1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 26 * Copyright 2019 Joyent, Inc. 27 * Copyright 2020 Joshua M. Clulow <josh@sysmgr.org> 28 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association. 29 */ 30 31 /* Portions Copyright 2010 Robert Milkowski */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/sysmacros.h> 37 #include <sys/kmem.h> 38 #include <sys/pathname.h> 39 #include <sys/vnode.h> 40 #include <sys/vfs.h> 41 #include <sys/vfs_opreg.h> 42 #include <sys/mntent.h> 43 #include <sys/mount.h> 44 #include <sys/cmn_err.h> 45 #include "fs/fs_subr.h" 46 #include <sys/zfs_znode.h> 47 #include <sys/zfs_dir.h> 48 #include <sys/zil.h> 49 #include <sys/fs/zfs.h> 50 #include <sys/dmu.h> 51 #include <sys/dsl_prop.h> 52 #include <sys/dsl_dataset.h> 53 #include <sys/dsl_deleg.h> 54 #include <sys/spa.h> 55 #include <sys/zap.h> 56 #include <sys/sa.h> 57 #include <sys/sa_impl.h> 58 #include <sys/varargs.h> 59 #include <sys/policy.h> 60 #include <sys/atomic.h> 61 #include <sys/mkdev.h> 62 #include <sys/modctl.h> 63 #include <sys/refstr.h> 64 #include <sys/zfs_ioctl.h> 65 #include <sys/zfs_ctldir.h> 66 #include <sys/zfs_fuid.h> 67 #include <sys/bootconf.h> 68 #include <sys/ddi.h> 69 #include <sys/sunddi.h> 70 #include <sys/dnlc.h> 71 #include <sys/dmu_objset.h> 72 #include <sys/spa_boot.h> 73 #include <sys/vdev_impl.h> 74 #include "zfs_comutil.h" 75 76 int zfsfstype; 77 vfsops_t *zfs_vfsops = NULL; 78 static major_t zfs_major; 79 static minor_t zfs_minor; 80 static kmutex_t zfs_dev_mtx; 81 82 extern int sys_shutdown; 83 84 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 85 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 86 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 87 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 88 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 89 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 90 static void zfs_freevfs(vfs_t *vfsp); 91 92 static const fs_operation_def_t zfs_vfsops_template[] = { 93 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 94 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 95 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 96 VFSNAME_ROOT, { .vfs_root = zfs_root }, 97 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 98 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 99 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 100 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 101 NULL, NULL 102 }; 103 104 /* 105 * We need to keep a count of active fs's. 106 * This is necessary to prevent our module 107 * from being unloaded after a umount -f 108 */ 109 static uint32_t zfs_active_fs_count = 0; 110 111 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 112 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 113 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 114 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 115 116 /* 117 * MO_DEFAULT is not used since the default value is determined 118 * by the equivalent property. 119 */ 120 static mntopt_t mntopts[] = { 121 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 122 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 123 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 124 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 125 }; 126 127 static mntopts_t zfs_mntopts = { 128 sizeof (mntopts) / sizeof (mntopt_t), 129 mntopts 130 }; 131 132 /*ARGSUSED*/ 133 int 134 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 135 { 136 /* 137 * Data integrity is job one. We don't want a compromised kernel 138 * writing to the storage pool, so we never sync during panic. 139 */ 140 if (panicstr) 141 return (0); 142 143 /* 144 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 145 * to sync metadata, which they would otherwise cache indefinitely. 146 * Semantically, the only requirement is that the sync be initiated. 147 * The DMU syncs out txgs frequently, so there's nothing to do. 148 */ 149 if (flag & SYNC_ATTR) 150 return (0); 151 152 if (vfsp != NULL) { 153 /* 154 * Sync a specific filesystem. 155 */ 156 zfsvfs_t *zfsvfs = vfsp->vfs_data; 157 dsl_pool_t *dp; 158 159 ZFS_ENTER(zfsvfs); 160 dp = dmu_objset_pool(zfsvfs->z_os); 161 162 /* 163 * If the system is shutting down, then skip any 164 * filesystems which may exist on a suspended pool. 165 */ 166 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 167 ZFS_EXIT(zfsvfs); 168 return (0); 169 } 170 171 if (zfsvfs->z_log != NULL) 172 zil_commit(zfsvfs->z_log, 0); 173 174 ZFS_EXIT(zfsvfs); 175 } else { 176 /* 177 * Sync all ZFS filesystems. This is what happens when you 178 * run sync(1M). Unlike other filesystems, ZFS honors the 179 * request by waiting for all pools to commit all dirty data. 180 */ 181 spa_sync_allpools(); 182 } 183 184 return (0); 185 } 186 187 static int 188 zfs_create_unique_device(dev_t *dev) 189 { 190 major_t new_major; 191 192 do { 193 ASSERT3U(zfs_minor, <=, MAXMIN32); 194 minor_t start = zfs_minor; 195 do { 196 mutex_enter(&zfs_dev_mtx); 197 if (zfs_minor >= MAXMIN32) { 198 /* 199 * If we're still using the real major 200 * keep out of /dev/zfs and /dev/zvol minor 201 * number space. If we're using a getudev()'ed 202 * major number, we can use all of its minors. 203 */ 204 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 205 zfs_minor = ZFS_MIN_MINOR; 206 else 207 zfs_minor = 0; 208 } else { 209 zfs_minor++; 210 } 211 *dev = makedevice(zfs_major, zfs_minor); 212 mutex_exit(&zfs_dev_mtx); 213 } while (vfs_devismounted(*dev) && zfs_minor != start); 214 if (zfs_minor == start) { 215 /* 216 * We are using all ~262,000 minor numbers for the 217 * current major number. Create a new major number. 218 */ 219 if ((new_major = getudev()) == (major_t)-1) { 220 cmn_err(CE_WARN, 221 "zfs_mount: Can't get unique major " 222 "device number."); 223 return (-1); 224 } 225 mutex_enter(&zfs_dev_mtx); 226 zfs_major = new_major; 227 zfs_minor = 0; 228 229 mutex_exit(&zfs_dev_mtx); 230 } else { 231 break; 232 } 233 /* CONSTANTCONDITION */ 234 } while (1); 235 236 return (0); 237 } 238 239 static void 240 atime_changed_cb(void *arg, uint64_t newval) 241 { 242 zfsvfs_t *zfsvfs = arg; 243 244 if (newval == TRUE) { 245 zfsvfs->z_atime = TRUE; 246 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 247 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 248 } else { 249 zfsvfs->z_atime = FALSE; 250 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 251 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 252 } 253 } 254 255 static void 256 xattr_changed_cb(void *arg, uint64_t newval) 257 { 258 zfsvfs_t *zfsvfs = arg; 259 260 if (newval == TRUE) { 261 /* XXX locking on vfs_flag? */ 262 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 263 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 264 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 265 } else { 266 /* XXX locking on vfs_flag? */ 267 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 268 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 269 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 270 } 271 } 272 273 static void 274 blksz_changed_cb(void *arg, uint64_t newval) 275 { 276 zfsvfs_t *zfsvfs = arg; 277 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); 278 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); 279 ASSERT(ISP2(newval)); 280 281 zfsvfs->z_max_blksz = newval; 282 zfsvfs->z_vfs->vfs_bsize = newval; 283 } 284 285 static void 286 readonly_changed_cb(void *arg, uint64_t newval) 287 { 288 zfsvfs_t *zfsvfs = arg; 289 290 if (newval) { 291 /* XXX locking on vfs_flag? */ 292 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 295 } else { 296 /* XXX locking on vfs_flag? */ 297 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 298 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 299 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 300 } 301 } 302 303 static void 304 devices_changed_cb(void *arg, uint64_t newval) 305 { 306 zfsvfs_t *zfsvfs = arg; 307 308 if (newval == FALSE) { 309 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 310 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 311 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 312 } else { 313 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 314 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 315 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 316 } 317 } 318 319 static void 320 setuid_changed_cb(void *arg, uint64_t newval) 321 { 322 zfsvfs_t *zfsvfs = arg; 323 324 if (newval == FALSE) { 325 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 326 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 327 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 328 } else { 329 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 330 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 331 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 332 } 333 } 334 335 static void 336 exec_changed_cb(void *arg, uint64_t newval) 337 { 338 zfsvfs_t *zfsvfs = arg; 339 340 if (newval == FALSE) { 341 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 342 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 343 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 344 } else { 345 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 346 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 347 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 348 } 349 } 350 351 /* 352 * The nbmand mount option can be changed at mount time. 353 * We can't allow it to be toggled on live file systems or incorrect 354 * behavior may be seen from cifs clients 355 * 356 * This property isn't registered via dsl_prop_register(), but this callback 357 * will be called when a file system is first mounted 358 */ 359 static void 360 nbmand_changed_cb(void *arg, uint64_t newval) 361 { 362 zfsvfs_t *zfsvfs = arg; 363 if (newval == FALSE) { 