 */ 146 if (flag & SYNC_ATTR) 147 return (0); 148 149 if (vfsp != NULL) { 150 /* 151 * Sync a specific filesystem. 152 */ 153 zfsvfs_t *zfsvfs = vfsp->vfs_data; 154 dsl_pool_t *dp; 155 156 ZFS_ENTER(zfsvfs); 157 dp = dmu_objset_pool(zfsvfs->z_os); 158 159 /* 160 * If the system is shutting down, then skip any 161 * filesystems which may exist on a suspended pool. 162 */ 163 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 164 ZFS_EXIT(zfsvfs); 165 return (0); 166 } 167 168 if (zfsvfs->z_log != NULL) 169 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 170 171 ZFS_EXIT(zfsvfs); 172 } else { 173 /* 174 * Sync all ZFS filesystems. This is what happens when you 175 * run sync(1M). Unlike other filesystems, ZFS honors the 176 * request by waiting for all pools to commit all dirty data. 177 */ 178 spa_sync_allpools(); 179 } 180 181 return (0); 182 } 183 184 static int 185 zfs_create_unique_device(dev_t *dev) 186 { 187 major_t new_major; 188 189 do { 190 ASSERT3U(zfs_minor, <=, MAXMIN32); 191 minor_t start = zfs_minor; 192 do { 193 mutex_enter(&zfs_dev_mtx); 194 if (zfs_minor >= MAXMIN32) { 195 /* 196 * If we're still using the real major 197 * keep out of /dev/zfs and /dev/zvol minor 198 * number space. If we're using a getudev()'ed 199 * major number, we can use all of its minors. 200 */ 201 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 202 zfs_minor = ZFS_MIN_MINOR; 203 else 204 zfs_minor = 0; 205 } else { 206 zfs_minor++; 207 } 208 *dev = makedevice(zfs_major, zfs_minor); 209 mutex_exit(&zfs_dev_mtx); 210 } while (vfs_devismounted(*dev) && zfs_minor != start); 211 if (zfs_minor == start) { 212 /* 213 * We are using all ~262,000 minor numbers for the 214 * current major number. Create a new major number. 215 */ 216 if ((new_major = getudev()) == (major_t)-1) { 217 cmn_err(CE_WARN, 218 "zfs_mount: Can't get unique major " 219 "device number."); 220 return (-1); 221 } 222 mutex_enter(&zfs_dev_mtx); 223 zfs_major = new_major; 224 zfs_minor = 0; 225 226 mutex_exit(&zfs_dev_mtx); 227 } else { 228 break; 229 } 230 /* CONSTANTCONDITION */ 231 } while (1); 232 233 return (0); 234 } 235 236 static void 237 atime_changed_cb(void *arg, uint64_t newval) 238 { 239 zfsvfs_t *zfsvfs = arg; 240 241 if (newval == TRUE) { 242 zfsvfs->z_atime = TRUE; 243 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 244 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 245 } else { 246 zfsvfs->z_atime = FALSE; 247 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 248 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 249 } 250 } 251 252 static void 253 xattr_changed_cb(void *arg, uint64_t newval) 254 { 255 zfsvfs_t *zfsvfs = arg; 256 257 if (newval == TRUE) { 258 /* XXX locking on vfs_flag? */ 259 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 260 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 261 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 262 } else { 263 /* XXX locking on vfs_flag? */ 264 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 265 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 266 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 267 } 268 } 269 270 static void 271 blksz_changed_cb(void *arg, uint64_t newval) 272 { 273 zfsvfs_t *zfsvfs = arg; 274 275 if (newval < SPA_MINBLOCKSIZE || 276 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 277 newval = SPA_MAXBLOCKSIZE; 278 279 zfsvfs->z_max_blksz = newval; 280 zfsvfs->z_vfs->vfs_bsize = newval; 281 } 282 283 static void 284 readonly_changed_cb(void *arg, uint64_t newval) 285 { 286 zfsvfs_t *zfsvfs = arg; 287 288 if (newval) { 289 /* XXX locking on vfs_flag? */ 290 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 293 } else { 294 /* XXX locking on vfs_flag? */ 295 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 296 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 297 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 298 } 299 } 300 301 static void 302 devices_changed_cb(void *arg, uint64_t newval) 303 { 304 zfsvfs_t *zfsvfs = arg; 305 306 if (newval == FALSE) { 307 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 308 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 309 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 310 } else { 311 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 312 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 313 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 314 } 315 } 316 317 static void 318 setuid_changed_cb(void *arg, uint64_t newval) 319 { 320 zfsvfs_t *zfsvfs = arg; 321 322 if (newval == FALSE) { 323 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 324 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 325 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 326 } else { 327 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 328 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 329 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 330 } 331 } 332 333 static void 334 exec_changed_cb(void *arg, uint64_t newval) 335 { 336 zfsvfs_t *zfsvfs = arg; 337 338 if (newval == FALSE) { 339 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 340 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 341 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 342 } else { 343 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 344 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 345 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 346 } 347 } 348 349 /* 350 * The nbmand mount option can be changed at mount time. 351 * We can't allow it to be toggled on live file systems or incorrect 352 * behavior may be seen from cifs clients 353 * 354 * This property isn't registered via dsl_prop_register(), but this callback 355 * will be called when a file system is first mounted 356 */ 357 static void 358 nbmand_changed_cb(void *arg, uint64_t newval) 359 { 360 zfsvfs_t *zfsvfs = arg; 361 if (newval == FALSE) { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 364 } else { 365 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 366 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 367 } 368 } 369 370 static void 371 snapdir_changed_cb(void *arg, uint64_t newval) 372 { 373 zfsvfs_t *zfsvfs = arg; 374 375 zfsvfs->z_show_ctldir = newval; 376 } 377 378 static void 379 vscan_changed_cb(void *arg, uint64_t newval) 380 { 381 zfsvfs_t *zfsvfs = arg; 382 383 zfsvfs->z_vscan = newval; 384 } 385 386 static void 387 acl_inherit_changed_cb(void *arg, uint64_t newval) 388 { 389 zfsvfs_t *zfsvfs = arg; 390 391 zfsvfs->z_acl_inherit = newval; 392 } 393 394 static int 395 zfs_register_callbacks(vfs_t *vfsp) 396 { 397 struct dsl_dataset *ds = NULL; 398 objset_t *os = NULL; 399 zfsvfs_t *zfsvfs = NULL; 400 uint64_t nbmand; 401 int readonly, do_readonly = B_FALSE; 402 int setuid, do_setuid = B_FALSE; 403 int exec, do_exec = B_FALSE; 404 int devices, do_devices = B_FALSE; 405 int xattr, do_xattr = B_FALSE; 406 int atime, do_atime = B_FALSE; 407 int error = 0; 408 409 ASSERT(vfsp); 410 zfsvfs = vfsp->vfs_data; 411 ASSERT(zfsvfs); 412 os = zfsvfs->z_os; 413 414 /* 415 * The act of registering our callbacks will destroy any mount 416 * options we may have. In order to enable temporary overrides 417 * of mount options, we stash away the current values and 418 * restore them after we register the callbacks. 