1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 26 * Copyright 2019 Joyent, Inc. 27 */ 28 29 /* Portions Copyright 2010 Robert Milkowski */ 30 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/kmem.h> 36 #include <sys/pathname.h> 37 #include <sys/vnode.h> 38 #include <sys/vfs.h> 39 #include <sys/vfs_opreg.h> 40 #include <sys/mntent.h> 41 #include <sys/mount.h> 42 #include <sys/cmn_err.h> 43 #include "fs/fs_subr.h" 44 #include <sys/zfs_znode.h> 45 #include <sys/zfs_dir.h> 46 #include <sys/zil.h> 47 #include <sys/fs/zfs.h> 48 #include <sys/dmu.h> 49 #include <sys/dsl_prop.h> 50 #include <sys/dsl_dataset.h> 51 #include <sys/dsl_deleg.h> 52 #include <sys/spa.h> 53 #include <sys/zap.h> 54 #include <sys/sa.h> 55 #include <sys/sa_impl.h> 56 #include <sys/varargs.h> 57 #include <sys/policy.h> 58 #include <sys/atomic.h> 59 #include <sys/mkdev.h> 60 #include <sys/modctl.h> 61 #include <sys/refstr.h> 62 #include <sys/zfs_ioctl.h> 63 #include <sys/zfs_ctldir.h> 64 #include <sys/zfs_fuid.h> 65 #include <sys/bootconf.h> 66 #include <sys/sunddi.h> 67 #include <sys/dnlc.h> 68 #include <sys/dmu_objset.h> 69 #include <sys/spa_boot.h> 70 #include "zfs_comutil.h" 71 72 int zfsfstype; 73 vfsops_t *zfs_vfsops = NULL; 74 static major_t zfs_major; 75 static minor_t zfs_minor; 76 static kmutex_t zfs_dev_mtx; 77 78 extern int sys_shutdown; 79 80 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 81 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 82 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 83 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 84 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 85 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 86 static void zfs_freevfs(vfs_t *vfsp); 87 88 static const fs_operation_def_t zfs_vfsops_template[] = { 89 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 90 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 91 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 92 VFSNAME_ROOT, { .vfs_root = zfs_root }, 93 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 94 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 95 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 96 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 97 NULL, NULL 98 }; 99 100 /* 101 * We need to keep a count of active fs's. 102 * This is necessary to prevent our module 103 * from being unloaded after a umount -f 104 */ 105 static uint32_t zfs_active_fs_count = 0; 106 107 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 108 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 109 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 110 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 111 112 /* 113 * MO_DEFAULT is not used since the default value is determined 114 * by the equivalent property. 115 */ 116 static mntopt_t mntopts[] = { 117 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 118 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 119 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 120 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 121 }; 122 123 static mntopts_t zfs_mntopts = { 124 sizeof (mntopts) / sizeof (mntopt_t), 125 mntopts 126 }; 127 128 /*ARGSUSED*/ 129 int 130 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 131 { 132 /* 133 * Data integrity is job one. We don't want a compromised kernel 134 * writing to the storage pool, so we never sync during panic. 135 */ 136 if (panicstr) 137 return (0); 138 139 /* 140 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 141 * to sync metadata, which they would otherwise cache indefinitely. 142 * Semantically, the only requirement is that the sync be initiated. 143 * The DMU syncs out txgs frequently, so there's nothing to do. 144 */ 145 if (flag & SYNC_ATTR) 146 return (0); 147 148 if (vfsp != NULL) { 149 /* 150 * Sync a specific filesystem. 151 */ 152 zfsvfs_t *zfsvfs = vfsp->vfs_data; 153 dsl_pool_t *dp; 154 155 ZFS_ENTER(zfsvfs); 156 dp = dmu_objset_pool(zfsvfs->z_os); 157 158 /* 159 * If the system is shutting down, then skip any 160 * filesystems which may exist on a suspended pool. 161 */ 162 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 163 ZFS_EXIT(zfsvfs); 164 return (0); 165 } 166 167 if (zfsvfs->z_log != NULL) 168 zil_commit(zfsvfs->z_log, 0); 169 170 ZFS_EXIT(zfsvfs); 171 } else { 172 /* 173 * Sync all ZFS filesystems. This is what happens when you 174 * run sync(1M). Unlike other filesystems, ZFS honors the 175 * request by waiting for all pools to commit all dirty data. 176 */ 177 spa_sync_allpools(); 178 } 179 180 return (0); 181 } 182 183 static int 184 zfs_create_unique_device(dev_t *dev) 185 { 186 major_t new_major; 187 188 do { 189 ASSERT3U(zfs_minor, <=, MAXMIN32); 190 minor_t start = zfs_minor; 191 do { 192 mutex_enter(&zfs_dev_mtx); 193 if (zfs_minor >= MAXMIN32) { 194 /* 195 * If we're still using the real major 196 * keep out of /dev/zfs and /dev/zvol minor 197 * number space. If we're using a getudev()'ed 198 * major number, we can use all of its minors. 199 */ 200 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 201 zfs_minor = ZFS_MIN_MINOR; 202 else 203 zfs_minor = 0; 204 } else { 205 zfs_minor++; 206 } 207 *dev = makedevice(zfs_major, zfs_minor); 208 mutex_exit(&zfs_dev_mtx); 209 } while (vfs_devismounted(*dev) && zfs_minor != start); 210 if (zfs_minor == start) { 211 /* 212 * We are using all ~262,000 minor numbers for the 213 * current major number. Create a new major number. 214 */ 215 if ((new_major = getudev()) == (major_t)-1) { 216 cmn_err(CE_WARN, 217 "zfs_mount: Can't get unique major " 218 "device number."); 219 return (-1); 220 } 221 mutex_enter(&zfs_dev_mtx); 222 zfs_major = new_major; 223 zfs_minor = 0; 224 225 mutex_exit(&zfs_dev_mtx); 226 } else { 227 break; 228 } 229 /* CONSTANTCONDITION */ 230 } while (1); 231 232 return (0); 233 } 234 235 static void 236 atime_changed_cb(void *arg, uint64_t newval) 237 { 238 zfsvfs_t *zfsvfs = arg; 239 240 if (newval == TRUE) { 241 zfsvfs->z_atime = TRUE; 242 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 243 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 244 } else { 245 zfsvfs->z_atime = FALSE; 246 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 247 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 248 } 249 } 250 251 static void 252 xattr_changed_cb(void *arg, uint64_t newval) 253 { 254 zfsvfs_t *zfsvfs = arg; 255 256 if (newval == TRUE) { 257 /* XXX locking on vfs_flag? */ 258 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 259 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 260 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 261 } else { 262 /* XXX locking on vfs_flag? */ 263 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 264 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 265 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 266 } 267 } 268 269 static void 270 blksz_changed_cb(void *arg, uint64_t newval) 271 { 272 zfsvfs_t *zfsvfs = arg; 273 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); 274 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); 275 ASSERT(ISP2(newval)); 276 277 zfsvfs->z_max_blksz = newval; 278 zfsvfs->z_vfs->vfs_bsize = newval; 279 } 280 281 static void 282 readonly_changed_cb(void *arg, uint64_t newval) 283 { 284 zfsvfs_t *zfsvfs = arg; 285 286 if (newval) { 287 /* XXX locking on vfs_flag? */ 288 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 289 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 290 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 291 } else { 292 /* XXX locking on vfs_flag? */ 293 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 294 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 295 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 296 } 297 } 298 299 static void 300 devices_changed_cb(void *arg, uint64_t newval) 301 { 302 zfsvfs_t *zfsvfs = arg; 303 304 if (newval == FALSE) { 305 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 306 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 307 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 308 } else { 309 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 310 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 311 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 312 } 313 } 314 315 static void 316 setuid_changed_cb(void *arg, uint64_t newval) 317 { 318 zfsvfs_t *zfsvfs = arg; 319 320 if (newval == FALSE) { 321 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 322 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 323 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 324 } else { 325 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 326 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 327 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 328 } 329 } 330 331 static void 332 exec_changed_cb(void *arg, uint64_t newval) 333 { 334 zfsvfs_t *zfsvfs = arg; 335 336 if (newval == FALSE) { 337 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 338 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 339 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 340 } else { 341 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 342 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 343 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 344 } 345 } 346 347 /* 348 * The nbmand mount option can be changed at mount time. 349 * We can't allow it to be toggled on live file systems or incorrect 350 * behavior may be seen from cifs clients 351 * 352 * This property isn't registered via dsl_prop_register(), but this callback 353 * will be called when a file system is first mounted 354 */ 355 static void 356 nbmand_changed_cb(void *arg, uint64_t newval) 357 { 358 zfsvfs_t *zfsvfs = arg; 359 if (newval == FALSE) { 360 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 361 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 362 } else { 363 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 364 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 365 } 366 } 367 368 static void 369 snapdir_changed_cb(void *arg, uint64_t newval) 370 { 371 zfsvfs_t *zfsvfs = arg; 372 373 zfsvfs->z_show_ctldir = newval; 374 } 375 376 static void 377 vscan_changed_cb(void *arg, uint64_t newval) 378 { 379 zfsvfs_t *zfsvfs = arg; 380 381 zfsvfs->z_vscan = newval; 382 } 383 384 static void 385 acl_mode_changed_cb(void *arg, uint64_t newval) 386 { 387 zfsvfs_t *zfsvfs = arg; 388 389 zfsvfs->z_acl_mode = newval; 390 } 391 392 static void 393 acl_inherit_changed_cb(void *arg, uint64_t newval) 394 { 395 zfsvfs_t *zfsvfs = arg; 396 397 zfsvfs->z_acl_inherit = newval; 398 } 399 400 static int 401 zfs_register_callbacks(vfs_t *vfsp) 402 { 403 struct dsl_dataset *ds = NULL; 404 objset_t *os = NULL; 405 zfsvfs_t *zfsvfs = NULL; 406 uint64_t nbmand; 407 boolean_t readonly = B_FALSE; 408 boolean_t do_readonly = B_FALSE; 409 boolean_t setuid = B_FALSE; 410 boolean_t do_setuid = B_FALSE; 411 boolean_t exec = B_FALSE; 412 boolean_t do_exec = B_FALSE; 413 boolean_t devices = B_FALSE; 414 boolean_t do_devices = B_FALSE; 415 boolean_t xattr = B_FALSE; 416 boolean_t do_xattr = B_FALSE; 417 boolean_t atime = B_FALSE; 418 boolean_t do_atime = B_FALSE; 419 int error = 0; 420 421 ASSERT(vfsp); 422 zfsvfs = vfsp->vfs_data; 423 ASSERT(zfsvfs); 424 os = zfsvfs->z_os; 425 426 /* 427 * The act of registering our callbacks will destroy any mount 428 * options we may have. In order to enable temporary overrides 429 * of mount options, we stash away the current values and 430 * restore them after we register the callbacks. 431 */ 432 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || 433 !spa_writeable(dmu_objset_spa(os))) { 434 readonly = B_TRUE; 435 do_readonly = B_TRUE; 436 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 437 readonly = B_FALSE; 438 do_readonly = B_TRUE; 439 } 440 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 441 devices = B_FALSE; 442 setuid = B_FALSE; 443 do_devices = B_TRUE; 444 do_setuid = B_TRUE; 445 } else { 446 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 447 devices = B_FALSE; 448 do_devices = B_TRUE; 449 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 450 devices = B_TRUE; 451 do_devices = B_TRUE; 452 } 453 454 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 455 setuid = B_FALSE; 456 do_setuid = B_TRUE; 457 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 458 setuid = B_TRUE; 459 do_setuid = B_TRUE; 460 } 461 } 462 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 463 exec = B_FALSE; 464 do_exec = B_TRUE; 465 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 466 exec = B_TRUE; 467 do_exec = B_TRUE; 468 } 469 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 470 xattr = B_FALSE; 471 do_xattr = B_TRUE; 472 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 473 xattr = B_TRUE; 474 do_xattr = B_TRUE; 475 } 476 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 477 atime = B_FALSE; 478 do_atime = B_TRUE; 479 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 480 atime = B_TRUE; 481 do_atime = B_TRUE; 482 } 483 484 /* 485 * nbmand is a special property. It can only be changed at 486 * mount time. 487 * 488 * This is weird, but it is documented to only be changeable 489 * at mount time. 490 */ 491 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 492 nbmand = B_FALSE; 493 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 494 nbmand = B_TRUE; 495 } else { 496 char osname[ZFS_MAX_DATASET_NAME_LEN]; 497 498 dmu_objset_name(os, osname); 499 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 500 NULL)) { 501 return (error); 502 } 503 } 504 505 /* 506 * Register property callbacks. 507 * 508 * It would probably be fine to just check for i/o error from 509 * the first prop_register(), but I guess I like to go 510 * overboard... 511 */ 512 ds = dmu_objset_ds(os); 513 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 514 error = dsl_prop_register(ds, 515 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 516 error = error ? error : dsl_prop_register(ds, 517 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 518 error = error ? error : dsl_prop_register(ds, 519 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 520 error = error ? error : dsl_prop_register(ds, 521 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 522 error = error ? error : dsl_prop_register(ds, 523 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 524 error = error ? error : dsl_prop_register(ds, 525 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 526 error = error ? error : dsl_prop_register(ds, 527 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 528 error = error ? error : dsl_prop_register(ds, 529 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 530 error = error ? error : dsl_prop_register(ds, 531 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 532 error = error ? error : dsl_prop_register(ds, 533 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 534 zfsvfs); 535 error = error ? error : dsl_prop_register(ds, 536 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); 537 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 538 if (error) 539 goto unregister; 540 541 /* 542 * Invoke our callbacks to restore temporary mount options. 543 */ 544 if (do_readonly) 545 readonly_changed_cb(zfsvfs, readonly); 546 if (do_setuid) 547 setuid_changed_cb(zfsvfs, setuid); 548 if (do_exec) 549 exec_changed_cb(zfsvfs, exec); 550 if (do_devices) 551 devices_changed_cb(zfsvfs, devices); 552 if (do_xattr) 553 xattr_changed_cb(zfsvfs, xattr); 554 if (do_atime) 555 atime_changed_cb(zfsvfs, atime); 556 557 nbmand_changed_cb(zfsvfs, nbmand); 558 559 return (0); 560 561 unregister: 562 dsl_prop_unregister_all(ds, zfsvfs); 563 return (error); 564 } 565 566 static int 567 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 568 uint64_t *userp, uint64_t *groupp, uint64_t *projectp) 569 { 570 sa_hdr_phys_t sa; 571 sa_hdr_phys_t *sap = data; 572 uint64_t flags; 573 int hdrsize; 574 boolean_t swap = B_FALSE; 575 576 /* 577 * Is it a valid type of object to track? 578 */ 579 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 580 return (SET_ERROR(ENOENT)); 581 582 /* 583 * If we have a NULL data pointer 584 * then assume the id's aren't changing and 585 * return EEXIST to the dmu to let it know to 586 * use the same ids 587 */ 588 if (data == NULL) 589 return (SET_ERROR(EEXIST)); 590 591 if (bonustype == DMU_OT_ZNODE) { 592 znode_phys_t *znp = data; 593 *userp = znp->zp_uid; 594 *groupp = znp->zp_gid; 595 *projectp = ZFS_DEFAULT_PROJID; 596 return (0); 597 } 598 599 if (sap->sa_magic == 0) { 600 /* 601 * This should only happen for newly created files 602 * that haven't had the znode data filled in yet. 603 */ 604 *userp = 0; 605 *groupp = 0; 606 *projectp = ZFS_DEFAULT_PROJID; 607 return (0); 608 } 609 610 sa = *sap; 611 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) { 612 sa.sa_magic = SA_MAGIC; 613 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info); 614 swap = B_TRUE; 615 } else { 616 VERIFY3U(sa.sa_magic, ==, SA_MAGIC); 617 } 618 619 hdrsize = sa_hdrsize(&sa); 620 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t)); 621 622 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_UID_OFFSET)); 623 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_GID_OFFSET)); 624 flags = *((uint64_t *)((uintptr_t)data + hdrsize + SA_FLAGS_OFFSET)); 625 if (swap) 626 flags = BSWAP_64(flags); 627 628 if (flags & ZFS_PROJID) 629 *projectp = *((uint64_t *)((uintptr_t)data + hdrsize + 630 SA_PROJID_OFFSET)); 631 else 632 *projectp = ZFS_DEFAULT_PROJID; 633 634 if (swap) { 635 *userp = BSWAP_64(*userp); 636 *groupp = BSWAP_64(*groupp); 637 *projectp = BSWAP_64(*projectp); 638 } 639 return (0); 640 } 641 642 static void 643 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 644 char *domainbuf, int buflen, uid_t *ridp) 645 { 646 uint64_t fuid; 647 const char *domain; 648 649 fuid = zfs_strtonum(fuidstr, NULL); 650 651 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 652 if (domain) 653 (void) strlcpy(domainbuf, domain, buflen); 654 else 655 domainbuf[0] = '\0'; 656 *ridp = FUID_RID(fuid); 657 } 658 659 static uint64_t 660 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 661 { 662 switch (type) { 663 case ZFS_PROP_USERUSED: 664 case ZFS_PROP_USEROBJUSED: 665 return (DMU_USERUSED_OBJECT); 666 case ZFS_PROP_GROUPUSED: 667 case ZFS_PROP_GROUPOBJUSED: 668 return (DMU_GROUPUSED_OBJECT); 669 case ZFS_PROP_PROJECTUSED: 670 case ZFS_PROP_PROJECTOBJUSED: 671 return (DMU_PROJECTUSED_OBJECT); 672 case ZFS_PROP_USERQUOTA: 673 return (zfsvfs->z_userquota_obj); 674 case ZFS_PROP_GROUPQUOTA: 675 return (zfsvfs->z_groupquota_obj); 676 case ZFS_PROP_USEROBJQUOTA: 677 return (zfsvfs->z_userobjquota_obj); 678 case ZFS_PROP_GROUPOBJQUOTA: 679 return (zfsvfs->z_groupobjquota_obj); 680 case ZFS_PROP_PROJECTQUOTA: 681 return (zfsvfs->z_projectquota_obj); 682 case ZFS_PROP_PROJECTOBJQUOTA: 683 return (zfsvfs->z_projectobjquota_obj); 684 