xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision 2833423dc59f4c35fe4713dbb942950c82df0437)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
26  * Copyright 2019 Joyent, Inc.
27  * Copyright 2020 Joshua M. Clulow <josh@sysmgr.org>
28  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
29  * Copyright 2024 Oxide Computer Company
30  */
31 
32 /* Portions Copyright 2010 Robert Milkowski */
33 
34 #include <sys/types.h>
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/kmem.h>
39 #include <sys/pathname.h>
40 #include <sys/vnode.h>
41 #include <sys/vfs.h>
42 #include <sys/vfs_opreg.h>
43 #include <sys/mntent.h>
44 #include <sys/mount.h>
45 #include <sys/cmn_err.h>
46 #include "fs/fs_subr.h"
47 #include <sys/zfs_znode.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zil.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/dmu.h>
52 #include <sys/dsl_prop.h>
53 #include <sys/dsl_dataset.h>
54 #include <sys/dsl_deleg.h>
55 #include <sys/spa.h>
56 #include <sys/zap.h>
57 #include <sys/sa.h>
58 #include <sys/sa_impl.h>
59 #include <sys/varargs.h>
60 #include <sys/policy.h>
61 #include <sys/atomic.h>
62 #include <sys/mkdev.h>
63 #include <sys/modctl.h>
64 #include <sys/refstr.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/zfs_ctldir.h>
67 #include <sys/zfs_fuid.h>
68 #include <sys/bootconf.h>
69 #include <sys/ddi.h>
70 #include <sys/sunddi.h>
71 #include <sys/dnlc.h>
72 #include <sys/dmu_objset.h>
73 #include <sys/spa_boot.h>
74 #include <sys/vdev_impl.h>
75 #include "zfs_comutil.h"
76 
77 int zfsfstype;
78 vfsops_t *zfs_vfsops = NULL;
79 static major_t zfs_major;
80 static minor_t zfs_minor;
81 static kmutex_t	zfs_dev_mtx;
82 
83 extern int sys_shutdown;
84 
85 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
86 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
87 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
88 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
89 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
90 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
91 static void zfs_freevfs(vfs_t *vfsp);
92 static int zfs_syncfs(vfs_t *vfsp, uint64_t flags, cred_t *cr);
93 
94 static const fs_operation_def_t zfs_vfsops_template[] = {
95 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
96 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
97 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
98 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
99 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
100 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
101 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
102 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
103 	VFSNAME_SYNCFS,		{ .vfs_syncfs = zfs_syncfs },
104 	NULL,			NULL
105 };
106 
107 /*
108  * We need to keep a count of active fs's.
109  * This is necessary to prevent our module
110  * from being unloaded after a umount -f
111  */
112 static uint32_t	zfs_active_fs_count = 0;
113 
114 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
115 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
116 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
117 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
118 
119 /*
120  * MO_DEFAULT is not used since the default value is determined
121  * by the equivalent property.
122  */
123 static mntopt_t mntopts[] = {
124 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
125 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
126 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
127 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
128 };
129 
130 static mntopts_t zfs_mntopts = {
131 	sizeof (mntopts) / sizeof (mntopt_t),
132 	mntopts
133 };
134 
135 /*ARGSUSED*/
136 int
137 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
138 {
139 	/*
140 	 * Data integrity is job one.  We don't want a compromised kernel
141 	 * writing to the storage pool, so we never sync during panic.
142 	 */
143 	if (panicstr)
144 		return (0);
145 
146 	/*
147 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
148 	 * to sync metadata, which they would otherwise cache indefinitely.
149 	 * Semantically, the only requirement is that the sync be initiated.
150 	 * The DMU syncs out txgs frequently, so there's nothing to do.
151 	 */
152 	if (flag & SYNC_ATTR)
153 		return (0);
154 
155 	if (vfsp != NULL) {
156 		/*
157 		 * Sync a specific filesystem.
158 		 */
159 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
160 		dsl_pool_t *dp;
161 
162 		ZFS_ENTER(zfsvfs);
163 		dp = dmu_objset_pool(zfsvfs->z_os);
164 
165 		/*
166 		 * If the system is shutting down, then skip any
167 		 * filesystems which may exist on a suspended pool.
168 		 */
169 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
170 			ZFS_EXIT(zfsvfs);
171 			return (0);
172 		}
173 
174 		if (zfsvfs->z_log != NULL)
175 			zil_commit(zfsvfs->z_log, 0);
176 
177 		ZFS_EXIT(zfsvfs);
178 	} else {
179 		/*
180 		 * Sync all ZFS filesystems.  This is what happens when you
181 		 * run sync(8).  Unlike other filesystems, ZFS honors the
182 		 * request by waiting for all pools to commit all dirty data.
183 		 */
184 		spa_sync_allpools();
185 	}
186 
187 	return (0);
188 }
189 
190 /*
191  * This is a synchronous request to sync all file system data out.
192  */
193 static int
194 zfs_syncfs(vfs_t *vfsp, uint64_t flags, cred_t *cr)
195 {
196 	if (flags != 0) {
197 		return (ENOTSUP);
198 	}
199 
200 	return (zfs_sync(vfsp, 0, cr));
201 }
202 
203 static int
204 zfs_create_unique_device(dev_t *dev)
205 {
206 	major_t new_major;
207 
208 	do {
209 		ASSERT3U(zfs_minor, <=, MAXMIN32);
210 		minor_t start = zfs_minor;
211 		do {
212 			mutex_enter(&zfs_dev_mtx);
213 			if (zfs_minor >= MAXMIN32) {
214 				/*
215 				 * If we're still using the real major
216 				 * keep out of /dev/zfs and /dev/zvol minor
217 				 * number space.  If we're using a getudev()'ed
218 				 * major number, we can use all of its minors.
219 				 */
220 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
221 					zfs_minor = ZFS_MIN_MINOR;
222 				else
223 					zfs_minor = 0;
224 			} else {
225 				zfs_minor++;
226 			}
227 			*dev = makedevice(zfs_major, zfs_minor);
228 			mutex_exit(&zfs_dev_mtx);
229 		} while (vfs_devismounted(*dev) && zfs_minor != start);
230 		if (zfs_minor == start) {
231 			/*
232 			 * We are using all ~262,000 minor numbers for the
233 			 * current major number.  Create a new major number.