364 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 365 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 366 } else { 367 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 368 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 369 } 370 } 371 372 static void 373 snapdir_changed_cb(void *arg, uint64_t newval) 374 { 375 zfsvfs_t *zfsvfs = arg; 376 377 zfsvfs->z_show_ctldir = newval; 378 } 379 380 static void 381 vscan_changed_cb(void *arg, uint64_t newval) 382 { 383 zfsvfs_t *zfsvfs = arg; 384 385 zfsvfs->z_vscan = newval; 386 } 387 388 static void 389 acl_mode_changed_cb(void *arg, uint64_t newval) 390 { 391 zfsvfs_t *zfsvfs = arg; 392 393 zfsvfs->z_acl_mode = newval; 394 } 395 396 static void 397 acl_inherit_changed_cb(void *arg, uint64_t newval) 398 { 399 zfsvfs_t *zfsvfs = arg; 400 401 zfsvfs->z_acl_inherit = newval; 402 } 403 404 static int 405 zfs_register_callbacks(vfs_t *vfsp) 406 { 407 struct dsl_dataset *ds = NULL; 408 objset_t *os = NULL; 409 zfsvfs_t *zfsvfs = NULL; 410 uint64_t nbmand; 411 boolean_t readonly = B_FALSE; 412 boolean_t do_readonly = B_FALSE; 413 boolean_t setuid = B_FALSE; 414 boolean_t do_setuid = B_FALSE; 415 boolean_t exec = B_FALSE; 416 boolean_t do_exec = B_FALSE; 417 boolean_t devices = B_FALSE; 418 boolean_t do_devices = B_FALSE; 419 boolean_t xattr = B_FALSE; 420 boolean_t do_xattr = B_FALSE; 421 boolean_t atime = B_FALSE; 422 boolean_t do_atime = B_FALSE; 423 int error = 0; 424 425 ASSERT(vfsp); 426 zfsvfs = vfsp->vfs_data; 427 ASSERT(zfsvfs); 428 os = zfsvfs->z_os; 429 430 /* 431 * The act of registering our callbacks will destroy any mount 432 * options we may have. In order to enable temporary overrides 433 * of mount options, we stash away the current values and 434 * restore them after we register the callbacks. 435 */ 436 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || 437 !spa_writeable(dmu_objset_spa(os))) { 438 readonly = B_TRUE; 439 do_readonly = B_TRUE; 440 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 441 readonly = B_FALSE; 442 do_readonly = B_TRUE; 443 } 444 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 445 devices = B_FALSE; 446 setuid = B_FALSE; 447 do_devices = B_TRUE; 448 do_setuid = B_TRUE; 449 } else { 450 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 451 devices = B_FALSE; 452 do_devices = B_TRUE; 453 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 454 devices = B_TRUE; 455 do_devices = B_TRUE; 456 } 457 458 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 459 setuid = B_FALSE; 460 do_setuid = B_TRUE; 461 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 462 setuid = B_TRUE; 463 do_setuid = B_TRUE; 464 } 465 } 466 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 467 exec = B_FALSE; 468 do_exec = B_TRUE; 469 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 470 exec = B_TRUE; 471 do_exec = B_TRUE; 472 } 473 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 474 xattr = B_FALSE; 475 do_xattr = B_TRUE; 476 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 477 xattr = B_TRUE; 478 do_xattr = B_TRUE; 479 } 480 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 481 atime = B_FALSE; 482 do_atime = B_TRUE; 483 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 484 atime = B_TRUE; 485 do_atime = B_TRUE; 486 } 487 488 /* 489 * nbmand is a special property. It can only be changed at 490 * mount time. 491 * 492 * This is weird, but it is documented to only be changeable 493 * at mount time. 494 */ 495 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 496 nbmand = B_FALSE; 497 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 498 nbmand = B_TRUE; 499 } else { 500 char osname[ZFS_MAX_DATASET_NAME_LEN]; 501 502 dmu_objset_name(os, osname); 503 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 504 NULL)) { 505 return (error); 506 } 507 } 508 509 /* 510 * Register property callbacks. 511 * 512 * It would probably be fine to just check for i/o error from 513 * the first prop_register(), but I guess I like to go 514 * overboard... 515 */ 516 ds = dmu_objset_ds(os); 517 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 518 error = dsl_prop_register(ds, 519 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 520 error = error ? error : dsl_prop_register(ds, 521 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 522 error = error ? error : dsl_prop_register(ds, 523 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 524 error = error ? error : dsl_prop_register(ds, 525 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 526 error = error ? error : dsl_prop_register(ds, 527 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 528 error = error ? error : dsl_prop_register(ds, 529 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 530 error = error ? error : dsl_prop_register(ds, 531 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 532 error = error ? error : dsl_prop_register(ds, 533 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 534 error = error ? error : dsl_prop_register(ds, 535 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 536 error = error ? error : dsl_prop_register(ds, 537 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 538 zfsvfs); 539 error = error ? error : dsl_prop_register(ds, 540 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); 541 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 542 if (error) 543 goto unregister; 544 545 /* 546 * Invoke our callbacks to restore temporary mount options. 547 */ 548 if (do_readonly) 549 readonly_changed_cb(zfsvfs, readonly); 550 if (do_setuid) 551 setuid_changed_cb(zfsvfs, setuid); 552 if (do_exec) 553 exec_changed_cb(zfsvfs, exec); 554 if (do_devices) 555 devices_changed_cb(zfsvfs, devices); 556 if (do_xattr) 557 xattr_changed_cb(zfsvfs, xattr); 558 if (do_atime) 559 atime_changed_cb(zfsvfs, atime); 560 561 nbmand_changed_cb(zfsvfs, nbmand); 562 563 return (0); 564 565 unregister: 566 dsl_prop_unregister_all(ds, zfsvfs); 567 return (error); 568 } 569 570 static int 571 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 572 uint64_t *userp, uint64_t *groupp, uint64_t *projectp) 573 { 574 sa_hdr_phys_t sa; 575 sa_hdr_phys_t *sap = data; 576 uint64_t flags; 577 int hdrsize; 578 boolean_t swap = B_FALSE; 579 580 /* 581 * Is it a valid type of object to track? 582 */ 583 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 584 return (SET_ERROR(ENOENT)); 585 586 /* 587 * If we have a NULL data pointer 588 * then assume the id's aren't changing and 589 * return EEXIST to the dmu to let it know to 590 * use the same ids 591 */ 592 if (data == NULL) 593 return (SET_ERROR(EEXIST)); 594 595 if (bonustype == DMU_OT_ZNODE) { 596 znode_phys_t *znp = data; 597 *userp = znp->zp_uid; 598 *groupp = znp->zp_gid; 599 *projectp = ZFS_DEFAULT_PROJID; 600 return (0); 601 } 602 603 if (sap->sa_magic == 0) { 604 /* 605 * This should only happen for newly created files 606 * that haven't had the znode data filled in yet. 607 */ 608 *userp = 0; 609 *groupp = 0; 610 *projectp = ZFS_DEFAULT_PROJID; 611 return (0); 612 } 613 614 sa = *sap; 615 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) { 616 sa.sa_magic = SA_MAGIC; 617 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info); 618 swap = B_TRUE; 619 } else { 620 VERIFY3U(sa.sa_magic, ==, SA_MAGIC); 621 } 622 623 hdrsize = sa_hdrsize(&sa); 624 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t)); 625 626 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_UID_OFFSET)); 627 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_GID_OFFSET)); 628 flags = *((uint64_t *)((uintptr_t)data + hdrsize + SA_FLAGS_OFFSET)); 629 if (swap) 630 flags = BSWAP_64(flags); 631 632 if (flags & ZFS_PROJID) 633 *projectp = *((uint64_t *)((uintptr_t)data + hdrsize + 634 SA_PROJID_OFFSET)); 635 else 636 *projectp = ZFS_DEFAULT_PROJID; 637 638 if (swap) { 639 *userp = BSWAP_64(*userp); 640 *groupp = BSWAP_64(*groupp); 641 *projectp = BSWAP_64(*projectp); 642 } 643 return (0); 644 } 645 646 static void 647 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 648 char *domainbuf, int buflen, uid_t *ridp) 649 { 650 uint64_t fuid; 651 const char *domain; 652 653 fuid = zfs_strtonum(fuidstr, NULL); 654 655 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 656 if (domain) 657 (void) strlcpy(domainbuf, domain, buflen); 658 else 659 domainbuf[0] = '\0'; 660 *ridp = FUID_RID(fuid); 661 } 662 663 static uint64_t 664 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 665 { 666 switch (type) { 667 case ZFS_PROP_USERUSED: 668 case ZFS_PROP_USEROBJUSED: 669 return (DMU_USERUSED_OBJECT); 670 case ZFS_PROP_GROUPUSED: 671 case ZFS_PROP_GROUPOBJUSED: 672 return (DMU_GROUPUSED_OBJECT); 673 case ZFS_PROP_PROJECTUSED: 674 case ZFS_PROP_PROJECTOBJUSED: 675 return (DMU_PROJECTUSED_OBJECT); 676 case ZFS_PROP_USERQUOTA: 677 return (zfsvfs->z_userquota_obj); 678 case ZFS_PROP_GROUPQUOTA: 679 return (zfsvfs->z_groupquota_obj); 680 case ZFS_PROP_USEROBJQUOTA: 681 return (zfsvfs->z_userobjquota_obj); 682 case ZFS_PROP_GROUPOBJQUOTA: 683 return (zfsvfs->z_groupobjquota_obj); 684 case ZFS_PROP_PROJECTQUOTA: 685 return (zfsvfs->z_projectquota_obj); 686 case ZFS_PROP_PROJECTOBJQUOTA: 687 return (zfsvfs->z_projectobjquota_obj); 688 default: 689 return (ZFS_NO_OBJECT); 690 } 691 } 692 693 int 694 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 695 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 696 { 697 int error; 698 zap_cursor_t zc; 699 zap_attribute_t za; 700 zfs_useracct_t *buf = vbuf; 701 uint64_t obj; 702 int offset = 0; 703 704 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 705 return (SET_ERROR(ENOTSUP)); 706 707 if ((type == ZFS_PROP_PROJECTQUOTA || type == ZFS_PROP_PROJECTUSED || 708 type == ZFS_PROP_PROJECTOBJQUOTA || 709 type == ZFS_PROP_PROJECTOBJUSED) && 710 !dmu_objset_projectquota_present(zfsvfs->z_os)) 711 return (SET_ERROR(ENOTSUP)); 712 713 if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED || 714 type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA || 715 type == ZFS_PROP_PROJECTOBJUSED || 716 type == ZFS_PROP_PROJECTOBJQUOTA) && 717 !dmu_objset_userobjspace_present(zfsvfs->z_os)) 718 return (SET_ERROR(ENOTSUP)); 719 720 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 721 if (obj == ZFS_NO_OBJECT) { 722 *bufsizep = 0; 723 return (0); 724 } 725 726 if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED || 727 type == ZFS_PROP_PROJECTOBJUSED) 728 offset = DMU_OBJACCT_PREFIX_LEN; 729 730 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 731 (error = zap_cursor_retrieve(&zc, &za)) == 0; 732 zap_cursor_advance(&zc)) { 733 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 734 *bufsizep) 735 break; 736 737 /* 738 * skip object quota (with zap name prefix DMU_OBJACCT_PREFIX) 739 * when dealing with block quota and vice versa. 