xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision 638bc9f013400030354ab6566ae2a5726f7580fa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
26  * Copyright 2019 Joyent, Inc.
27  * Copyright 2020 Joshua M. Clulow <josh@sysmgr.org>
28  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
29  */
30 
31 /* Portions Copyright 2010 Robert Milkowski */
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/sysmacros.h>
37 #include <sys/kmem.h>
38 #include <sys/pathname.h>
39 #include <sys/vnode.h>
40 #include <sys/vfs.h>
41 #include <sys/vfs_opreg.h>
42 #include <sys/mntent.h>
43 #include <sys/mount.h>
44 #include <sys/cmn_err.h>
45 #include "fs/fs_subr.h"
46 #include <sys/zfs_znode.h>
47 #include <sys/zfs_dir.h>
48 #include <sys/zil.h>
49 #include <sys/fs/zfs.h>
50 #include <sys/dmu.h>
51 #include <sys/dsl_prop.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_deleg.h>
54 #include <sys/spa.h>
55 #include <sys/zap.h>
56 #include <sys/sa.h>
57 #include <sys/sa_impl.h>
58 #include <sys/varargs.h>
59 #include <sys/policy.h>
60 #include <sys/atomic.h>
61 #include <sys/mkdev.h>
62 #include <sys/modctl.h>
63 #include <sys/refstr.h>
64 #include <sys/zfs_ioctl.h>
65 #include <sys/zfs_ctldir.h>
66 #include <sys/zfs_fuid.h>
67 #include <sys/bootconf.h>
68 #include <sys/ddi.h>
69 #include <sys/sunddi.h>
70 #include <sys/dnlc.h>
71 #include <sys/dmu_objset.h>
72 #include <sys/spa_boot.h>
73 #include <sys/vdev_impl.h>
74 #include "zfs_comutil.h"
75 
76 int zfsfstype;
77 vfsops_t *zfs_vfsops = NULL;
78 static major_t zfs_major;
79 static minor_t zfs_minor;
80 static kmutex_t	zfs_dev_mtx;
81 
82 extern int sys_shutdown;
83 
84 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
85 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
86 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
87 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
88 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
89 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
90 static void zfs_freevfs(vfs_t *vfsp);
91 
92 static const fs_operation_def_t zfs_vfsops_template[] = {
93 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
94 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
95 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
96 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
97 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
98 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
99 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
100 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
101 	NULL,			NULL
102 };
103 
104 /*
105  * We need to keep a count of active fs's.
106  * This is necessary to prevent our module
107  * from being unloaded after a umount -f
108  */
109 static uint32_t	zfs_active_fs_count = 0;
110 
111 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
112 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
113 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
114 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
115 
116 /*
117  * MO_DEFAULT is not used since the default value is determined
118  * by the equivalent property.
119  */
120 static mntopt_t mntopts[] = {
121 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
122 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
123 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
124 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
125 };
126 
127 static mntopts_t zfs_mntopts = {
128 	sizeof (mntopts) / sizeof (mntopt_t),
129 	mntopts
130 };
131 
132 /*ARGSUSED*/
133 int
134 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
135 {
136 	/*
137 	 * Data integrity is job one.  We don't want a compromised kernel
138 	 * writing to the storage pool, so we never sync during panic.
139 	 */
140 	if (panicstr)
141 		return (0);
142 
143 	/*
144 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
145 	 * to sync metadata, which they would otherwise cache indefinitely.
146 	 * Semantically, the only requirement is that the sync be initiated.
147 	 * The DMU syncs out txgs frequently, so there's nothing to do.
148 	 */
149 	if (flag & SYNC_ATTR)
150 		return (0);
151 
152 	if (vfsp != NULL) {
153 		/*
154 		 * Sync a specific filesystem.
155 		 */
156 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
157 		dsl_pool_t *dp;
158 
159 		ZFS_ENTER(zfsvfs);
160 		dp = dmu_objset_pool(zfsvfs->z_os);
161 
162 		/*
163 		 * If the system is shutting down, then skip any
164 		 * filesystems which may exist on a suspended pool.
165 		 */
166 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
167 			ZFS_EXIT(zfsvfs);
168 			return (0);
169 		}
170 
171 		if (zfsvfs->z_log != NULL)
172 			zil_commit(zfsvfs->z_log, 0);
173 
174 		ZFS_EXIT(zfsvfs);
175 	} else {
176 		/*
177 		 * Sync all ZFS filesystems.  This is what happens when you
178 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
179 		 * request by waiting for all pools to commit all dirty data.
180 		 */
181 		spa_sync_allpools();
182 	}
183 
184 	return (0);
185 }
186 
187 static int
188 zfs_create_unique_device(dev_t *dev)
189 {
190 	major_t new_major;
191 
192 	do {
193 		ASSERT3U(zfs_minor, <=, MAXMIN32);
194 		minor_t start = zfs_minor;
195 		do {
196 			mutex_enter(&zfs_dev_mtx);
197 			if (zfs_minor >= MAXMIN32) {
198 				/*
199 				 * If we're still using the real major
200 				 * keep out of /dev/zfs and /dev/zvol minor
201 				 * number space.  If we're using a getudev()'ed
202 				 * major number, we can use all of its minors.
203 				 */
204 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
205 					zfs_minor = ZFS_MIN_MINOR;
206 				else
207 					zfs_minor = 0;
208 			} else {
209 				zfs_minor++;
210 			}
211 			*dev = makedevice(zfs_major, zfs_minor);
212 			mutex_exit(&zfs_dev_mtx);
213 		} while (vfs_devismounted(*dev) && zfs_minor != start);
214 		if (zfs_minor == start) {
215 			/*
216 			 * We are using all ~262,000 minor numbers for the
217 			 * current major number.  Create a new major number.
218 			 */
219 			if ((new_major = getudev()) == (major_t)-1) {
220 				cmn_err(CE_WARN,
221 				    "zfs_mount: Can't get unique major "
222 				    "device number.");
223 				return (-1);
224 			}
225 			mutex_enter(&zfs_dev_mtx);
226 			zfs_major = new_major;
227 			zfs_minor = 0;
228 
229 			mutex_exit(&zfs_dev_mtx);
230 		} else {
231 			break;
232 		}
233 		/* CONSTANTCONDITION */
234 	} while (1);
235 
236 	return (0);
237 }
238 
239 static void
240 atime_changed_cb(void *arg, uint64_t newval)
241 {
242 	zfsvfs_t *zfsvfs = arg;
243 
244 	if (newval == TRUE) {
245 		zfsvfs->z_atime = TRUE;
246 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
247 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
248 	} else {
249 		zfsvfs->z_atime = FALSE;
250 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
251 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
252 	}
253 }
254 
255 static void
256 xattr_changed_cb(void *arg, uint64_t newval)
257 {
258 	zfsvfs_t *zfsvfs = arg;
259 
260 	if (newval == TRUE) {
261 		/* XXX locking on vfs_flag? */
262 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
263 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
264 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
265 	} else {
266 		/* XXX locking on vfs_flag? */
267 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
268 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
269 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
270 	}
271 }
272 
273 static void
274 blksz_changed_cb(void *arg, uint64_t newval)
275 {
276 	zfsvfs_t *zfsvfs = arg;
277 	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
278 	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
279 	ASSERT(ISP2(newval));
280 
281 	zfsvfs->z_max_blksz = newval;
282 	zfsvfs->z_vfs->vfs_bsize = newval;
283 }
284 
285 static void
286 readonly_changed_cb(void *arg, uint64_t newval)
287 {
288 	zfsvfs_t *zfsvfs = arg;
289 
290 	if (newval) {
291 		/* XXX locking on vfs_flag? */
292 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
293 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
294 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
295 	} else {
296 		/* XXX locking on vfs_flag? */
297 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
298 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
299 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
300 	}
301 }
302 
303 static void
304 devices_changed_cb(void *arg, uint64_t newval)
305 {
306 	zfsvfs_t *zfsvfs = arg;
307 
308 	if (newval == FALSE) {
309 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
310 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
311 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
312 	} else {
313 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
314 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
315 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
316 	}
317 }
318 
319 static void
320 setuid_changed_cb(void *arg, uint64_t newval)
321 {
322 	zfsvfs_t *zfsvfs = arg;
323 
324 	if (newval == FALSE) {
325 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
326 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
327 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
328 	} else {
329 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
330 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
331 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
332 	}
333 }
334 
335 static void
336 exec_changed_cb(void *arg, uint64_t newval)
337 {
338 	zfsvfs_t *zfsvfs = arg;
339 
340 	if (newval == FALSE) {
341 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
342 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
343 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
344 	} else {
345 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
346 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
347 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
348 	}
349 }
350 
351 /*
352  * The nbmand mount option can be changed at mount time.
353  * We can't allow it to be toggled on live file systems or incorrect
354  * behavior may be seen from cifs clients
355  *
356  * This property isn't registered via dsl_prop_register(), but this callback
357  * will be called when a file system is first mounted
358  */
359 static void
360 nbmand_changed_cb(void *arg, uint64_t newval)
361 {
362 	zfsvfs_t *zfsvfs = arg;
363 	if (newval == FALSE) {
364 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
365 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
366 	} else {
367 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
368 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
369 	}
370 }
371 
372 static void
373 snapdir_changed_cb(void *arg, uint64_t newval)
374 {
375 	zfsvfs_t *zfsvfs = arg;
376 
377 	zfsvfs->z_show_ctldir = newval;
378 }
379 
380 static void
381 vscan_changed_cb(void *arg, uint64_t newval)
382 {
383 	zfsvfs_t *zfsvfs = arg;
384 
385 	zfsvfs->z_vscan = newval;
386 }
387 
388 static void
389 acl_mode_changed_cb(void *arg, uint64_t newval)
390 {
391 	zfsvfs_t *zfsvfs = arg;
392 
393 	zfsvfs->z_acl_mode = newval;
394 }
395 
396 static void
397 acl_inherit_changed_cb(void *arg, uint64_t newval)
398 {
399 	zfsvfs_t *zfsvfs = arg;
400 
401 	zfsvfs->z_acl_inherit = newval;
402 }
403 
404 static int
405 zfs_register_callbacks(vfs_t *vfsp)
406 {
407 	struct dsl_dataset *ds = NULL;
408 	objset_t *os = NULL;
409 	zfsvfs_t *zfsvfs = NULL;
410 	uint64_t nbmand;
411 	boolean_t readonly = B_FALSE;
412 	boolean_t do_readonly = B_FALSE;
413 	boolean_t setuid = B_FALSE;
414 	boolean_t do_setuid = B_FALSE;
415 	boolean_t exec = B_FALSE;
416 	boolean_t do_exec = B_FALSE;
417 	boolean_t devices = B_FALSE;
418 	boolean_t do_devices = B_FALSE;
419 	boolean_t xattr = B_FALSE;
420 	boolean_t do_xattr = B_FALSE;
421 	boolean_t atime = B_FALSE;
422 	boolean_t do_atime = B_FALSE;
423 	int error = 0;
424 
425 	ASSERT(vfsp);
426 	zfsvfs = vfsp->vfs_data;
427 	ASSERT(zfsvfs);
428 	os = zfsvfs->z_os;
429 
430 	/*
431 	 * The act of registering our callbacks will destroy any mount
432 	 * options we may have.  In order to enable temporary overrides
433 	 * of mount options, we stash away the current values and
434 	 * restore them after we register the callbacks.