234 			 */
235 			if ((new_major = getudev()) == (major_t)-1) {
236 				cmn_err(CE_WARN,
237 				    "zfs_mount: Can't get unique major "
238 				    "device number.");
239 				return (-1);
240 			}
241 			mutex_enter(&zfs_dev_mtx);
242 			zfs_major = new_major;
243 			zfs_minor = 0;
244 
245 			mutex_exit(&zfs_dev_mtx);
246 		} else {
247 			break;
248 		}
249 		/* CONSTANTCONDITION */
250 	} while (1);
251 
252 	return (0);
253 }
254 
255 static void
256 atime_changed_cb(void *arg, uint64_t newval)
257 {
258 	zfsvfs_t *zfsvfs = arg;
259 
260 	if (newval == TRUE) {
261 		zfsvfs->z_atime = TRUE;
262 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
263 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
264 	} else {
265 		zfsvfs->z_atime = FALSE;
266 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
267 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
268 	}
269 }
270 
271 static void
272 xattr_changed_cb(void *arg, uint64_t newval)
273 {
274 	zfsvfs_t *zfsvfs = arg;
275 
276 	if (newval == TRUE) {
277 		/* XXX locking on vfs_flag? */
278 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
279 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
280 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
281 	} else {
282 		/* XXX locking on vfs_flag? */
283 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
284 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
285 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
286 	}
287 }
288 
289 static void
290 blksz_changed_cb(void *arg, uint64_t newval)
291 {
292 	zfsvfs_t *zfsvfs = arg;
293 	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
294 	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
295 	ASSERT(ISP2(newval));
296 
297 	zfsvfs->z_max_blksz = newval;
298 	zfsvfs->z_vfs->vfs_bsize = newval;
299 }
300 
301 static void
302 readonly_changed_cb(void *arg, uint64_t newval)
303 {
304 	zfsvfs_t *zfsvfs = arg;
305 
306 	if (newval) {
307 		/* XXX locking on vfs_flag? */
308 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
309 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
310 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
311 	} else {
312 		/* XXX locking on vfs_flag? */
313 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
314 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
315 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
316 	}
317 }
318 
319 static void
320 devices_changed_cb(void *arg, uint64_t newval)
321 {
322 	zfsvfs_t *zfsvfs = arg;
323 
324 	if (newval == FALSE) {
325 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
326 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
327 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
328 	} else {
329 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
330 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
331 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
332 	}
333 }
334 
335 static void
336 setuid_changed_cb(void *arg, uint64_t newval)
337 {
338 	zfsvfs_t *zfsvfs = arg;
339 
340 	if (newval == FALSE) {
341 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
342 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
343 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
344 	} else {
345 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
346 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
347 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
348 	}
349 }
350 
351 static void
352 exec_changed_cb(void *arg, uint64_t newval)
353 {
354 	zfsvfs_t *zfsvfs = arg;
355 
356 	if (newval == FALSE) {
357 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
358 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
359 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
360 	} else {
361 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
362 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
363 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
364 	}
365 }
366 
367 /*
368  * The nbmand mount option can be changed at mount time.
369  * We can't allow it to be toggled on live file systems or incorrect
370  * behavior may be seen from cifs clients
371  *
372  * This property isn't registered via dsl_prop_register(), but this callback
373  * will be called when a file system is first mounted
374  */
375 static void
376 nbmand_changed_cb(void *arg, uint64_t newval)
377 {
378 	zfsvfs_t *zfsvfs = arg;
379 	if (newval == FALSE) {
380 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
381 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
382 	} else {
383 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
384 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
385 	}
386 }
387 
388 static void
389 snapdir_changed_cb(void *arg, uint64_t newval)
390 {
391 	zfsvfs_t *zfsvfs = arg;
392 
393 	zfsvfs->z_show_ctldir = newval;
394 }
395 
396 static void
397 vscan_changed_cb(void *arg, uint64_t newval)
398 {
399 	zfsvfs_t *zfsvfs = arg;
400 
401 	zfsvfs->z_vscan = newval;
402 }
403 
404 static void
405 acl_mode_changed_cb(void *arg, uint64_t newval)
406 {
407 	zfsvfs_t *zfsvfs = arg;
408 
409 	zfsvfs->z_acl_mode = newval;
410 }
411 
412 static void
413 acl_inherit_changed_cb(void *arg, uint64_t newval)
414 {
415 	zfsvfs_t *zfsvfs = arg;
416 
417 	zfsvfs->z_acl_inherit = newval;
418 }
419 
420 static void
421 acl_implicit_changed_cb(void *arg, uint64_t newval)
422 {
423 	zfsvfs_t *zfsvfs = arg;
424 
425 	zfsvfs->z_acl_implicit = (boolean_t)newval;
426 }
427 
428 static int
429 zfs_register_callbacks(vfs_t *vfsp)
430 {
431 	struct dsl_dataset *ds = NULL;
432 	objset_t *os = NULL;
433 	zfsvfs_t *zfsvfs = NULL;
434 	uint64_t nbmand;
435 	boolean_t readonly = B_FALSE;
436 	boolean_t do_readonly = B_FALSE;
437 	boolean_t setuid = B_FALSE;
438 	boolean_t do_setuid = B_FALSE;
439 	boolean_t exec = B_FALSE;
440 	boolean_t do_exec = B_FALSE;
441 	boolean_t devices = B_FALSE;
442 	boolean_t do_devices = B_FALSE;
443 	boolean_t xattr = B_FALSE;
444 	boolean_t do_xattr = B_FALSE;
445 	boolean_t atime = B_FALSE;
446 	boolean_t do_atime = B_FALSE;
447 	int error = 0;
448 
449 	ASSERT(vfsp);
450 	zfsvfs = vfsp->vfs_data;
451 	ASSERT(zfsvfs);
452 	os = zfsvfs->z_os;
453 
454 	/*
455 	 * The act of registering our callbacks will destroy any mount
456 	 * options we may have.  In order to enable temporary overrides
457 	 * of mount options, we stash away the current values and
458 	 * restore them after we register the callbacks.