740 */ 741 if ((offset > 0) != (strncmp(za.za_name, DMU_OBJACCT_PREFIX, 742 DMU_OBJACCT_PREFIX_LEN) == 0)) 743 continue; 744 745 fuidstr_to_sid(zfsvfs, za.za_name + offset, 746 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 747 748 buf->zu_space = za.za_first_integer; 749 buf++; 750 } 751 if (error == ENOENT) 752 error = 0; 753 754 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 755 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 756 *cookiep = zap_cursor_serialize(&zc); 757 zap_cursor_fini(&zc); 758 return (error); 759 } 760 761 /* 762 * buf must be big enough (eg, 32 bytes) 763 */ 764 static int 765 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 766 char *buf, boolean_t addok) 767 { 768 uint64_t fuid; 769 int domainid = 0; 770 771 if (domain && domain[0]) { 772 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 773 if (domainid == -1) 774 return (SET_ERROR(ENOENT)); 775 } 776 fuid = FUID_ENCODE(domainid, rid); 777 (void) sprintf(buf, "%llx", (longlong_t)fuid); 778 return (0); 779 } 780 781 int 782 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 783 const char *domain, uint64_t rid, uint64_t *valp) 784 { 785 char buf[20 + DMU_OBJACCT_PREFIX_LEN]; 786 int offset = 0; 787 int err; 788 uint64_t obj; 789 790 *valp = 0; 791 792 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 793 return (SET_ERROR(ENOTSUP)); 794 795 if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED || 796 type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA || 797 type == ZFS_PROP_PROJECTOBJUSED || 798 type == ZFS_PROP_PROJECTOBJQUOTA) && 799 !dmu_objset_userobjspace_present(zfsvfs->z_os)) 800 return (SET_ERROR(ENOTSUP)); 801 802 if (type == ZFS_PROP_PROJECTQUOTA || type == ZFS_PROP_PROJECTUSED || 803 type == ZFS_PROP_PROJECTOBJQUOTA || 804 type == ZFS_PROP_PROJECTOBJUSED) { 805 if (!dmu_objset_projectquota_present(zfsvfs->z_os)) 806 return (SET_ERROR(ENOTSUP)); 807 if (!zpl_is_valid_projid(rid)) 808 return (SET_ERROR(EINVAL)); 809 } 810 811 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 812 if (obj == ZFS_NO_OBJECT) 813 return (0); 814 815 if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED || 816 type == ZFS_PROP_PROJECTOBJUSED) { 817 strncpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN); 818 offset = DMU_OBJACCT_PREFIX_LEN; 819 } 820 821 err = id_to_fuidstr(zfsvfs, domain, rid, buf + offset, B_FALSE); 822 if (err) 823 return (err); 824 825 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 826 if (err == ENOENT) 827 err = 0; 828 return (err); 829 } 830 831 int 832 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 833 const char *domain, uint64_t rid, uint64_t quota) 834 { 835 char buf[32]; 836 int err; 837 dmu_tx_t *tx; 838 uint64_t *objp; 839 boolean_t fuid_dirtied; 840 841 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 842 return (SET_ERROR(ENOTSUP)); 843 844 switch (type) { 845 case ZFS_PROP_USERQUOTA: 846 objp = &zfsvfs->z_userquota_obj; 847 break; 848 case ZFS_PROP_GROUPQUOTA: 849 objp = &zfsvfs->z_groupquota_obj; 850 break; 851 case ZFS_PROP_USEROBJQUOTA: 852 objp = &zfsvfs->z_userobjquota_obj; 853 break; 854 case ZFS_PROP_GROUPOBJQUOTA: 855 objp = &zfsvfs->z_groupobjquota_obj; 856 break; 857 case ZFS_PROP_PROJECTQUOTA: 858 if (!dmu_objset_projectquota_enabled(zfsvfs->z_os)) 859 return (SET_ERROR(ENOTSUP)); 860 if (!zpl_is_valid_projid(rid)) 861 return (SET_ERROR(EINVAL)); 862 863 objp = &zfsvfs->z_projectquota_obj; 864 break; 865 case ZFS_PROP_PROJECTOBJQUOTA: 866 if (!dmu_objset_projectquota_enabled(zfsvfs->z_os)) 867 return (SET_ERROR(ENOTSUP)); 868 if (!zpl_is_valid_projid(rid)) 869 return (SET_ERROR(EINVAL)); 870 871 objp = &zfsvfs->z_projectobjquota_obj; 872 break; 873 default: 874 return (SET_ERROR(EINVAL)); 875 } 876 877 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 878 if (err) 879 return (err); 880 fuid_dirtied = zfsvfs->z_fuid_dirty; 881 882 tx = dmu_tx_create(zfsvfs->z_os); 883 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 884 if (*objp == 0) { 885 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 886 zfs_userquota_prop_prefixes[type]); 887 } 888 if (fuid_dirtied) 889 zfs_fuid_txhold(zfsvfs, tx); 890 err = dmu_tx_assign(tx, TXG_WAIT); 891 if (err) { 892 dmu_tx_abort(tx); 893 return (err); 894 } 895 896 mutex_enter(&zfsvfs->z_lock); 897 if (*objp == 0) { 898 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 899 DMU_OT_NONE, 0, tx); 900 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 901 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 902 } 903 mutex_exit(&zfsvfs->z_lock); 904 905 if (quota == 0) { 906 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 907 if (err == ENOENT) 908 err = 0; 909 } else { 910 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 911 } 912 ASSERT(err == 0); 913 if (fuid_dirtied) 914 zfs_fuid_sync(zfsvfs, tx); 915 dmu_tx_commit(tx); 916 return (err); 917 } 918 919 boolean_t 920 zfs_id_overobjquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id) 921 { 922 char buf[20 + DMU_OBJACCT_PREFIX_LEN]; 923 uint64_t used, quota, quotaobj; 924 int err; 925 926 if (!dmu_objset_userobjspace_present(zfsvfs->z_os)) { 927 if (dmu_objset_userobjspace_upgradable(zfsvfs->z_os)) { 928 dsl_pool_config_enter( 929 dmu_objset_pool(zfsvfs->z_os), FTAG); 930 dmu_objset_id_quota_upgrade(zfsvfs->z_os); 931 dsl_pool_config_exit( 932 dmu_objset_pool(zfsvfs->z_os), FTAG); 933 } 934 return (B_FALSE); 935 } 936 937 if (usedobj == DMU_PROJECTUSED_OBJECT) { 938 if (!dmu_objset_projectquota_present(zfsvfs->z_os)) { 939 if (dmu_objset_projectquota_upgradable(zfsvfs->z_os)) { 940 dsl_pool_config_enter( 941 dmu_objset_pool(zfsvfs->z_os), FTAG); 942 dmu_objset_id_quota_upgrade(zfsvfs->z_os); 943 dsl_pool_config_exit( 944 dmu_objset_pool(zfsvfs->z_os), FTAG); 945 } 946 return (B_FALSE); 947 } 948 quotaobj = zfsvfs->z_projectobjquota_obj; 949 } else if (usedobj == DMU_USERUSED_OBJECT) { 950 quotaobj = zfsvfs->z_userobjquota_obj; 951 } else if (usedobj == DMU_GROUPUSED_OBJECT) { 952 quotaobj = zfsvfs->z_groupobjquota_obj; 953 } else { 954 return (B_FALSE); 955 } 956 if (quotaobj == 0 || zfsvfs->z_replay) 957 return (B_FALSE); 958 959 (void) sprintf(buf, "%llx", (longlong_t)id); 960 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 961 if (err != 0) 962 return (B_FALSE); 963 964 (void) sprintf(buf, DMU_OBJACCT_PREFIX "%llx", (longlong_t)id); 965 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 966 if (err != 0) 967 return (B_FALSE); 968 return (used >= quota); 969 } 970 971 boolean_t 972 zfs_id_overblockquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id) 973 { 974 char buf[20]; 975 uint64_t used, quota, quotaobj; 976 int err; 977 978 if (usedobj == DMU_PROJECTUSED_OBJECT) { 979 if (!dmu_objset_projectquota_present(zfsvfs->z_os)) { 980 if (dmu_objset_projectquota_upgradable(zfsvfs->z_os)) { 981 dsl_pool_config_enter( 982 dmu_objset_pool(zfsvfs->z_os), FTAG); 983 dmu_objset_id_quota_upgrade(zfsvfs->z_os); 984 dsl_pool_config_exit( 985 dmu_objset_pool(zfsvfs->z_os), FTAG); 986 } 987 return (B_FALSE); 988 } 989 quotaobj = zfsvfs->z_projectquota_obj; 990 } else if (usedobj == DMU_USERUSED_OBJECT) { 991 quotaobj = zfsvfs->z_userquota_obj; 992 } else if (usedobj == DMU_GROUPUSED_OBJECT) { 993 quotaobj = zfsvfs->z_groupquota_obj; 994 } else { 995 return (B_FALSE); 996 } 997 if (quotaobj == 0 || zfsvfs->z_replay) 998 return (B_FALSE); 999 1000 (void) sprintf(buf, "%llx", (longlong_t)id); 1001 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 1002 if (err != 0) 1003 return (B_FALSE); 1004 1005 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 1006 if (err != 0) 1007 return (B_FALSE); 1008 return (used >= quota); 1009 } 1010 1011 boolean_t 1012 zfs_id_overquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id) 1013 { 1014 return (zfs_id_overblockquota(zfsvfs, usedobj, id) || 1015 zfs_id_overobjquota(zfsvfs, usedobj, id)); 1016 } 1017 1018 /* 1019 * Associate this zfsvfs with the given objset, which must be owned. 1020 * This will cache a bunch of on-disk state from the objset in the 1021 * zfsvfs. 1022 */ 1023 static int 1024 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os) 1025 { 1026 int error; 1027 uint64_t val; 1028 1029 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; 1030 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 1031 zfsvfs->z_os = os; 1032 1033 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 1034 if (error != 0) 1035 return (error); 1036 if (zfsvfs->z_version > 1037 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 1038 (void) printf("Can't mount a version %lld file system " 1039 "on a version %lld pool\n. Pool must be upgraded to mount " 1040 "this file system.", (u_longlong_t)zfsvfs->z_version, 1041 (u_longlong_t)spa_version(dmu_objset_spa(os))); 1042 return (SET_ERROR(ENOTSUP)); 1043 } 1044 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val); 1045 if (error != 0) 1046 return (error); 1047 zfsvfs->z_norm = (int)val; 1048 1049 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val); 1050 if (error != 0) 1051 return (error); 1052 zfsvfs->z_utf8 = (val != 0); 1053 1054 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val); 1055 if (error != 0) 1056 return (error); 1057 zfsvfs->z_case = (uint_t)val; 1058 1059 /* 1060 * Fold case on file systems that are always or sometimes case 1061 * insensitive. 