419 */ 420 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 421 readonly = B_TRUE; 422 do_readonly = B_TRUE; 423 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 424 readonly = B_FALSE; 425 do_readonly = B_TRUE; 426 } 427 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 428 devices = B_FALSE; 429 setuid = B_FALSE; 430 do_devices = B_TRUE; 431 do_setuid = B_TRUE; 432 } else { 433 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 434 devices = B_FALSE; 435 do_devices = B_TRUE; 436 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 437 devices = B_TRUE; 438 do_devices = B_TRUE; 439 } 440 441 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 442 setuid = B_FALSE; 443 do_setuid = B_TRUE; 444 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 445 setuid = B_TRUE; 446 do_setuid = B_TRUE; 447 } 448 } 449 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 450 exec = B_FALSE; 451 do_exec = B_TRUE; 452 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 453 exec = B_TRUE; 454 do_exec = B_TRUE; 455 } 456 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 457 xattr = B_FALSE; 458 do_xattr = B_TRUE; 459 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 460 xattr = B_TRUE; 461 do_xattr = B_TRUE; 462 } 463 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 464 atime = B_FALSE; 465 do_atime = B_TRUE; 466 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 467 atime = B_TRUE; 468 do_atime = B_TRUE; 469 } 470 471 /* 472 * nbmand is a special property. It can only be changed at 473 * mount time. 474 * 475 * This is weird, but it is documented to only be changeable 476 * at mount time. 477 */ 478 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 479 nbmand = B_FALSE; 480 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 481 nbmand = B_TRUE; 482 } else { 483 char osname[MAXNAMELEN]; 484 485 dmu_objset_name(os, osname); 486 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 487 NULL)) { 488 return (error); 489 } 490 } 491 492 /* 493 * Register property callbacks. 494 * 495 * It would probably be fine to just check for i/o error from 496 * the first prop_register(), but I guess I like to go 497 * overboard... 498 */ 499 ds = dmu_objset_ds(os); 500 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 501 error = error ? error : dsl_prop_register(ds, 502 "xattr", xattr_changed_cb, zfsvfs); 503 error = error ? error : dsl_prop_register(ds, 504 "recordsize", blksz_changed_cb, zfsvfs); 505 error = error ? error : dsl_prop_register(ds, 506 "readonly", readonly_changed_cb, zfsvfs); 507 error = error ? error : dsl_prop_register(ds, 508 "devices", devices_changed_cb, zfsvfs); 509 error = error ? error : dsl_prop_register(ds, 510 "setuid", setuid_changed_cb, zfsvfs); 511 error = error ? error : dsl_prop_register(ds, 512 "exec", exec_changed_cb, zfsvfs); 513 error = error ? error : dsl_prop_register(ds, 514 "snapdir", snapdir_changed_cb, zfsvfs); 515 error = error ? error : dsl_prop_register(ds, 516 "aclinherit", acl_inherit_changed_cb, zfsvfs); 517 error = error ? error : dsl_prop_register(ds, 518 "vscan", vscan_changed_cb, zfsvfs); 519 if (error) 520 goto unregister; 521 522 /* 523 * Invoke our callbacks to restore temporary mount options. 524 */ 525 if (do_readonly) 526 readonly_changed_cb(zfsvfs, readonly); 527 if (do_setuid) 528 setuid_changed_cb(zfsvfs, setuid); 529 if (do_exec) 530 exec_changed_cb(zfsvfs, exec); 531 if (do_devices) 532 devices_changed_cb(zfsvfs, devices); 533 if (do_xattr) 534 xattr_changed_cb(zfsvfs, xattr); 535 if (do_atime) 536 atime_changed_cb(zfsvfs, atime); 537 538 nbmand_changed_cb(zfsvfs, nbmand); 539 540 return (0); 541 542 unregister: 543 /* 544 * We may attempt to unregister some callbacks that are not 545 * registered, but this is OK; it will simply return ENOMSG, 546 * which we will ignore. 547 */ 548 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 549 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 551 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 552 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 553 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 554 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 555 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 556 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 557 zfsvfs); 558 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 559 return (error); 560 561 } 562 563 static int 564 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 565 uint64_t *userp, uint64_t *groupp) 566 { 567 znode_phys_t *znp = data; 568 int error = 0; 569 570 /* 571 * Is it a valid type of object to track? 572 */ 573 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 574 return (ENOENT); 575 576 /* 577 * If we have a NULL data pointer 578 * then assume the id's aren't changing and 579 * return EEXIST to the dmu to let it know to 580 * use the same ids 581 */ 582 if (data == NULL) 583 return (EEXIST); 584 585 if (bonustype == DMU_OT_ZNODE) { 586 *userp = znp->zp_uid; 587 *groupp = znp->zp_gid; 588 } else { 589 int hdrsize; 590 591 ASSERT(bonustype == DMU_OT_SA); 592 hdrsize = sa_hdrsize(data); 593 594 if (hdrsize != 0) { 595 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 596 SA_UID_OFFSET)); 597 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 598 SA_GID_OFFSET)); 599 } else { 600 /* 601 * This should only happen for newly created 602 * files that haven't had the znode data filled 603 * in yet. 604 */ 605 *userp = 0; 606 *groupp = 0; 607 } 608 } 609 return (error); 610 } 611 612 static void 613 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 614 char *domainbuf, int buflen, uid_t *ridp) 615 { 616 uint64_t fuid; 617 const char *domain; 618 619 fuid = strtonum(fuidstr, NULL); 620 621 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 622 if (domain) 623 (void) strlcpy(domainbuf, domain, buflen); 624 else 625 domainbuf[0] = '\0'; 626 *ridp = FUID_RID(fuid); 627 } 628 629 static uint64_t 630 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 631 { 632 switch (type) { 633 case ZFS_PROP_USERUSED: 634 return (DMU_USERUSED_OBJECT); 635 case ZFS_PROP_GROUPUSED: 636 return (DMU_GROUPUSED_OBJECT); 637 case ZFS_PROP_USERQUOTA: 638 return (zfsvfs->z_userquota_obj); 639 case ZFS_PROP_GROUPQUOTA: 640 return (zfsvfs->z_groupquota_obj); 641 } 642 return (0); 643 } 644 645 int 646 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 647 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 648 { 649 int error; 650 zap_cursor_t zc; 651 zap_attribute_t za; 652 zfs_useracct_t *buf = vbuf; 653 uint64_t obj; 654 655 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 656 return (ENOTSUP); 657 658 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 659 if (obj == 0) { 660 *bufsizep = 0; 661 return (0); 662 } 663 664 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 665 (error = zap_cursor_retrieve(&zc, &za)) == 0; 666 zap_cursor_advance(&zc)) { 667 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 668 *bufsizep) 669 break; 670 671 fuidstr_to_sid(zfsvfs, za.za_name, 672 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 673 674 buf->zu_space = za.za_first_integer; 675 buf++; 676 } 677 if (error == ENOENT) 678 error = 0; 679 680 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 681 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 682 *cookiep = zap_cursor_serialize(&zc); 683 zap_cursor_fini(&zc); 684 return (error); 685 } 686 687 /* 688 * buf must be big enough (eg, 32 bytes) 689 */ 690 static int 691 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 692 char *buf, boolean_t addok) 693 { 694 uint64_t fuid; 