459 	 */
460 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
461 	    !spa_writeable(dmu_objset_spa(os))) {
462 		readonly = B_TRUE;
463 		do_readonly = B_TRUE;
464 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
465 		readonly = B_FALSE;
466 		do_readonly = B_TRUE;
467 	}
468 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
469 		devices = B_FALSE;
470 		setuid = B_FALSE;
471 		do_devices = B_TRUE;
472 		do_setuid = B_TRUE;
473 	} else {
474 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
475 			devices = B_FALSE;
476 			do_devices = B_TRUE;
477 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
478 			devices = B_TRUE;
479 			do_devices = B_TRUE;
480 		}
481 
482 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
483 			setuid = B_FALSE;
484 			do_setuid = B_TRUE;
485 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
486 			setuid = B_TRUE;
487 			do_setuid = B_TRUE;
488 		}
489 	}
490 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
491 		exec = B_FALSE;
492 		do_exec = B_TRUE;
493 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
494 		exec = B_TRUE;
495 		do_exec = B_TRUE;
496 	}
497 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
498 		xattr = B_FALSE;
499 		do_xattr = B_TRUE;
500 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
501 		xattr = B_TRUE;
502 		do_xattr = B_TRUE;
503 	}
504 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
505 		atime = B_FALSE;
506 		do_atime = B_TRUE;
507 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
508 		atime = B_TRUE;
509 		do_atime = B_TRUE;
510 	}
511 
512 	/*
513 	 * nbmand is a special property.  It can only be changed at
514 	 * mount time.
515 	 *
516 	 * This is weird, but it is documented to only be changeable
517 	 * at mount time.
518 	 */
519 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
520 		nbmand = B_FALSE;
521 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
522 		nbmand = B_TRUE;
523 	} else {
524 		char osname[ZFS_MAX_DATASET_NAME_LEN];
525 
526 		dmu_objset_name(os, osname);
527 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
528 		    NULL)) {
529 			return (error);
530 		}
531 	}
532 
533 	/*
534 	 * Register property callbacks.
535 	 *
536 	 * It would probably be fine to just check for i/o error from
537 	 * the first prop_register(), but I guess I like to go
538 	 * overboard...
539 	 */
540 	ds = dmu_objset_ds(os);
541 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
542 	error = dsl_prop_register(ds,
543 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
544 	error = error ? error : dsl_prop_register(ds,
545 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
546 	error = error ? error : dsl_prop_register(ds,
547 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
548 	error = error ? error : dsl_prop_register(ds,
549 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
550 	error = error ? error : dsl_prop_register(ds,
551 	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
552 	error = error ? error : dsl_prop_register(ds,
553 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
554 	error = error ? error : dsl_prop_register(ds,
555 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
556 	error = error ? error : dsl_prop_register(ds,
557 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
558 	error = error ? error : dsl_prop_register(ds,
559 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
560 	error = error ? error : dsl_prop_register(ds,
561 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
562 	    zfsvfs);
563 	error = error ? error : dsl_prop_register(ds,
564 	    zfs_prop_to_name(ZFS_PROP_ACLIMPLICIT),
565 	    acl_implicit_changed_cb, zfsvfs);
566 	error = error ? error : dsl_prop_register(ds,
567 	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
568 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
569 	if (error)
570 		goto unregister;
571 
572 	/*
573 	 * Invoke our callbacks to restore temporary mount options.
574 	 */
575 	if (do_readonly)
576 		readonly_changed_cb(zfsvfs, readonly);
577 	if (do_setuid)
578 		setuid_changed_cb(zfsvfs, setuid);
579 	if (do_exec)
580 		exec_changed_cb(zfsvfs, exec);
581 	if (do_devices)
582 		devices_changed_cb(zfsvfs, devices);
583 	if (do_xattr)
584 		xattr_changed_cb(zfsvfs, xattr);
585 	if (do_atime)
586 		atime_changed_cb(zfsvfs, atime);
587 
588 	nbmand_changed_cb(zfsvfs, nbmand);
589 
590 	return (0);
591 
592 unregister:
593 	dsl_prop_unregister_all(ds, zfsvfs);
594 	return (error);
595 }
596 
597 static int
598 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
599     uint64_t *userp, uint64_t *groupp, uint64_t *projectp)
600 {
601 	sa_hdr_phys_t sa;
602 	sa_hdr_phys_t *sap = data;
603 	uint64_t flags;
604 	int hdrsize;
605 	boolean_t swap = B_FALSE;
606 
607 	/*
608 	 * Is it a valid type of object to track?
609 	 */
610 	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
611 		return (SET_ERROR(ENOENT));
612 
613 	/*
614 	 * If we have a NULL data pointer
615 	 * then assume the id's aren't changing and
616 	 * return EEXIST to the dmu to let it know to
617 	 * use the same ids
618 	 */
619 	if (data == NULL)
620 		return (SET_ERROR(EEXIST));
621 
622 	if (bonustype == DMU_OT_ZNODE) {
623 		znode_phys_t *znp = data;
624 		*userp = znp->zp_uid;
625 		*groupp = znp->zp_gid;
626 		*projectp = ZFS_DEFAULT_PROJID;
627 		return (0);
628 	}
629 
630 	if (sap->sa_magic == 0) {
631 		/*
632 		 * This should only happen for newly created files
633 		 * that haven't had the znode data filled in yet.