1062 */ 1063 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 1064 zfsvfs->z_case == ZFS_CASE_MIXED) 1065 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 1066 1067 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1068 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1069 1070 uint64_t sa_obj = 0; 1071 if (zfsvfs->z_use_sa) { 1072 /* should either have both of these objects or none */ 1073 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 1074 &sa_obj); 1075 if (error != 0) 1076 return (error); 1077 } 1078 1079 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 1080 &zfsvfs->z_attr_table); 1081 if (error != 0) 1082 return (error); 1083 1084 if (zfsvfs->z_version >= ZPL_VERSION_SA) 1085 sa_register_update_callback(os, zfs_sa_upgrade); 1086 1087 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 1088 &zfsvfs->z_root); 1089 if (error != 0) 1090 return (error); 1091 ASSERT(zfsvfs->z_root != 0); 1092 1093 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 1094 &zfsvfs->z_unlinkedobj); 1095 if (error != 0) 1096 return (error); 1097 1098 error = zap_lookup(os, MASTER_NODE_OBJ, 1099 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 1100 8, 1, &zfsvfs->z_userquota_obj); 1101 if (error == ENOENT) 1102 zfsvfs->z_userquota_obj = 0; 1103 else if (error != 0) 1104 return (error); 1105 1106 error = zap_lookup(os, MASTER_NODE_OBJ, 1107 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 1108 8, 1, &zfsvfs->z_groupquota_obj); 1109 if (error == ENOENT) 1110 zfsvfs->z_groupquota_obj = 0; 1111 else if (error != 0) 1112 return (error); 1113 1114 error = zap_lookup(os, MASTER_NODE_OBJ, 1115 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA], 1116 8, 1, &zfsvfs->z_projectquota_obj); 1117 if (error == ENOENT) 1118 zfsvfs->z_projectquota_obj = 0; 1119 else if (error != 0) 1120 return (error); 1121 1122 error = zap_lookup(os, MASTER_NODE_OBJ, 1123 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA], 1124 8, 1, &zfsvfs->z_userobjquota_obj); 1125 if (error == ENOENT) 1126 zfsvfs->z_userobjquota_obj = 0; 1127 else if (error != 0) 1128 return (error); 1129 1130 error = zap_lookup(os, MASTER_NODE_OBJ, 1131 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA], 1132 8, 1, &zfsvfs->z_groupobjquota_obj); 1133 if (error == ENOENT) 1134 zfsvfs->z_groupobjquota_obj = 0; 1135 else if (error != 0) 1136 return (error); 1137 1138 error = zap_lookup(os, MASTER_NODE_OBJ, 1139 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA], 1140 8, 1, &zfsvfs->z_projectobjquota_obj); 1141 if (error == ENOENT) 1142 zfsvfs->z_projectobjquota_obj = 0; 1143 else if (error != 0) 1144 return (error); 1145 1146 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 1147 &zfsvfs->z_fuid_obj); 1148 if (error == ENOENT) 1149 zfsvfs->z_fuid_obj = 0; 1150 else if (error != 0) 1151 return (error); 1152 1153 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 1154 &zfsvfs->z_shares_dir); 1155 if (error == ENOENT) 1156 zfsvfs->z_shares_dir = 0; 1157 else if (error != 0) 1158 return (error); 1159 1160 return (0); 1161 } 1162 1163 int 1164 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp) 1165 { 1166 objset_t *os; 1167 zfsvfs_t *zfsvfs; 1168 int error; 1169 boolean_t ro = (readonly || (strchr(osname, '@') != NULL)); 1170 1171 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 1172 1173 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os); 1174 if (error != 0) { 1175 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1176 return (error); 1177 } 1178 1179 error = zfsvfs_create_impl(zfvp, zfsvfs, os); 1180 if (error != 0) { 1181 dmu_objset_disown(os, B_TRUE, zfsvfs); 1182 } 1183 return (error); 1184 } 1185 1186 1187 int 1188 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os) 1189 { 1190 int error; 1191 1192 zfsvfs->z_vfs = NULL; 1193 zfsvfs->z_parent = zfsvfs; 1194 1195 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1196 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 1197 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 1198 offsetof(znode_t, z_link_node)); 1199 rrm_init(&zfsvfs->z_teardown_lock, B_FALSE); 1200 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 1201 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 1202 for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1203 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1204 1205 error = zfsvfs_init(zfsvfs, os); 1206 if (error != 0) { 1207 *zfvp = NULL; 1208 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1209 return (error); 1210 } 1211 1212 zfsvfs->z_drain_task = TASKQID_INVALID; 1213 zfsvfs->z_draining = B_FALSE; 1214 zfsvfs->z_drain_cancel = B_TRUE; 1215 1216 *zfvp = zfsvfs; 1217 return (0); 1218 } 1219 1220 static int 1221 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 1222 { 1223 int error; 1224 1225 error = zfs_register_callbacks(zfsvfs->z_vfs); 1226 if (error) 1227 return (error); 1228 1229 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1230 1231 /* 1232 * If we are not mounting (ie: online recv), then we don't 1233 * have to worry about replaying the log as we blocked all 1234 * operations out since we closed the ZIL. 1235 */ 1236 if (mounting) { 1237 boolean_t readonly; 1238 1239 /* 1240 * During replay we remove the read only flag to 1241 * allow replays to succeed. 1242 */ 1243 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1244 if (readonly != 0) { 1245 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1246 } else { 1247 zfs_unlinked_drain(zfsvfs); 1248 } 1249 1250 /* 1251 * Parse and replay the intent log. 1252 * 1253 * Because of ziltest, this must be done after 1254 * zfs_unlinked_drain(). (Further note: ziltest 1255 * doesn't use readonly mounts, where 1256 * zfs_unlinked_drain() isn't called.) This is because 1257 * ziltest causes spa_sync() to think it's committed, 1258 * but actually it is not, so the intent log contains 1259 * many txg's worth of changes. 1260 * 1261 * In particular, if object N is in the unlinked set in 1262 * the last txg to actually sync, then it could be 1263 * actually freed in a later txg and then reallocated 1264 * in a yet later txg. This would write a "create 1265 * object N" record to the intent log. Normally, this 1266 * would be fine because the spa_sync() would have 1267 * written out the fact that object N is free, before 1268 * we could write the "create object N" intent log 1269 * record. 1270 * 1271 * But when we are in ziltest mode, we advance the "open 1272 * txg" without actually spa_sync()-ing the changes to 1273 * disk. So we would see that object N is still 1274 * allocated and in the unlinked set, and there is an 1275 * intent log record saying to allocate it. 1276 */ 1277 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 1278 if (zil_replay_disable) { 1279 zil_destroy(zfsvfs->z_log, B_FALSE); 1280 } else { 1281 zfsvfs->z_replay = B_TRUE; 1282 zil_replay(zfsvfs->z_os, zfsvfs, 1283 zfs_replay_vector); 1284 zfsvfs->z_replay = B_FALSE; 1285 } 1286 } 1287 1288 /* restore readonly bit */ 1289 if (readonly != 0) 1290 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 1291 } 1292 1293 /* 1294 * Set the objset user_ptr to track its zfsvfs. 1295 */ 1296 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1297 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1298 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1299 1300 return (0); 1301 } 1302 1303 void 1304 zfsvfs_free(zfsvfs_t *zfsvfs) 1305 { 1306 int i; 1307 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1308 1309 /* 1310 * This is a barrier to prevent the filesystem from going away in 1311 * zfs_znode_move() until we can safely ensure that the filesystem is 1312 * not unmounted. We consider the filesystem valid before the barrier 1313 * and invalid after the barrier. 1314 */ 1315 rw_enter(&zfsvfs_lock, RW_READER); 1316 rw_exit(&zfsvfs_lock); 1317 1318 zfs_fuid_destroy(zfsvfs); 1319 1320 mutex_destroy(&zfsvfs->z_znodes_lock); 1321 mutex_destroy(&zfsvfs->z_lock); 1322 list_destroy(&zfsvfs->z_all_znodes); 1323 rrm_destroy(&zfsvfs->z_teardown_lock); 1324 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1325 rw_destroy(&zfsvfs->z_fuid_lock); 1326 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1327 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1328 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1329 } 1330 1331 static void 1332 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1333 { 1334 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1335 if (zfsvfs->z_vfs) { 1336 if (zfsvfs->z_use_fuids) { 1337 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1338 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1339 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1340 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1341 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1342 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1343 } else { 1344 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1345 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1346 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1347 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1348 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1349 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1350 } 1351 } 1352 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1353 } 1354 1355 static int 1356 zfs_domount(vfs_t *vfsp, char *osname) 1357 { 1358 dev_t mount_dev; 1359 uint64_t recordsize, fsid_guid; 1360 int error = 0; 1361 zfsvfs_t *zfsvfs; 1362 boolean_t readonly = vfsp->vfs_flag & VFS_RDONLY ? B_TRUE : B_FALSE; 1363 1364 ASSERT(vfsp); 1365 ASSERT(osname); 1366 1367 error = zfsvfs_create(osname, readonly, &zfsvfs); 1368 if (error) 1369 return (error); 1370 zfsvfs->z_vfs = vfsp; 1371 1372 /* Initialize the generic filesystem structure. */ 1373 vfsp->vfs_bcount = 0; 1374 vfsp->vfs_data = NULL; 1375 1376 if (zfs_create_unique_device(&mount_dev) == -1) { 1377 error = SET_ERROR(ENODEV); 1378 goto out; 1379 } 1380 ASSERT(vfs_devismounted(mount_dev) == 0); 1381 1382 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1383 NULL)) 1384 goto out; 1385 1386 vfsp->vfs_dev = mount_dev; 1387 vfsp->vfs_fstype = zfsfstype; 1388 vfsp->vfs_bsize = recordsize; 1389 vfsp->vfs_flag |= VFS_NOTRUNC; 1390 vfsp->vfs_data = zfsvfs; 1391 1392 /* 1393 * The fsid is 64 bits, composed of an 8-bit fs type, which 1394 * separates our fsid from any other filesystem types, and a 1395 * 56-bit objset unique ID. The objset unique ID is unique to 1396 * all objsets open on this system, provided by unique_create(). 