435 	 */
436 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
437 	    !spa_writeable(dmu_objset_spa(os))) {
438 		readonly = B_TRUE;
439 		do_readonly = B_TRUE;
440 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
441 		readonly = B_FALSE;
442 		do_readonly = B_TRUE;
443 	}
444 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
445 		devices = B_FALSE;
446 		setuid = B_FALSE;
447 		do_devices = B_TRUE;
448 		do_setuid = B_TRUE;
449 	} else {
450 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
451 			devices = B_FALSE;
452 			do_devices = B_TRUE;
453 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
454 			devices = B_TRUE;
455 			do_devices = B_TRUE;
456 		}
457 
458 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
459 			setuid = B_FALSE;
460 			do_setuid = B_TRUE;
461 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
462 			setuid = B_TRUE;
463 			do_setuid = B_TRUE;
464 		}
465 	}
466 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
467 		exec = B_FALSE;
468 		do_exec = B_TRUE;
469 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
470 		exec = B_TRUE;
471 		do_exec = B_TRUE;
472 	}
473 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
474 		xattr = B_FALSE;
475 		do_xattr = B_TRUE;
476 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
477 		xattr = B_TRUE;
478 		do_xattr = B_TRUE;
479 	}
480 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
481 		atime = B_FALSE;
482 		do_atime = B_TRUE;
483 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
484 		atime = B_TRUE;
485 		do_atime = B_TRUE;
486 	}
487 
488 	/*
489 	 * nbmand is a special property.  It can only be changed at
490 	 * mount time.
491 	 *
492 	 * This is weird, but it is documented to only be changeable
493 	 * at mount time.
494 	 */
495 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
496 		nbmand = B_FALSE;
497 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
498 		nbmand = B_TRUE;
499 	} else {
500 		char osname[ZFS_MAX_DATASET_NAME_LEN];
501 
502 		dmu_objset_name(os, osname);
503 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
504 		    NULL)) {
505 			return (error);
506 		}
507 	}
508 
509 	/*
510 	 * Register property callbacks.
511 	 *
512 	 * It would probably be fine to just check for i/o error from
513 	 * the first prop_register(), but I guess I like to go
514 	 * overboard...
515 	 */
516 	ds = dmu_objset_ds(os);
517 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
518 	error = dsl_prop_register(ds,
519 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
520 	error = error ? error : dsl_prop_register(ds,
521 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
522 	error = error ? error : dsl_prop_register(ds,
523 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
524 	error = error ? error : dsl_prop_register(ds,
525 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
526 	error = error ? error : dsl_prop_register(ds,
527 	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
528 	error = error ? error : dsl_prop_register(ds,
529 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
530 	error = error ? error : dsl_prop_register(ds,
531 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
532 	error = error ? error : dsl_prop_register(ds,
533 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
534 	error = error ? error : dsl_prop_register(ds,
535 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
536 	error = error ? error : dsl_prop_register(ds,
537 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
538 	    zfsvfs);
539 	error = error ? error : dsl_prop_register(ds,
540 	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
541 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
542 	if (error)
543 		goto unregister;
544 
545 	/*
546 	 * Invoke our callbacks to restore temporary mount options.
547 	 */
548 	if (do_readonly)
549 		readonly_changed_cb(zfsvfs, readonly);
550 	if (do_setuid)
551 		setuid_changed_cb(zfsvfs, setuid);
552 	if (do_exec)
553 		exec_changed_cb(zfsvfs, exec);
554 	if (do_devices)
555 		devices_changed_cb(zfsvfs, devices);
556 	if (do_xattr)
557 		xattr_changed_cb(zfsvfs, xattr);
558 	if (do_atime)
559 		atime_changed_cb(zfsvfs, atime);
560 
561 	nbmand_changed_cb(zfsvfs, nbmand);
562 
563 	return (0);
564 
565 unregister:
566 	dsl_prop_unregister_all(ds, zfsvfs);
567 	return (error);
568 }
569 
570 static int
571 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
572     uint64_t *userp, uint64_t *groupp, uint64_t *projectp)
573 {
574 	sa_hdr_phys_t sa;
575 	sa_hdr_phys_t *sap = data;
576 	uint64_t flags;
577 	int hdrsize;
578 	boolean_t swap = B_FALSE;
579 
580 	/*
581 	 * Is it a valid type of object to track?
582 	 */
583 	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
584 		return (SET_ERROR(ENOENT));
585 
586 	/*
587 	 * If we have a NULL data pointer
588 	 * then assume the id's aren't changing and
589 	 * return EEXIST to the dmu to let it know to
590 	 * use the same ids
591 	 */
592 	if (data == NULL)
593 		return (SET_ERROR(EEXIST));
594 
595 	if (bonustype == DMU_OT_ZNODE) {
596 		znode_phys_t *znp = data;
597 		*userp = znp->zp_uid;
598 		*groupp = znp->zp_gid;
599 		*projectp = ZFS_DEFAULT_PROJID;
600 		return (0);
601 	}
602 
603 	if (sap->sa_magic == 0) {
604 		/*
605 		 * This should only happen for newly created files
606 		 * that haven't had the znode data filled in yet.
607 		 */
608 		*userp = 0;
609 		*groupp = 0;
610 		*projectp = ZFS_DEFAULT_PROJID;
611 		return (0);
612 	}
613 
614 	sa = *sap;
615 	if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
616 		sa.sa_magic = SA_MAGIC;
617 		sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
618 		swap = B_TRUE;
619 	} else {
620 		VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
621 	}
622 
623 	hdrsize = sa_hdrsize(&sa);
624 	VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
625 
626 	*userp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_UID_OFFSET));
627 	*groupp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_GID_OFFSET));
628 	flags = *((uint64_t *)((uintptr_t)data + hdrsize + SA_FLAGS_OFFSET));
629 	if (swap)
630 		flags = BSWAP_64(flags);
631 
632 	if (flags & ZFS_PROJID)
633 		*projectp = *((uint64_t *)((uintptr_t)data + hdrsize +
634 		    SA_PROJID_OFFSET));
635 	else
636 		*projectp = ZFS_DEFAULT_PROJID;
637 
638 	if (swap) {
639 		*userp = BSWAP_64(*userp);
640 		*groupp = BSWAP_64(*groupp);
641 		*projectp = BSWAP_64(*projectp);
642 	}
643 	return (0);
644 }
645 
646 static void
647 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
648     char *domainbuf, int buflen, uid_t *ridp)
649 {
650 	uint64_t fuid;
651 	const char *domain;
652 
653 	fuid = zfs_strtonum(fuidstr, NULL);
654 
655 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
656 	if (domain)
657 		(void) strlcpy(domainbuf, domain, buflen);
658 	else
659 		domainbuf[0] = '\0';
660 	*ridp = FUID_RID(fuid);
661 }
662 
663 static uint64_t
664 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
665 {
666 	switch (type) {
667 	case ZFS_PROP_USERUSED:
668 	case ZFS_PROP_USEROBJUSED:
669 		return (DMU_USERUSED_OBJECT);
670 	case ZFS_PROP_GROUPUSED:
671 	case ZFS_PROP_GROUPOBJUSED:
672 		return (DMU_GROUPUSED_OBJECT);
673 	case ZFS_PROP_PROJECTUSED:
674 	case ZFS_PROP_PROJECTOBJUSED:
675 		return (DMU_PROJECTUSED_OBJECT);
676 	case ZFS_PROP_USERQUOTA:
677 		return (zfsvfs->z_userquota_obj);
678 	case ZFS_PROP_GROUPQUOTA:
679 		return (zfsvfs->z_groupquota_obj);
680 	case ZFS_PROP_USEROBJQUOTA:
681 		return (zfsvfs->z_userobjquota_obj);
682 	case ZFS_PROP_GROUPOBJQUOTA:
683 		return (zfsvfs->z_groupobjquota_obj);
684 	case ZFS_PROP_PROJECTQUOTA:
685 		return (zfsvfs->z_projectquota_obj);
686 	case ZFS_PROP_PROJECTOBJQUOTA:
687 		return (zfsvfs->z_projectobjquota_obj);
688 	default:
689 		return (ZFS_NO_OBJECT);
690 	}
691 }
692 
693 int
694 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
695     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
696 {
697 	int error;
698 	zap_cursor_t zc;
699 	zap_attribute_t za;
700 	zfs_useracct_t *buf = vbuf;
701 	uint64_t obj;
702 	int offset = 0;
703 
704 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
705 		return (SET_ERROR(ENOTSUP));
706 
707 	if ((type == ZFS_PROP_PROJECTQUOTA || type == ZFS_PROP_PROJECTUSED ||
708 	    type == ZFS_PROP_PROJECTOBJQUOTA ||
709 	    type == ZFS_PROP_PROJECTOBJUSED) &&
710 	    !dmu_objset_projectquota_present(zfsvfs->z_os))
711 		return (SET_ERROR(ENOTSUP));
712 
713 	if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
714 	    type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA ||
715 	    type == ZFS_PROP_PROJECTOBJUSED ||
716 	    type == ZFS_PROP_PROJECTOBJQUOTA) &&
717 	    !dmu_objset_userobjspace_present(zfsvfs->z_os))
718 		return (SET_ERROR(ENOTSUP));
719 
720 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
721 	if (obj == ZFS_NO_OBJECT) {
722 		*bufsizep = 0;
723 		return (0);
724 	}
725 
726 	if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
727 	    type == ZFS_PROP_PROJECTOBJUSED)
728 		offset = DMU_OBJACCT_PREFIX_LEN;
729 
730 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
731 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
732 	    zap_cursor_advance(&zc)) {
733 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
734 		    *bufsizep)
735 			break;
736 
737 		/*
738 		 * skip object quota (with zap name prefix DMU_OBJACCT_PREFIX)
739 		 * when dealing with block quota and vice versa.