634 		 */
635 		*userp = 0;
636 		*groupp = 0;
637 		*projectp = ZFS_DEFAULT_PROJID;
638 		return (0);
639 	}
640 
641 	sa = *sap;
642 	if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
643 		sa.sa_magic = SA_MAGIC;
644 		sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
645 		swap = B_TRUE;
646 	} else {
647 		VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
648 	}
649 
650 	hdrsize = sa_hdrsize(&sa);
651 	VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
652 
653 	*userp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_UID_OFFSET));
654 	*groupp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_GID_OFFSET));
655 	flags = *((uint64_t *)((uintptr_t)data + hdrsize + SA_FLAGS_OFFSET));
656 	if (swap)
657 		flags = BSWAP_64(flags);
658 
659 	if (flags & ZFS_PROJID)
660 		*projectp = *((uint64_t *)((uintptr_t)data + hdrsize +
661 		    SA_PROJID_OFFSET));
662 	else
663 		*projectp = ZFS_DEFAULT_PROJID;
664 
665 	if (swap) {
666 		*userp = BSWAP_64(*userp);
667 		*groupp = BSWAP_64(*groupp);
668 		*projectp = BSWAP_64(*projectp);
669 	}
670 	return (0);
671 }
672 
673 static void
674 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
675     char *domainbuf, int buflen, uid_t *ridp)
676 {
677 	uint64_t fuid;
678 	const char *domain;
679 
680 	fuid = zfs_strtonum(fuidstr, NULL);
681 
682 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
683 	if (domain)
684 		(void) strlcpy(domainbuf, domain, buflen);
685 	else
686 		domainbuf[0] = '\0';
687 	*ridp = FUID_RID(fuid);
688 }
689 
690 static uint64_t
691 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
692 {
693 	switch (type) {
694 	case ZFS_PROP_USERUSED:
695 	case ZFS_PROP_USEROBJUSED:
696 		return (DMU_USERUSED_OBJECT);
697 	case ZFS_PROP_GROUPUSED:
698 	case ZFS_PROP_GROUPOBJUSED:
699 		return (DMU_GROUPUSED_OBJECT);
700 	case ZFS_PROP_PROJECTUSED:
701 	case ZFS_PROP_PROJECTOBJUSED:
702 		return (DMU_PROJECTUSED_OBJECT);
703 	case ZFS_PROP_USERQUOTA:
704 		return (zfsvfs->z_userquota_obj);
705 	case ZFS_PROP_GROUPQUOTA:
706 		return (zfsvfs->z_groupquota_obj);
707 	case ZFS_PROP_USEROBJQUOTA:
708 		return (zfsvfs->z_userobjquota_obj);
709 	case ZFS_PROP_GROUPOBJQUOTA:
710 		return (zfsvfs->z_groupobjquota_obj);
711 	case ZFS_PROP_PROJECTQUOTA:
712 		return (zfsvfs->z_projectquota_obj);
713 	case ZFS_PROP_PROJECTOBJQUOTA:
714 		return (zfsvfs->z_projectobjquota_obj);
715 	default:
716 		return (ZFS_NO_OBJECT);
717 	}
718 }
719 
720 int
721 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
722     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
723 {
724 	int error;
725 	zap_cursor_t zc;
726 	zap_attribute_t za;
727 	zfs_useracct_t *buf = vbuf;
728 	uint64_t obj;
729 	int offset = 0;
730 
731 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
732 		return (SET_ERROR(ENOTSUP));
733 
734 	if ((type == ZFS_PROP_PROJECTQUOTA || type == ZFS_PROP_PROJECTUSED ||
735 	    type == ZFS_PROP_PROJECTOBJQUOTA ||
736 	    type == ZFS_PROP_PROJECTOBJUSED) &&
737 	    !dmu_objset_projectquota_present(zfsvfs->z_os))
738 		return (SET_ERROR(ENOTSUP));
739 
740 	if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
741 	    type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA ||
742 	    type == ZFS_PROP_PROJECTOBJUSED ||
743 	    type == ZFS_PROP_PROJECTOBJQUOTA) &&
744 	    !dmu_objset_userobjspace_present(zfsvfs->z_os))
745 		return (SET_ERROR(ENOTSUP));
746 
747 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
748 	if (obj == ZFS_NO_OBJECT) {
749 		*bufsizep = 0;
750 		return (0);
751 	}
752 
753 	if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
754 	    type == ZFS_PROP_PROJECTOBJUSED)
755 		offset = DMU_OBJACCT_PREFIX_LEN;
756 
757 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
758 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
759 	    zap_cursor_advance(&zc)) {
760 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
761 		    *bufsizep)
762 			break;
763 
764 		/*
765 		 * skip object quota (with zap name prefix DMU_OBJACCT_PREFIX)
766 		 * when dealing with block quota and vice versa.
767 		 */
768 		if ((offset > 0) != (strncmp(za.za_name, DMU_OBJACCT_PREFIX,
769 		    DMU_OBJACCT_PREFIX_LEN) == 0))
770 			continue;
771 
772 		fuidstr_to_sid(zfsvfs, za.za_name + offset,
773 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
774 
775 		buf->zu_space = za.za_first_integer;
776 		buf++;
777 	}
778 	if (error == ENOENT)
779 		error = 0;
780 
781 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
782 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
783 	*cookiep = zap_cursor_serialize(&zc);
784 	zap_cursor_fini(&zc);
785 	return (error);
786 }
787 
788 /*
789  * buf must be big enough (eg, 32 bytes)
790  */
791 static int
792 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
793     char *buf, boolean_t addok)
794 {
795 	uint64_t fuid;
796 	int domainid = 0;
797 
798 	if (domain && domain[0]) {
799 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
800 		if (domainid == -1)
801 			return (SET_ERROR(ENOENT));
802 	}
803 	fuid = FUID_ENCODE(domainid, rid);
804 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
805 	return (0);
806 }
807 
808 int
809 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
810     const char *domain, uint64_t rid, uint64_t *valp)
811 {
812 	char buf[20 + DMU_OBJACCT_PREFIX_LEN];
813 	int offset = 0;
814 	int err;
815 	uint64_t obj;
816 
817 	*valp = 0;
818 
819 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
820 		return (SET_ERROR(ENOTSUP));
821 
822 	if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
823 	    type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA ||
824 	    type == ZFS_PROP_PROJECTOBJUSED ||
825 	    type == ZFS_PROP_PROJECTOBJQUOTA) &&
826 	    !dmu_objset_userobjspace_present(zfsvfs->z_os))
827 		return (SET_ERROR(ENOTSUP));
828 
829 	if (type == ZFS_PROP_PROJECTQUOTA || type == ZFS_PROP_PROJECTUSED ||
830 	    type == ZFS_PROP_PROJECTOBJQUOTA ||
831 	    type == ZFS_PROP_PROJECTOBJUSED) {
832 		if (!dmu_objset_projectquota_present(zfsvfs->z_os))
833 			return (SET_ERROR(ENOTSUP));
834 		if (!zpl_is_valid_projid(rid))
835 			return (SET_ERROR(EINVAL));
836 	}
837 
838 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
839 	if (obj == ZFS_NO_OBJECT)