1397 * The 8-bit fs type must be put in the low bits of fsid[1] 1398 * because that's where other Solaris filesystems put it. 1399 */ 1400 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1401 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1402 vfsp->vfs_fsid.val[0] = fsid_guid; 1403 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1404 zfsfstype & 0xFF; 1405 1406 /* 1407 * Set features for file system. 1408 */ 1409 zfs_set_fuid_feature(zfsvfs); 1410 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1411 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1412 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1413 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1414 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1415 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1416 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1417 } 1418 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1419 1420 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1421 uint64_t pval; 1422 1423 atime_changed_cb(zfsvfs, B_FALSE); 1424 readonly_changed_cb(zfsvfs, B_TRUE); 1425 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1426 goto out; 1427 xattr_changed_cb(zfsvfs, pval); 1428 zfsvfs->z_issnap = B_TRUE; 1429 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1430 1431 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1432 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1433 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1434 } else { 1435 error = zfsvfs_setup(zfsvfs, B_TRUE); 1436 } 1437 1438 if (!zfsvfs->z_issnap) 1439 zfsctl_create(zfsvfs); 1440 out: 1441 if (error) { 1442 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); 1443 zfsvfs_free(zfsvfs); 1444 } else { 1445 atomic_inc_32(&zfs_active_fs_count); 1446 } 1447 1448 return (error); 1449 } 1450 1451 void 1452 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1453 { 1454 objset_t *os = zfsvfs->z_os; 1455 1456 if (!dmu_objset_is_snapshot(os)) 1457 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); 1458 } 1459 1460 /* 1461 * Convert a decimal digit string to a uint64_t integer. 1462 */ 1463 static int 1464 str_to_uint64(char *str, uint64_t *objnum) 1465 { 1466 uint64_t num = 0; 1467 1468 while (*str) { 1469 if (*str < '0' || *str > '9') 1470 return (SET_ERROR(EINVAL)); 1471 1472 num = num*10 + *str++ - '0'; 1473 } 1474 1475 *objnum = num; 1476 return (0); 1477 } 1478 1479 /* 1480 * The boot path passed from the boot loader is in the form of 1481 * "rootpool-name/root-filesystem-object-number'. Convert this 1482 * string to a dataset name: "rootpool-name/root-filesystem-name". 1483 */ 1484 static int 1485 zfs_parse_bootfs(char *bpath, char *outpath) 1486 { 1487 char *slashp; 1488 uint64_t objnum; 1489 int error; 1490 1491 if (*bpath == 0 || *bpath == '/') 1492 return (SET_ERROR(EINVAL)); 1493 1494 (void) strcpy(outpath, bpath); 1495 1496 slashp = strchr(bpath, '/'); 1497 1498 /* if no '/', just return the pool name */ 1499 if (slashp == NULL) { 1500 return (0); 1501 } 1502 1503 /* if not a number, just return the root dataset name */ 1504 if (str_to_uint64(slashp+1, &objnum)) { 1505 return (0); 1506 } 1507 1508 *slashp = '\0'; 1509 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1510 *slashp = '/'; 1511 1512 return (error); 1513 } 1514 1515 /* 1516 * Check that the hex label string is appropriate for the dataset being 1517 * mounted into the global_zone proper. 1518 * 1519 * Return an error if the hex label string is not default or 1520 * admin_low/admin_high. For admin_low labels, the corresponding 1521 * dataset must be readonly. 1522 */ 1523 int 1524 zfs_check_global_label(const char *dsname, const char *hexsl) 1525 { 1526 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1527 return (0); 1528 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1529 return (0); 1530 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1531 /* must be readonly */ 1532 uint64_t rdonly; 1533 1534 if (dsl_prop_get_integer(dsname, 1535 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1536 return (SET_ERROR(EACCES)); 1537 return (rdonly ? 0 : EACCES); 1538 } 1539 return (SET_ERROR(EACCES)); 1540 } 1541 1542 static int 1543 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct statvfs64 *statp, 1544 uint32_t bshift) 1545 { 1546 char buf[20 + DMU_OBJACCT_PREFIX_LEN]; 1547 uint64_t offset = DMU_OBJACCT_PREFIX_LEN; 1548 uint64_t quota; 1549 uint64_t used; 1550 int err; 1551 1552 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1); 1553 err = id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset, B_FALSE); 1554 if (err) 1555 return (err); 1556 1557 if (zfsvfs->z_projectquota_obj == 0) 1558 goto objs; 1559 1560 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj, 1561 buf + offset, 8, 1, "a); 1562 if (err == ENOENT) 1563 goto objs; 1564 else if (err) 1565 return (err); 1566 1567 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1568 buf + offset, 8, 1, &used); 1569 if (unlikely(err == ENOENT)) { 1570 uint32_t blksize; 1571 u_longlong_t nblocks; 1572 1573 /* 1574 * Quota accounting is async, so it is possible race case. 1575 * There is at least one object with the given project ID. 1576 */ 1577 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks); 1578 if (unlikely(zp->z_blksz == 0)) 1579 blksize = zfsvfs->z_max_blksz; 1580 1581 used = blksize * nblocks; 1582 } else if (err) { 1583 return (err); 1584 } 1585 1586 statp->f_blocks = quota >> bshift; 1587 statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0; 1588 statp->f_bavail = statp->f_bfree; 1589 1590 objs: 1591 if (zfsvfs->z_projectobjquota_obj == 0) 1592 return (0); 1593 1594 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj, 1595 buf + offset, 8, 1, "a); 1596 if (err == ENOENT) 1597 return (0); 1598 else if (err) 1599 return (err); 1600 1601 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1602 buf, 8, 1, &used); 1603 if (unlikely(err == ENOENT)) { 1604 /* 1605 * Quota accounting is async, so it is possible race case. 1606 * There is at least one object with the given project ID. 1607 */ 1608 used = 1; 1609 } else if (err) { 1610 return (err); 1611 } 1612 1613 statp->f_files = quota; 1614 statp->f_ffree = (quota > used) ? (quota - used) : 0; 1615 1616 return (0); 1617 } 1618 1619 /* 1620 * Determine whether the mount is allowed according to MAC check. 1621 * by comparing (where appropriate) label of the dataset against 1622 * the label of the zone being mounted into. If the dataset has 1623 * no label, create one. 1624 * 1625 * Returns 0 if access allowed, error otherwise (e.g. EACCES) 1626 */ 1627 static int 1628 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1629 { 1630 int error, retv; 1631 zone_t *mntzone = NULL; 1632 ts_label_t *mnt_tsl; 1633 bslabel_t *mnt_sl; 1634 bslabel_t ds_sl; 1635 char ds_hexsl[MAXNAMELEN]; 1636 1637 retv = EACCES; /* assume the worst */ 1638 1639 /* 1640 * Start by getting the dataset label if it exists. 1641 */ 1642 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1643 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1644 if (error) 1645 return (SET_ERROR(EACCES)); 1646 1647 /* 1648 * If labeling is NOT enabled, then disallow the mount of datasets 1649 * which have a non-default label already. No other label checks 1650 * are needed. 1651 */ 1652 if (!is_system_labeled()) { 1653 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1654 return (0); 1655 return (SET_ERROR(EACCES)); 1656 } 1657 1658 /* 1659 * Get the label of the mountpoint. If mounting into the global 1660 * zone (i.e. mountpoint is not within an active zone and the 1661 * zoned property is off), the label must be default or 1662 * admin_low/admin_high only; no other checks are needed. 1663 */ 1664 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1665 if (mntzone->zone_id == GLOBAL_ZONEID) { 1666 uint64_t zoned; 1667 1668 zone_rele(mntzone); 1669 1670 if (dsl_prop_get_integer(osname, 1671 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1672 return (SET_ERROR(EACCES)); 1673 if (!zoned) 1674 return (zfs_check_global_label(osname, ds_hexsl)); 1675 else 1676 /* 1677 * This is the case of a zone dataset being mounted 1678 * initially, before the zone has been fully created; 1679 * allow this mount into global zone. 1680 */ 1681 return (0); 1682 } 1683 1684 mnt_tsl = mntzone->zone_slabel; 1685 ASSERT(mnt_tsl != NULL); 1686 label_hold(mnt_tsl); 1687 mnt_sl = label2bslabel(mnt_tsl); 1688 1689 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1690 /* 1691 * The dataset doesn't have a real label, so fabricate one. 1692 */ 1693 char *str = NULL; 1694 1695 if (l_to_str_internal(mnt_sl, &str) == 0 && 1696 dsl_prop_set_string(osname, 1697 zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1698 ZPROP_SRC_LOCAL, str) == 0) 1699 retv = 0; 1700 if (str != NULL) 1701 kmem_free(str, strlen(str) + 1); 1702 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1703 /* 1704 * Now compare labels to complete the MAC check. If the 1705 * labels are equal then allow access. If the mountpoint 1706 * label dominates the dataset label, allow readonly access. 