default: 685 return (ZFS_NO_OBJECT); 686 } 687 } 688 689 int 690 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 691 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 692 { 693 int error; 694 zap_cursor_t zc; 695 zap_attribute_t za; 696 zfs_useracct_t *buf = vbuf; 697 uint64_t obj; 698 int offset = 0; 699 700 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 701 return (SET_ERROR(ENOTSUP)); 702 703 if ((type == ZFS_PROP_PROJECTQUOTA || type == ZFS_PROP_PROJECTUSED || 704 type == ZFS_PROP_PROJECTOBJQUOTA || 705 type == ZFS_PROP_PROJECTOBJUSED) && 706 !dmu_objset_projectquota_present(zfsvfs->z_os)) 707 return (SET_ERROR(ENOTSUP)); 708 709 if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED || 710 type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA || 711 type == ZFS_PROP_PROJECTOBJUSED || 712 type == ZFS_PROP_PROJECTOBJQUOTA) && 713 !dmu_objset_userobjspace_present(zfsvfs->z_os)) 714 return (SET_ERROR(ENOTSUP)); 715 716 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 717 if (obj == ZFS_NO_OBJECT) { 718 *bufsizep = 0; 719 return (0); 720 } 721 722 if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED || 723 type == ZFS_PROP_PROJECTOBJUSED) 724 offset = DMU_OBJACCT_PREFIX_LEN; 725 726 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 727 (error = zap_cursor_retrieve(&zc, &za)) == 0; 728 zap_cursor_advance(&zc)) { 729 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 730 *bufsizep) 731 break; 732 733 /* 734 * skip object quota (with zap name prefix DMU_OBJACCT_PREFIX) 735 * when dealing with block quota and vice versa. 736 */ 737 if ((offset > 0) != (strncmp(za.za_name, DMU_OBJACCT_PREFIX, 738 DMU_OBJACCT_PREFIX_LEN) == 0)) 739 continue; 740 741 fuidstr_to_sid(zfsvfs, za.za_name + offset, 742 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 743 744 buf->zu_space = za.za_first_integer; 745 buf++; 746 } 747 if (error == ENOENT) 748 error = 0; 749 750 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 751 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 752 *cookiep = zap_cursor_serialize(&zc); 753 zap_cursor_fini(&zc); 754 return (error); 755 } 756 757 /* 758 * buf must be big enough (eg, 32 bytes) 759 */ 760 static int 761 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 762 char *buf, boolean_t addok) 763 { 764 uint64_t fuid; 765 int domainid = 0; 766 767 if (domain && domain[0]) { 768 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 769 if (domainid == -1) 770 return (SET_ERROR(ENOENT)); 771 } 772 fuid = FUID_ENCODE(domainid, rid); 773 (void) sprintf(buf, "%llx", (longlong_t)fuid); 774 return (0); 775 } 776 777 int 778 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 779 const char *domain, uint64_t rid, uint64_t *valp) 780 { 781 char buf[20 + DMU_OBJACCT_PREFIX_LEN]; 782 int offset = 0; 783 int err; 784 uint64_t obj; 785 786 *valp = 0; 787 788 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 789 return (SET_ERROR(ENOTSUP)); 790 791 if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED || 792 type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA || 793 type == ZFS_PROP_PROJECTOBJUSED || 794 type == ZFS_PROP_PROJECTOBJQUOTA) && 795 !dmu_objset_userobjspace_present(zfsvfs->z_os)) 796 return (SET_ERROR(ENOTSUP)); 797 798 if (type == ZFS_PROP_PROJECTQUOTA || type == ZFS_PROP_PROJECTUSED || 799 type == ZFS_PROP_PROJECTOBJQUOTA || 800 type == ZFS_PROP_PROJECTOBJUSED) { 801 if (!dmu_objset_projectquota_present(zfsvfs->z_os)) 802 return (SET_ERROR(ENOTSUP)); 803 if (!zpl_is_valid_projid(rid)) 804 return (SET_ERROR(EINVAL)); 805 } 806 807 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 808 if (obj == ZFS_NO_OBJECT) 809 return (0); 810 811 if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED || 812 type == ZFS_PROP_PROJECTOBJUSED) { 813 strncpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN); 814 offset = DMU_OBJACCT_PREFIX_LEN; 815 } 816 817 err = id_to_fuidstr(zfsvfs, domain, rid, buf + offset, B_FALSE); 818 if (err) 819 return (err); 820 821 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 822 if (err == ENOENT) 823 err = 0; 824 return (err); 825 } 826 827 int 828 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 829 const char *domain, uint64_t rid, uint64_t quota) 830 { 831 char buf[32]; 832 int err; 833 dmu_tx_t *tx; 834 uint64_t *objp; 835 boolean_t fuid_dirtied; 836 837 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 838 return (SET_ERROR(ENOTSUP)); 839 840 switch (type) { 841 case ZFS_PROP_USERQUOTA: 842 objp = &zfsvfs->z_userquota_obj; 843 break; 844 case ZFS_PROP_GROUPQUOTA: 845 objp = &zfsvfs->z_groupquota_obj; 846 break; 847 case ZFS_PROP_USEROBJQUOTA: 848 objp = &zfsvfs->z_userobjquota_obj; 849 break; 850 case ZFS_PROP_GROUPOBJQUOTA: 851 objp = &zfsvfs->z_groupobjquota_obj; 852 break; 853 case ZFS_PROP_PROJECTQUOTA: 854 if (!dmu_objset_projectquota_enabled(zfsvfs->z_os)) 855 return (SET_ERROR(ENOTSUP)); 856 if (!zpl_is_valid_projid(rid)) 857 return (SET_ERROR(EINVAL)); 858 859 objp = &zfsvfs->z_projectquota_obj; 860 break; 861 case ZFS_PROP_PROJECTOBJQUOTA: 862 if (!dmu_objset_projectquota_enabled(zfsvfs->z_os)) 863 return (SET_ERROR(ENOTSUP)); 864 if (!zpl_is_valid_projid(rid)) 865 return (SET_ERROR(EINVAL)); 866 867 objp = &zfsvfs->z_projectobjquota_obj; 868 break; 869 default: 870 return (SET_ERROR(EINVAL)); 871 } 872 873 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 874 if (err) 875 return (err); 876 fuid_dirtied = zfsvfs->z_fuid_dirty; 877 878 tx = dmu_tx_create(zfsvfs->z_os); 879 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 880 if (*objp == 0) { 881 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 882 zfs_userquota_prop_prefixes[type]); 883 } 884 if (fuid_dirtied) 885 zfs_fuid_txhold(zfsvfs, tx); 886 err = dmu_tx_assign(tx, TXG_WAIT); 887 if (err) { 888 dmu_tx_abort(tx); 889 return (err); 890 } 891 892 mutex_enter(&zfsvfs->z_lock); 893 if (*objp == 0) { 894 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 895 DMU_OT_NONE, 0, tx); 896 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 897 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 898 } 899 mutex_exit(&zfsvfs->z_lock); 900 901 if (quota == 0) { 902 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 903 if (err == ENOENT) 904 err = 0; 905 } else { 906 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 907 } 908 ASSERT(err == 0); 909 if (fuid_dirtied) 910 zfs_fuid_sync(zfsvfs, tx); 911 dmu_tx_commit(tx); 912 return (err); 913 } 914 915 boolean_t 916 zfs_id_overobjquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id) 917 { 918 char buf[20 + DMU_OBJACCT_PREFIX_LEN]; 919 uint64_t used, quota, quotaobj; 920 int err; 921 922 if (!dmu_objset_userobjspace_present(zfsvfs->z_os)) { 923 if (dmu_objset_userobjspace_upgradable(zfsvfs->z_os)) 924 dmu_objset_id_quota_upgrade(zfsvfs->z_os); 925 return (B_FALSE); 926 } 927 928 if (usedobj == DMU_PROJECTUSED_OBJECT) { 929 if (!dmu_objset_projectquota_present(zfsvfs->z_os)) { 930 if (dmu_objset_projectquota_upgradable(zfsvfs->z_os)) { 931 dsl_pool_config_enter( 932 dmu_objset_pool(zfsvfs->z_os), FTAG); 933 dmu_objset_id_quota_upgrade(zfsvfs->z_os); 934 dsl_pool_config_exit( 935 dmu_objset_pool(zfsvfs->z_os), FTAG); 936 } 937 return (B_FALSE); 938 } 939 quotaobj = zfsvfs->z_projectobjquota_obj; 940 } else if (usedobj == DMU_USERUSED_OBJECT) { 941 quotaobj = zfsvfs->z_userobjquota_obj; 942 } else if (usedobj == DMU_GROUPUSED_OBJECT) { 943 quotaobj = zfsvfs->z_groupobjquota_obj; 944 } else { 945 return (B_FALSE); 946 } 947 if (quotaobj == 0 || zfsvfs->z_replay) 948 return (B_FALSE); 949 950 (void) sprintf(buf, "%llx", (longlong_t)id); 951 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 952 if (err != 0) 953 return (B_FALSE); 954 955 (void) sprintf(buf, DMU_OBJACCT_PREFIX "%llx", (longlong_t)id); 956 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 957 if (err != 0) 958 return (B_FALSE); 959 return (used >= quota); 960 } 961 962 boolean_t 963 zfs_id_overblockquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id) 964 { 965 char buf[20]; 966 uint64_t used, quota, quotaobj; 967 int err; 968 969 if (usedobj == DMU_PROJECTUSED_OBJECT) { 970 if (!dmu_objset_projectquota_present(zfsvfs->z_os)) { 971 if (dmu_objset_projectquota_upgradable(zfsvfs->z_os)) { 972 dsl_pool_config_enter( 973 dmu_objset_pool(zfsvfs->z_os), FTAG); 974 dmu_objset_id_quota_upgrade(zfsvfs->z_os); 975 dsl_pool_config_exit( 976 dmu_objset_pool(zfsvfs->z_os), FTAG); 977 } 978 return (B_FALSE); 979 } 980 quotaobj = zfsvfs->z_projectquota_obj; 981 } else if (usedobj == DMU_USERUSED_OBJECT) { 982 quotaobj = zfsvfs->z_userquota_obj; 983 } else if (usedobj == DMU_GROUPUSED_OBJECT) { 984 quotaobj = zfsvfs->z_groupquota_obj; 985 } else { 986 return (B_FALSE); 987 } 988 if (quotaobj == 0 || zfsvfs->z_replay) 989 return (B_FALSE); 990 991 (void) sprintf(buf, "%llx", (longlong_t)id); 992 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 993 if (err != 0) 994 return (B_FALSE); 995 996 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 997 if (err != 0) 998 return (B_FALSE); 999 return (used >= quota); 1000 } 1001 1002 boolean_t 1003 zfs_id_overquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id) 1004 { 1005 return (zfs_id_overblockquota(zfsvfs, usedobj, id) || 1006 zfs_id_overobjquota(zfsvfs, usedobj, id)); 1007 } 1008 1009 /* 1010 * Associate this zfsvfs with the given objset, which must be owned. 1011 * This will cache a bunch of on-disk state from the objset in the 1012 * zfsvfs. 