840 		return (0);
841 
842 	if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
843 	    type == ZFS_PROP_PROJECTOBJUSED) {
844 		strncpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN);
845 		offset = DMU_OBJACCT_PREFIX_LEN;
846 	}
847 
848 	err = id_to_fuidstr(zfsvfs, domain, rid, buf + offset, B_FALSE);
849 	if (err)
850 		return (err);
851 
852 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
853 	if (err == ENOENT)
854 		err = 0;
855 	return (err);
856 }
857 
858 int
859 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
860     const char *domain, uint64_t rid, uint64_t quota)
861 {
862 	char buf[32];
863 	int err;
864 	dmu_tx_t *tx;
865 	uint64_t *objp;
866 	boolean_t fuid_dirtied;
867 
868 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
869 		return (SET_ERROR(ENOTSUP));
870 
871 	switch (type) {
872 	case ZFS_PROP_USERQUOTA:
873 		objp = &zfsvfs->z_userquota_obj;
874 		break;
875 	case ZFS_PROP_GROUPQUOTA:
876 		objp = &zfsvfs->z_groupquota_obj;
877 		break;
878 	case ZFS_PROP_USEROBJQUOTA:
879 		objp = &zfsvfs->z_userobjquota_obj;
880 		break;
881 	case ZFS_PROP_GROUPOBJQUOTA:
882 		objp = &zfsvfs->z_groupobjquota_obj;
883 		break;
884 	case ZFS_PROP_PROJECTQUOTA:
885 		if (!dmu_objset_projectquota_enabled(zfsvfs->z_os))
886 			return (SET_ERROR(ENOTSUP));
887 		if (!zpl_is_valid_projid(rid))
888 			return (SET_ERROR(EINVAL));
889 
890 		objp = &zfsvfs->z_projectquota_obj;
891 		break;
892 	case ZFS_PROP_PROJECTOBJQUOTA:
893 		if (!dmu_objset_projectquota_enabled(zfsvfs->z_os))
894 			return (SET_ERROR(ENOTSUP));
895 		if (!zpl_is_valid_projid(rid))
896 			return (SET_ERROR(EINVAL));
897 
898 		objp = &zfsvfs->z_projectobjquota_obj;
899 		break;
900 	default:
901 		return (SET_ERROR(EINVAL));
902 	}
903 
904 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
905 	if (err)
906 		return (err);
907 	fuid_dirtied = zfsvfs->z_fuid_dirty;
908 
909 	tx = dmu_tx_create(zfsvfs->z_os);
910 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
911 	if (*objp == 0) {
912 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
913 		    zfs_userquota_prop_prefixes[type]);
914 	}
915 	if (fuid_dirtied)
916 		zfs_fuid_txhold(zfsvfs, tx);
917 	err = dmu_tx_assign(tx, TXG_WAIT);
918 	if (err) {
919 		dmu_tx_abort(tx);
920 		return (err);
921 	}
922 
923 	mutex_enter(&zfsvfs->z_lock);
924 	if (*objp == 0) {
925 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
926 		    DMU_OT_NONE, 0, tx);
927 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
928 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
929 	}
930 	mutex_exit(&zfsvfs->z_lock);
931 
932 	if (quota == 0) {
933 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
934 		if (err == ENOENT)
935 			err = 0;
936 	} else {
937 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
938 	}
939 	ASSERT(err == 0);
940 	if (fuid_dirtied)
941 		zfs_fuid_sync(zfsvfs, tx);
942 	dmu_tx_commit(tx);
943 	return (err);
944 }
945 
946 boolean_t
947 zfs_id_overobjquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id)
948 {
949 	char buf[20 + DMU_OBJACCT_PREFIX_LEN];
950 	uint64_t used, quota, quotaobj;
951 	int err;
952 
953 	if (!dmu_objset_userobjspace_present(zfsvfs->z_os)) {
954 		if (dmu_objset_userobjspace_upgradable(zfsvfs->z_os)) {
955 			dsl_pool_config_enter(
956 			    dmu_objset_pool(zfsvfs->z_os), FTAG);
957 			dmu_objset_id_quota_upgrade(zfsvfs->z_os);
958 			dsl_pool_config_exit(
959 			    dmu_objset_pool(zfsvfs->z_os), FTAG);
960 		}
961 		return (B_FALSE);
962 	}
963 
964 	if (usedobj == DMU_PROJECTUSED_OBJECT) {
965 		if (!dmu_objset_projectquota_present(zfsvfs->z_os)) {
966 			if (dmu_objset_projectquota_upgradable(zfsvfs->z_os)) {
967 				dsl_pool_config_enter(
968 				    dmu_objset_pool(zfsvfs->z_os), FTAG);
969 				dmu_objset_id_quota_upgrade(zfsvfs->z_os);
970 				dsl_pool_config_exit(
971 				    dmu_objset_pool(zfsvfs->z_os), FTAG);
972 			}
973 			return (B_FALSE);
974 		}
975 		quotaobj = zfsvfs->z_projectobjquota_obj;
976 	} else if (usedobj == DMU_USERUSED_OBJECT) {
977 		quotaobj = zfsvfs->z_userobjquota_obj;
978 	} else if (usedobj == DMU_GROUPUSED_OBJECT) {
979 		quotaobj = zfsvfs->z_groupobjquota_obj;
980 	} else {
981 		return (B_FALSE);
982 	}
983 	if (quotaobj == 0 || zfsvfs->z_replay)
984 		return (B_FALSE);
985 
986 	(void) sprintf(buf, "%llx", (longlong_t)id);
987 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
988 	if (err != 0)
989 		return (B_FALSE);
990 
991 	(void) sprintf(buf, DMU_OBJACCT_PREFIX "%llx", (longlong_t)id);
992 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
993 	if (err != 0)
994 		return (B_FALSE);
995 	return (used >= quota);
996 }
997 
998 boolean_t
999 zfs_id_overblockquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id)
1000 {
1001 	char buf[20];
1002 	uint64_t used, quota, quotaobj;
1003 	int err;
1004 
1005 	if (usedobj == DMU_PROJECTUSED_OBJECT) {
1006 		if (!dmu_objset_projectquota_present(zfsvfs->z_os)) {
1007 			if (dmu_objset_projectquota_upgradable(zfsvfs->z_os)) {
1008 				dsl_pool_config_enter(
1009 				    dmu_objset_pool(zfsvfs->z_os), FTAG);
1010 				dmu_objset_id_quota_upgrade(zfsvfs->z_os);
1011 				dsl_pool_config_exit(
1012 				    dmu_objset_pool(zfsvfs->z_os), FTAG);
1013 			}
1014 			return (B_FALSE);
1015 		}
1016 		quotaobj = zfsvfs->z_projectquota_obj;
1017 	} else if (usedobj == DMU_USERUSED_OBJECT) {
1018 		quotaobj = zfsvfs->z_userquota_obj;
1019 	} else if (usedobj == DMU_GROUPUSED_OBJECT) {
1020 		quotaobj = zfsvfs->z_groupquota_obj;
1021 	} else {
1022 		return (B_FALSE);
1023 	}
1024 	if (quotaobj == 0 || zfsvfs->z_replay)
1025 		return (B_FALSE);
1026 
1027 	(void) sprintf(buf, "%llx", (longlong_t)id);
1028 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
1029 	if (err != 0)
1030 		return (B_FALSE);
1031 
1032 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
1033 	if (err != 0)
1034 		return (B_FALSE);
1035 	return (used >= quota);
1036 }
1037 
1038 boolean_t
1039 zfs_id_overquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id)
1040 {
1041 	return (zfs_id_overblockquota(zfsvfs, usedobj, id) ||
1042 	    zfs_id_overobjquota(zfsvfs, usedobj, id));
1043 }
1044 
1045 /*
1046  * Associate this zfsvfs with the given objset, which must be owned.