1707 * Otherwise, access is denied. 1708 */ 1709 if (blequal(mnt_sl, &ds_sl)) 1710 retv = 0; 1711 else if (bldominates(mnt_sl, &ds_sl)) { 1712 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1713 retv = 0; 1714 } 1715 } 1716 1717 label_rele(mnt_tsl); 1718 zone_rele(mntzone); 1719 return (retv); 1720 } 1721 1722 /* 1723 * Load a string-valued boot property and attempt to convert it to a 64-bit 1724 * unsigned integer. If the value is not present, or the conversion fails, 1725 * return the provided default value. 1726 */ 1727 static uint64_t 1728 spa_get_bootprop_uint64(const char *name, uint64_t defval) 1729 { 1730 char *propval; 1731 u_longlong_t r; 1732 int e; 1733 1734 if ((propval = spa_get_bootprop(name)) == NULL) { 1735 /* 1736 * The property does not exist. 1737 */ 1738 return (defval); 1739 } 1740 1741 e = ddi_strtoull(propval, NULL, 10, &r); 1742 1743 spa_free_bootprop(propval); 1744 1745 /* 1746 * If the conversion succeeded, return the value. If there was any 1747 * kind of failure, just return the default value. 1748 */ 1749 return (e == 0 ? r : defval); 1750 } 1751 1752 static int 1753 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1754 { 1755 int error = 0; 1756 static int zfsrootdone = 0; 1757 zfsvfs_t *zfsvfs = NULL; 1758 znode_t *zp = NULL; 1759 vnode_t *vp = NULL; 1760 char *zfs_bootfs; 1761 char *zfs_devid; 1762 uint64_t zfs_bootpool; 1763 uint64_t zfs_bootvdev; 1764 1765 ASSERT(vfsp); 1766 1767 /* 1768 * The filesystem that we mount as root is defined in the 1769 * boot property "zfs-bootfs" with a format of 1770 * "poolname/root-dataset-objnum". 1771 */ 1772 if (why == ROOT_INIT) { 1773 if (zfsrootdone++) 1774 return (SET_ERROR(EBUSY)); 1775 1776 /* 1777 * the process of doing a spa_load will require the 1778 * clock to be set before we could (for example) do 1779 * something better by looking at the timestamp on 1780 * an uberblock, so just set it to -1. 1781 */ 1782 clkset(-1); 1783 1784 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1785 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1786 "bootfs name"); 1787 return (SET_ERROR(EINVAL)); 1788 } 1789 zfs_devid = spa_get_bootprop("diskdevid"); 1790 1791 /* 1792 * The boot loader may also provide us with the GUID for both 1793 * the pool and the nominated boot vdev. A GUID value of 0 is 1794 * explicitly invalid (see "spa_change_guid()"), so we use this 1795 * as a sentinel value when no GUID is present. 1796 */ 1797 zfs_bootpool = spa_get_bootprop_uint64("zfs-bootpool", 0); 1798 zfs_bootvdev = spa_get_bootprop_uint64("zfs-bootvdev", 0); 1799 1800 /* 1801 * Initialise the early boot device rescan mechanism. A scan 1802 * will not actually be performed unless we need to do so in 1803 * order to find the correct /devices path for a relocated 1804 * device. 1805 */ 1806 vdev_disk_preroot_init(); 1807 1808 error = spa_import_rootpool(rootfs.bo_name, zfs_devid, 1809 zfs_bootpool, zfs_bootvdev); 1810 1811 spa_free_bootprop(zfs_devid); 1812 1813 if (error != 0) { 1814 spa_free_bootprop(zfs_bootfs); 1815 vdev_disk_preroot_fini(); 1816 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1817 error); 1818 return (error); 1819 } 1820 1821 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1822 spa_free_bootprop(zfs_bootfs); 1823 vdev_disk_preroot_fini(); 1824 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1825 error); 1826 return (error); 1827 } 1828 1829 spa_free_bootprop(zfs_bootfs); 1830 vdev_disk_preroot_fini(); 1831 1832 if (error = vfs_lock(vfsp)) 1833 return (error); 1834 1835 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1836 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1837 goto out; 1838 } 1839 1840 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1841 ASSERT(zfsvfs); 1842 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1843 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1844 goto out; 1845 } 1846 1847 vp = ZTOV(zp); 1848 mutex_enter(&vp->v_lock); 1849 vp->v_flag |= VROOT; 1850 mutex_exit(&vp->v_lock); 1851 rootvp = vp; 1852 1853 /* 1854 * Leave rootvp held. The root file system is never unmounted. 1855 */ 1856 1857 vfs_add((struct vnode *)0, vfsp, 1858 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1859 out: 1860 vfs_unlock(vfsp); 1861 return (error); 1862 } else if (why == ROOT_REMOUNT) { 1863 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1864 vfsp->vfs_flag |= VFS_REMOUNT; 1865 1866 /* refresh mount options */ 1867 zfs_unregister_callbacks(vfsp->vfs_data); 1868 return (zfs_register_callbacks(vfsp)); 1869 1870 } else if (why == ROOT_UNMOUNT) { 1871 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1872 (void) zfs_sync(vfsp, 0, 0); 1873 return (0); 1874 } 1875 1876 /* 1877 * if "why" is equal to anything else other than ROOT_INIT, 1878 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1879 */ 1880 return (SET_ERROR(ENOTSUP)); 1881 } 1882 1883 /*ARGSUSED*/ 1884 static int 1885 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1886 { 1887 char *osname; 1888 pathname_t spn; 1889 int error = 0; 1890 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1891 UIO_SYSSPACE : UIO_USERSPACE; 1892 int canwrite; 1893 1894 if (mvp->v_type != VDIR) 1895 return (SET_ERROR(ENOTDIR)); 1896 1897 mutex_enter(&mvp->v_lock); 1898 if ((uap->flags & MS_REMOUNT) == 0 && 1899 (uap->flags & MS_OVERLAY) == 0 && 1900 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1901 mutex_exit(&mvp->v_lock); 1902 return (SET_ERROR(EBUSY)); 1903 } 1904 mutex_exit(&mvp->v_lock); 1905 1906 /* 1907 * ZFS does not support passing unparsed data in via MS_DATA. 1908 * Users should use the MS_OPTIONSTR interface; this means 1909 * that all option parsing is already done and the options struct 1910 * can be interrogated. 1911 */ 1912 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1913 return (SET_ERROR(EINVAL)); 1914 1915 /* 1916 * Get the objset name (the "special" mount argument). 1917 */ 1918 if (error = pn_get(uap->spec, fromspace, &spn)) 1919 return (error); 1920 1921 osname = spn.pn_path; 1922 1923 /* 1924 * Check for mount privilege? 1925 * 1926 * If we don't have privilege then see if 1927 * we have local permission to allow it 1928 */ 1929 error = secpolicy_fs_mount(cr, mvp, vfsp); 1930 if (error) { 1931 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1932 vattr_t vattr; 1933 1934 /* 1935 * Make sure user is the owner of the mount point 1936 * or has sufficient privileges. 1937 */ 1938 1939 vattr.va_mask = AT_UID; 1940 1941 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1942 goto out; 1943 } 1944 1945 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1946 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1947 goto out; 1948 } 1949 secpolicy_fs_mount_clearopts(cr, vfsp); 1950 } else { 1951 goto out; 1952 } 1953 } 1954 1955 /* 1956 * Refuse to mount a filesystem if we are in a local zone and the 1957 * dataset is not visible. 1958 */ 1959 if (!INGLOBALZONE(curproc) && 1960 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1961 error = SET_ERROR(EPERM); 1962 goto out; 1963 } 1964 1965 error = zfs_mount_label_policy(vfsp, osname); 1966 if (error) 1967 goto out; 1968 1969 /* 1970 * When doing a remount, we simply refresh our temporary properties 1971 * according to those options set in the current VFS options. 1972 */ 1973 if (uap->flags & MS_REMOUNT) { 1974 /* refresh mount options */ 1975 zfs_unregister_callbacks(vfsp->vfs_data); 1976 error = zfs_register_callbacks(vfsp); 1977 goto out; 1978 } 1979 1980 error = zfs_domount(vfsp, osname); 1981 1982 /* 1983 * Add an extra VFS_HOLD on our parent vfs so that it can't 1984 * disappear due to a forced unmount. 1985 */ 1986 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1987 VFS_HOLD(mvp->v_vfsp); 1988 1989 out: 1990 pn_free(&spn); 1991 return (error); 1992 } 1993 1994 static int 1995 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1996 { 1997 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1998 dev32_t d32; 1999 uint64_t refdbytes, availbytes, usedobjs, availobjs; 2000 int err = 0; 2001 2002 ZFS_ENTER(zfsvfs); 2003 2004 dmu_objset_space(zfsvfs->z_os, 2005 &refdbytes, &availbytes, &usedobjs, &availobjs); 2006 2007 /* 2008 * The underlying storage pool actually uses multiple block sizes. 2009 * We report the fragsize as the smallest block size we support, 2010 * and we report our blocksize as the filesystem's maximum blocksize. 2011 */ 2012 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 2013 statp->f_bsize = zfsvfs->z_max_blksz; 2014 2015 /* 2016 * The following report "total" blocks of various kinds in the 2017 * file system, but reported in terms of f_frsize - the 2018 * "fragment" size. 2019 */ 2020 2021 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 2022 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 2023 statp->f_bavail = statp->f_bfree; /* no root reservation */ 2024 2025 /* 2026 * statvfs() should really be called statufs(), because it assumes 2027 * static metadata. ZFS doesn't preallocate files, so the best 2028 * we can do is report the max that could possibly fit in f_files, 2029 * and that minus the number actually used in f_ffree. 2030 * For f_ffree, report the smaller of the number of object available 2031 * and the number of blocks (each object will take at least a block). 2032 */ 2033 statp->f_ffree = MIN(availobjs, statp->f_bfree); 2034 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 2035 statp->f_files = statp->f_ffree + usedobjs; 2036 2037 (void) cmpldev(&d32, vfsp->vfs_dev); 2038 statp->f_fsid = d32; 2039 2040 /* 2041 * We're a zfs filesystem. 