740 		 */
741 		if ((offset > 0) != (strncmp(za.za_name, DMU_OBJACCT_PREFIX,
742 		    DMU_OBJACCT_PREFIX_LEN) == 0))
743 			continue;
744 
745 		fuidstr_to_sid(zfsvfs, za.za_name + offset,
746 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
747 
748 		buf->zu_space = za.za_first_integer;
749 		buf++;
750 	}
751 	if (error == ENOENT)
752 		error = 0;
753 
754 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
755 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
756 	*cookiep = zap_cursor_serialize(&zc);
757 	zap_cursor_fini(&zc);
758 	return (error);
759 }
760 
761 /*
762  * buf must be big enough (eg, 32 bytes)
763  */
764 static int
765 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
766     char *buf, boolean_t addok)
767 {
768 	uint64_t fuid;
769 	int domainid = 0;
770 
771 	if (domain && domain[0]) {
772 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
773 		if (domainid == -1)
774 			return (SET_ERROR(ENOENT));
775 	}
776 	fuid = FUID_ENCODE(domainid, rid);
777 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
778 	return (0);
779 }
780 
781 int
782 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
783     const char *domain, uint64_t rid, uint64_t *valp)
784 {
785 	char buf[20 + DMU_OBJACCT_PREFIX_LEN];
786 	int offset = 0;
787 	int err;
788 	uint64_t obj;
789 
790 	*valp = 0;
791 
792 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
793 		return (SET_ERROR(ENOTSUP));
794 
795 	if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
796 	    type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA ||
797 	    type == ZFS_PROP_PROJECTOBJUSED ||
798 	    type == ZFS_PROP_PROJECTOBJQUOTA) &&
799 	    !dmu_objset_userobjspace_present(zfsvfs->z_os))
800 		return (SET_ERROR(ENOTSUP));
801 
802 	if (type == ZFS_PROP_PROJECTQUOTA || type == ZFS_PROP_PROJECTUSED ||
803 	    type == ZFS_PROP_PROJECTOBJQUOTA ||
804 	    type == ZFS_PROP_PROJECTOBJUSED) {
805 		if (!dmu_objset_projectquota_present(zfsvfs->z_os))
806 			return (SET_ERROR(ENOTSUP));
807 		if (!zpl_is_valid_projid(rid))
808 			return (SET_ERROR(EINVAL));
809 	}
810 
811 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
812 	if (obj == ZFS_NO_OBJECT)
813 		return (0);
814 
815 	if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
816 	    type == ZFS_PROP_PROJECTOBJUSED) {
817 		strncpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN);
818 		offset = DMU_OBJACCT_PREFIX_LEN;
819 	}
820 
821 	err = id_to_fuidstr(zfsvfs, domain, rid, buf + offset, B_FALSE);
822 	if (err)
823 		return (err);
824 
825 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
826 	if (err == ENOENT)
827 		err = 0;
828 	return (err);
829 }
830 
831 int
832 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
833     const char *domain, uint64_t rid, uint64_t quota)
834 {
835 	char buf[32];
836 	int err;
837 	dmu_tx_t *tx;
838 	uint64_t *objp;
839 	boolean_t fuid_dirtied;
840 
841 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
842 		return (SET_ERROR(ENOTSUP));
843 
844 	switch (type) {
845 	case ZFS_PROP_USERQUOTA:
846 		objp = &zfsvfs->z_userquota_obj;
847 		break;
848 	case ZFS_PROP_GROUPQUOTA:
849 		objp = &zfsvfs->z_groupquota_obj;
850 		break;
851 	case ZFS_PROP_USEROBJQUOTA:
852 		objp = &zfsvfs->z_userobjquota_obj;
853 		break;
854 	case ZFS_PROP_GROUPOBJQUOTA:
855 		objp = &zfsvfs->z_groupobjquota_obj;
856 		break;
857 	case ZFS_PROP_PROJECTQUOTA:
858 		if (!dmu_objset_projectquota_enabled(zfsvfs->z_os))
859 			return (SET_ERROR(ENOTSUP));
860 		if (!zpl_is_valid_projid(rid))
861 			return (SET_ERROR(EINVAL));
862 
863 		objp = &zfsvfs->z_projectquota_obj;
864 		break;
865 	case ZFS_PROP_PROJECTOBJQUOTA:
866 		if (!dmu_objset_projectquota_enabled(zfsvfs->z_os))
867 			return (SET_ERROR(ENOTSUP));
868 		if (!zpl_is_valid_projid(rid))
869 			return (SET_ERROR(EINVAL));
870 
871 		objp = &zfsvfs->z_projectobjquota_obj;
872 		break;
873 	default:
874 		return (SET_ERROR(EINVAL));
875 	}
876 
877 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
878 	if (err)
879 		return (err);
880 	fuid_dirtied = zfsvfs->z_fuid_dirty;
881 
882 	tx = dmu_tx_create(zfsvfs->z_os);
883 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
884 	if (*objp == 0) {
885 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
886 		    zfs_userquota_prop_prefixes[type]);
887 	}
888 	if (fuid_dirtied)
889 		zfs_fuid_txhold(zfsvfs, tx);
890 	err = dmu_tx_assign(tx, TXG_WAIT);
891 	if (err) {
892 		dmu_tx_abort(tx);
893 		return (err);
894 	}
895 
896 	mutex_enter(&zfsvfs->z_lock);
897 	if (*objp == 0) {
898 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
899 		    DMU_OT_NONE, 0, tx);
900 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
901 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
902 	}
903 	mutex_exit(&zfsvfs->z_lock);
904 
905 	if (quota == 0) {
906 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
907 		if (err == ENOENT)
908 			err = 0;
909 	} else {
910 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
911 	}
912 	ASSERT(err == 0);
913 	if (fuid_dirtied)
914 		zfs_fuid_sync(zfsvfs, tx);
915 	dmu_tx_commit(tx);
916 	return (err);
917 }
918 
919 boolean_t
920 zfs_id_overobjquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id)
921 {
922 	char buf[20 + DMU_OBJACCT_PREFIX_LEN];
923 	uint64_t used, quota, quotaobj;
924 	int err;
925 
926 	if (!dmu_objset_userobjspace_present(zfsvfs->z_os)) {
927 		if (dmu_objset_userobjspace_upgradable(zfsvfs->z_os))
928 			dmu_objset_id_quota_upgrade(zfsvfs->z_os);
929 		return (B_FALSE);
930 	}
931 
932 	if (usedobj == DMU_PROJECTUSED_OBJECT) {
933 		if (!dmu_objset_projectquota_present(zfsvfs->z_os)) {
934 			if (dmu_objset_projectquota_upgradable(zfsvfs->z_os)) {
935 				dsl_pool_config_enter(
936 				    dmu_objset_pool(zfsvfs->z_os), FTAG);
937 				dmu_objset_id_quota_upgrade(zfsvfs->z_os);
938 				dsl_pool_config_exit(
939 				    dmu_objset_pool(zfsvfs->z_os), FTAG);
940 			}
941 			return (B_FALSE);
942 		}
943 		quotaobj = zfsvfs->z_projectobjquota_obj;
944 	} else if (usedobj == DMU_USERUSED_OBJECT) {
945 		quotaobj = zfsvfs->z_userobjquota_obj;
946 	} else if (usedobj == DMU_GROUPUSED_OBJECT) {
947 		quotaobj = zfsvfs->z_groupobjquota_obj;
948 	} else {
949 		return (B_FALSE);
950 	}
951 	if (quotaobj == 0 || zfsvfs->z_replay)
952 		return (B_FALSE);
953 
954 	(void) sprintf(buf, "%llx", (longlong_t)id);
955 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
956 	if (err != 0)
957 		return (B_FALSE);
958 
959 	(void) sprintf(buf, DMU_OBJACCT_PREFIX "%llx", (longlong_t)id);
960 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
961 	if (err != 0)
962 		return (B_FALSE);
963 	return (used >= quota);
964 }
965 
966 boolean_t
967 zfs_id_overblockquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id)
968 {
969 	char buf[20];
970 	uint64_t used, quota, quotaobj;
971 	int err;
972 
973 	if (usedobj == DMU_PROJECTUSED_OBJECT) {
974 		if (!dmu_objset_projectquota_present(zfsvfs->z_os)) {
975 			if (dmu_objset_projectquota_upgradable(zfsvfs->z_os)) {
976 				dsl_pool_config_enter(
977 				    dmu_objset_pool(zfsvfs->z_os), FTAG);
978 				dmu_objset_id_quota_upgrade(zfsvfs->z_os);
979 				dsl_pool_config_exit(
980 				    dmu_objset_pool(zfsvfs->z_os), FTAG);
981 			}
982 			return (B_FALSE);
983 		}
984 		quotaobj = zfsvfs->z_projectquota_obj;
985 	} else if (usedobj == DMU_USERUSED_OBJECT) {
986 		quotaobj = zfsvfs->z_userquota_obj;
987 	} else if (usedobj == DMU_GROUPUSED_OBJECT) {
988 		quotaobj = zfsvfs->z_groupquota_obj;
989 	} else {
990 		return (B_FALSE);
991 	}
992 	if (quotaobj == 0 || zfsvfs->z_replay)
993 		return (B_FALSE);
994 
995 	(void) sprintf(buf, "%llx", (longlong_t)id);
996 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
997 	if (err != 0)
998 		return (B_FALSE);
999 
1000 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
1001 	if (err != 0)
1002 		return (B_FALSE);
1003 	return (used >= quota);
1004 }
1005 
1006 boolean_t
1007 zfs_id_overquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id)
1008 {
1009 	return (zfs_id_overblockquota(zfsvfs, usedobj, id) ||
1010 	    zfs_id_overobjquota(zfsvfs, usedobj, id));
1011 }
1012 
1013 /*
1014  * Associate this zfsvfs with the given objset, which must be owned.
1015  * This will cache a bunch of on-disk state from the objset in the
1016  * zfsvfs.