1047  * This will cache a bunch of on-disk state from the objset in the
1048  * zfsvfs.
1049  */
1050 static int
1051 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
1052 {
1053 	int error;
1054 	uint64_t val;
1055 
1056 	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
1057 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
1058 	zfsvfs->z_os = os;
1059 
1060 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
1061 	if (error != 0)
1062 		return (error);
1063 	if (zfsvfs->z_version >
1064 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
1065 		(void) printf("Can't mount a version %lld file system "
1066 		    "on a version %lld pool\n. Pool must be upgraded to mount "
1067 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
1068 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
1069 		return (SET_ERROR(ENOTSUP));
1070 	}
1071 	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
1072 	if (error != 0)
1073 		return (error);
1074 	zfsvfs->z_norm = (int)val;
1075 
1076 	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
1077 	if (error != 0)
1078 		return (error);
1079 	zfsvfs->z_utf8 = (val != 0);
1080 
1081 	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
1082 	if (error != 0)
1083 		return (error);
1084 	zfsvfs->z_case = (uint_t)val;
1085 
1086 	/*
1087 	 * Fold case on file systems that are always or sometimes case
1088 	 * insensitive.
1089 	 */
1090 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
1091 	    zfsvfs->z_case == ZFS_CASE_MIXED)
1092 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
1093 
1094 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1095 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1096 
1097 	uint64_t sa_obj = 0;
1098 	if (zfsvfs->z_use_sa) {
1099 		/* should either have both of these objects or none */
1100 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
1101 		    &sa_obj);
1102 		if (error != 0)
1103 			return (error);
1104 	}
1105 
1106 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1107 	    &zfsvfs->z_attr_table);
1108 	if (error != 0)
1109 		return (error);
1110 
1111 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
1112 		sa_register_update_callback(os, zfs_sa_upgrade);
1113 
1114 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
1115 	    &zfsvfs->z_root);
1116 	if (error != 0)
1117 		return (error);
1118 	ASSERT(zfsvfs->z_root != 0);
1119 
1120 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
1121 	    &zfsvfs->z_unlinkedobj);
1122 	if (error != 0)
1123 		return (error);
1124 
1125 	error = zap_lookup(os, MASTER_NODE_OBJ,
1126 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
1127 	    8, 1, &zfsvfs->z_userquota_obj);
1128 	if (error == ENOENT)
1129 		zfsvfs->z_userquota_obj = 0;
1130 	else if (error != 0)
1131 		return (error);
1132 
1133 	error = zap_lookup(os, MASTER_NODE_OBJ,
1134 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
1135 	    8, 1, &zfsvfs->z_groupquota_obj);
1136 	if (error == ENOENT)
1137 		zfsvfs->z_groupquota_obj = 0;
1138 	else if (error != 0)
1139 		return (error);
1140 
1141 	error = zap_lookup(os, MASTER_NODE_OBJ,
1142 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
1143 	    8, 1, &zfsvfs->z_projectquota_obj);
1144 	if (error == ENOENT)
1145 		zfsvfs->z_projectquota_obj = 0;
1146 	else if (error != 0)
1147 		return (error);
1148 
1149 	error = zap_lookup(os, MASTER_NODE_OBJ,
1150 	    zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
1151 	    8, 1, &zfsvfs->z_userobjquota_obj);
1152 	if (error == ENOENT)
1153 		zfsvfs->z_userobjquota_obj = 0;
1154 	else if (error != 0)
1155 		return (error);
1156 
1157 	error = zap_lookup(os, MASTER_NODE_OBJ,
1158 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
1159 	    8, 1, &zfsvfs->z_groupobjquota_obj);
1160 	if (error == ENOENT)
1161 		zfsvfs->z_groupobjquota_obj = 0;
1162 	else if (error != 0)
1163 		return (error);
1164 
1165 	error = zap_lookup(os, MASTER_NODE_OBJ,
1166 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
1167 	    8, 1, &zfsvfs->z_projectobjquota_obj);
1168 	if (error == ENOENT)
1169 		zfsvfs->z_projectobjquota_obj = 0;
1170 	else if (error != 0)
1171 		return (error);
1172 
1173 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
1174 	    &zfsvfs->z_fuid_obj);
1175 	if (error == ENOENT)
1176 		zfsvfs->z_fuid_obj = 0;
1177 	else if (error != 0)
1178 		return (error);
1179 
1180 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
1181 	    &zfsvfs->z_shares_dir);
1182 	if (error == ENOENT)
1183 		zfsvfs->z_shares_dir = 0;
1184 	else if (error != 0)
1185 		return (error);
1186 
1187 	return (0);
1188 }
1189 
1190 int
1191 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
1192 {
1193 	objset_t *os;
1194 	zfsvfs_t *zfsvfs;
1195 	int error;
1196 	boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
1197 
1198 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
1199 
1200 	error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
1201 	if (error != 0) {
1202 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
1203 		return (error);
1204 	}
1205 
1206 	error = zfsvfs_create_impl(zfvp, zfsvfs, os);
1207 	if (error != 0) {
1208 		dmu_objset_disown(os, B_TRUE, zfsvfs);
1209 	}
1210 	return (error);
1211 }
1212 
1213 
1214 int
1215 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
1216 {
1217 	int error;
1218 
1219 	zfsvfs->z_vfs = NULL;
1220 	zfsvfs->z_parent = zfsvfs;
1221 
1222 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1223 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
1224 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1225 	    offsetof(znode_t, z_link_node));
1226 	rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
1227 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
1228 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1229 	for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1230 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1231 
1232 	error = zfsvfs_init(zfsvfs, os);
1233 	if (error != 0) {
1234 		*zfvp = NULL;
1235 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
1236 		return (error);
1237 	}
1238 
1239 	zfsvfs->z_drain_task = TASKQID_INVALID;
1240 	zfsvfs->z_draining = B_FALSE;
1241 	zfsvfs->z_drain_cancel = B_TRUE;
1242 
1243 	*zfvp = zfsvfs;
1244 	return (0);
1245 }
1246 
1247 static int
1248 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1249 {
1250 	int error;
1251 
1252 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1253 	if (error)
1254 		return (error);
1255 
1256 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1257 
1258 	/*
1259 	 * If we are not mounting (ie: online recv), then we don't
1260 	 * have to worry about replaying the log as we blocked all
1261 	 * operations out since we closed the ZIL.