1013 */ 1014 static int 1015 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os) 1016 { 1017 int error; 1018 uint64_t val; 1019 1020 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; 1021 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 1022 zfsvfs->z_os = os; 1023 1024 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 1025 if (error != 0) 1026 return (error); 1027 if (zfsvfs->z_version > 1028 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 1029 (void) printf("Can't mount a version %lld file system " 1030 "on a version %lld pool\n. Pool must be upgraded to mount " 1031 "this file system.", (u_longlong_t)zfsvfs->z_version, 1032 (u_longlong_t)spa_version(dmu_objset_spa(os))); 1033 return (SET_ERROR(ENOTSUP)); 1034 } 1035 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val); 1036 if (error != 0) 1037 return (error); 1038 zfsvfs->z_norm = (int)val; 1039 1040 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val); 1041 if (error != 0) 1042 return (error); 1043 zfsvfs->z_utf8 = (val != 0); 1044 1045 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val); 1046 if (error != 0) 1047 return (error); 1048 zfsvfs->z_case = (uint_t)val; 1049 1050 /* 1051 * Fold case on file systems that are always or sometimes case 1052 * insensitive. 1053 */ 1054 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 1055 zfsvfs->z_case == ZFS_CASE_MIXED) 1056 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 1057 1058 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1059 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1060 1061 uint64_t sa_obj = 0; 1062 if (zfsvfs->z_use_sa) { 1063 /* should either have both of these objects or none */ 1064 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 1065 &sa_obj); 1066 if (error != 0) 1067 return (error); 1068 } 1069 1070 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 1071 &zfsvfs->z_attr_table); 1072 if (error != 0) 1073 return (error); 1074 1075 if (zfsvfs->z_version >= ZPL_VERSION_SA) 1076 sa_register_update_callback(os, zfs_sa_upgrade); 1077 1078 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 1079 &zfsvfs->z_root); 1080 if (error != 0) 1081 return (error); 1082 ASSERT(zfsvfs->z_root != 0); 1083 1084 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 1085 &zfsvfs->z_unlinkedobj); 1086 if (error != 0) 1087 return (error); 1088 1089 error = zap_lookup(os, MASTER_NODE_OBJ, 1090 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 1091 8, 1, &zfsvfs->z_userquota_obj); 1092 if (error == ENOENT) 1093 zfsvfs->z_userquota_obj = 0; 1094 else if (error != 0) 1095 return (error); 1096 1097 error = zap_lookup(os, MASTER_NODE_OBJ, 1098 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 1099 8, 1, &zfsvfs->z_groupquota_obj); 1100 if (error == ENOENT) 1101 zfsvfs->z_groupquota_obj = 0; 1102 else if (error != 0) 1103 return (error); 1104 1105 error = zap_lookup(os, MASTER_NODE_OBJ, 1106 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA], 1107 8, 1, &zfsvfs->z_projectquota_obj); 1108 if (error == ENOENT) 1109 zfsvfs->z_projectquota_obj = 0; 1110 else if (error != 0) 1111 return (error); 1112 1113 error = zap_lookup(os, MASTER_NODE_OBJ, 1114 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA], 1115 8, 1, &zfsvfs->z_userobjquota_obj); 1116 if (error == ENOENT) 1117 zfsvfs->z_userobjquota_obj = 0; 1118 else if (error != 0) 1119 return (error); 1120 1121 error = zap_lookup(os, MASTER_NODE_OBJ, 1122 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA], 1123 8, 1, &zfsvfs->z_groupobjquota_obj); 1124 if (error == ENOENT) 1125 zfsvfs->z_groupobjquota_obj = 0; 1126 else if (error != 0) 1127 return (error); 1128 1129 error = zap_lookup(os, MASTER_NODE_OBJ, 1130 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA], 1131 8, 1, &zfsvfs->z_projectobjquota_obj); 1132 if (error == ENOENT) 1133 zfsvfs->z_projectobjquota_obj = 0; 1134 else if (error != 0) 1135 return (error); 1136 1137 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 1138 &zfsvfs->z_fuid_obj); 1139 if (error == ENOENT) 1140 zfsvfs->z_fuid_obj = 0; 1141 else if (error != 0) 1142 return (error); 1143 1144 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 1145 &zfsvfs->z_shares_dir); 1146 if (error == ENOENT) 1147 zfsvfs->z_shares_dir = 0; 1148 else if (error != 0) 1149 return (error); 1150 1151 return (0); 1152 } 1153 1154 int 1155 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp) 1156 { 1157 objset_t *os; 1158 zfsvfs_t *zfsvfs; 1159 int error; 1160 boolean_t ro = (readonly || (strchr(osname, '@') != NULL)); 1161 1162 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 1163 1164 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os); 1165 if (error != 0) { 1166 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1167 return (error); 1168 } 1169 1170 error = zfsvfs_create_impl(zfvp, zfsvfs, os); 1171 if (error != 0) { 1172 dmu_objset_disown(os, B_TRUE, zfsvfs); 1173 } 1174 return (error); 1175 } 1176 1177 1178 int 1179 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os) 1180 { 1181 int error; 1182 1183 zfsvfs->z_vfs = NULL; 1184 zfsvfs->z_parent = zfsvfs; 1185 1186 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1187 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 1188 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 1189 offsetof(znode_t, z_link_node)); 1190 rrm_init(&zfsvfs->z_teardown_lock, B_FALSE); 1191 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 1192 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 1193 for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1194 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1195 1196 error = zfsvfs_init(zfsvfs, os); 1197 if (error != 0) { 1198 *zfvp = NULL; 1199 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1200 return (error); 1201 } 1202 1203 *zfvp = zfsvfs; 1204 return (0); 1205 } 1206 1207 static int 1208 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 1209 { 1210 int error; 1211 1212 error = zfs_register_callbacks(zfsvfs->z_vfs); 1213 if (error) 1214 return (error); 1215 1216 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1217 1218 /* 1219 * If we are not mounting (ie: online recv), then we don't 1220 * have to worry about replaying the log as we blocked all 1221 * operations out since we closed the ZIL. 1222 */ 1223 if (mounting) { 1224 boolean_t readonly; 1225 1226 /* 1227 * During replay we remove the read only flag to 1228 * allow replays to succeed. 1229 */ 1230 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1231 if (readonly != 0) 1232 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1233 else 1234 zfs_unlinked_drain(zfsvfs); 1235 1236 /* 1237 * Parse and replay the intent log. 1238 * 1239 * Because of ziltest, this must be done after 1240 * zfs_unlinked_drain(). (Further note: ziltest 1241 * doesn't use readonly mounts, where 1242 * zfs_unlinked_drain() isn't called.) This is because 1243 * ziltest causes spa_sync() to think it's committed, 1244 * but actually it is not, so the intent log contains 1245 * many txg's worth of changes. 1246 * 1247 * In particular, if object N is in the unlinked set in 1248 * the last txg to actually sync, then it could be 1249 * actually freed in a later txg and then reallocated 1250 * in a yet later txg. This would write a "create 1251 * object N" record to the intent log. Normally, this 1252 * would be fine because the spa_sync() would have 1253 * written out the fact that object N is free, before 1254 * we could write the "create object N" intent log 1255 * record. 1256 * 1257 * But when we are in ziltest mode, we advance the "open 1258 * txg" without actually spa_sync()-ing the changes to 1259 * disk. So we would see that object N is still 1260 * allocated and in the unlinked set, and there is an 1261 * intent log record saying to allocate it. 1262 */ 1263 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 1264 if (zil_replay_disable) { 1265 zil_destroy(zfsvfs->z_log, B_FALSE); 1266 } else { 1267 zfsvfs->z_replay = B_TRUE; 1268 zil_replay(zfsvfs->z_os, zfsvfs, 1269 zfs_replay_vector); 1270 zfsvfs->z_replay = B_FALSE; 1271 } 1272 } 1273 1274 /* restore readonly bit */ 1275 if (readonly != 0) 1276 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 1277 } 1278 1279 /* 1280 * Set the objset user_ptr to track its zfsvfs. 1281 */ 1282 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1283 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1284 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1285 1286 return (0); 1287 } 1288 1289 void 1290 zfsvfs_free(zfsvfs_t *zfsvfs) 1291 { 1292 int i; 1293 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1294 1295 /* 1296 * This is a barrier to prevent the filesystem from going away in 1297 * zfs_znode_move() until we can safely ensure that the filesystem is 1298 * not unmounted. We consider the filesystem valid before the barrier 1299 * and invalid after the barrier. 