1017  */
1018 static int
1019 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
1020 {
1021 	int error;
1022 	uint64_t val;
1023 
1024 	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
1025 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
1026 	zfsvfs->z_os = os;
1027 
1028 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
1029 	if (error != 0)
1030 		return (error);
1031 	if (zfsvfs->z_version >
1032 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
1033 		(void) printf("Can't mount a version %lld file system "
1034 		    "on a version %lld pool\n. Pool must be upgraded to mount "
1035 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
1036 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
1037 		return (SET_ERROR(ENOTSUP));
1038 	}
1039 	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
1040 	if (error != 0)
1041 		return (error);
1042 	zfsvfs->z_norm = (int)val;
1043 
1044 	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
1045 	if (error != 0)
1046 		return (error);
1047 	zfsvfs->z_utf8 = (val != 0);
1048 
1049 	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
1050 	if (error != 0)
1051 		return (error);
1052 	zfsvfs->z_case = (uint_t)val;
1053 
1054 	/*
1055 	 * Fold case on file systems that are always or sometimes case
1056 	 * insensitive.
1057 	 */
1058 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
1059 	    zfsvfs->z_case == ZFS_CASE_MIXED)
1060 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
1061 
1062 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1063 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1064 
1065 	uint64_t sa_obj = 0;
1066 	if (zfsvfs->z_use_sa) {
1067 		/* should either have both of these objects or none */
1068 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
1069 		    &sa_obj);
1070 		if (error != 0)
1071 			return (error);
1072 	}
1073 
1074 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1075 	    &zfsvfs->z_attr_table);
1076 	if (error != 0)
1077 		return (error);
1078 
1079 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
1080 		sa_register_update_callback(os, zfs_sa_upgrade);
1081 
1082 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
1083 	    &zfsvfs->z_root);
1084 	if (error != 0)
1085 		return (error);
1086 	ASSERT(zfsvfs->z_root != 0);
1087 
1088 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
1089 	    &zfsvfs->z_unlinkedobj);
1090 	if (error != 0)
1091 		return (error);
1092 
1093 	error = zap_lookup(os, MASTER_NODE_OBJ,
1094 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
1095 	    8, 1, &zfsvfs->z_userquota_obj);
1096 	if (error == ENOENT)
1097 		zfsvfs->z_userquota_obj = 0;
1098 	else if (error != 0)
1099 		return (error);
1100 
1101 	error = zap_lookup(os, MASTER_NODE_OBJ,
1102 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
1103 	    8, 1, &zfsvfs->z_groupquota_obj);
1104 	if (error == ENOENT)
1105 		zfsvfs->z_groupquota_obj = 0;
1106 	else if (error != 0)
1107 		return (error);
1108 
1109 	error = zap_lookup(os, MASTER_NODE_OBJ,
1110 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
1111 	    8, 1, &zfsvfs->z_projectquota_obj);
1112 	if (error == ENOENT)
1113 		zfsvfs->z_projectquota_obj = 0;
1114 	else if (error != 0)
1115 		return (error);
1116 
1117 	error = zap_lookup(os, MASTER_NODE_OBJ,
1118 	    zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
1119 	    8, 1, &zfsvfs->z_userobjquota_obj);
1120 	if (error == ENOENT)
1121 		zfsvfs->z_userobjquota_obj = 0;
1122 	else if (error != 0)
1123 		return (error);
1124 
1125 	error = zap_lookup(os, MASTER_NODE_OBJ,
1126 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
1127 	    8, 1, &zfsvfs->z_groupobjquota_obj);
1128 	if (error == ENOENT)
1129 		zfsvfs->z_groupobjquota_obj = 0;
1130 	else if (error != 0)
1131 		return (error);
1132 
1133 	error = zap_lookup(os, MASTER_NODE_OBJ,
1134 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
1135 	    8, 1, &zfsvfs->z_projectobjquota_obj);
1136 	if (error == ENOENT)
1137 		zfsvfs->z_projectobjquota_obj = 0;
1138 	else if (error != 0)
1139 		return (error);
1140 
1141 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
1142 	    &zfsvfs->z_fuid_obj);
1143 	if (error == ENOENT)
1144 		zfsvfs->z_fuid_obj = 0;
1145 	else if (error != 0)
1146 		return (error);
1147 
1148 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
1149 	    &zfsvfs->z_shares_dir);
1150 	if (error == ENOENT)
1151 		zfsvfs->z_shares_dir = 0;
1152 	else if (error != 0)
1153 		return (error);
1154 
1155 	return (0);
1156 }
1157 
1158 int
1159 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
1160 {
1161 	objset_t *os;
1162 	zfsvfs_t *zfsvfs;
1163 	int error;
1164 	boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
1165 
1166 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
1167 
1168 	error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
1169 	if (error != 0) {
1170 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
1171 		return (error);
1172 	}
1173 
1174 	error = zfsvfs_create_impl(zfvp, zfsvfs, os);
1175 	if (error != 0) {
1176 		dmu_objset_disown(os, B_TRUE, zfsvfs);
1177 	}
1178 	return (error);
1179 }
1180 
1181 
1182 int
1183 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
1184 {
1185 	int error;
1186 
1187 	zfsvfs->z_vfs = NULL;
1188 	zfsvfs->z_parent = zfsvfs;
1189 
1190 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1191 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
1192 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1193 	    offsetof(znode_t, z_link_node));
1194 	rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
1195 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
1196 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1197 	for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1198 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1199 
1200 	error = zfsvfs_init(zfsvfs, os);
1201 	if (error != 0) {
1202 		*zfvp = NULL;
1203 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
1204 		return (error);
1205 	}
1206 
1207 	zfsvfs->z_drain_task = TASKQID_INVALID;
1208 	zfsvfs->z_draining = B_FALSE;
1209 	zfsvfs->z_drain_cancel = B_TRUE;
1210 
1211 	*zfvp = zfsvfs;
1212 	return (0);
1213 }
1214 
1215 static int
1216 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1217 {
1218 	int error;
1219 
1220 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1221 	if (error)
1222 		return (error);
1223 
1224 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1225 
1226 	/*
1227 	 * If we are not mounting (ie: online recv), then we don't
1228 	 * have to worry about replaying the log as we blocked all
1229 	 * operations out since we closed the ZIL.
1230 	 */
1231 	if (mounting) {
1232 		boolean_t readonly;
1233 
1234 		/*
1235 		 * During replay we remove the read only flag to
1236 		 * allow replays to succeed.
1237 		 */
1238 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1239 		if (readonly != 0) {
1240 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1241 		} else {
1242 			zfs_unlinked_drain(zfsvfs);
1243 		}
1244 
1245 		/*
1246 		 * Parse and replay the intent log.
1247 		 *
1248 		 * Because of ziltest, this must be done after
1249 		 * zfs_unlinked_drain().  (Further note: ziltest
1250 		 * doesn't use readonly mounts, where
1251 		 * zfs_unlinked_drain() isn't called.)  This is because
1252 		 * ziltest causes spa_sync() to think it's committed,
1253 		 * but actually it is not, so the intent log contains
1254 		 * many txg's worth of changes.
1255 		 *
1256 		 * In particular, if object N is in the unlinked set in
1257 		 * the last txg to actually sync, then it could be
1258 		 * actually freed in a later txg and then reallocated
1259 		 * in a yet later txg.  This would write a "create
1260 		 * object N" record to the intent log.  Normally, this
1261 		 * would be fine because the spa_sync() would have
1262 		 * written out the fact that object N is free, before
1263 		 * we could write the "create object N" intent log
1264 		 * record.
1265 		 *
1266 		 * But when we are in ziltest mode, we advance the "open
1267 		 * txg" without actually spa_sync()-ing the changes to
1268 		 * disk.  So we would see that object N is still
1269 		 * allocated and in the unlinked set, and there is an
1270 		 * intent log record saying to allocate it.
1271 		 */
1272 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1273 			if (zil_replay_disable) {
1274 				zil_destroy(zfsvfs->z_log, B_FALSE);
1275 			} else {
1276 				zfsvfs->z_replay = B_TRUE;
1277 				zil_replay(zfsvfs->z_os, zfsvfs,
1278 				    zfs_replay_vector);
1279 				zfsvfs->z_replay = B_FALSE;
1280 			}
1281 		}
1282 
1283 		/* restore readonly bit */
1284 		if (readonly != 0)
1285 			zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
1286 	}
1287 
1288 	/*
1289 	 * Set the objset user_ptr to track its zfsvfs.
1290 	 */
1291 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1292 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1293 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1294 
1295 	return (0);
1296 }
1297 
1298 void
1299 zfsvfs_free(zfsvfs_t *zfsvfs)
1300 {
1301 	int i;
1302 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1303 
1304 	/*
1305 	 * This is a barrier to prevent the filesystem from going away in
1306 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1307 	 * not unmounted. We consider the filesystem valid before the barrier
1308 	 * and invalid after the barrier.
1309 	 */
1310 	rw_enter(&zfsvfs_lock, RW_READER);
1311 	rw_exit(&zfsvfs_lock);
1312 
1313 	zfs_fuid_destroy(zfsvfs);
1314 
1315 	mutex_destroy(&zfsvfs->z_znodes_lock);
1316 	mutex_destroy(&zfsvfs->z_lock);
1317 	list_destroy(&zfsvfs->z_all_znodes);
1318 	rrm_destroy(&zfsvfs->z_teardown_lock);
1319 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1320 	rw_destroy(&zfsvfs->z_fuid_lock);
1321 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1322 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1323 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1324 }
1325 
1326 static void
1327 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1328 {
1329 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1330 	if (zfsvfs->z_vfs) {
1331 		if (zfsvfs->z_use_fuids) {
1332 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1333 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1334 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1335 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1336 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1337 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1338 		} else {
1339 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1340 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1341 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1342 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1343 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1344 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1345 		}
1346 	}
1347 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1348 }
1349 
1350 static int
1351 zfs_domount(vfs_t *vfsp, char *osname)
1352 {
1353 	dev_t mount_dev;
1354 	uint64_t recordsize, fsid_guid;
1355 	int error = 0;
1356 	zfsvfs_t *zfsvfs;
1357 	boolean_t readonly = vfsp->vfs_flag & VFS_RDONLY ? B_TRUE : B_FALSE;
1358 
1359 	ASSERT(vfsp);
1360 	ASSERT(osname);
1361 
1362 	error = zfsvfs_create(osname, readonly, &zfsvfs);
1363 	if (error)
1364 		return (error);
1365 	zfsvfs->z_vfs = vfsp;
1366 
1367 	/* Initialize the generic filesystem structure. */
1368 	vfsp->vfs_bcount = 0;
1369 	vfsp->vfs_data = NULL;
1370 
1371 	if (zfs_create_unique_device(&mount_dev) == -1) {
1372 		error = SET_ERROR(ENODEV);
1373 		goto out;
1374 	}
1375 	ASSERT(vfs_devismounted(mount_dev) == 0);
1376 
1377 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1378 	    NULL))
1379 		goto out;
1380 
1381 	vfsp->vfs_dev = mount_dev;
1382 	vfsp->vfs_fstype = zfsfstype;
1383 	vfsp->vfs_bsize = recordsize;
1384 	vfsp->vfs_flag |= VFS_NOTRUNC;
1385 	vfsp->vfs_data = zfsvfs;
1386 
1387 	/*
1388 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1389 	 * separates our fsid from any other filesystem types, and a
1390 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1391 	 * all objsets open on this system, provided by unique_create().