1262 	 */
1263 	if (mounting) {
1264 		boolean_t readonly;
1265 
1266 		/*
1267 		 * During replay we remove the read only flag to
1268 		 * allow replays to succeed.
1269 		 */
1270 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1271 		if (readonly != 0) {
1272 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1273 		} else {
1274 			zfs_unlinked_drain(zfsvfs);
1275 		}
1276 
1277 		/*
1278 		 * Parse and replay the intent log.
1279 		 *
1280 		 * Because of ziltest, this must be done after
1281 		 * zfs_unlinked_drain().  (Further note: ziltest
1282 		 * doesn't use readonly mounts, where
1283 		 * zfs_unlinked_drain() isn't called.)  This is because
1284 		 * ziltest causes spa_sync() to think it's committed,
1285 		 * but actually it is not, so the intent log contains
1286 		 * many txg's worth of changes.
1287 		 *
1288 		 * In particular, if object N is in the unlinked set in
1289 		 * the last txg to actually sync, then it could be
1290 		 * actually freed in a later txg and then reallocated
1291 		 * in a yet later txg.  This would write a "create
1292 		 * object N" record to the intent log.  Normally, this
1293 		 * would be fine because the spa_sync() would have
1294 		 * written out the fact that object N is free, before
1295 		 * we could write the "create object N" intent log
1296 		 * record.
1297 		 *
1298 		 * But when we are in ziltest mode, we advance the "open
1299 		 * txg" without actually spa_sync()-ing the changes to
1300 		 * disk.  So we would see that object N is still
1301 		 * allocated and in the unlinked set, and there is an
1302 		 * intent log record saying to allocate it.
1303 		 */
1304 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1305 			if (zil_replay_disable) {
1306 				zil_destroy(zfsvfs->z_log, B_FALSE);
1307 			} else {
1308 				zfsvfs->z_replay = B_TRUE;
1309 				zil_replay(zfsvfs->z_os, zfsvfs,
1310 				    zfs_replay_vector);
1311 				zfsvfs->z_replay = B_FALSE;
1312 			}
1313 		}
1314 
1315 		/* restore readonly bit */
1316 		if (readonly != 0)
1317 			zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
1318 	}
1319 
1320 	/*
1321 	 * Set the objset user_ptr to track its zfsvfs.
1322 	 */
1323 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1324 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1325 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1326 
1327 	return (0);
1328 }
1329 
1330 void
1331 zfsvfs_free(zfsvfs_t *zfsvfs)
1332 {
1333 	int i;
1334 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1335 
1336 	/*
1337 	 * This is a barrier to prevent the filesystem from going away in
1338 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1339 	 * not unmounted. We consider the filesystem valid before the barrier
1340 	 * and invalid after the barrier.
1341 	 */
1342 	rw_enter(&zfsvfs_lock, RW_READER);
1343 	rw_exit(&zfsvfs_lock);
1344 
1345 	zfs_fuid_destroy(zfsvfs);
1346 
1347 	mutex_destroy(&zfsvfs->z_znodes_lock);
1348 	mutex_destroy(&zfsvfs->z_lock);
1349 	list_destroy(&zfsvfs->z_all_znodes);
1350 	rrm_destroy(&zfsvfs->z_teardown_lock);
1351 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1352 	rw_destroy(&zfsvfs->z_fuid_lock);
1353 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1354 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1355 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1356 }
1357 
1358 static void
1359 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1360 {
1361 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1362 	if (zfsvfs->z_vfs) {
1363 		if (zfsvfs->z_use_fuids) {
1364 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1365 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1366 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1367 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1368 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1369 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1370 		} else {
1371 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1372 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1373 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1374 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1375 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1376 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1377 		}
1378 	}
1379 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1380 }
1381 
1382 static int
1383 zfs_domount(vfs_t *vfsp, char *osname)
1384 {
1385 	dev_t mount_dev;
1386 	uint64_t recordsize, fsid_guid;
1387 	int error = 0;
1388 	zfsvfs_t *zfsvfs;
1389 	boolean_t readonly = vfsp->vfs_flag & VFS_RDONLY ? B_TRUE : B_FALSE;
1390 
1391 	ASSERT(vfsp);
1392 	ASSERT(osname);
1393 
1394 	error = zfsvfs_create(osname, readonly, &zfsvfs);
1395 	if (error)
1396 		return (error);
1397 	zfsvfs->z_vfs = vfsp;
1398 
1399 	/* Initialize the generic filesystem structure. */
1400 	vfsp->vfs_bcount = 0;
1401 	vfsp->vfs_data = NULL;
1402 
1403 	if (zfs_create_unique_device(&mount_dev) == -1) {
1404 		error = SET_ERROR(ENODEV);
1405 		goto out;
1406 	}
1407 	ASSERT(vfs_devismounted(mount_dev) == 0);
1408 
1409 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1410 	    NULL))
1411 		goto out;
1412 
1413 	vfsp->vfs_dev = mount_dev;
1414 	vfsp->vfs_fstype = zfsfstype;
1415 	vfsp->vfs_bsize = recordsize;
1416 	vfsp->vfs_flag |= VFS_NOTRUNC;
1417 	vfsp->vfs_data = zfsvfs;
1418 
1419 	/*
1420 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1421 	 * separates our fsid from any other filesystem types, and a
1422 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1423 	 * all objsets open on this system, provided by unique_create().
1424 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1425 	 * because that's where other Solaris filesystems put it.
1426 	 */
1427 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1428 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1429 	vfsp->vfs_fsid.val[0] = fsid_guid;
1430 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1431 	    zfsfstype & 0xFF;
1432 
1433 	/*
1434 	 * Set features for file system.
1435 	 */
1436 	zfs_set_fuid_feature(zfsvfs);
1437 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1438 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1439 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1440 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1441 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1442 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1443 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1444 	}
1445 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1446 
1447 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1448 		uint64_t pval;
1449 
1450 		atime_changed_cb(zfsvfs, B_FALSE);
1451 		readonly_changed_cb(zfsvfs, B_TRUE);
1452 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1453 			goto out;
1454 		xattr_changed_cb(zfsvfs, pval);
1455 		zfsvfs->z_issnap = B_TRUE;
1456 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1457 
1458 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1459 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1460 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1461 	} else {
1462 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1463 	}
1464 
1465 	/* cache the root vnode for this mount */
1466 	znode_t *rootzp;
1467 	if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp)) {
1468 		goto out;
1469 	}
1470 	zfsvfs->z_rootdir = ZTOV(rootzp);
1471 
1472 	if (!zfsvfs->z_issnap)
1473 		zfsctl_create(zfsvfs);
1474 out:
1475 	if (error) {
1476 		dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1477 		zfsvfs_free(zfsvfs);
1478 	} else {
1479 		atomic_inc_32(&zfs_active_fs_count);
1480 	}
1481 
1482 	return (error);
1483 }
1484 
1485 void
1486 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1487 {
1488 	objset_t *os = zfsvfs->z_os;
1489 
1490 	if (!dmu_objset_is_snapshot(os))
1491 		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1492 }
1493 
1494 /*
1495  * Convert a decimal digit string to a uint64_t integer.