695 int domainid = 0; 696 697 if (domain && domain[0]) { 698 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 699 if (domainid == -1) 700 return (ENOENT); 701 } 702 fuid = FUID_ENCODE(domainid, rid); 703 (void) sprintf(buf, "%llx", (longlong_t)fuid); 704 return (0); 705 } 706 707 int 708 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 709 const char *domain, uint64_t rid, uint64_t *valp) 710 { 711 char buf[32]; 712 int err; 713 uint64_t obj; 714 715 *valp = 0; 716 717 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 718 return (ENOTSUP); 719 720 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 721 if (obj == 0) 722 return (0); 723 724 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 725 if (err) 726 return (err); 727 728 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 729 if (err == ENOENT) 730 err = 0; 731 return (err); 732 } 733 734 int 735 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 736 const char *domain, uint64_t rid, uint64_t quota) 737 { 738 char buf[32]; 739 int err; 740 dmu_tx_t *tx; 741 uint64_t *objp; 742 boolean_t fuid_dirtied; 743 744 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 745 return (EINVAL); 746 747 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 748 return (ENOTSUP); 749 750 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 751 &zfsvfs->z_groupquota_obj; 752 753 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 754 if (err) 755 return (err); 756 fuid_dirtied = zfsvfs->z_fuid_dirty; 757 758 tx = dmu_tx_create(zfsvfs->z_os); 759 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 760 if (*objp == 0) { 761 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 762 zfs_userquota_prop_prefixes[type]); 763 } 764 if (fuid_dirtied) 765 zfs_fuid_txhold(zfsvfs, tx); 766 err = dmu_tx_assign(tx, TXG_WAIT); 767 if (err) { 768 dmu_tx_abort(tx); 769 return (err); 770 } 771 772 mutex_enter(&zfsvfs->z_lock); 773 if (*objp == 0) { 774 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 775 DMU_OT_NONE, 0, tx); 776 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 777 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 778 } 779 mutex_exit(&zfsvfs->z_lock); 780 781 if (quota == 0) { 782 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 783 if (err == ENOENT) 784 err = 0; 785 } else { 786 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 787 } 788 ASSERT(err == 0); 789 if (fuid_dirtied) 790 zfs_fuid_sync(zfsvfs, tx); 791 dmu_tx_commit(tx); 792 return (err); 793 } 794 795 boolean_t 796 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 797 { 798 char buf[32]; 799 uint64_t used, quota, usedobj, quotaobj; 800 int err; 801 802 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 803 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 804 805 if (quotaobj == 0 || zfsvfs->z_replay) 806 return (B_FALSE); 807 808 (void) sprintf(buf, "%llx", (longlong_t)fuid); 809 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 810 if (err != 0) 811 return (B_FALSE); 812 813 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 814 if (err != 0) 815 return (B_FALSE); 816 return (used >= quota); 817 } 818 819 boolean_t 820 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 821 { 822 uint64_t fuid; 823 uint64_t quotaobj; 824 uid_t id; 825 826 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 827 828 id = isgroup ? zp->z_gid : zp->z_uid; 829 830 if (quotaobj == 0 || zfsvfs->z_replay) 831 return (B_FALSE); 832 833 if (IS_EPHEMERAL(id)) { 834 VERIFY(0 == sa_lookup(zp->z_sa_hdl, 835 isgroup ? SA_ZPL_GID(zfsvfs) : SA_ZPL_UID(zfsvfs), 836 &fuid, sizeof (fuid))); 837 } else { 838 fuid = (uint64_t)id; 839 } 840 841 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 842 } 843 844 int 845 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 846 { 847 objset_t *os; 848 zfsvfs_t *zfsvfs; 849 uint64_t zval; 850 int i, error; 851 uint64_t sa_obj; 852 853 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 854 855 /* 856 * We claim to always be readonly so we can open snapshots; 857 * other ZPL code will prevent us from writing to snapshots. 858 */ 859 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 860 if (error) { 861 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 862 return (error); 863 } 864 865 /* 866 * Initialize the zfs-specific filesystem structure. 867 * Should probably make this a kmem cache, shuffle fields, 868 * and just bzero up to z_hold_mtx[]. 869 */ 870 zfsvfs->z_vfs = NULL; 871 zfsvfs->z_parent = zfsvfs; 872 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 873 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 874 zfsvfs->z_os = os; 875 876 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 877 if (error) { 878 goto out; 879 } else if (zfsvfs->z_version > 880 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 881 (void) printf("Can't mount a version %lld file system " 882 "on a version %lld pool\n. Pool must be upgraded to mount " 883 "this file system.", (u_longlong_t)zfsvfs->z_version, 884 (u_longlong_t)spa_version(dmu_objset_spa(os))); 885 error = ENOTSUP; 886 goto out; 887 } 888 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 889 goto out; 890 zfsvfs->z_norm = (int)zval; 891 892 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 893 goto out; 894 zfsvfs->z_utf8 = (zval != 0); 895 896 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 897 goto out; 898 zfsvfs->z_case = (uint_t)zval; 899 900 /* 901 * Fold case on file systems that are always or sometimes case 902 * insensitive. 903 */ 904 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 905 zfsvfs->z_case == ZFS_CASE_MIXED) 906 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 907 908 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 909 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 910 911 if (zfsvfs->z_use_sa) { 912 /* should either have both of these objects or none */ 913 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 914 &sa_obj); 915 if (error) 916 return (error); 917 } else { 918 /* 919 * Pre SA versions file systems should never touch 920 * either the attribute registration or layout objects. 921 */ 922 sa_obj = 0; 923 } 924 925 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 926 &zfsvfs->z_attr_table); 927 if (error) 928 goto out; 929 930 if (zfsvfs->z_version >= ZPL_VERSION_SA) 931 sa_register_update_callback(os, zfs_sa_upgrade); 932 933 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 934 &zfsvfs->z_root); 935 if (error) 936 goto out; 937 ASSERT(zfsvfs->z_root != 0); 938 939 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 940 &zfsvfs->z_unlinkedobj); 941 if (error) 942 goto out; 943 944 error = zap_lookup(os, MASTER_NODE_OBJ, 945 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 946 8, 1, &zfsvfs->z_userquota_obj); 947 if (error && error != ENOENT) 948 goto out; 949 950 error = zap_lookup(os, MASTER_NODE_OBJ, 951 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 952 8, 1, &zfsvfs->z_groupquota_obj); 953 if (error && error != ENOENT) 954 goto out; 955 956 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 957 &zfsvfs->z_fuid_obj); 958 if (error && error != ENOENT) 959 goto out; 960 961 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 962 &zfsvfs->z_shares_dir); 963 if (error && error != ENOENT) 964 goto out; 965 966 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 967 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 968 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 969 offsetof(znode_t, z_link_node)); 970 rrw_init(&zfsvfs->z_teardown_lock); 971 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 972 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 973 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 974 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 975 976 *zfvp = zfsvfs; 977 return (0); 978 979 out: 980 dmu_objset_disown(os, zfsvfs); 981 *zfvp = NULL; 982 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 983 return (error); 984 } 985 986 static int 987 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 988 { 989 int error; 990 991 error = zfs_register_callbacks(zfsvfs->z_vfs); 992 if (error) 993 return (error); 994 995 /* 996 * Set the objset user_ptr to track its zfsvfs. 