1392 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1393 	 * because that's where other Solaris filesystems put it.
1394 	 */
1395 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1396 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1397 	vfsp->vfs_fsid.val[0] = fsid_guid;
1398 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1399 	    zfsfstype & 0xFF;
1400 
1401 	/*
1402 	 * Set features for file system.
1403 	 */
1404 	zfs_set_fuid_feature(zfsvfs);
1405 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1406 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1407 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1408 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1409 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1410 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1411 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1412 	}
1413 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1414 
1415 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1416 		uint64_t pval;
1417 
1418 		atime_changed_cb(zfsvfs, B_FALSE);
1419 		readonly_changed_cb(zfsvfs, B_TRUE);
1420 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1421 			goto out;
1422 		xattr_changed_cb(zfsvfs, pval);
1423 		zfsvfs->z_issnap = B_TRUE;
1424 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1425 
1426 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1427 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1428 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1429 	} else {
1430 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1431 	}
1432 
1433 	if (!zfsvfs->z_issnap)
1434 		zfsctl_create(zfsvfs);
1435 out:
1436 	if (error) {
1437 		dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1438 		zfsvfs_free(zfsvfs);
1439 	} else {
1440 		atomic_inc_32(&zfs_active_fs_count);
1441 	}
1442 
1443 	return (error);
1444 }
1445 
1446 void
1447 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1448 {
1449 	objset_t *os = zfsvfs->z_os;
1450 
1451 	if (!dmu_objset_is_snapshot(os))
1452 		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1453 }
1454 
1455 /*
1456  * Convert a decimal digit string to a uint64_t integer.
1457  */
1458 static int
1459 str_to_uint64(char *str, uint64_t *objnum)
1460 {
1461 	uint64_t num = 0;
1462 
1463 	while (*str) {
1464 		if (*str < '0' || *str > '9')
1465 			return (SET_ERROR(EINVAL));
1466 
1467 		num = num*10 + *str++ - '0';
1468 	}
1469 
1470 	*objnum = num;
1471 	return (0);
1472 }
1473 
1474 /*
1475  * The boot path passed from the boot loader is in the form of
1476  * "rootpool-name/root-filesystem-object-number'. Convert this
1477  * string to a dataset name: "rootpool-name/root-filesystem-name".
1478  */
1479 static int
1480 zfs_parse_bootfs(char *bpath, char *outpath)
1481 {
1482 	char *slashp;
1483 	uint64_t objnum;
1484 	int error;
1485 
1486 	if (*bpath == 0 || *bpath == '/')
1487 		return (SET_ERROR(EINVAL));
1488 
1489 	(void) strcpy(outpath, bpath);
1490 
1491 	slashp = strchr(bpath, '/');
1492 
1493 	/* if no '/', just return the pool name */
1494 	if (slashp == NULL) {
1495 		return (0);
1496 	}
1497 
1498 	/* if not a number, just return the root dataset name */
1499 	if (str_to_uint64(slashp+1, &objnum)) {
1500 		return (0);
1501 	}
1502 
1503 	*slashp = '\0';
1504 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1505 	*slashp = '/';
1506 
1507 	return (error);
1508 }
1509 
1510 /*
1511  * Check that the hex label string is appropriate for the dataset being
1512  * mounted into the global_zone proper.
1513  *
1514  * Return an error if the hex label string is not default or
1515  * admin_low/admin_high.  For admin_low labels, the corresponding
1516  * dataset must be readonly.
1517  */
1518 int
1519 zfs_check_global_label(const char *dsname, const char *hexsl)
1520 {
1521 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1522 		return (0);
1523 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1524 		return (0);
1525 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1526 		/* must be readonly */
1527 		uint64_t rdonly;
1528 
1529 		if (dsl_prop_get_integer(dsname,
1530 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1531 			return (SET_ERROR(EACCES));
1532 		return (rdonly ? 0 : EACCES);
1533 	}
1534 	return (SET_ERROR(EACCES));
1535 }
1536 
1537 static int
1538 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct statvfs64 *statp,
1539     uint32_t bshift)
1540 {
1541 	char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1542 	uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1543 	uint64_t quota;
1544 	uint64_t used;
1545 	int err;
1546 
1547 	strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1548 	err = id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset, B_FALSE);
1549 	if (err)
1550 		return (err);
1551 
1552 	if (zfsvfs->z_projectquota_obj == 0)
1553 		goto objs;
1554 
1555 	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1556 	    buf + offset, 8, 1, &quota);
1557 	if (err == ENOENT)
1558 		goto objs;
1559 	else if (err)
1560 		return (err);
1561 
1562 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1563 	    buf + offset, 8, 1, &used);
1564 	if (unlikely(err == ENOENT)) {
1565 		uint32_t blksize;
1566 		u_longlong_t nblocks;
1567 
1568 		/*
1569 		 * Quota accounting is async, so it is possible race case.
1570 		 * There is at least one object with the given project ID.
1571 		 */
1572 		sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1573 		if (unlikely(zp->z_blksz == 0))
1574 			blksize = zfsvfs->z_max_blksz;
1575 
1576 		used = blksize * nblocks;
1577 	} else if (err) {
1578 		return (err);
1579 	}
1580 
1581 	statp->f_blocks = quota >> bshift;
1582 	statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1583 	statp->f_bavail = statp->f_bfree;
1584 
1585 objs:
1586 	if (zfsvfs->z_projectobjquota_obj == 0)
1587 		return (0);
1588 
1589 	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1590 	    buf + offset, 8, 1, &quota);
1591 	if (err == ENOENT)
1592 		return (0);
1593 	else if (err)
1594 		return (err);
1595 
1596 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1597 	    buf, 8, 1, &used);
1598 	if (unlikely(err == ENOENT)) {
1599 		/*
1600 		 * Quota accounting is async, so it is possible race case.
1601 		 * There is at least one object with the given project ID.
1602 		 */
1603 		used = 1;
1604 	} else if (err) {
1605 		return (err);
1606 	}
1607 
1608 	statp->f_files = quota;
1609 	statp->f_ffree = (quota > used) ? (quota - used) : 0;
1610 
1611 	return (0);
1612 }
1613 
1614 /*
1615  * Determine whether the mount is allowed according to MAC check.
1616  * by comparing (where appropriate) label of the dataset against
1617  * the label of the zone being mounted into.  If the dataset has
1618  * no label, create one.
1619  *
1620  * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1621  */
1622 static int
1623 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1624 {
1625 	int		error, retv;
1626 	zone_t		*mntzone = NULL;
1627 	ts_label_t	*mnt_tsl;
1628 	bslabel_t	*mnt_sl;
1629 	bslabel_t	ds_sl;
1630 	char		ds_hexsl[MAXNAMELEN];
1631 
1632 	retv = EACCES;				/* assume the worst */
1633 
1634 	/*
1635 	 * Start by getting the dataset label if it exists.
1636 	 */
1637 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1638 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1639 	if (error)
1640 		return (SET_ERROR(EACCES));
1641 
1642 	/*
1643 	 * If labeling is NOT enabled, then disallow the mount of datasets
1644 	 * which have a non-default label already.  No other label checks
1645 	 * are needed.
1646 	 */
1647 	if (!is_system_labeled()) {
1648 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1649 			return (0);
1650 		return (SET_ERROR(EACCES));
1651 	}
1652 
1653 	/*
1654 	 * Get the label of the mountpoint.  If mounting into the global
1655 	 * zone (i.e. mountpoint is not within an active zone and the
1656 	 * zoned property is off), the label must be default or
1657 	 * admin_low/admin_high only; no other checks are needed.
1658 	 */
1659 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1660 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1661 		uint64_t zoned;
1662 
1663 		zone_rele(mntzone);
1664 
1665 		if (dsl_prop_get_integer(osname,
1666 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1667 			return (SET_ERROR(EACCES));
1668 		if (!zoned)
1669 			return (zfs_check_global_label(osname, ds_hexsl));
1670 		else
1671 			/*
1672 			 * This is the case of a zone dataset being mounted
1673 			 * initially, before the zone has been fully created;
1674 			 * allow this mount into global zone.
1675 			 */
1676 			return (0);
1677 	}
1678 
1679 	mnt_tsl = mntzone->zone_slabel;
1680 	ASSERT(mnt_tsl != NULL);
1681 	label_hold(mnt_tsl);
1682 	mnt_sl = label2bslabel(mnt_tsl);
1683 
1684 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1685 		/*
1686 		 * The dataset doesn't have a real label, so fabricate one.
1687 		 */
1688 		char *str = NULL;
1689 
1690 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1691 		    dsl_prop_set_string(osname,
1692 		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1693 		    ZPROP_SRC_LOCAL, str) == 0)
1694 			retv = 0;
1695 		if (str != NULL)
1696 			kmem_free(str, strlen(str) + 1);
1697 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1698 		/*
1699 		 * Now compare labels to complete the MAC check.  If the
1700 		 * labels are equal then allow access.  If the mountpoint
1701 		 * label dominates the dataset label, allow readonly access.
1702 		 * Otherwise, access is denied.
1703 		 */
1704 		if (blequal(mnt_sl, &ds_sl))
1705 			retv = 0;
1706 		else if (bldominates(mnt_sl, &ds_sl)) {
1707 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1708 			retv = 0;
1709 		}
1710 	}
1711 
1712 	label_rele(mnt_tsl);
1713 	zone_rele(mntzone);
1714 	return (retv);
1715 }
1716 
1717 /*
1718  * Load a string-valued boot property and attempt to convert it to a 64-bit
1719  * unsigned integer.  If the value is not present, or the conversion fails,
1720  * return the provided default value.