1300 */ 1301 rw_enter(&zfsvfs_lock, RW_READER); 1302 rw_exit(&zfsvfs_lock); 1303 1304 zfs_fuid_destroy(zfsvfs); 1305 1306 mutex_destroy(&zfsvfs->z_znodes_lock); 1307 mutex_destroy(&zfsvfs->z_lock); 1308 list_destroy(&zfsvfs->z_all_znodes); 1309 rrm_destroy(&zfsvfs->z_teardown_lock); 1310 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1311 rw_destroy(&zfsvfs->z_fuid_lock); 1312 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1313 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1314 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1315 } 1316 1317 static void 1318 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1319 { 1320 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1321 if (zfsvfs->z_vfs) { 1322 if (zfsvfs->z_use_fuids) { 1323 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1324 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1325 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1326 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1327 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1328 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1329 } else { 1330 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1331 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1332 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1333 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1334 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1335 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1336 } 1337 } 1338 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1339 } 1340 1341 static int 1342 zfs_domount(vfs_t *vfsp, char *osname) 1343 { 1344 dev_t mount_dev; 1345 uint64_t recordsize, fsid_guid; 1346 int error = 0; 1347 zfsvfs_t *zfsvfs; 1348 boolean_t readonly = vfsp->vfs_flag & VFS_RDONLY ? B_TRUE : B_FALSE; 1349 1350 ASSERT(vfsp); 1351 ASSERT(osname); 1352 1353 error = zfsvfs_create(osname, readonly, &zfsvfs); 1354 if (error) 1355 return (error); 1356 zfsvfs->z_vfs = vfsp; 1357 1358 /* Initialize the generic filesystem structure. */ 1359 vfsp->vfs_bcount = 0; 1360 vfsp->vfs_data = NULL; 1361 1362 if (zfs_create_unique_device(&mount_dev) == -1) { 1363 error = SET_ERROR(ENODEV); 1364 goto out; 1365 } 1366 ASSERT(vfs_devismounted(mount_dev) == 0); 1367 1368 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1369 NULL)) 1370 goto out; 1371 1372 vfsp->vfs_dev = mount_dev; 1373 vfsp->vfs_fstype = zfsfstype; 1374 vfsp->vfs_bsize = recordsize; 1375 vfsp->vfs_flag |= VFS_NOTRUNC; 1376 vfsp->vfs_data = zfsvfs; 1377 1378 /* 1379 * The fsid is 64 bits, composed of an 8-bit fs type, which 1380 * separates our fsid from any other filesystem types, and a 1381 * 56-bit objset unique ID. The objset unique ID is unique to 1382 * all objsets open on this system, provided by unique_create(). 1383 * The 8-bit fs type must be put in the low bits of fsid[1] 1384 * because that's where other Solaris filesystems put it. 1385 */ 1386 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1387 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1388 vfsp->vfs_fsid.val[0] = fsid_guid; 1389 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1390 zfsfstype & 0xFF; 1391 1392 /* 1393 * Set features for file system. 1394 */ 1395 zfs_set_fuid_feature(zfsvfs); 1396 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1397 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1398 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1399 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1400 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1401 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1402 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1403 } 1404 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1405 1406 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1407 uint64_t pval; 1408 1409 atime_changed_cb(zfsvfs, B_FALSE); 1410 readonly_changed_cb(zfsvfs, B_TRUE); 1411 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1412 goto out; 1413 xattr_changed_cb(zfsvfs, pval); 1414 zfsvfs->z_issnap = B_TRUE; 1415 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1416 1417 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1418 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1419 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1420 } else { 1421 error = zfsvfs_setup(zfsvfs, B_TRUE); 1422 } 1423 1424 if (!zfsvfs->z_issnap) 1425 zfsctl_create(zfsvfs); 1426 out: 1427 if (error) { 1428 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); 1429 zfsvfs_free(zfsvfs); 1430 } else { 1431 atomic_inc_32(&zfs_active_fs_count); 1432 } 1433 1434 return (error); 1435 } 1436 1437 void 1438 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1439 { 1440 objset_t *os = zfsvfs->z_os; 1441 1442 if (!dmu_objset_is_snapshot(os)) 1443 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); 1444 } 1445 1446 /* 1447 * Convert a decimal digit string to a uint64_t integer. 1448 */ 1449 static int 1450 str_to_uint64(char *str, uint64_t *objnum) 1451 { 1452 uint64_t num = 0; 1453 1454 while (*str) { 1455 if (*str < '0' || *str > '9') 1456 return (SET_ERROR(EINVAL)); 1457 1458 num = num*10 + *str++ - '0'; 1459 } 1460 1461 *objnum = num; 1462 return (0); 1463 } 1464 1465 /* 1466 * The boot path passed from the boot loader is in the form of 1467 * "rootpool-name/root-filesystem-object-number'. Convert this 1468 * string to a dataset name: "rootpool-name/root-filesystem-name". 1469 */ 1470 static int 1471 zfs_parse_bootfs(char *bpath, char *outpath) 1472 { 1473 char *slashp; 1474 uint64_t objnum; 1475 int error; 1476 1477 if (*bpath == 0 || *bpath == '/') 1478 return (SET_ERROR(EINVAL)); 1479 1480 (void) strcpy(outpath, bpath); 1481 1482 slashp = strchr(bpath, '/'); 1483 1484 /* if no '/', just return the pool name */ 1485 if (slashp == NULL) { 1486 return (0); 1487 } 1488 1489 /* if not a number, just return the root dataset name */ 1490 if (str_to_uint64(slashp+1, &objnum)) { 1491 return (0); 1492 } 1493 1494 *slashp = '\0'; 1495 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1496 *slashp = '/'; 1497 1498 return (error); 1499 } 1500 1501 /* 1502 * Check that the hex label string is appropriate for the dataset being 1503 * mounted into the global_zone proper. 1504 * 1505 * Return an error if the hex label string is not default or 1506 * admin_low/admin_high. For admin_low labels, the corresponding 1507 * dataset must be readonly. 1508 */ 1509 int 1510 zfs_check_global_label(const char *dsname, const char *hexsl) 1511 { 1512 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1513 return (0); 1514 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1515 return (0); 1516 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1517 /* must be readonly */ 1518 uint64_t rdonly; 1519 1520 if (dsl_prop_get_integer(dsname, 1521 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1522 return (SET_ERROR(EACCES)); 1523 return (rdonly ? 0 : EACCES); 1524 } 1525 return (SET_ERROR(EACCES)); 1526 } 1527 1528 static int 1529 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct statvfs64 *statp, 1530 uint32_t bshift) 1531 { 1532 char buf[20 + DMU_OBJACCT_PREFIX_LEN]; 1533 uint64_t offset = DMU_OBJACCT_PREFIX_LEN; 1534 uint64_t quota; 1535 uint64_t used; 1536 int err; 1537 1538 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1); 1539 err = id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset, B_FALSE); 1540 if (err) 1541 return (err); 1542 1543 if (zfsvfs->z_projectquota_obj == 0) 1544 goto objs; 1545 1546 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj, 1547 buf + offset, 8, 1, "a); 1548 if (err == ENOENT) 1549 goto objs; 1550 else if (err) 1551 return (err); 1552 1553 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1554 buf + offset, 8, 1, &used); 1555 if (unlikely(err == ENOENT)) { 1556 uint32_t blksize; 1557 u_longlong_t nblocks; 1558 1559 /* 1560 * Quota accounting is async, so it is possible race case. 1561 * There is at least one object with the given project ID. 1562 */ 1563 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks); 1564 if (unlikely(zp->z_blksz == 0)) 1565 blksize = zfsvfs->z_max_blksz; 1566 1567 used = blksize * nblocks; 1568 } else if (err) { 1569 return (err); 1570 } 1571 1572 statp->f_blocks = quota >> bshift; 1573 statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0; 1574 statp->f_bavail = statp->f_bfree; 1575 1576 objs: 1577 if (zfsvfs->z_projectobjquota_obj == 0) 1578 return (0); 1579 1580 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj, 1581 buf + offset, 8, 1, "a); 1582 if (err == ENOENT) 1583 return (0); 1584 else if (err) 1585 return (err); 1586 1587 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1588 buf, 8, 1, &used); 1589 if (unlikely(err == ENOENT)) { 1590 /* 1591 * Quota accounting is async, so it is possible race case. 1592 * There is at least one object with the given project ID. 1593 */ 1594 used = 1; 1595 } else if (err) { 1596 return (err); 1597 } 1598 1599 statp->f_files = quota; 1600 statp->f_ffree = (quota > used) ? (quota - used) : 0; 1601 1602 return (0); 1603 } 1604 1605 /* 1606 * Determine whether the mount is allowed according to MAC check. 1607 * by comparing (where appropriate) label of the dataset against 1608 * the label of the zone being mounted into. If the dataset has 1609 * no label, create one. 1610 * 1611 * Returns 0 if access allowed, error otherwise (e.g. EACCES) 1612 */ 1613 static int 1614 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1615 { 1616 int error, retv; 1617 zone_t *mntzone = NULL; 1618 ts_label_t *mnt_tsl; 1619 bslabel_t *mnt_sl; 1620 bslabel_t ds_sl; 1621 char ds_hexsl[MAXNAMELEN]; 1622 1623 retv = EACCES; /* assume the worst */ 1624 1625 /* 1626 * Start by getting the dataset label if it exists. 1627 */ 1628 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1629 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1630 if (error) 1631 return (SET_ERROR(EACCES)); 1632 1633 /* 1634 * If labeling is NOT enabled, then disallow the mount of datasets 1635 * which have a non-default label already. No other label checks 1636 * are needed. 