997 */ 998 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 999 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1000 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1001 1002 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1003 1004 /* 1005 * If we are not mounting (ie: online recv), then we don't 1006 * have to worry about replaying the log as we blocked all 1007 * operations out since we closed the ZIL. 1008 */ 1009 if (mounting) { 1010 boolean_t readonly; 1011 1012 /* 1013 * During replay we remove the read only flag to 1014 * allow replays to succeed. 1015 */ 1016 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1017 if (readonly != 0) 1018 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1019 else 1020 zfs_unlinked_drain(zfsvfs); 1021 1022 /* 1023 * Parse and replay the intent log. 1024 * 1025 * Because of ziltest, this must be done after 1026 * zfs_unlinked_drain(). (Further note: ziltest 1027 * doesn't use readonly mounts, where 1028 * zfs_unlinked_drain() isn't called.) This is because 1029 * ziltest causes spa_sync() to think it's committed, 1030 * but actually it is not, so the intent log contains 1031 * many txg's worth of changes. 1032 * 1033 * In particular, if object N is in the unlinked set in 1034 * the last txg to actually sync, then it could be 1035 * actually freed in a later txg and then reallocated 1036 * in a yet later txg. This would write a "create 1037 * object N" record to the intent log. Normally, this 1038 * would be fine because the spa_sync() would have 1039 * written out the fact that object N is free, before 1040 * we could write the "create object N" intent log 1041 * record. 1042 * 1043 * But when we are in ziltest mode, we advance the "open 1044 * txg" without actually spa_sync()-ing the changes to 1045 * disk. So we would see that object N is still 1046 * allocated and in the unlinked set, and there is an 1047 * intent log record saying to allocate it. 1048 */ 1049 if (zil_replay_disable) { 1050 zil_destroy(zfsvfs->z_log, B_FALSE); 1051 } else { 1052 zfsvfs->z_replay = B_TRUE; 1053 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 1054 zfsvfs->z_replay = B_FALSE; 1055 } 1056 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1057 } 1058 1059 return (0); 1060 } 1061 1062 void 1063 zfsvfs_free(zfsvfs_t *zfsvfs) 1064 { 1065 int i; 1066 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1067 1068 /* 1069 * This is a barrier to prevent the filesystem from going away in 1070 * zfs_znode_move() until we can safely ensure that the filesystem is 1071 * not unmounted. We consider the filesystem valid before the barrier 1072 * and invalid after the barrier. 1073 */ 1074 rw_enter(&zfsvfs_lock, RW_READER); 1075 rw_exit(&zfsvfs_lock); 1076 1077 zfs_fuid_destroy(zfsvfs); 1078 1079 mutex_destroy(&zfsvfs->z_znodes_lock); 1080 mutex_destroy(&zfsvfs->z_lock); 1081 list_destroy(&zfsvfs->z_all_znodes); 1082 rrw_destroy(&zfsvfs->z_teardown_lock); 1083 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1084 rw_destroy(&zfsvfs->z_fuid_lock); 1085 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1086 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1087 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1088 } 1089 1090 static void 1091 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1092 { 1093 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1094 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) { 1095 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1096 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1097 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1098 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1099 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1100 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1101 } 1102 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1103 } 1104 1105 static int 1106 zfs_domount(vfs_t *vfsp, char *osname) 1107 { 1108 dev_t mount_dev; 1109 uint64_t recordsize, fsid_guid; 1110 int error = 0; 1111 zfsvfs_t *zfsvfs; 1112 1113 ASSERT(vfsp); 1114 ASSERT(osname); 1115 1116 error = zfsvfs_create(osname, &zfsvfs); 1117 if (error) 1118 return (error); 1119 zfsvfs->z_vfs = vfsp; 1120 1121 /* Initialize the generic filesystem structure. */ 1122 vfsp->vfs_bcount = 0; 1123 vfsp->vfs_data = NULL; 1124 1125 if (zfs_create_unique_device(&mount_dev) == -1) { 1126 error = ENODEV; 1127 goto out; 1128 } 1129 ASSERT(vfs_devismounted(mount_dev) == 0); 1130 1131 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1132 NULL)) 1133 goto out; 1134 1135 vfsp->vfs_dev = mount_dev; 1136 vfsp->vfs_fstype = zfsfstype; 1137 vfsp->vfs_bsize = recordsize; 1138 vfsp->vfs_flag |= VFS_NOTRUNC; 1139 vfsp->vfs_data = zfsvfs; 1140 1141 /* 1142 * The fsid is 64 bits, composed of an 8-bit fs type, which 1143 * separates our fsid from any other filesystem types, and a 1144 * 56-bit objset unique ID. The objset unique ID is unique to 1145 * all objsets open on this system, provided by unique_create(). 1146 * The 8-bit fs type must be put in the low bits of fsid[1] 1147 * because that's where other Solaris filesystems put it. 1148 */ 1149 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1150 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1151 vfsp->vfs_fsid.val[0] = fsid_guid; 1152 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1153 zfsfstype & 0xFF; 1154 1155 /* 1156 * Set features for file system. 1157 */ 1158 zfs_set_fuid_feature(zfsvfs); 1159 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1160 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1161 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1162 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1163 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1164 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1165 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1166 } 1167 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1168 1169 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1170 uint64_t pval; 1171 1172 atime_changed_cb(zfsvfs, B_FALSE); 1173 readonly_changed_cb(zfsvfs, B_TRUE); 1174 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1175 goto out; 1176 xattr_changed_cb(zfsvfs, pval); 1177 zfsvfs->z_issnap = B_TRUE; 1178 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1179 1180 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1181 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1182 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1183 } else { 1184 error = zfsvfs_setup(zfsvfs, B_TRUE); 1185 } 1186 1187 if (!zfsvfs->z_issnap) 1188 zfsctl_create(zfsvfs); 1189 out: 1190 if (error) { 1191 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1192 zfsvfs_free(zfsvfs); 1193 } else { 1194 atomic_add_32(&zfs_active_fs_count, 1); 1195 } 1196 1197 return (error); 1198 } 1199 1200 void 1201 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1202 { 1203 objset_t *os = zfsvfs->z_os; 1204 struct dsl_dataset *ds; 1205 1206 /* 1207 * Unregister properties. 