1721  */
1722 static uint64_t
1723 spa_get_bootprop_uint64(const char *name, uint64_t defval)
1724 {
1725 	char *propval;
1726 	u_longlong_t r;
1727 	int e;
1728 
1729 	if ((propval = spa_get_bootprop(name)) == NULL) {
1730 		/*
1731 		 * The property does not exist.
1732 		 */
1733 		return (defval);
1734 	}
1735 
1736 	e = ddi_strtoull(propval, NULL, 10, &r);
1737 
1738 	spa_free_bootprop(propval);
1739 
1740 	/*
1741 	 * If the conversion succeeded, return the value.  If there was any
1742 	 * kind of failure, just return the default value.
1743 	 */
1744 	return (e == 0 ? r : defval);
1745 }
1746 
1747 static int
1748 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1749 {
1750 	int error = 0;
1751 	static int zfsrootdone = 0;
1752 	zfsvfs_t *zfsvfs = NULL;
1753 	znode_t *zp = NULL;
1754 	vnode_t *vp = NULL;
1755 	char *zfs_bootfs;
1756 	char *zfs_devid;
1757 	uint64_t zfs_bootpool;
1758 	uint64_t zfs_bootvdev;
1759 
1760 	ASSERT(vfsp);
1761 
1762 	/*
1763 	 * The filesystem that we mount as root is defined in the
1764 	 * boot property "zfs-bootfs" with a format of
1765 	 * "poolname/root-dataset-objnum".
1766 	 */
1767 	if (why == ROOT_INIT) {
1768 		if (zfsrootdone++)
1769 			return (SET_ERROR(EBUSY));
1770 
1771 		/*
1772 		 * the process of doing a spa_load will require the
1773 		 * clock to be set before we could (for example) do
1774 		 * something better by looking at the timestamp on
1775 		 * an uberblock, so just set it to -1.
1776 		 */
1777 		clkset(-1);
1778 
1779 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1780 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1781 			    "bootfs name");
1782 			return (SET_ERROR(EINVAL));
1783 		}
1784 		zfs_devid = spa_get_bootprop("diskdevid");
1785 
1786 		/*
1787 		 * The boot loader may also provide us with the GUID for both
1788 		 * the pool and the nominated boot vdev.  A GUID value of 0 is
1789 		 * explicitly invalid (see "spa_change_guid()"), so we use this
1790 		 * as a sentinel value when no GUID is present.
1791 		 */
1792 		zfs_bootpool = spa_get_bootprop_uint64("zfs-bootpool", 0);
1793 		zfs_bootvdev = spa_get_bootprop_uint64("zfs-bootvdev", 0);
1794 
1795 		/*
1796 		 * Initialise the early boot device rescan mechanism.  A scan
1797 		 * will not actually be performed unless we need to do so in
1798 		 * order to find the correct /devices path for a relocated
1799 		 * device.
1800 		 */
1801 		vdev_disk_preroot_init();
1802 
1803 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid,
1804 		    zfs_bootpool, zfs_bootvdev);
1805 
1806 		spa_free_bootprop(zfs_devid);
1807 
1808 		if (error != 0) {
1809 			spa_free_bootprop(zfs_bootfs);
1810 			vdev_disk_preroot_fini();
1811 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1812 			    error);
1813 			return (error);
1814 		}
1815 
1816 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1817 			spa_free_bootprop(zfs_bootfs);
1818 			vdev_disk_preroot_fini();
1819 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1820 			    error);
1821 			return (error);
1822 		}
1823 
1824 		spa_free_bootprop(zfs_bootfs);
1825 		vdev_disk_preroot_fini();
1826 
1827 		if (error = vfs_lock(vfsp))
1828 			return (error);
1829 
1830 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1831 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1832 			goto out;
1833 		}
1834 
1835 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1836 		ASSERT(zfsvfs);
1837 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1838 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1839 			goto out;
1840 		}
1841 
1842 		vp = ZTOV(zp);
1843 		mutex_enter(&vp->v_lock);
1844 		vp->v_flag |= VROOT;
1845 		mutex_exit(&vp->v_lock);
1846 		rootvp = vp;
1847 
1848 		/*
1849 		 * Leave rootvp held.  The root file system is never unmounted.
1850 		 */
1851 
1852 		vfs_add((struct vnode *)0, vfsp,
1853 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1854 out:
1855 		vfs_unlock(vfsp);
1856 		return (error);
1857 	} else if (why == ROOT_REMOUNT) {
1858 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1859 		vfsp->vfs_flag |= VFS_REMOUNT;
1860 
1861 		/* refresh mount options */
1862 		zfs_unregister_callbacks(vfsp->vfs_data);
1863 		return (zfs_register_callbacks(vfsp));
1864 
1865 	} else if (why == ROOT_UNMOUNT) {
1866 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1867 		(void) zfs_sync(vfsp, 0, 0);
1868 		return (0);
1869 	}
1870 
1871 	/*
1872 	 * if "why" is equal to anything else other than ROOT_INIT,
1873 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1874 	 */
1875 	return (SET_ERROR(ENOTSUP));
1876 }
1877 
1878 /*ARGSUSED*/
1879 static int
1880 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1881 {
1882 	char		*osname;
1883 	pathname_t	spn;
1884 	int		error = 0;
1885 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1886 	    UIO_SYSSPACE : UIO_USERSPACE;
1887 	int		canwrite;
1888 
1889 	if (mvp->v_type != VDIR)
1890 		return (SET_ERROR(ENOTDIR));
1891 
1892 	mutex_enter(&mvp->v_lock);
1893 	if ((uap->flags & MS_REMOUNT) == 0 &&
1894 	    (uap->flags & MS_OVERLAY) == 0 &&
1895 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1896 		mutex_exit(&mvp->v_lock);
1897 		return (SET_ERROR(EBUSY));
1898 	}
1899 	mutex_exit(&mvp->v_lock);
1900 
1901 	/*
1902 	 * ZFS does not support passing unparsed data in via MS_DATA.
1903 	 * Users should use the MS_OPTIONSTR interface; this means
1904 	 * that all option parsing is already done and the options struct
1905 	 * can be interrogated.
1906 	 */
1907 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1908 		return (SET_ERROR(EINVAL));
1909 
1910 	/*
1911 	 * Get the objset name (the "special" mount argument).
1912 	 */
1913 	if (error = pn_get(uap->spec, fromspace, &spn))
1914 		return (error);
1915 
1916 	osname = spn.pn_path;
1917 
1918 	/*
1919 	 * Check for mount privilege?
1920 	 *
1921 	 * If we don't have privilege then see if
1922 	 * we have local permission to allow it
1923 	 */
1924 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1925 	if (error) {
1926 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1927 			vattr_t		vattr;
1928 
1929 			/*
1930 			 * Make sure user is the owner of the mount point
1931 			 * or has sufficient privileges.
1932 			 */
1933 
1934 			vattr.va_mask = AT_UID;
1935 
1936 			if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1937 				goto out;
1938 			}
1939 
1940 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1941 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1942 				goto out;
1943 			}
1944 			secpolicy_fs_mount_clearopts(cr, vfsp);
1945 		} else {
1946 			goto out;
1947 		}
1948 	}
1949 
1950 	/*
1951 	 * Refuse to mount a filesystem if we are in a local zone and the
1952 	 * dataset is not visible.
1953 	 */
1954 	if (!INGLOBALZONE(curproc) &&
1955 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1956 		error = SET_ERROR(EPERM);
1957 		goto out;
1958 	}
1959 
1960 	error = zfs_mount_label_policy(vfsp, osname);
1961 	if (error)
1962 		goto out;
1963 
1964 	/*
1965 	 * When doing a remount, we simply refresh our temporary properties
1966 	 * according to those options set in the current VFS options.
1967 	 */
1968 	if (uap->flags & MS_REMOUNT) {
1969 		/* refresh mount options */
1970 		zfs_unregister_callbacks(vfsp->vfs_data);
1971 		error = zfs_register_callbacks(vfsp);
1972 		goto out;
1973 	}
1974 
1975 	error = zfs_domount(vfsp, osname);
1976 
1977 	/*
1978 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1979 	 * disappear due to a forced unmount.
1980 	 */
1981 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1982 		VFS_HOLD(mvp->v_vfsp);
1983 
1984 out:
1985 	pn_free(&spn);
1986 	return (error);
1987 }
1988 
1989 static int
1990 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1991 {
1992 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1993 	dev32_t d32;
1994 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1995 	int err = 0;
1996 
1997 	ZFS_ENTER(zfsvfs);
1998 
1999 	dmu_objset_space(zfsvfs->z_os,
2000 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
2001 
2002 	/*
2003 	 * The underlying storage pool actually uses multiple block sizes.
2004 	 * We report the fragsize as the smallest block size we support,
2005 	 * and we report our blocksize as the filesystem's maximum blocksize.
2006 	 */
2007 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
2008 	statp->f_bsize = zfsvfs->z_max_blksz;
2009 
2010 	/*
2011 	 * The following report "total" blocks of various kinds in the
2012 	 * file system, but reported in terms of f_frsize - the
2013 	 * "fragment" size.
2014 	 */
2015 
2016 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
2017 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
2018 	statp->f_bavail = statp->f_bfree; /* no root reservation */
2019 
2020 	/*
2021 	 * statvfs() should really be called statufs(), because it assumes
2022 	 * static metadata.  ZFS doesn't preallocate files, so the best
2023 	 * we can do is report the max that could possibly fit in f_files,
2024 	 * and that minus the number actually used in f_ffree.
2025 	 * For f_ffree, report the smaller of the number of object available
2026 	 * and the number of blocks (each object will take at least a block).
2027 	 */
2028 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
2029 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
2030 	statp->f_files = statp->f_ffree + usedobjs;
2031 
2032 	(void) cmpldev(&d32, vfsp->vfs_dev);
2033 	statp->f_fsid = d32;
2034 
2035 	/*
2036 	 * We're a zfs filesystem.
2037 	 */
2038 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
2039 
2040 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
2041 
2042 	statp->f_namemax = MAXNAMELEN - 1;
2043 
2044 	/*
2045 	 * We have all of 32 characters to stuff a string here.