2042 */ 2043 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 2044 2045 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 2046 2047 statp->f_namemax = MAXNAMELEN - 1; 2048 2049 /* 2050 * We have all of 32 characters to stuff a string here. 2051 * Is there anything useful we could/should provide? 2052 */ 2053 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 2054 2055 if (dmu_objset_projectquota_enabled(zfsvfs->z_os) && 2056 dmu_objset_projectquota_present(zfsvfs->z_os)) { 2057 znode_t *zp; 2058 2059 /* 2060 * In ZoL, zfs_statvfs is passed a Linux dentry (directory 2061 * entry), instead of a vfsp. The ZoL code uses the dentry 2062 * to get the znode from the dentry's inode. This represents 2063 * whatever filename was passed to the user-level statvfs 2064 * syscall. 2065 * 2066 * We're using the VFS root znode here, so this represents a 2067 * potential difference from ZoL. 2068 */ 2069 if (zfs_zget(zfsvfs, zfsvfs->z_root, &zp) == 0) { 2070 uint32_t bshift = ddi_fls(statp->f_bsize) - 1; 2071 2072 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid && 2073 zpl_is_valid_projid(zp->z_projid)) 2074 err = zfs_statfs_project(zfsvfs, zp, statp, 2075 bshift); 2076 VN_RELE(ZTOV(zp)); 2077 } 2078 } 2079 2080 ZFS_EXIT(zfsvfs); 2081 return (err); 2082 } 2083 2084 static int 2085 zfs_root(vfs_t *vfsp, vnode_t **vpp) 2086 { 2087 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2088 znode_t *rootzp; 2089 int error; 2090 2091 ZFS_ENTER(zfsvfs); 2092 2093 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 2094 if (error == 0) 2095 *vpp = ZTOV(rootzp); 2096 2097 ZFS_EXIT(zfsvfs); 2098 return (error); 2099 } 2100 2101 /* 2102 * Teardown the zfsvfs::z_os. 2103 * 2104 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock' 2105 * and 'z_teardown_inactive_lock' held. 2106 */ 2107 static int 2108 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 2109 { 2110 znode_t *zp; 2111 2112 zfs_unlinked_drain_stop_wait(zfsvfs); 2113 2114 rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 2115 2116 if (!unmounting) { 2117 /* 2118 * We purge the parent filesystem's vfsp as the parent 2119 * filesystem and all of its snapshots have their vnode's 2120 * v_vfsp set to the parent's filesystem's vfsp. Note, 2121 * 'z_parent' is self referential for non-snapshots. 2122 */ 2123 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 2124 } 2125 2126 /* 2127 * Close the zil. NB: Can't close the zil while zfs_inactive 2128 * threads are blocked as zil_close can call zfs_inactive. 2129 */ 2130 if (zfsvfs->z_log) { 2131 zil_close(zfsvfs->z_log); 2132 zfsvfs->z_log = NULL; 2133 } 2134 2135 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 2136 2137 /* 2138 * If we are not unmounting (ie: online recv) and someone already 2139 * unmounted this file system while we were doing the switcheroo, 2140 * or a reopen of z_os failed then just bail out now. 2141 */ 2142 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 2143 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2144 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 2145 return (SET_ERROR(EIO)); 2146 } 2147 2148 /* 2149 * At this point there are no vops active, and any new vops will 2150 * fail with EIO since we have z_teardown_lock for writer (only 2151 * relavent for forced unmount). 2152 * 2153 * Release all holds on dbufs. 2154 */ 2155 mutex_enter(&zfsvfs->z_znodes_lock); 2156 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 2157 zp = list_next(&zfsvfs->z_all_znodes, zp)) 2158 if (zp->z_sa_hdl) { 2159 ASSERT(ZTOV(zp)->v_count > 0); 2160 zfs_znode_dmu_fini(zp); 2161 } 2162 mutex_exit(&zfsvfs->z_znodes_lock); 2163 2164 /* 2165 * If we are unmounting, set the unmounted flag and let new vops 2166 * unblock. zfs_inactive will have the unmounted behavior, and all 2167 * other vops will fail with EIO. 2168 */ 2169 if (unmounting) { 2170 zfsvfs->z_unmounted = B_TRUE; 2171 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2172 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 2173 } 2174 2175 /* 2176 * z_os will be NULL if there was an error in attempting to reopen 2177 * zfsvfs, so just return as the properties had already been 2178 * unregistered and cached data had been evicted before. 2179 */ 2180 if (zfsvfs->z_os == NULL) 2181 return (0); 2182 2183 /* 2184 * Unregister properties. 2185 */ 2186 zfs_unregister_callbacks(zfsvfs); 2187 2188 /* 2189 * Evict cached data 2190 */ 2191 if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) && 2192 !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 2193 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 2194 dmu_objset_evict_dbufs(zfsvfs->z_os); 2195 2196 return (0); 2197 } 2198 2199 /*ARGSUSED*/ 2200 static int 2201 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 2202 { 2203 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2204 objset_t *os; 2205 int ret; 2206 2207 ret = secpolicy_fs_unmount(cr, vfsp); 2208 if (ret) { 2209 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 2210 ZFS_DELEG_PERM_MOUNT, cr)) 2211 return (ret); 2212 } 2213 2214 /* 2215 * We purge the parent filesystem's vfsp as the parent filesystem 2216 * and all of its snapshots have their vnode's v_vfsp set to the 2217 * parent's filesystem's vfsp. Note, 'z_parent' is self 2218 * referential for non-snapshots. 2219 */ 2220 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 2221 2222 /* 2223 * Unmount any snapshots mounted under .zfs before unmounting the 2224 * dataset itself. 2225 */ 2226 if (zfsvfs->z_ctldir != NULL && 2227 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 2228 return (ret); 2229 } 2230 2231 if (!(fflag & MS_FORCE)) { 2232 /* 2233 * Check the number of active vnodes in the file system. 2234 * Our count is maintained in the vfs structure, but the 2235 * number is off by 1 to indicate a hold on the vfs 2236 * structure itself. 2237 */ 2238 boolean_t draining; 2239 uint_t thresh = 1; 2240 2241 /* 2242 * The '.zfs' directory maintains a reference of its own, and 2243 * any active references underneath are reflected in the vnode 2244 * count. Allow one additional reference for it. 2245 */ 2246 if (zfsvfs->z_ctldir != NULL) 2247 thresh++; 2248 2249 /* 2250 * If it's running, the asynchronous unlinked drain task needs 2251 * to be stopped before the number of active vnodes can be 2252 * reliably checked. 2253 */ 2254 draining = zfsvfs->z_draining; 2255 if (draining) 2256 zfs_unlinked_drain_stop_wait(zfsvfs); 2257 2258 if (vfsp->vfs_count > thresh || (zfsvfs->z_ctldir != NULL && 2259 zfsvfs->z_ctldir->v_count > 1)) { 2260 if (draining) { 2261 /* If it was draining, restart the task */ 2262 zfs_unlinked_drain(zfsvfs); 2263 } 2264 return (SET_ERROR(EBUSY)); 2265 } 2266 } 2267 2268 vfsp->vfs_flag |= VFS_UNMOUNTED; 2269 2270 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 2271 os = zfsvfs->z_os; 2272 2273 /* 2274 * z_os will be NULL if there was an error in 2275 * attempting to reopen zfsvfs. 2276 */ 2277 if (os != NULL) { 2278 /* 2279 * Unset the objset user_ptr. 2280 */ 2281 mutex_enter(&os->os_user_ptr_lock); 2282 dmu_objset_set_user(os, NULL); 2283 mutex_exit(&os->os_user_ptr_lock); 2284 2285 /* 2286 * Finally release the objset 2287 */ 2288 dmu_objset_disown(os, B_TRUE, zfsvfs); 2289 } 2290 2291 /* 2292 * We can now safely destroy the '.zfs' directory node. 2293 */ 2294 if (zfsvfs->z_ctldir != NULL) 2295 zfsctl_destroy(zfsvfs); 2296 2297 return (0); 2298 } 2299 2300 static int 2301 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 2302 { 2303 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2304 znode_t *zp; 2305 uint64_t object = 0; 2306 uint64_t fid_gen = 0; 2307 uint64_t gen_mask; 2308 uint64_t zp_gen; 2309 int i, err; 2310 2311 *vpp = NULL; 2312 2313 ZFS_ENTER(zfsvfs); 2314 2315 if (fidp->fid_len == LONG_FID_LEN) { 2316 zfid_long_t *zlfid = (zfid_long_t *)fidp; 2317 uint64_t objsetid = 0; 2318 uint64_t setgen = 0; 2319 2320 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 2321 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 2322 2323 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 2324 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 2325 2326 ZFS_EXIT(zfsvfs); 2327 2328 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 2329 if (err) 2330 return (SET_ERROR(EINVAL)); 2331 ZFS_ENTER(zfsvfs); 2332 } 2333 2334 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 2335 zfid_short_t *zfid = (zfid_short_t *)fidp; 2336 2337 for (i = 0; i < sizeof (zfid->zf_object); i++) 2338 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 2339 2340 for (i = 0; i < sizeof (zfid->zf_gen); i++) 2341 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 2342 } else { 2343 ZFS_EXIT(zfsvfs); 2344 return (SET_ERROR(EINVAL)); 2345 } 2346 2347 /* A zero fid_gen means we are in the .zfs control directories */ 2348 if (fid_gen == 0 && 2349 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 2350 *vpp = zfsvfs->z_ctldir; 2351 ASSERT(*vpp != NULL); 2352 if (object == ZFSCTL_INO_SNAPDIR) { 2353 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 2354 0, NULL, NULL, NULL, NULL, NULL) == 0); 2355 } else { 2356 VN_HOLD(*vpp); 2357 } 2358 ZFS_EXIT(zfsvfs); 2359 return (0); 2360 } 2361 2362 gen_mask = -1ULL >> (64 - 8 * i); 2363 2364 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 2365 if (err = zfs_zget(zfsvfs, object, &zp)) { 2366 ZFS_EXIT(zfsvfs); 2367 return (err); 2368 } 2369 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 2370 sizeof (uint64_t)); 2371 zp_gen = zp_gen & gen_mask; 2372 if (zp_gen == 0) 2373 zp_gen = 1; 2374 if (zp->z_unlinked || zp_gen != fid_gen) { 2375 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 2376 VN_RELE(ZTOV(zp)); 2377 ZFS_EXIT(zfsvfs); 2378 return (SET_ERROR(EINVAL)); 2379 } 2380 2381 *vpp = ZTOV(zp); 2382 ZFS_EXIT(zfsvfs); 2383 return (0); 2384 } 2385 2386 /* 2387 * Block out VOPs and close zfsvfs_t::z_os 2388 * 2389 * Note, if successful, then we return with the 'z_teardown_lock' and 2390 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying 2391 * dataset and objset intact so that they can be atomically handed off during 2392 * a subsequent rollback or recv operation and the resume thereafter. 