1208 */ 1209 if (!dmu_objset_is_snapshot(os)) { 1210 ds = dmu_objset_ds(os); 1211 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1212 zfsvfs) == 0); 1213 1214 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1215 zfsvfs) == 0); 1216 1217 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1218 zfsvfs) == 0); 1219 1220 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1221 zfsvfs) == 0); 1222 1223 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1224 zfsvfs) == 0); 1225 1226 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1227 zfsvfs) == 0); 1228 1229 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1230 zfsvfs) == 0); 1231 1232 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1233 zfsvfs) == 0); 1234 1235 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1236 acl_inherit_changed_cb, zfsvfs) == 0); 1237 1238 VERIFY(dsl_prop_unregister(ds, "vscan", 1239 vscan_changed_cb, zfsvfs) == 0); 1240 } 1241 } 1242 1243 /* 1244 * Convert a decimal digit string to a uint64_t integer. 1245 */ 1246 static int 1247 str_to_uint64(char *str, uint64_t *objnum) 1248 { 1249 uint64_t num = 0; 1250 1251 while (*str) { 1252 if (*str < '0' || *str > '9') 1253 return (EINVAL); 1254 1255 num = num*10 + *str++ - '0'; 1256 } 1257 1258 *objnum = num; 1259 return (0); 1260 } 1261 1262 /* 1263 * The boot path passed from the boot loader is in the form of 1264 * "rootpool-name/root-filesystem-object-number'. Convert this 1265 * string to a dataset name: "rootpool-name/root-filesystem-name". 1266 */ 1267 static int 1268 zfs_parse_bootfs(char *bpath, char *outpath) 1269 { 1270 char *slashp; 1271 uint64_t objnum; 1272 int error; 1273 1274 if (*bpath == 0 || *bpath == '/') 1275 return (EINVAL); 1276 1277 (void) strcpy(outpath, bpath); 1278 1279 slashp = strchr(bpath, '/'); 1280 1281 /* if no '/', just return the pool name */ 1282 if (slashp == NULL) { 1283 return (0); 1284 } 1285 1286 /* if not a number, just return the root dataset name */ 1287 if (str_to_uint64(slashp+1, &objnum)) { 1288 return (0); 1289 } 1290 1291 *slashp = '\0'; 1292 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1293 *slashp = '/'; 1294 1295 return (error); 1296 } 1297 1298 /* 1299 * zfs_check_global_label: 1300 * Check that the hex label string is appropriate for the dataset 1301 * being mounted into the global_zone proper. 1302 * 1303 * Return an error if the hex label string is not default or 1304 * admin_low/admin_high. For admin_low labels, the corresponding 1305 * dataset must be readonly. 1306 */ 1307 int 1308 zfs_check_global_label(const char *dsname, const char *hexsl) 1309 { 1310 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1311 return (0); 1312 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1313 return (0); 1314 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1315 /* must be readonly */ 1316 uint64_t rdonly; 1317 1318 if (dsl_prop_get_integer(dsname, 1319 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1320 return (EACCES); 1321 return (rdonly ? 0 : EACCES); 1322 } 1323 return (EACCES); 1324 } 1325 1326 /* 1327 * zfs_mount_label_policy: 1328 * Determine whether the mount is allowed according to MAC check. 1329 * by comparing (where appropriate) label of the dataset against 1330 * the label of the zone being mounted into. If the dataset has 1331 * no label, create one. 1332 * 1333 * Returns: 1334 * 0 : access allowed 1335 * >0 : error code, such as EACCES 1336 */ 1337 static int 1338 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1339 { 1340 int error, retv; 1341 zone_t *mntzone = NULL; 1342 ts_label_t *mnt_tsl; 1343 bslabel_t *mnt_sl; 1344 bslabel_t ds_sl; 1345 char ds_hexsl[MAXNAMELEN]; 1346 1347 retv = EACCES; /* assume the worst */ 1348 1349 /* 1350 * Start by getting the dataset label if it exists. 1351 */ 1352 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1353 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1354 if (error) 1355 return (EACCES); 1356 1357 /* 1358 * If labeling is NOT enabled, then disallow the mount of datasets 1359 * which have a non-default label already. No other label checks 1360 * are needed. 1361 */ 1362 if (!is_system_labeled()) { 1363 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1364 return (0); 1365 return (EACCES); 1366 } 1367 1368 /* 1369 * Get the label of the mountpoint. If mounting into the global 1370 * zone (i.e. mountpoint is not within an active zone and the 1371 * zoned property is off), the label must be default or 1372 * admin_low/admin_high only; no other checks are needed. 1373 */ 1374 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1375 if (mntzone->zone_id == GLOBAL_ZONEID) { 1376 uint64_t zoned; 1377 1378 zone_rele(mntzone); 1379 1380 if (dsl_prop_get_integer(osname, 1381 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1382 return (EACCES); 1383 if (!zoned) 1384 return (zfs_check_global_label(osname, ds_hexsl)); 1385 else 1386 /* 1387 * This is the case of a zone dataset being mounted 1388 * initially, before the zone has been fully created; 1389 * allow this mount into global zone. 1390 */ 1391 return (0); 1392 } 1393 1394 mnt_tsl = mntzone->zone_slabel; 1395 ASSERT(mnt_tsl != NULL); 1396 label_hold(mnt_tsl); 1397 mnt_sl = label2bslabel(mnt_tsl); 1398 1399 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1400 /* 1401 * The dataset doesn't have a real label, so fabricate one. 1402 */ 1403 char *str = NULL; 1404 1405 if (l_to_str_internal(mnt_sl, &str) == 0 && 1406 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1407 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0) 1408 retv = 0; 1409 if (str != NULL) 1410 kmem_free(str, strlen(str) + 1); 1411 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1412 /* 1413 * Now compare labels to complete the MAC check. If the 1414 * labels are equal then allow access. If the mountpoint 1415 * label dominates the dataset label, allow readonly access. 1416 * Otherwise, access is denied. 1417 */ 1418 if (blequal(mnt_sl, &ds_sl)) 1419 retv = 0; 1420 else if (bldominates(mnt_sl, &ds_sl)) { 1421 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1422 retv = 0; 1423 } 1424 } 1425 1426 label_rele(mnt_tsl); 1427 zone_rele(mntzone); 1428 return (retv); 1429 } 1430 1431 static int 1432 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1433 { 1434 int error = 0; 1435 static int zfsrootdone = 0; 1436 zfsvfs_t *zfsvfs = NULL; 1437 znode_t *zp = NULL; 1438 vnode_t *vp = NULL; 1439 char *zfs_bootfs; 1440 char *zfs_devid; 1441 1442 ASSERT(vfsp); 1443 1444 /* 1445 * The filesystem that we mount as root is defined in the 1446 * boot property "zfs-bootfs" with a format of 1447 * "poolname/root-dataset-objnum". 1448 */ 1449 if (why == ROOT_INIT) { 1450 if (zfsrootdone++) 1451 return (EBUSY); 1452 /* 1453 * the process of doing a spa_load will require the 1454 * clock to be set before we could (for example) do 1455 * something better by looking at the timestamp on 1456 * an uberblock, so just set it to -1. 