2046 	 * Is there anything useful we could/should provide?
2047 	 */
2048 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
2049 
2050 	if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
2051 	    dmu_objset_projectquota_present(zfsvfs->z_os)) {
2052 		znode_t *zp;
2053 
2054 		/*
2055 		 * In ZoL, zfs_statvfs is passed a Linux dentry (directory
2056 		 * entry), instead of a vfsp. The ZoL code uses the dentry
2057 		 * to get the znode from the dentry's inode. This represents
2058 		 * whatever filename was passed to the user-level statvfs
2059 		 * syscall.
2060 		 *
2061 		 * We're using the VFS root znode here, so this represents a
2062 		 * potential difference from ZoL.
2063 		 */
2064 		if (zfs_zget(zfsvfs, zfsvfs->z_root, &zp) == 0) {
2065 			uint32_t bshift = ddi_fls(statp->f_bsize) - 1;
2066 
2067 			if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
2068 			    zpl_is_valid_projid(zp->z_projid))
2069 				err = zfs_statfs_project(zfsvfs, zp, statp,
2070 				    bshift);
2071 			VN_RELE(ZTOV(zp));
2072 		}
2073 	}
2074 
2075 	ZFS_EXIT(zfsvfs);
2076 	return (err);
2077 }
2078 
2079 static int
2080 zfs_root(vfs_t *vfsp, vnode_t **vpp)
2081 {
2082 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2083 	znode_t *rootzp;
2084 	int error;
2085 
2086 	ZFS_ENTER(zfsvfs);
2087 
2088 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
2089 	if (error == 0)
2090 		*vpp = ZTOV(rootzp);
2091 
2092 	ZFS_EXIT(zfsvfs);
2093 	return (error);
2094 }
2095 
2096 /*
2097  * Teardown the zfsvfs::z_os.
2098  *
2099  * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
2100  * and 'z_teardown_inactive_lock' held.
2101  */
2102 static int
2103 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
2104 {
2105 	znode_t	*zp;
2106 
2107 	zfs_unlinked_drain_stop_wait(zfsvfs);
2108 
2109 	rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
2110 
2111 	if (!unmounting) {
2112 		/*
2113 		 * We purge the parent filesystem's vfsp as the parent
2114 		 * filesystem and all of its snapshots have their vnode's
2115 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
2116 		 * 'z_parent' is self referential for non-snapshots.
2117 		 */
2118 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
2119 	}
2120 
2121 	/*
2122 	 * Close the zil. NB: Can't close the zil while zfs_inactive
2123 	 * threads are blocked as zil_close can call zfs_inactive.
2124 	 */
2125 	if (zfsvfs->z_log) {
2126 		zil_close(zfsvfs->z_log);
2127 		zfsvfs->z_log = NULL;
2128 	}
2129 
2130 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
2131 
2132 	/*
2133 	 * If we are not unmounting (ie: online recv) and someone already
2134 	 * unmounted this file system while we were doing the switcheroo,
2135 	 * or a reopen of z_os failed then just bail out now.
2136 	 */
2137 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
2138 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
2139 		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2140 		return (SET_ERROR(EIO));
2141 	}
2142 
2143 	/*
2144 	 * At this point there are no vops active, and any new vops will
2145 	 * fail with EIO since we have z_teardown_lock for writer (only
2146 	 * relavent for forced unmount).
2147 	 *
2148 	 * Release all holds on dbufs.
2149 	 */
2150 	mutex_enter(&zfsvfs->z_znodes_lock);
2151 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
2152 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
2153 		if (zp->z_sa_hdl) {
2154 			ASSERT(ZTOV(zp)->v_count > 0);
2155 			zfs_znode_dmu_fini(zp);
2156 		}
2157 	mutex_exit(&zfsvfs->z_znodes_lock);
2158 
2159 	/*
2160 	 * If we are unmounting, set the unmounted flag and let new vops
2161 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
2162 	 * other vops will fail with EIO.
2163 	 */
2164 	if (unmounting) {
2165 		zfsvfs->z_unmounted = B_TRUE;
2166 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
2167 		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2168 	}
2169 
2170 	/*
2171 	 * z_os will be NULL if there was an error in attempting to reopen
2172 	 * zfsvfs, so just return as the properties had already been
2173 	 * unregistered and cached data had been evicted before.
2174 	 */
2175 	if (zfsvfs->z_os == NULL)
2176 		return (0);
2177 
2178 	/*
2179 	 * Unregister properties.
2180 	 */
2181 	zfs_unregister_callbacks(zfsvfs);
2182 
2183 	/*
2184 	 * Evict cached data
2185 	 */
2186 	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
2187 	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
2188 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
2189 	dmu_objset_evict_dbufs(zfsvfs->z_os);
2190 
2191 	return (0);
2192 }
2193 
2194 /*ARGSUSED*/
2195 static int
2196 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
2197 {
2198 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2199 	objset_t *os;
2200 	int ret;
2201 
2202 	ret = secpolicy_fs_unmount(cr, vfsp);
2203 	if (ret) {
2204 		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
2205 		    ZFS_DELEG_PERM_MOUNT, cr))
2206 			return (ret);
2207 	}
2208 
2209 	/*
2210 	 * We purge the parent filesystem's vfsp as the parent filesystem
2211 	 * and all of its snapshots have their vnode's v_vfsp set to the
2212 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
2213 	 * referential for non-snapshots.
2214 	 */
2215 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
2216 
2217 	/*
2218 	 * Unmount any snapshots mounted under .zfs before unmounting the
2219 	 * dataset itself.
2220 	 */
2221 	if (zfsvfs->z_ctldir != NULL &&
2222 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
2223 		return (ret);
2224 	}
2225 
2226 	if (!(fflag & MS_FORCE)) {
2227 		/*
2228 		 * Check the number of active vnodes in the file system.
2229 		 * Our count is maintained in the vfs structure, but the
2230 		 * number is off by 1 to indicate a hold on the vfs
2231 		 * structure itself.
2232 		 */
2233 		boolean_t draining;
2234 		uint_t thresh = 1;
2235 
2236 		/*
2237 		 * The '.zfs' directory maintains a reference of its own, and
2238 		 * any active references underneath are reflected in the vnode
2239 		 * count. Allow one additional reference for it.
2240 		 */
2241 		if (zfsvfs->z_ctldir != NULL)
2242 			thresh++;
2243 
2244 		/*
2245 		 * If it's running, the asynchronous unlinked drain task needs
2246 		 * to be stopped before the number of active vnodes can be
2247 		 * reliably checked.
2248 		 */
2249 		draining = zfsvfs->z_draining;
2250 		if (draining)
2251 			zfs_unlinked_drain_stop_wait(zfsvfs);
2252 
2253 		if (vfsp->vfs_count > thresh || (zfsvfs->z_ctldir != NULL &&
2254 		    zfsvfs->z_ctldir->v_count > 1)) {
2255 			if (draining) {
2256 				/* If it was draining, restart the task */
2257 				zfs_unlinked_drain(zfsvfs);
2258 			}
2259 			return (SET_ERROR(EBUSY));
2260 		}
2261 	}
2262 
2263 	vfsp->vfs_flag |= VFS_UNMOUNTED;
2264 
2265 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
2266 	os = zfsvfs->z_os;
2267 
2268 	/*
2269 	 * z_os will be NULL if there was an error in
2270 	 * attempting to reopen zfsvfs.
2271 	 */
2272 	if (os != NULL) {
2273 		/*
2274 		 * Unset the objset user_ptr.
2275 		 */
2276 		mutex_enter(&os->os_user_ptr_lock);
2277 		dmu_objset_set_user(os, NULL);
2278 		mutex_exit(&os->os_user_ptr_lock);
2279 
2280 		/*
2281 		 * Finally release the objset
2282 		 */
2283 		dmu_objset_disown(os, B_TRUE, zfsvfs);
2284 	}
2285 
2286 	/*
2287 	 * We can now safely destroy the '.zfs' directory node.
2288 	 */
2289 	if (zfsvfs->z_ctldir != NULL)
2290 		zfsctl_destroy(zfsvfs);
2291 
2292 	return (0);
2293 }
2294 
2295 static int
2296 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
2297 {
2298 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2299 	znode_t		*zp;
2300 	uint64_t	object = 0;
2301 	uint64_t	fid_gen = 0;
2302 	uint64_t	gen_mask;
2303 	uint64_t	zp_gen;
2304 	int		i, err;
2305 
2306 	*vpp = NULL;
2307 
2308 	ZFS_ENTER(zfsvfs);
2309 
2310 	if (fidp->fid_len == LONG_FID_LEN) {
2311 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2312 		uint64_t	objsetid = 0;
2313 		uint64_t	setgen = 0;
2314 
2315 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2316 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2317 
2318 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2319 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2320 
2321 		ZFS_EXIT(zfsvfs);
2322 
2323 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2324 		if (err)
2325 			return (SET_ERROR(EINVAL));
2326 		ZFS_ENTER(zfsvfs);
2327 	}
2328 
2329 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2330 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2331 
2332 		for (i = 0; i < sizeof (zfid->zf_object); i++)
2333 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2334 
2335 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2336 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2337 	} else {
2338 		ZFS_EXIT(zfsvfs);
2339 		return (SET_ERROR(EINVAL));
2340 	}
2341 
2342 	/* A zero fid_gen means we are in the .zfs control directories */
2343 	if (fid_gen == 0 &&
2344 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
2345 		*vpp = zfsvfs->z_ctldir;
2346 		ASSERT(*vpp != NULL);
2347 		if (object == ZFSCTL_INO_SNAPDIR) {
2348 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2349 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2350 		} else {
2351 			VN_HOLD(*vpp);
2352 		}
2353 		ZFS_EXIT(zfsvfs);
2354 		return (0);
2355 	}
2356 
2357 	gen_mask = -1ULL >> (64 - 8 * i);
2358 
2359 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2360 	if (err = zfs_zget(zfsvfs, object, &zp)) {
2361 		ZFS_EXIT(zfsvfs);
2362 		return (err);
2363 	}
2364 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2365 	    sizeof (uint64_t));
2366 	zp_gen = zp_gen & gen_mask;
2367 	if (zp_gen == 0)
2368 		zp_gen = 1;
2369 	if (zp->z_unlinked || zp_gen != fid_gen) {
2370 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2371 		VN_RELE(ZTOV(zp));
2372 		ZFS_EXIT(zfsvfs);
2373 		return (SET_ERROR(EINVAL));
2374 	}
2375 
2376 	*vpp = ZTOV(zp);
2377 	ZFS_EXIT(zfsvfs);
2378 	return (0);
2379 }
2380 
2381 /*
2382  * Block out VOPs and close zfsvfs_t::z_os
2383  *
2384  * Note, if successful, then we return with the 'z_teardown_lock' and
2385  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2386  * dataset and objset intact so that they can be atomically handed off during
2387  * a subsequent rollback or recv operation and the resume thereafter.