1637 */ 1638 if (!is_system_labeled()) { 1639 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1640 return (0); 1641 return (SET_ERROR(EACCES)); 1642 } 1643 1644 /* 1645 * Get the label of the mountpoint. If mounting into the global 1646 * zone (i.e. mountpoint is not within an active zone and the 1647 * zoned property is off), the label must be default or 1648 * admin_low/admin_high only; no other checks are needed. 1649 */ 1650 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1651 if (mntzone->zone_id == GLOBAL_ZONEID) { 1652 uint64_t zoned; 1653 1654 zone_rele(mntzone); 1655 1656 if (dsl_prop_get_integer(osname, 1657 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1658 return (SET_ERROR(EACCES)); 1659 if (!zoned) 1660 return (zfs_check_global_label(osname, ds_hexsl)); 1661 else 1662 /* 1663 * This is the case of a zone dataset being mounted 1664 * initially, before the zone has been fully created; 1665 * allow this mount into global zone. 1666 */ 1667 return (0); 1668 } 1669 1670 mnt_tsl = mntzone->zone_slabel; 1671 ASSERT(mnt_tsl != NULL); 1672 label_hold(mnt_tsl); 1673 mnt_sl = label2bslabel(mnt_tsl); 1674 1675 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1676 /* 1677 * The dataset doesn't have a real label, so fabricate one. 1678 */ 1679 char *str = NULL; 1680 1681 if (l_to_str_internal(mnt_sl, &str) == 0 && 1682 dsl_prop_set_string(osname, 1683 zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1684 ZPROP_SRC_LOCAL, str) == 0) 1685 retv = 0; 1686 if (str != NULL) 1687 kmem_free(str, strlen(str) + 1); 1688 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1689 /* 1690 * Now compare labels to complete the MAC check. If the 1691 * labels are equal then allow access. If the mountpoint 1692 * label dominates the dataset label, allow readonly access. 1693 * Otherwise, access is denied. 1694 */ 1695 if (blequal(mnt_sl, &ds_sl)) 1696 retv = 0; 1697 else if (bldominates(mnt_sl, &ds_sl)) { 1698 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1699 retv = 0; 1700 } 1701 } 1702 1703 label_rele(mnt_tsl); 1704 zone_rele(mntzone); 1705 return (retv); 1706 } 1707 1708 static int 1709 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1710 { 1711 int error = 0; 1712 static int zfsrootdone = 0; 1713 zfsvfs_t *zfsvfs = NULL; 1714 znode_t *zp = NULL; 1715 vnode_t *vp = NULL; 1716 char *zfs_bootfs; 1717 char *zfs_devid; 1718 1719 ASSERT(vfsp); 1720 1721 /* 1722 * The filesystem that we mount as root is defined in the 1723 * boot property "zfs-bootfs" with a format of 1724 * "poolname/root-dataset-objnum". 1725 */ 1726 if (why == ROOT_INIT) { 1727 if (zfsrootdone++) 1728 return (SET_ERROR(EBUSY)); 1729 /* 1730 * the process of doing a spa_load will require the 1731 * clock to be set before we could (for example) do 1732 * something better by looking at the timestamp on 1733 * an uberblock, so just set it to -1. 1734 */ 1735 clkset(-1); 1736 1737 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1738 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1739 "bootfs name"); 1740 return (SET_ERROR(EINVAL)); 1741 } 1742 zfs_devid = spa_get_bootprop("diskdevid"); 1743 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1744 if (zfs_devid) 1745 spa_free_bootprop(zfs_devid); 1746 if (error) { 1747 spa_free_bootprop(zfs_bootfs); 1748 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1749 error); 1750 return (error); 1751 } 1752 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1753 spa_free_bootprop(zfs_bootfs); 1754 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1755 error); 1756 return (error); 1757 } 1758 1759 spa_free_bootprop(zfs_bootfs); 1760 1761 if (error = vfs_lock(vfsp)) 1762 return (error); 1763 1764 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1765 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1766 goto out; 1767 } 1768 1769 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1770 ASSERT(zfsvfs); 1771 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1772 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1773 goto out; 1774 } 1775 1776 vp = ZTOV(zp); 1777 mutex_enter(&vp->v_lock); 1778 vp->v_flag |= VROOT; 1779 mutex_exit(&vp->v_lock); 1780 rootvp = vp; 1781 1782 /* 1783 * Leave rootvp held. The root file system is never unmounted. 1784 */ 1785 1786 vfs_add((struct vnode *)0, vfsp, 1787 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1788 out: 1789 vfs_unlock(vfsp); 1790 return (error); 1791 } else if (why == ROOT_REMOUNT) { 1792 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1793 vfsp->vfs_flag |= VFS_REMOUNT; 1794 1795 /* refresh mount options */ 1796 zfs_unregister_callbacks(vfsp->vfs_data); 1797 return (zfs_register_callbacks(vfsp)); 1798 1799 } else if (why == ROOT_UNMOUNT) { 1800 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1801 (void) zfs_sync(vfsp, 0, 0); 1802 return (0); 1803 } 1804 1805 /* 1806 * if "why" is equal to anything else other than ROOT_INIT, 1807 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1808 */ 1809 return (SET_ERROR(ENOTSUP)); 1810 } 1811 1812 /*ARGSUSED*/ 1813 static int 1814 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1815 { 1816 char *osname; 1817 pathname_t spn; 1818 int error = 0; 1819 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1820 UIO_SYSSPACE : UIO_USERSPACE; 1821 int canwrite; 1822 1823 if (mvp->v_type != VDIR) 1824 return (SET_ERROR(ENOTDIR)); 1825 1826 mutex_enter(&mvp->v_lock); 1827 if ((uap->flags & MS_REMOUNT) == 0 && 1828 (uap->flags & MS_OVERLAY) == 0 && 1829 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1830 mutex_exit(&mvp->v_lock); 1831 return (SET_ERROR(EBUSY)); 1832 } 1833 mutex_exit(&mvp->v_lock); 1834 1835 /* 1836 * ZFS does not support passing unparsed data in via MS_DATA. 1837 * Users should use the MS_OPTIONSTR interface; this means 1838 * that all option parsing is already done and the options struct 1839 * can be interrogated. 1840 */ 1841 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1842 return (SET_ERROR(EINVAL)); 1843 1844 /* 1845 * Get the objset name (the "special" mount argument). 1846 */ 1847 if (error = pn_get(uap->spec, fromspace, &spn)) 1848 return (error); 1849 1850 osname = spn.pn_path; 1851 1852 /* 1853 * Check for mount privilege? 1854 * 1855 * If we don't have privilege then see if 1856 * we have local permission to allow it 1857 */ 1858 error = secpolicy_fs_mount(cr, mvp, vfsp); 1859 if (error) { 1860 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1861 vattr_t vattr; 1862 1863 /* 1864 * Make sure user is the owner of the mount point 1865 * or has sufficient privileges. 1866 */ 1867 1868 vattr.va_mask = AT_UID; 1869 1870 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1871 goto out; 1872 } 1873 1874 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1875 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1876 goto out; 1877 } 1878 secpolicy_fs_mount_clearopts(cr, vfsp); 1879 } else { 1880 goto out; 1881 } 1882 } 1883 1884 /* 1885 * Refuse to mount a filesystem if we are in a local zone and the 1886 * dataset is not visible. 1887 */ 1888 if (!INGLOBALZONE(curproc) && 1889 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1890 error = SET_ERROR(EPERM); 1891 goto out; 1892 } 1893 1894 error = zfs_mount_label_policy(vfsp, osname); 1895 if (error) 1896 goto out; 1897 1898 /* 1899 * When doing a remount, we simply refresh our temporary properties 1900 * according to those options set in the current VFS options. 1901 */ 1902 if (uap->flags & MS_REMOUNT) { 1903 /* refresh mount options */ 1904 zfs_unregister_callbacks(vfsp->vfs_data); 1905 error = zfs_register_callbacks(vfsp); 1906 goto out; 1907 } 1908 1909 error = zfs_domount(vfsp, osname); 1910 1911 /* 1912 * Add an extra VFS_HOLD on our parent vfs so that it can't 1913 * disappear due to a forced unmount. 1914 */ 1915 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1916 VFS_HOLD(mvp->v_vfsp); 1917 1918 out: 1919 pn_free(&spn); 1920 return (error); 1921 } 1922 1923 static int 1924 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1925 { 1926 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1927 dev32_t d32; 1928 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1929 int err = 0; 1930 1931 ZFS_ENTER(zfsvfs); 1932 1933 dmu_objset_space(zfsvfs->z_os, 1934 &refdbytes, &availbytes, &usedobjs, &availobjs); 1935 1936 /* 1937 * The underlying storage pool actually uses multiple block sizes. 1938 * We report the fragsize as the smallest block size we support, 1939 * and we report our blocksize as the filesystem's maximum blocksize. 1940 */ 1941 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1942 statp->f_bsize = zfsvfs->z_max_blksz; 1943 1944 /* 1945 * The following report "total" blocks of various kinds in the 1946 * file system, but reported in terms of f_frsize - the 1947 * "fragment" size. 1948 */ 1949 1950 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1951 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1952 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1953 1954 /* 1955 * statvfs() should really be called statufs(), because it assumes 1956 * static metadata. ZFS doesn't preallocate files, so the best 1957 * we can do is report the max that could possibly fit in f_files, 1958 * and that minus the number actually used in f_ffree. 1959 * For f_ffree, report the smaller of the number of object available 1960 * and the number of blocks (each object will take at least a block). 