1457 */ 1458 clkset(-1); 1459 1460 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1461 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1462 "bootfs name"); 1463 return (EINVAL); 1464 } 1465 zfs_devid = spa_get_bootprop("diskdevid"); 1466 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1467 if (zfs_devid) 1468 spa_free_bootprop(zfs_devid); 1469 if (error) { 1470 spa_free_bootprop(zfs_bootfs); 1471 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1472 error); 1473 return (error); 1474 } 1475 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1476 spa_free_bootprop(zfs_bootfs); 1477 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1478 error); 1479 return (error); 1480 } 1481 1482 spa_free_bootprop(zfs_bootfs); 1483 1484 if (error = vfs_lock(vfsp)) 1485 return (error); 1486 1487 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1488 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1489 goto out; 1490 } 1491 1492 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1493 ASSERT(zfsvfs); 1494 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1495 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1496 goto out; 1497 } 1498 1499 vp = ZTOV(zp); 1500 mutex_enter(&vp->v_lock); 1501 vp->v_flag |= VROOT; 1502 mutex_exit(&vp->v_lock); 1503 rootvp = vp; 1504 1505 /* 1506 * Leave rootvp held. The root file system is never unmounted. 1507 */ 1508 1509 vfs_add((struct vnode *)0, vfsp, 1510 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1511 out: 1512 vfs_unlock(vfsp); 1513 return (error); 1514 } else if (why == ROOT_REMOUNT) { 1515 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1516 vfsp->vfs_flag |= VFS_REMOUNT; 1517 1518 /* refresh mount options */ 1519 zfs_unregister_callbacks(vfsp->vfs_data); 1520 return (zfs_register_callbacks(vfsp)); 1521 1522 } else if (why == ROOT_UNMOUNT) { 1523 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1524 (void) zfs_sync(vfsp, 0, 0); 1525 return (0); 1526 } 1527 1528 /* 1529 * if "why" is equal to anything else other than ROOT_INIT, 1530 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1531 */ 1532 return (ENOTSUP); 1533 } 1534 1535 /*ARGSUSED*/ 1536 static int 1537 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1538 { 1539 char *osname; 1540 pathname_t spn; 1541 int error = 0; 1542 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1543 UIO_SYSSPACE : UIO_USERSPACE; 1544 int canwrite; 1545 1546 if (mvp->v_type != VDIR) 1547 return (ENOTDIR); 1548 1549 mutex_enter(&mvp->v_lock); 1550 if ((uap->flags & MS_REMOUNT) == 0 && 1551 (uap->flags & MS_OVERLAY) == 0 && 1552 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1553 mutex_exit(&mvp->v_lock); 1554 return (EBUSY); 1555 } 1556 mutex_exit(&mvp->v_lock); 1557 1558 /* 1559 * ZFS does not support passing unparsed data in via MS_DATA. 1560 * Users should use the MS_OPTIONSTR interface; this means 1561 * that all option parsing is already done and the options struct 1562 * can be interrogated. 1563 */ 1564 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1565 return (EINVAL); 1566 1567 /* 1568 * Get the objset name (the "special" mount argument). 1569 */ 1570 if (error = pn_get(uap->spec, fromspace, &spn)) 1571 return (error); 1572 1573 osname = spn.pn_path; 1574 1575 /* 1576 * Check for mount privilege? 1577 * 1578 * If we don't have privilege then see if 1579 * we have local permission to allow it 1580 */ 1581 error = secpolicy_fs_mount(cr, mvp, vfsp); 1582 if (error) { 1583 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1584 vattr_t vattr; 1585 1586 /* 1587 * Make sure user is the owner of the mount point 1588 * or has sufficient privileges. 1589 */ 1590 1591 vattr.va_mask = AT_UID; 1592 1593 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1594 goto out; 1595 } 1596 1597 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1598 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1599 goto out; 1600 } 1601 secpolicy_fs_mount_clearopts(cr, vfsp); 1602 } else { 1603 goto out; 1604 } 1605 } 1606 1607 /* 1608 * Refuse to mount a filesystem if we are in a local zone and the 1609 * dataset is not visible. 1610 */ 1611 if (!INGLOBALZONE(curproc) && 1612 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1613 error = EPERM; 1614 goto out; 1615 } 1616 1617 error = zfs_mount_label_policy(vfsp, osname); 1618 if (error) 1619 goto out; 1620 1621 /* 1622 * When doing a remount, we simply refresh our temporary properties 1623 * according to those options set in the current VFS options. 1624 */ 1625 if (uap->flags & MS_REMOUNT) { 1626 /* refresh mount options */ 1627 zfs_unregister_callbacks(vfsp->vfs_data); 1628 error = zfs_register_callbacks(vfsp); 1629 goto out; 1630 } 1631 1632 error = zfs_domount(vfsp, osname); 1633 1634 /* 1635 * Add an extra VFS_HOLD on our parent vfs so that it can't 1636 * disappear due to a forced unmount. 1637 */ 1638 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1639 VFS_HOLD(mvp->v_vfsp); 1640 1641 out: 1642 pn_free(&spn); 1643 return (error); 1644 } 1645 1646 static int 1647 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1648 { 1649 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1650 dev32_t d32; 1651 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1652 1653 ZFS_ENTER(zfsvfs); 1654 1655 dmu_objset_space(zfsvfs->z_os, 1656 &refdbytes, &availbytes, &usedobjs, &availobjs); 1657 1658 /* 1659 * The underlying storage pool actually uses multiple block sizes. 1660 * We report the fragsize as the smallest block size we support, 1661 * and we report our blocksize as the filesystem's maximum blocksize. 1662 */ 1663 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1664 statp->f_bsize = zfsvfs->z_max_blksz; 1665 1666 /* 1667 * The following report "total" blocks of various kinds in the 1668 * file system, but reported in terms of f_frsize - the 1669 * "fragment" size. 1670 */ 1671 1672 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1673 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1674 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1675 1676 /* 1677 * statvfs() should really be called statufs(), because it assumes 1678 * static metadata. ZFS doesn't preallocate files, so the best 1679 * we can do is report the max that could possibly fit in f_files, 1680 * and that minus the number actually used in f_ffree. 1681 * For f_ffree, report the smaller of the number of object available 1682 * and the number of blocks (each object will take at least a block). 1683 */ 1684 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1685 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1686 statp->f_files = statp->f_ffree + usedobjs; 1687 1688 (void) cmpldev(&d32, vfsp->vfs_dev); 1689 statp->f_fsid = d32; 1690 1691 /* 1692 * We're a zfs filesystem. 1693 */ 1694 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1695 1696 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1697 1698 statp->f_namemax = ZFS_MAXNAMELEN; 1699 1700 /* 1701 * We have all of 32 characters to stuff a string here. 1702 * Is there anything useful we could/should provide? 1703 */ 1704 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1705 1706 ZFS_EXIT(zfsvfs); 1707 return (0); 1708 } 1709 1710 static int 1711 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1712 { 1713 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1714 znode_t *rootzp; 1715 int error; 1716 1717 ZFS_ENTER(zfsvfs); 1718 1719 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1720 if (error == 0) 1721 *vpp = ZTOV(rootzp); 1722 1723 ZFS_EXIT(zfsvfs); 1724 return (error); 1725 } 1726 1727 /* 1728 * Teardown the zfsvfs::z_os. 1729 * 1730 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1731 * and 'z_teardown_inactive_lock' held. 1732 */ 1733 static int 1734 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1735 { 1736 znode_t *zp; 1737 1738 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1739 1740 if (!unmounting) { 1741 /* 1742 * We purge the parent filesystem's vfsp as the parent 1743 * filesystem and all of its snapshots have their vnode's 1744 * v_vfsp set to the parent's filesystem's vfsp. Note, 1745 * 'z_parent' is self referential for non-snapshots. 