2388  */
2389 int
2390 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2391 {
2392 	int error;
2393 
2394 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2395 		return (error);
2396 
2397 	return (0);
2398 }
2399 
2400 /*
2401  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2402  * is an invariant across any of the operations that can be performed while the
2403  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2404  * are the same: the relevant objset and associated dataset are owned by
2405  * zfsvfs, held, and long held on entry.
2406  */
2407 int
2408 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
2409 {
2410 	int err;
2411 	znode_t *zp;
2412 
2413 	ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2414 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2415 
2416 	/*
2417 	 * We already own this, so just update the objset_t, as the one we
2418 	 * had before may have been evicted.
2419 	 */
2420 	objset_t *os;
2421 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
2422 	VERIFY(dsl_dataset_long_held(ds));
2423 	VERIFY0(dmu_objset_from_ds(ds, &os));
2424 
2425 	err = zfsvfs_init(zfsvfs, os);
2426 	if (err != 0)
2427 		goto bail;
2428 
2429 	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2430 
2431 	zfs_set_fuid_feature(zfsvfs);
2432 
2433 	/*
2434 	 * Attempt to re-establish all the active znodes with
2435 	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2436 	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2437 	 * when they try to use their znode.
2438 	 */
2439 	mutex_enter(&zfsvfs->z_znodes_lock);
2440 	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2441 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2442 		(void) zfs_rezget(zp);
2443 	}
2444 	mutex_exit(&zfsvfs->z_znodes_lock);
2445 
2446 	if (((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0) &&
2447 	    !zfsvfs->z_unmounted) {
2448 		/*
2449 		 * zfs_suspend_fs() could have interrupted freeing
2450 		 * of dnodes. We need to restart this freeing so
2451 		 * that we don't "leak" the space.
2452 		 */
2453 		zfs_unlinked_drain(zfsvfs);
2454 	}
2455 
2456 bail:
2457 	/* release the VOPs */
2458 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2459 	rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2460 
2461 	if (err) {
2462 		/*
2463 		 * Since we couldn't setup the sa framework, try to force
2464 		 * unmount this file system.
2465 		 */
2466 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2467 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2468 	}
2469 	return (err);
2470 }
2471 
2472 static void
2473 zfs_freevfs(vfs_t *vfsp)
2474 {
2475 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2476 
2477 	/*
2478 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2479 	 * from zfs_mount().  Release it here.  If we came through
2480 	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2481 	 * skip the VFS_RELE for rootvfs.
2482 	 */
2483 	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2484 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2485 
2486 	zfsvfs_free(zfsvfs);
2487 
2488 	atomic_dec_32(&zfs_active_fs_count);
2489 }
2490 
2491 /*
2492  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2493  * so we can't safely do any non-idempotent initialization here.
2494  * Leave that to zfs_init() and zfs_fini(), which are called
2495  * from the module's _init() and _fini() entry points.
2496  */
2497 /*ARGSUSED*/
2498 static int
2499 zfs_vfsinit(int fstype, char *name)
2500 {
2501 	int error;
2502 
2503 	zfsfstype = fstype;
2504 
2505 	/*
2506 	 * Setup vfsops and vnodeops tables.
2507 	 */
2508 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2509 	if (error != 0) {
2510 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2511 	}
2512 
2513 	error = zfs_create_op_tables();
2514 	if (error) {
2515 		zfs_remove_op_tables();
2516 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2517 		(void) vfs_freevfsops_by_type(zfsfstype);
2518 		return (error);
2519 	}
2520 
2521 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2522 
2523 	/*
2524 	 * Unique major number for all zfs mounts.
2525 	 * If we run out of 32-bit minors, we'll getudev() another major.
2526 	 */
2527 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2528 	zfs_minor = ZFS_MIN_MINOR;
2529 
2530 	return (0);
2531 }
2532 
2533 void
2534 zfs_init(void)
2535 {
2536 	/*
2537 	 * Initialize .zfs directory structures
2538 	 */
2539 	zfsctl_init();
2540 
2541 	/*
2542 	 * Initialize znode cache, vnode ops, etc...
2543 	 */
2544 	zfs_znode_init();
2545 
2546 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2547 }
2548 
2549 void
2550 zfs_fini(void)
2551 {
2552 	zfsctl_fini();
2553 	zfs_znode_fini();
2554 }
2555 
2556 int
2557 zfs_busy(void)
2558 {
2559 	return (zfs_active_fs_count != 0);
2560 }
2561 
2562 int
2563 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2564 {
2565 	int error;
2566 	objset_t *os = zfsvfs->z_os;
2567 	dmu_tx_t *tx;
2568 
2569 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2570 		return (SET_ERROR(EINVAL));
2571 
2572 	if (newvers < zfsvfs->z_version)
2573 		return (SET_ERROR(EINVAL));
2574 
2575 	if (zfs_spa_version_map(newvers) >
2576 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2577 		return (SET_ERROR(ENOTSUP));
2578 
2579 	tx = dmu_tx_create(os);
2580 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2581 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2582 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2583 		    ZFS_SA_ATTRS);
2584 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2585 	}
2586 	error = dmu_tx_assign(tx, TXG_WAIT);
2587 	if (error) {
2588 		dmu_tx_abort(tx);
2589 		return (error);
2590 	}
2591 
2592 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2593 	    8, 1, &newvers, tx);
2594 
2595 	if (error) {
2596 		dmu_tx_commit(tx);
2597 		return (error);
2598 	}
2599 
2600 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2601 		uint64_t sa_obj;
2602 
2603 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2604 		    SPA_VERSION_SA);
2605 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2606 		    DMU_OT_NONE, 0, tx);
2607 
2608 		error = zap_add(os, MASTER_NODE_OBJ,
2609 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2610 		ASSERT0(error);
2611 
2612 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2613 		sa_register_update_callback(os, zfs_sa_upgrade);
2614 	}
2615 
2616 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2617 	    "from %llu to %llu", zfsvfs->z_version, newvers);
2618 
2619 	dmu_tx_commit(tx);
2620 
2621 	zfsvfs->z_version = newvers;
2622 	os->os_version = newvers;
2623 
2624 	zfs_set_fuid_feature(zfsvfs);
2625 
2626 	return (0);
2627 }
2628 
2629 /*
2630  * Read a property stored within the master node.
2631  */
2632 int
2633 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2634 {
2635 	uint64_t *cached_copy = NULL;
2636 
2637 	/*
2638 	 * Figure out where in the objset_t the cached copy would live, if it
2639 	 * is available for the requested property.
2640 	 */
2641 	if (os != NULL) {
2642 		switch (prop) {
2643 		case ZFS_PROP_VERSION:
2644 			cached_copy = &os->os_version;
2645 			break;
2646 		case ZFS_PROP_NORMALIZE:
2647 			cached_copy = &os->os_normalization;
2648 			break;
2649 		case ZFS_PROP_UTF8ONLY:
2650 			cached_copy = &os->os_utf8only;
2651 			break;
2652 		case ZFS_PROP_CASE:
2653 			cached_copy = &os->os_casesensitivity;
2654 			break;
2655 		default:
2656 			break;
2657 		}
2658 	}
2659 	if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
2660 		*value = *cached_copy;
2661 		return (0);
2662 	}
2663 
2664 	/*
2665 	 * If the property wasn't cached, look up the file system's value for
2666 	 * the property. For the version property, we look up a slightly
2667 	 * different string.
2668 	 */
2669 	const char *pname;
2670 	int error = ENOENT;
2671 	if (prop == ZFS_PROP_VERSION) {
2672 		pname = ZPL_VERSION_STR;
2673 	} else {
2674 		pname = zfs_prop_to_name(prop);
2675 	}
2676 
2677 	if (os != NULL) {
2678 		ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
2679 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2680 	}
2681 
2682 	if (error == ENOENT) {
2683 		/* No value set, use the default value */
2684 		switch (prop) {
2685 		case ZFS_PROP_VERSION:
2686 			*value = ZPL_VERSION;
2687 			break;
2688 		case ZFS_PROP_NORMALIZE:
2689 		case ZFS_PROP_UTF8ONLY:
2690 			*value = 0;
2691 			break;
2692 		case ZFS_PROP_CASE:
2693 			*value = ZFS_CASE_SENSITIVE;
2694 			break;
2695 		default:
2696 			return (error);
2697 		}
2698 		error = 0;
2699 	}
2700 
2701 	/*
2702 	 * If one of the methods for getting the property value above worked,
2703 	 * copy it into the objset_t's cache.
2704 	 */
2705 	if (error == 0 && cached_copy != NULL) {
2706 		*cached_copy = *value;
2707 	}
2708 
2709 	return (error);
2710 }
2711 
2712 /*
2713  * Return true if the coresponding vfs's unmounted flag is set.
2714  * Otherwise return false.
2715  * If this function returns true we know VFS unmount has been initiated.
2716  */
2717 boolean_t
2718 zfs_get_vfs_flag_unmounted(objset_t *os)
2719 {
2720 	zfsvfs_t *zfvp;
2721 	boolean_t unmounted = B_FALSE;
2722 
2723 	ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2724 
2725 	mutex_enter(&os->os_user_ptr_lock);
2726 	zfvp = dmu_objset_get_user(os);
2727 	if (zfvp != NULL && zfvp->z_vfs != NULL &&
2728 	    (zfvp->z_vfs->vfs_flag & VFS_UNMOUNTED))
2729 		unmounted = B_TRUE;
2730 	mutex_exit(&os->os_user_ptr_lock);
2731 
2732 	return (unmounted);
2733 }
2734 
2735 static vfsdef_t vfw = {
2736 	VFSDEF_VERSION,
2737 	MNTTYPE_ZFS,
2738 	zfs_vfsinit,
2739 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2740 	    VSW_XID|VSW_ZMOUNT,
2741 	&zfs_mntopts
2742 };
2743 
2744 struct modlfs zfs_modlfs = {
2745 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2746 };
2747