1961 */ 1962 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1963 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1964 statp->f_files = statp->f_ffree + usedobjs; 1965 1966 (void) cmpldev(&d32, vfsp->vfs_dev); 1967 statp->f_fsid = d32; 1968 1969 /* 1970 * We're a zfs filesystem. 1971 */ 1972 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1973 1974 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1975 1976 statp->f_namemax = MAXNAMELEN - 1; 1977 1978 /* 1979 * We have all of 32 characters to stuff a string here. 1980 * Is there anything useful we could/should provide? 1981 */ 1982 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1983 1984 if (dmu_objset_projectquota_enabled(zfsvfs->z_os) && 1985 dmu_objset_projectquota_present(zfsvfs->z_os)) { 1986 znode_t *zp; 1987 1988 /* 1989 * In ZoL, zfs_statvfs is passed a Linux dentry (directory 1990 * entry), instead of a vfsp. The ZoL code uses the dentry 1991 * to get the znode from the dentry's inode. This represents 1992 * whatever filename was passed to the user-level statvfs 1993 * syscall. 1994 * 1995 * We're using the VFS root znode here, so this represents a 1996 * potential difference from ZoL. 1997 */ 1998 if (zfs_zget(zfsvfs, zfsvfs->z_root, &zp) == 0) { 1999 uint32_t bshift = ddi_fls(statp->f_bsize) - 1; 2000 2001 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid && 2002 zpl_is_valid_projid(zp->z_projid)) 2003 err = zfs_statfs_project(zfsvfs, zp, statp, 2004 bshift); 2005 VN_RELE(ZTOV(zp)); 2006 } 2007 } 2008 2009 ZFS_EXIT(zfsvfs); 2010 return (err); 2011 } 2012 2013 static int 2014 zfs_root(vfs_t *vfsp, vnode_t **vpp) 2015 { 2016 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2017 znode_t *rootzp; 2018 int error; 2019 2020 ZFS_ENTER(zfsvfs); 2021 2022 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 2023 if (error == 0) 2024 *vpp = ZTOV(rootzp); 2025 2026 ZFS_EXIT(zfsvfs); 2027 return (error); 2028 } 2029 2030 /* 2031 * Teardown the zfsvfs::z_os. 2032 * 2033 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock' 2034 * and 'z_teardown_inactive_lock' held. 2035 */ 2036 static int 2037 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 2038 { 2039 znode_t *zp; 2040 2041 rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 2042 2043 if (!unmounting) { 2044 /* 2045 * We purge the parent filesystem's vfsp as the parent 2046 * filesystem and all of its snapshots have their vnode's 2047 * v_vfsp set to the parent's filesystem's vfsp. Note, 2048 * 'z_parent' is self referential for non-snapshots. 2049 */ 2050 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 2051 } 2052 2053 /* 2054 * Close the zil. NB: Can't close the zil while zfs_inactive 2055 * threads are blocked as zil_close can call zfs_inactive. 2056 */ 2057 if (zfsvfs->z_log) { 2058 zil_close(zfsvfs->z_log); 2059 zfsvfs->z_log = NULL; 2060 } 2061 2062 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 2063 2064 /* 2065 * If we are not unmounting (ie: online recv) and someone already 2066 * unmounted this file system while we were doing the switcheroo, 2067 * or a reopen of z_os failed then just bail out now. 2068 */ 2069 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 2070 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2071 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 2072 return (SET_ERROR(EIO)); 2073 } 2074 2075 /* 2076 * At this point there are no vops active, and any new vops will 2077 * fail with EIO since we have z_teardown_lock for writer (only 2078 * relavent for forced unmount). 2079 * 2080 * Release all holds on dbufs. 2081 */ 2082 mutex_enter(&zfsvfs->z_znodes_lock); 2083 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 2084 zp = list_next(&zfsvfs->z_all_znodes, zp)) 2085 if (zp->z_sa_hdl) { 2086 ASSERT(ZTOV(zp)->v_count > 0); 2087 zfs_znode_dmu_fini(zp); 2088 } 2089 mutex_exit(&zfsvfs->z_znodes_lock); 2090 2091 /* 2092 * If we are unmounting, set the unmounted flag and let new vops 2093 * unblock. zfs_inactive will have the unmounted behavior, and all 2094 * other vops will fail with EIO. 2095 */ 2096 if (unmounting) { 2097 zfsvfs->z_unmounted = B_TRUE; 2098 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2099 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 2100 } 2101 2102 /* 2103 * z_os will be NULL if there was an error in attempting to reopen 2104 * zfsvfs, so just return as the properties had already been 2105 * unregistered and cached data had been evicted before. 2106 */ 2107 if (zfsvfs->z_os == NULL) 2108 return (0); 2109 2110 /* 2111 * Unregister properties. 2112 */ 2113 zfs_unregister_callbacks(zfsvfs); 2114 2115 /* 2116 * Evict cached data 2117 */ 2118 if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) && 2119 !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 2120 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 2121 dmu_objset_evict_dbufs(zfsvfs->z_os); 2122 2123 return (0); 2124 } 2125 2126 /*ARGSUSED*/ 2127 static int 2128 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 2129 { 2130 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2131 objset_t *os; 2132 int ret; 2133 2134 ret = secpolicy_fs_unmount(cr, vfsp); 2135 if (ret) { 2136 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 2137 ZFS_DELEG_PERM_MOUNT, cr)) 2138 return (ret); 2139 } 2140 2141 /* 2142 * We purge the parent filesystem's vfsp as the parent filesystem 2143 * and all of its snapshots have their vnode's v_vfsp set to the 2144 * parent's filesystem's vfsp. Note, 'z_parent' is self 2145 * referential for non-snapshots. 2146 */ 2147 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 2148 2149 /* 2150 * Unmount any snapshots mounted under .zfs before unmounting the 2151 * dataset itself. 2152 */ 2153 if (zfsvfs->z_ctldir != NULL && 2154 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 2155 return (ret); 2156 } 2157 2158 if (!(fflag & MS_FORCE)) { 2159 /* 2160 * Check the number of active vnodes in the file system. 2161 * Our count is maintained in the vfs structure, but the 2162 * number is off by 1 to indicate a hold on the vfs 2163 * structure itself. 2164 * 2165 * The '.zfs' directory maintains a reference of its 2166 * own, and any active references underneath are 2167 * reflected in the vnode count. 2168 */ 2169 if (zfsvfs->z_ctldir == NULL) { 2170 if (vfsp->vfs_count > 1) 2171 return (SET_ERROR(EBUSY)); 2172 } else { 2173 if (vfsp->vfs_count > 2 || 2174 zfsvfs->z_ctldir->v_count > 1) 2175 return (SET_ERROR(EBUSY)); 2176 } 2177 } 2178 2179 vfsp->vfs_flag |= VFS_UNMOUNTED; 2180 2181 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 2182 os = zfsvfs->z_os; 2183 2184 /* 2185 * z_os will be NULL if there was an error in 2186 * attempting to reopen zfsvfs. 2187 */ 2188 if (os != NULL) { 2189 /* 2190 * Unset the objset user_ptr. 2191 */ 2192 mutex_enter(&os->os_user_ptr_lock); 2193 dmu_objset_set_user(os, NULL); 2194 mutex_exit(&os->os_user_ptr_lock); 2195 2196 /* 2197 * Finally release the objset 2198 */ 2199 dmu_objset_disown(os, B_TRUE, zfsvfs); 2200 } 2201 2202 /* 2203 * We can now safely destroy the '.zfs' directory node. 2204 */ 2205 if (zfsvfs->z_ctldir != NULL) 2206 zfsctl_destroy(zfsvfs); 2207 2208 return (0); 2209 } 2210 2211 static int 2212 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 2213 { 2214 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2215 znode_t *zp; 2216 uint64_t object = 0; 2217 uint64_t fid_gen = 0; 2218 uint64_t gen_mask; 2219 uint64_t zp_gen; 2220 int i, err; 2221 2222 *vpp = NULL; 2223 2224 ZFS_ENTER(zfsvfs); 2225 2226 if (fidp->fid_len == LONG_FID_LEN) { 2227 zfid_long_t *zlfid = (zfid_long_t *)fidp; 2228 uint64_t objsetid = 0; 2229 uint64_t setgen = 0; 2230 2231 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 2232 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 2233 2234 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 2235 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 2236 2237 ZFS_EXIT(zfsvfs); 2238 2239 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 2240 if (err) 2241 return (SET_ERROR(EINVAL)); 2242 ZFS_ENTER(zfsvfs); 2243 } 2244 2245 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 2246 zfid_short_t *zfid = (zfid_short_t *)fidp; 2247 2248 for (i = 0; i < sizeof (zfid->zf_object); i++) 2249 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 2250 2251 for (i = 0; i < sizeof (zfid->zf_gen); i++) 2252 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 2253 } else { 2254 ZFS_EXIT(zfsvfs); 2255 return (SET_ERROR(EINVAL)); 2256 } 2257 2258 /* A zero fid_gen means we are in the .zfs control directories */ 2259 if (fid_gen == 0 && 2260 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 2261 *vpp = zfsvfs->z_ctldir; 2262 ASSERT(*vpp != NULL); 2263 if (object == ZFSCTL_INO_SNAPDIR) { 2264 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 2265 0, NULL, NULL, NULL, NULL, NULL) == 0); 2266 } else { 2267 VN_HOLD(*vpp); 2268 } 2269 ZFS_EXIT(zfsvfs); 2270 return (0); 2271 } 2272 2273 gen_mask = -1ULL >> (64 - 8 * i); 2274 2275 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 2276 if (err = zfs_zget(zfsvfs, object, &zp)) { 2277 ZFS_EXIT(zfsvfs); 2278 return (err); 2279 } 2280 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 2281 sizeof (uint64_t)); 2282 zp_gen = zp_gen & gen_mask; 2283 if (zp_gen == 0) 2284 zp_gen = 1; 2285 if (zp->z_unlinked || zp_gen != fid_gen) { 2286 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 2287 VN_RELE(ZTOV(zp)); 2288 ZFS_EXIT(zfsvfs); 2289 return (SET_ERROR(EINVAL)); 2290 } 2291 2292 *vpp = ZTOV(zp); 2293 ZFS_EXIT(zfsvfs); 2294 return (0); 2295 } 2296 2297 /* 2298 * Block out VOPs and close zfsvfs_t::z_os 2299 * 2300 * Note, if successful, then we return with the 'z_teardown_lock' and 2301 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying 2302 * dataset and objset intact so that they can be atomically handed off during 2303 * a subsequent rollback or recv operation and the resume thereafter. 