1746 */ 1747 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1748 } 1749 1750 /* 1751 * Close the zil. NB: Can't close the zil while zfs_inactive 1752 * threads are blocked as zil_close can call zfs_inactive. 1753 */ 1754 if (zfsvfs->z_log) { 1755 zil_close(zfsvfs->z_log); 1756 zfsvfs->z_log = NULL; 1757 } 1758 1759 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1760 1761 /* 1762 * If we are not unmounting (ie: online recv) and someone already 1763 * unmounted this file system while we were doing the switcheroo, 1764 * or a reopen of z_os failed then just bail out now. 1765 */ 1766 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1767 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1768 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1769 return (EIO); 1770 } 1771 1772 /* 1773 * At this point there are no vops active, and any new vops will 1774 * fail with EIO since we have z_teardown_lock for writer (only 1775 * relavent for forced unmount). 1776 * 1777 * Release all holds on dbufs. 1778 */ 1779 mutex_enter(&zfsvfs->z_znodes_lock); 1780 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1781 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1782 if (zp->z_sa_hdl) { 1783 ASSERT(ZTOV(zp)->v_count > 0); 1784 zfs_znode_dmu_fini(zp); 1785 } 1786 mutex_exit(&zfsvfs->z_znodes_lock); 1787 1788 /* 1789 * If we are unmounting, set the unmounted flag and let new vops 1790 * unblock. zfs_inactive will have the unmounted behavior, and all 1791 * other vops will fail with EIO. 1792 */ 1793 if (unmounting) { 1794 zfsvfs->z_unmounted = B_TRUE; 1795 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1796 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1797 } 1798 1799 /* 1800 * z_os will be NULL if there was an error in attempting to reopen 1801 * zfsvfs, so just return as the properties had already been 1802 * unregistered and cached data had been evicted before. 1803 */ 1804 if (zfsvfs->z_os == NULL) 1805 return (0); 1806 1807 /* 1808 * Unregister properties. 1809 */ 1810 zfs_unregister_callbacks(zfsvfs); 1811 1812 /* 1813 * Evict cached data 1814 */ 1815 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1816 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1817 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1818 } 1819 1820 return (0); 1821 } 1822 1823 /*ARGSUSED*/ 1824 static int 1825 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1826 { 1827 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1828 objset_t *os; 1829 int ret; 1830 1831 ret = secpolicy_fs_unmount(cr, vfsp); 1832 if (ret) { 1833 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1834 ZFS_DELEG_PERM_MOUNT, cr)) 1835 return (ret); 1836 } 1837 1838 /* 1839 * We purge the parent filesystem's vfsp as the parent filesystem 1840 * and all of its snapshots have their vnode's v_vfsp set to the 1841 * parent's filesystem's vfsp. Note, 'z_parent' is self 1842 * referential for non-snapshots. 1843 */ 1844 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1845 1846 /* 1847 * Unmount any snapshots mounted under .zfs before unmounting the 1848 * dataset itself. 1849 */ 1850 if (zfsvfs->z_ctldir != NULL && 1851 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1852 return (ret); 1853 } 1854 1855 if (!(fflag & MS_FORCE)) { 1856 /* 1857 * Check the number of active vnodes in the file system. 1858 * Our count is maintained in the vfs structure, but the 1859 * number is off by 1 to indicate a hold on the vfs 1860 * structure itself. 1861 * 1862 * The '.zfs' directory maintains a reference of its 1863 * own, and any active references underneath are 1864 * reflected in the vnode count. 1865 */ 1866 if (zfsvfs->z_ctldir == NULL) { 1867 if (vfsp->vfs_count > 1) 1868 return (EBUSY); 1869 } else { 1870 if (vfsp->vfs_count > 2 || 1871 zfsvfs->z_ctldir->v_count > 1) 1872 return (EBUSY); 1873 } 1874 } 1875 1876 vfsp->vfs_flag |= VFS_UNMOUNTED; 1877 1878 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1879 os = zfsvfs->z_os; 1880 1881 /* 1882 * z_os will be NULL if there was an error in 1883 * attempting to reopen zfsvfs. 1884 */ 1885 if (os != NULL) { 1886 /* 1887 * Unset the objset user_ptr. 1888 */ 1889 mutex_enter(&os->os_user_ptr_lock); 1890 dmu_objset_set_user(os, NULL); 1891 mutex_exit(&os->os_user_ptr_lock); 1892 1893 /* 1894 * Finally release the objset 1895 */ 1896 dmu_objset_disown(os, zfsvfs); 1897 } 1898 1899 /* 1900 * We can now safely destroy the '.zfs' directory node. 1901 */ 1902 if (zfsvfs->z_ctldir != NULL) 1903 zfsctl_destroy(zfsvfs); 1904 1905 return (0); 1906 } 1907 1908 static int 1909 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1910 { 1911 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1912 znode_t *zp; 1913 uint64_t object = 0; 1914 uint64_t fid_gen = 0; 1915 uint64_t gen_mask; 1916 uint64_t zp_gen; 1917 int i, err; 1918 1919 *vpp = NULL; 1920 1921 ZFS_ENTER(zfsvfs); 1922 1923 if (fidp->fid_len == LONG_FID_LEN) { 1924 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1925 uint64_t objsetid = 0; 1926 uint64_t setgen = 0; 1927 1928 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1929 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1930 1931 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1932 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1933 1934 ZFS_EXIT(zfsvfs); 1935 1936 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1937 if (err) 1938 return (EINVAL); 1939 ZFS_ENTER(zfsvfs); 1940 } 1941 1942 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1943 zfid_short_t *zfid = (zfid_short_t *)fidp; 1944 1945 for (i = 0; i < sizeof (zfid->zf_object); i++) 1946 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1947 1948 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1949 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1950 } else { 1951 ZFS_EXIT(zfsvfs); 1952 return (EINVAL); 1953 } 1954 1955 /* A zero fid_gen means we are in the .zfs control directories */ 1956 if (fid_gen == 0 && 1957 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1958 *vpp = zfsvfs->z_ctldir; 1959 ASSERT(*vpp != NULL); 1960 if (object == ZFSCTL_INO_SNAPDIR) { 1961 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1962 0, NULL, NULL, NULL, NULL, NULL) == 0); 1963 } else { 1964 VN_HOLD(*vpp); 1965 } 1966 ZFS_EXIT(zfsvfs); 1967 return (0); 1968 } 1969 1970 gen_mask = -1ULL >> (64 - 8 * i); 1971 1972 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1973 if (err = zfs_zget(zfsvfs, object, &zp)) { 1974 ZFS_EXIT(zfsvfs); 1975 return (err); 1976 } 1977 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1978 sizeof (uint64_t)); 1979 zp_gen = zp_gen & gen_mask; 1980 if (zp_gen == 0) 1981 zp_gen = 1; 1982 if (zp->z_unlinked || zp_gen != fid_gen) { 1983 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1984 VN_RELE(ZTOV(zp)); 1985 ZFS_EXIT(zfsvfs); 1986 return (EINVAL); 1987 } 1988 1989 *vpp = ZTOV(zp); 1990 ZFS_EXIT(zfsvfs); 1991 return (0); 1992 } 1993 1994 /* 1995 * Block out