2393 */ 2394 int 2395 zfs_suspend_fs(zfsvfs_t *zfsvfs) 2396 { 2397 int error; 2398 2399 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2400 return (error); 2401 2402 return (0); 2403 } 2404 2405 /* 2406 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset 2407 * is an invariant across any of the operations that can be performed while the 2408 * filesystem was suspended. Whether it succeeded or failed, the preconditions 2409 * are the same: the relevant objset and associated dataset are owned by 2410 * zfsvfs, held, and long held on entry. 2411 */ 2412 int 2413 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) 2414 { 2415 int err; 2416 znode_t *zp; 2417 2418 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2419 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2420 2421 /* 2422 * We already own this, so just update the objset_t, as the one we 2423 * had before may have been evicted. 2424 */ 2425 objset_t *os; 2426 VERIFY3P(ds->ds_owner, ==, zfsvfs); 2427 VERIFY(dsl_dataset_long_held(ds)); 2428 VERIFY0(dmu_objset_from_ds(ds, &os)); 2429 2430 err = zfsvfs_init(zfsvfs, os); 2431 if (err != 0) 2432 goto bail; 2433 2434 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2435 2436 zfs_set_fuid_feature(zfsvfs); 2437 2438 /* 2439 * Attempt to re-establish all the active znodes with 2440 * their dbufs. If a zfs_rezget() fails, then we'll let 2441 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2442 * when they try to use their znode. 2443 */ 2444 mutex_enter(&zfsvfs->z_znodes_lock); 2445 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2446 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2447 (void) zfs_rezget(zp); 2448 } 2449 mutex_exit(&zfsvfs->z_znodes_lock); 2450 2451 if (((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0) && 2452 !zfsvfs->z_unmounted) { 2453 /* 2454 * zfs_suspend_fs() could have interrupted freeing 2455 * of dnodes. We need to restart this freeing so 2456 * that we don't "leak" the space. 2457 */ 2458 zfs_unlinked_drain(zfsvfs); 2459 } 2460 2461 bail: 2462 /* release the VOPs */ 2463 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2464 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 2465 2466 if (err) { 2467 /* 2468 * Since we couldn't setup the sa framework, try to force 2469 * unmount this file system. 2470 */ 2471 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2472 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2473 } 2474 return (err); 2475 } 2476 2477 static void 2478 zfs_freevfs(vfs_t *vfsp) 2479 { 2480 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2481 2482 /* 2483 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2484 * from zfs_mount(). Release it here. If we came through 2485 * zfs_mountroot() instead, we didn't grab an extra hold, so 2486 * skip the VFS_RELE for rootvfs. 2487 */ 2488 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2489 VFS_RELE(zfsvfs->z_parent->z_vfs); 2490 2491 zfsvfs_free(zfsvfs); 2492 2493 atomic_dec_32(&zfs_active_fs_count); 2494 } 2495 2496 /* 2497 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2498 * so we can't safely do any non-idempotent initialization here. 2499 * Leave that to zfs_init() and zfs_fini(), which are called 2500 * from the module's _init() and _fini() entry points. 2501 */ 2502 /*ARGSUSED*/ 2503 static int 2504 zfs_vfsinit(int fstype, char *name) 2505 { 2506 int error; 2507 2508 zfsfstype = fstype; 2509 2510 /* 2511 * Setup vfsops and vnodeops tables. 2512 */ 2513 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2514 if (error != 0) { 2515 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2516 } 2517 2518 error = zfs_create_op_tables(); 2519 if (error) { 2520 zfs_remove_op_tables(); 2521 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2522 (void) vfs_freevfsops_by_type(zfsfstype); 2523 return (error); 2524 } 2525 2526 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2527 2528 /* 2529 * Unique major number for all zfs mounts. 2530 * If we run out of 32-bit minors, we'll getudev() another major. 2531 */ 2532 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2533 zfs_minor = ZFS_MIN_MINOR; 2534 2535 return (0); 2536 } 2537 2538 void 2539 zfs_init(void) 2540 { 2541 /* 2542 * Initialize .zfs directory structures 2543 */ 2544 zfsctl_init(); 2545 2546 /* 2547 * Initialize znode cache, vnode ops, etc... 2548 */ 2549 zfs_znode_init(); 2550 2551 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2552 } 2553 2554 void 2555 zfs_fini(void) 2556 { 2557 zfsctl_fini(); 2558 zfs_znode_fini(); 2559 } 2560 2561 int 2562 zfs_busy(void) 2563 { 2564 return (zfs_active_fs_count != 0); 2565 } 2566 2567 int 2568 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2569 { 2570 int error; 2571 objset_t *os = zfsvfs->z_os; 2572 dmu_tx_t *tx; 2573 2574 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2575 return (SET_ERROR(EINVAL)); 2576 2577 if (newvers < zfsvfs->z_version) 2578 return (SET_ERROR(EINVAL)); 2579 2580 if (zfs_spa_version_map(newvers) > 2581 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2582 return (SET_ERROR(ENOTSUP)); 2583 2584 tx = dmu_tx_create(os); 2585 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2586 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2587 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2588 ZFS_SA_ATTRS); 2589 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2590 } 2591 error = dmu_tx_assign(tx, TXG_WAIT); 2592 if (error) { 2593 dmu_tx_abort(tx); 2594 return (error); 2595 } 2596 2597 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2598 8, 1, &newvers, tx); 2599 2600 if (error) { 2601 dmu_tx_commit(tx); 2602 return (error); 2603 } 2604 2605 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2606 uint64_t sa_obj; 2607 2608 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2609 SPA_VERSION_SA); 2610 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2611 DMU_OT_NONE, 0, tx); 2612 2613 error = zap_add(os, MASTER_NODE_OBJ, 2614 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2615 ASSERT0(error); 2616 2617 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2618 sa_register_update_callback(os, zfs_sa_upgrade); 2619 } 2620 2621 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2622 "from %llu to %llu", zfsvfs->z_version, newvers); 2623 2624 dmu_tx_commit(tx); 2625 2626 zfsvfs->z_version = newvers; 2627 os->os_version = newvers; 2628 2629 zfs_set_fuid_feature(zfsvfs); 2630 2631 return (0); 2632 } 2633 2634 /* 2635 * Read a property stored within the master node. 2636 */ 2637 int 2638 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2639 { 2640 uint64_t *cached_copy = NULL; 2641 2642 /* 2643 * Figure out where in the objset_t the cached copy would live, if it 2644 * is available for the requested property. 2645 */ 2646 if (os != NULL) { 2647 switch (prop) { 2648 case ZFS_PROP_VERSION: 2649 cached_copy = &os->os_version; 2650 break; 2651 case ZFS_PROP_NORMALIZE: 2652 cached_copy = &os->os_normalization; 2653 break; 2654 case ZFS_PROP_UTF8ONLY: 2655 cached_copy = &os->os_utf8only; 2656 break; 2657 case ZFS_PROP_CASE: 2658 cached_copy = &os->os_casesensitivity; 2659 break; 2660 default: 2661 break; 2662 } 2663 } 2664 if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) { 2665 *value = *cached_copy; 2666 return (0); 2667 } 2668 2669 /* 2670 * If the property wasn't cached, look up the file system's value for 2671 * the property. For the version property, we look up a slightly 2672 * different string. 2673 */ 2674 const char *pname; 2675 int error = ENOENT; 2676 if (prop == ZFS_PROP_VERSION) { 2677 pname = ZPL_VERSION_STR; 2678 } else { 2679 pname = zfs_prop_to_name(prop); 2680 } 2681 2682 if (os != NULL) { 2683 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS); 2684 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2685 } 2686 2687 if (error == ENOENT) { 2688 /* No value set, use the default value */ 2689 switch (prop) { 2690 case ZFS_PROP_VERSION: 2691 *value = ZPL_VERSION; 2692 break; 2693 case ZFS_PROP_NORMALIZE: 2694 case ZFS_PROP_UTF8ONLY: 2695 *value = 0; 2696 break; 2697 case ZFS_PROP_CASE: 2698 *value = ZFS_CASE_SENSITIVE; 2699 break; 2700 default: 2701 return (error); 2702 } 2703 error = 0; 2704 } 2705 2706 /* 2707 * If one of the methods for getting the property value above worked, 2708 * copy it into the objset_t's cache. 2709 */ 2710 if (error == 0 && cached_copy != NULL) { 2711 *cached_copy = *value; 2712 } 2713 2714 return (error); 2715 } 2716 2717 /* 2718 * Return true if the coresponding vfs's unmounted flag is set. 2719 * Otherwise return false. 2720 * If this function returns true we know VFS unmount has been initiated. 2721 */ 2722 boolean_t 2723 zfs_get_vfs_flag_unmounted(objset_t *os) 2724 { 2725 zfsvfs_t *zfvp; 2726 boolean_t unmounted = B_FALSE; 2727 2728 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS); 2729 2730 mutex_enter(&os->os_user_ptr_lock); 2731 zfvp = dmu_objset_get_user(os); 2732 if (zfvp != NULL && zfvp->z_vfs != NULL && 2733 (zfvp->z_vfs->vfs_flag & VFS_UNMOUNTED)) 2734 unmounted = B_TRUE; 2735 mutex_exit(&os->os_user_ptr_lock); 2736 2737 return (unmounted); 2738 } 2739 2740 static vfsdef_t vfw = { 2741 VFSDEF_VERSION, 2742 MNTTYPE_ZFS, 2743 zfs_vfsinit, 2744 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2745 VSW_XID|VSW_ZMOUNT, 2746 &zfs_mntopts 2747 }; 2748 2749 struct modlfs zfs_modlfs = { 2750 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2751 }; 2752