2304 */ 2305 int 2306 zfs_suspend_fs(zfsvfs_t *zfsvfs) 2307 { 2308 int error; 2309 2310 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2311 return (error); 2312 2313 return (0); 2314 } 2315 2316 /* 2317 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset 2318 * is an invariant across any of the operations that can be performed while the 2319 * filesystem was suspended. Whether it succeeded or failed, the preconditions 2320 * are the same: the relevant objset and associated dataset are owned by 2321 * zfsvfs, held, and long held on entry. 2322 */ 2323 int 2324 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) 2325 { 2326 int err; 2327 znode_t *zp; 2328 2329 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2330 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2331 2332 /* 2333 * We already own this, so just update the objset_t, as the one we 2334 * had before may have been evicted. 2335 */ 2336 objset_t *os; 2337 VERIFY3P(ds->ds_owner, ==, zfsvfs); 2338 VERIFY(dsl_dataset_long_held(ds)); 2339 VERIFY0(dmu_objset_from_ds(ds, &os)); 2340 2341 err = zfsvfs_init(zfsvfs, os); 2342 if (err != 0) 2343 goto bail; 2344 2345 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2346 2347 zfs_set_fuid_feature(zfsvfs); 2348 2349 /* 2350 * Attempt to re-establish all the active znodes with 2351 * their dbufs. If a zfs_rezget() fails, then we'll let 2352 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2353 * when they try to use their znode. 2354 */ 2355 mutex_enter(&zfsvfs->z_znodes_lock); 2356 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2357 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2358 (void) zfs_rezget(zp); 2359 } 2360 mutex_exit(&zfsvfs->z_znodes_lock); 2361 2362 bail: 2363 /* release the VOPs */ 2364 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2365 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 2366 2367 if (err) { 2368 /* 2369 * Since we couldn't setup the sa framework, try to force 2370 * unmount this file system. 2371 */ 2372 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2373 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2374 } 2375 return (err); 2376 } 2377 2378 static void 2379 zfs_freevfs(vfs_t *vfsp) 2380 { 2381 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2382 2383 /* 2384 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2385 * from zfs_mount(). Release it here. If we came through 2386 * zfs_mountroot() instead, we didn't grab an extra hold, so 2387 * skip the VFS_RELE for rootvfs. 2388 */ 2389 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2390 VFS_RELE(zfsvfs->z_parent->z_vfs); 2391 2392 zfsvfs_free(zfsvfs); 2393 2394 atomic_dec_32(&zfs_active_fs_count); 2395 } 2396 2397 /* 2398 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2399 * so we can't safely do any non-idempotent initialization here. 2400 * Leave that to zfs_init() and zfs_fini(), which are called 2401 * from the module's _init() and _fini() entry points. 2402 */ 2403 /*ARGSUSED*/ 2404 static int 2405 zfs_vfsinit(int fstype, char *name) 2406 { 2407 int error; 2408 2409 zfsfstype = fstype; 2410 2411 /* 2412 * Setup vfsops and vnodeops tables. 2413 */ 2414 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2415 if (error != 0) { 2416 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2417 } 2418 2419 error = zfs_create_op_tables(); 2420 if (error) { 2421 zfs_remove_op_tables(); 2422 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2423 (void) vfs_freevfsops_by_type(zfsfstype); 2424 return (error); 2425 } 2426 2427 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2428 2429 /* 2430 * Unique major number for all zfs mounts. 2431 * If we run out of 32-bit minors, we'll getudev() another major. 2432 */ 2433 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2434 zfs_minor = ZFS_MIN_MINOR; 2435 2436 return (0); 2437 } 2438 2439 void 2440 zfs_init(void) 2441 { 2442 /* 2443 * Initialize .zfs directory structures 2444 */ 2445 zfsctl_init(); 2446 2447 /* 2448 * Initialize znode cache, vnode ops, etc... 2449 */ 2450 zfs_znode_init(); 2451 2452 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2453 } 2454 2455 void 2456 zfs_fini(void) 2457 { 2458 zfsctl_fini(); 2459 zfs_znode_fini(); 2460 } 2461 2462 int 2463 zfs_busy(void) 2464 { 2465 return (zfs_active_fs_count != 0); 2466 } 2467 2468 int 2469 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2470 { 2471 int error; 2472 objset_t *os = zfsvfs->z_os; 2473 dmu_tx_t *tx; 2474 2475 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2476 return (SET_ERROR(EINVAL)); 2477 2478 if (newvers < zfsvfs->z_version) 2479 return (SET_ERROR(EINVAL)); 2480 2481 if (zfs_spa_version_map(newvers) > 2482 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2483 return (SET_ERROR(ENOTSUP)); 2484 2485 tx = dmu_tx_create(os); 2486 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2487 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2488 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2489 ZFS_SA_ATTRS); 2490 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2491 } 2492 error = dmu_tx_assign(tx, TXG_WAIT); 2493 if (error) { 2494 dmu_tx_abort(tx); 2495 return (error); 2496 } 2497 2498 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2499 8, 1, &newvers, tx); 2500 2501 if (error) { 2502 dmu_tx_commit(tx); 2503 return (error); 2504 } 2505 2506 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2507 uint64_t sa_obj; 2508 2509 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2510 SPA_VERSION_SA); 2511 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2512 DMU_OT_NONE, 0, tx); 2513 2514 error = zap_add(os, MASTER_NODE_OBJ, 2515 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2516 ASSERT0(error); 2517 2518 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2519 sa_register_update_callback(os, zfs_sa_upgrade); 2520 } 2521 2522 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2523 "from %llu to %llu", zfsvfs->z_version, newvers); 2524 2525 dmu_tx_commit(tx); 2526 2527 zfsvfs->z_version = newvers; 2528 os->os_version = newvers; 2529 2530 zfs_set_fuid_feature(zfsvfs); 2531 2532 return (0); 2533 } 2534 2535 /* 2536 * Read a property stored within the master node. 2537 */ 2538 int 2539 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2540 { 2541 uint64_t *cached_copy = NULL; 2542 2543 /* 2544 * Figure out where in the objset_t the cached copy would live, if it 2545 * is available for the requested property. 2546 */ 2547 if (os != NULL) { 2548 switch (prop) { 2549 case ZFS_PROP_VERSION: 2550 cached_copy = &os->os_version; 2551 break; 2552 case ZFS_PROP_NORMALIZE: 2553 cached_copy = &os->os_normalization; 2554 break; 2555 case ZFS_PROP_UTF8ONLY: 2556 cached_copy = &os->os_utf8only; 2557 break; 2558 case ZFS_PROP_CASE: 2559 cached_copy = &os->os_casesensitivity; 2560 break; 2561 default: 2562 break; 2563 } 2564 } 2565 if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) { 2566 *value = *cached_copy; 2567 return (0); 2568 } 2569 2570 /* 2571 * If the property wasn't cached, look up the file system's value for 2572 * the property. For the version property, we look up a slightly 2573 * different string. 2574 */ 2575 const char *pname; 2576 int error = ENOENT; 2577 if (prop == ZFS_PROP_VERSION) { 2578 pname = ZPL_VERSION_STR; 2579 } else { 2580 pname = zfs_prop_to_name(prop); 2581 } 2582 2583 if (os != NULL) { 2584 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS); 2585 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2586 } 2587 2588 if (error == ENOENT) { 2589 /* No value set, use the default value */ 2590 switch (prop) { 2591 case ZFS_PROP_VERSION: 2592 *value = ZPL_VERSION; 2593 break; 2594 case ZFS_PROP_NORMALIZE: 2595 case ZFS_PROP_UTF8ONLY: 2596 *value = 0; 2597 break; 2598 case ZFS_PROP_CASE: 2599 *value = ZFS_CASE_SENSITIVE; 2600 break; 2601 default: 2602 return (error); 2603 } 2604 error = 0; 2605 } 2606 2607 /* 2608 * If one of the methods for getting the property value above worked, 2609 * copy it into the objset_t's cache. 2610 */ 2611 if (error == 0 && cached_copy != NULL) { 2612 *cached_copy = *value; 2613 } 2614 2615 return (error); 2616 } 2617 2618 /* 2619 * Return true if the coresponding vfs's unmounted flag is set. 2620 * Otherwise return false. 2621 * If this function returns true we know VFS unmount has been initiated. 2622 */ 2623 boolean_t 2624 zfs_get_vfs_flag_unmounted(objset_t *os) 2625 { 2626 zfsvfs_t *zfvp; 2627 boolean_t unmounted = B_FALSE; 2628 2629 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS); 2630 2631 mutex_enter(&os->os_user_ptr_lock); 2632 zfvp = dmu_objset_get_user(os); 2633 if (zfvp != NULL && zfvp->z_vfs != NULL && 2634 (zfvp->z_vfs->vfs_flag & VFS_UNMOUNTED)) 2635 unmounted = B_TRUE; 2636 mutex_exit(&os->os_user_ptr_lock); 2637 2638 return (unmounted); 2639 } 2640 2641 static vfsdef_t vfw = { 2642 VFSDEF_VERSION, 2643 MNTTYPE_ZFS, 2644 zfs_vfsinit, 2645 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2646 VSW_XID|VSW_ZMOUNT, 2647 &zfs_mntopts 2648 }; 2649 2650 struct modlfs zfs_modlfs = { 2651 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2652 }; 2653