VOPs and close zfsvfs_t::z_os 1996 * 1997 * Note, if successful, then we return with the 'z_teardown_lock' and 1998 * 'z_teardown_inactive_lock' write held. 1999 */ 2000 int 2001 zfs_suspend_fs(zfsvfs_t *zfsvfs) 2002 { 2003 int error; 2004 2005 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2006 return (error); 2007 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 2008 2009 return (0); 2010 } 2011 2012 /* 2013 * Reopen zfsvfs_t::z_os and release VOPs. 2014 */ 2015 int 2016 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2017 { 2018 int err, err2; 2019 2020 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2021 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2022 2023 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs, 2024 &zfsvfs->z_os); 2025 if (err) { 2026 zfsvfs->z_os = NULL; 2027 } else { 2028 znode_t *zp; 2029 uint64_t sa_obj = 0; 2030 2031 err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 2032 ZFS_SA_ATTRS, 8, 1, &sa_obj); 2033 2034 if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA) 2035 goto bail; 2036 2037 2038 if ((err = sa_setup(zfsvfs->z_os, sa_obj, 2039 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0) 2040 goto bail; 2041 2042 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2043 2044 /* 2045 * Attempt to re-establish all the active znodes with 2046 * their dbufs. If a zfs_rezget() fails, then we'll let 2047 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2048 * when they try to use their znode. 2049 */ 2050 mutex_enter(&zfsvfs->z_znodes_lock); 2051 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2052 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2053 (void) zfs_rezget(zp); 2054 } 2055 mutex_exit(&zfsvfs->z_znodes_lock); 2056 2057 } 2058 2059 bail: 2060 /* release the VOPs */ 2061 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2062 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 2063 2064 if (err) { 2065 /* 2066 * Since we couldn't reopen zfsvfs::z_os, force 2067 * unmount this file system. 2068 */ 2069 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2070 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2071 } 2072 return (err); 2073 } 2074 2075 static void 2076 zfs_freevfs(vfs_t *vfsp) 2077 { 2078 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2079 2080 /* 2081 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2082 * from zfs_mount(). Release it here. If we came through 2083 * zfs_mountroot() instead, we didn't grab an extra hold, so 2084 * skip the VFS_RELE for rootvfs. 2085 */ 2086 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2087 VFS_RELE(zfsvfs->z_parent->z_vfs); 2088 2089 zfsvfs_free(zfsvfs); 2090 2091 atomic_add_32(&zfs_active_fs_count, -1); 2092 } 2093 2094 /* 2095 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2096 * so we can't safely do any non-idempotent initialization here. 2097 * Leave that to zfs_init() and zfs_fini(), which are called 2098 * from the module's _init() and _fini() entry points. 2099 */ 2100 /*ARGSUSED*/ 2101 static int 2102 zfs_vfsinit(int fstype, char *name) 2103 { 2104 int error; 2105 2106 zfsfstype = fstype; 2107 2108 /* 2109 * Setup vfsops and vnodeops tables. 2110 */ 2111 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2112 if (error != 0) { 2113 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2114 } 2115 2116 error = zfs_create_op_tables(); 2117 if (error) { 2118 zfs_remove_op_tables(); 2119 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2120 (void) vfs_freevfsops_by_type(zfsfstype); 2121 return (error); 2122 } 2123 2124 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2125 2126 /* 2127 * Unique major number for all zfs mounts. 2128 * If we run out of 32-bit minors, we'll getudev() another major. 2129 */ 2130 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2131 zfs_minor = ZFS_MIN_MINOR; 2132 2133 return (0); 2134 } 2135 2136 void 2137 zfs_init(void) 2138 { 2139 /* 2140 * Initialize .zfs directory structures 2141 */ 2142 zfsctl_init(); 2143 2144 /* 2145 * Initialize znode cache, vnode ops, etc... 2146 */ 2147 zfs_znode_init(); 2148 2149 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2150 } 2151 2152 void 2153 zfs_fini(void) 2154 { 2155 zfsctl_fini(); 2156 zfs_znode_fini(); 2157 } 2158 2159 int 2160 zfs_busy(void) 2161 { 2162 return (zfs_active_fs_count != 0); 2163 } 2164 2165 int 2166 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2167 { 2168 int error; 2169 objset_t *os = zfsvfs->z_os; 2170 dmu_tx_t *tx; 2171 2172 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2173 return (EINVAL); 2174 2175 if (newvers < zfsvfs->z_version) 2176 return (EINVAL); 2177 2178 if (zfs_spa_version_map(newvers) > 2179 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2180 return (ENOTSUP); 2181 2182 tx = dmu_tx_create(os); 2183 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2184 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2185 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2186 ZFS_SA_ATTRS); 2187 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2188 } 2189 error = dmu_tx_assign(tx, TXG_WAIT); 2190 if (error) { 2191 dmu_tx_abort(tx); 2192 return (error); 2193 } 2194 2195 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2196 8, 1, &newvers, tx); 2197 2198 if (error) { 2199 dmu_tx_commit(tx); 2200 return (error); 2201 } 2202 2203 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2204 uint64_t sa_obj; 2205 2206 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2207 SPA_VERSION_SA); 2208 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2209 DMU_OT_NONE, 0, tx); 2210 2211 error = zap_add(os, MASTER_NODE_OBJ, 2212 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2213 ASSERT3U(error, ==, 0); 2214 2215 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2216 sa_register_update_callback(os, zfs_sa_upgrade); 2217 } 2218 2219 spa_history_log_internal(LOG_DS_UPGRADE, 2220 dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu", 2221 zfsvfs->z_version, newvers, dmu_objset_id(os)); 2222 2223 dmu_tx_commit(tx); 2224 2225 zfsvfs->z_version = newvers; 2226 2227 if (zfsvfs->z_version >= ZPL_VERSION_FUID) 2228 zfs_set_fuid_feature(zfsvfs); 2229 2230 return (0); 2231 } 2232 2233 /* 2234 * Read a property stored within the master node. 2235 */ 2236 int 2237 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2238 { 2239 const char *pname; 2240 int error = ENOENT; 2241 2242 /* 2243 * Look up the file system's value for the property. For the 2244 * version property, we look up a slightly different string. 2245 */ 2246 if (prop == ZFS_PROP_VERSION) 2247 pname = ZPL_VERSION_STR; 2248 else 2249 pname = zfs_prop_to_name(prop); 2250 2251 if (os != NULL) 2252 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2253 2254 if (error == ENOENT) { 2255 /* No value set, use the default value */ 2256 switch (prop) { 2257 case ZFS_PROP_VERSION: 2258 *value = ZPL_VERSION; 2259 break; 2260 case ZFS_PROP_NORMALIZE: 2261 case ZFS_PROP_UTF8ONLY: 2262 *value = 0; 2263 break; 2264 case ZFS_PROP_CASE: 2265 *value = ZFS_CASE_SENSITIVE; 2266 break; 2267 default: 2268 return (error); 2269 } 2270 error = 0; 2271 } 2272 return (error); 2273 } 2274 2275 static vfsdef_t vfw = { 2276 VFSDEF_VERSION, 2277 MNTTYPE_ZFS, 2278 zfs_vfsinit, 2279 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2280 VSW_XID, 2281 &zfs_mntopts 2282 }; 2283 2284 struct modlfs zfs_modlfs = { 2285 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2286 }; 2287