1496  */
1497 static int
1498 str_to_uint64(char *str, uint64_t *objnum)
1499 {
1500 	uint64_t num = 0;
1501 
1502 	while (*str) {
1503 		if (*str < '0' || *str > '9')
1504 			return (SET_ERROR(EINVAL));
1505 
1506 		num = num*10 + *str++ - '0';
1507 	}
1508 
1509 	*objnum = num;
1510 	return (0);
1511 }
1512 
1513 /*
1514  * The boot path passed from the boot loader is in the form of
1515  * "rootpool-name/root-filesystem-object-number'. Convert this
1516  * string to a dataset name: "rootpool-name/root-filesystem-name".
1517  */
1518 static int
1519 zfs_parse_bootfs(char *bpath, char *outpath)
1520 {
1521 	char *slashp;
1522 	uint64_t objnum;
1523 	int error;
1524 
1525 	if (*bpath == 0 || *bpath == '/')
1526 		return (SET_ERROR(EINVAL));
1527 
1528 	(void) strcpy(outpath, bpath);
1529 
1530 	slashp = strchr(bpath, '/');
1531 
1532 	/* if no '/', just return the pool name */
1533 	if (slashp == NULL) {
1534 		return (0);
1535 	}
1536 
1537 	/* if not a number, just return the root dataset name */
1538 	if (str_to_uint64(slashp+1, &objnum)) {
1539 		return (0);
1540 	}
1541 
1542 	*slashp = '\0';
1543 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1544 	*slashp = '/';
1545 
1546 	return (error);
1547 }
1548 
1549 /*
1550  * Check that the hex label string is appropriate for the dataset being
1551  * mounted into the global_zone proper.
1552  *
1553  * Return an error if the hex label string is not default or
1554  * admin_low/admin_high.  For admin_low labels, the corresponding
1555  * dataset must be readonly.
1556  */
1557 int
1558 zfs_check_global_label(const char *dsname, const char *hexsl)
1559 {
1560 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1561 		return (0);
1562 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1563 		return (0);
1564 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1565 		/* must be readonly */
1566 		uint64_t rdonly;
1567 
1568 		if (dsl_prop_get_integer(dsname,
1569 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1570 			return (SET_ERROR(EACCES));
1571 		return (rdonly ? 0 : EACCES);
1572 	}
1573 	return (SET_ERROR(EACCES));
1574 }
1575 
1576 static int
1577 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct statvfs64 *statp,
1578     uint32_t bshift)
1579 {
1580 	char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1581 	uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1582 	uint64_t quota;
1583 	uint64_t used;
1584 	int err;
1585 
1586 	strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1587 	err = id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset, B_FALSE);
1588 	if (err)
1589 		return (err);
1590 
1591 	if (zfsvfs->z_projectquota_obj == 0)
1592 		goto objs;
1593 
1594 	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1595 	    buf + offset, 8, 1, &quota);
1596 	if (err == ENOENT)
1597 		goto objs;
1598 	else if (err)
1599 		return (err);
1600 
1601 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1602 	    buf + offset, 8, 1, &used);
1603 	if (unlikely(err == ENOENT)) {
1604 		uint32_t blksize;
1605 		u_longlong_t nblocks;
1606 
1607 		/*
1608 		 * Quota accounting is async, so it is possible race case.
1609 		 * There is at least one object with the given project ID.
1610 		 */
1611 		sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1612 		if (unlikely(zp->z_blksz == 0))
1613 			blksize = zfsvfs->z_max_blksz;
1614 
1615 		used = blksize * nblocks;
1616 	} else if (err) {
1617 		return (err);
1618 	}
1619 
1620 	statp->f_blocks = quota >> bshift;
1621 	statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1622 	statp->f_bavail = statp->f_bfree;
1623 
1624 objs:
1625 	if (zfsvfs->z_projectobjquota_obj == 0)
1626 		return (0);
1627 
1628 	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1629 	    buf + offset, 8, 1, &quota);
1630 	if (err == ENOENT)
1631 		return (0);
1632 	else if (err)
1633 		return (err);
1634 
1635 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1636 	    buf, 8, 1, &used);
1637 	if (unlikely(err == ENOENT)) {
1638 		/*
1639 		 * Quota accounting is async, so it is possible race case.
1640 		 * There is at least one object with the given project ID.
1641 		 */
1642 		used = 1;
1643 	} else if (err) {
1644 		return (err);
1645 	}
1646 
1647 	statp->f_files = quota;
1648 	statp->f_ffree = (quota > used) ? (quota - used) : 0;
1649 
1650 	return (0);
1651 }
1652 
1653 /*
1654  * Determine whether the mount is allowed according to MAC check.
1655  * by comparing (where appropriate) label of the dataset against
1656  * the label of the zone being mounted into.  If the dataset has
1657  * no label, create one.
1658  *
1659  * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1660  */
1661 static int
1662 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1663 {
1664 	int		error, retv;
1665 	zone_t		*mntzone = NULL;
1666 	ts_label_t	*mnt_tsl;
1667 	bslabel_t	*mnt_sl;
1668 	bslabel_t	ds_sl;
1669 	char		ds_hexsl[MAXNAMELEN];
1670 
1671 	retv = EACCES;				/* assume the worst */
1672 
1673 	/*
1674 	 * Start by getting the dataset label if it exists.
1675 	 */
1676 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1677 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1678 	if (error)
1679 		return (SET_ERROR(EACCES));
1680 
1681 	/*
1682 	 * If labeling is NOT enabled, then disallow the mount of datasets
1683 	 * which have a non-default label already.  No other label checks
1684 	 * are needed.
1685 	 */
1686 	if (!is_system_labeled()) {
1687 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1688 			return (0);
1689 		return (SET_ERROR(EACCES));
1690 	}
1691 
1692 	/*
1693 	 * Get the label of the mountpoint.  If mounting into the global
1694 	 * zone (i.e. mountpoint is not within an active zone and the
1695 	 * zoned property is off), the label must be default or
1696 	 * admin_low/admin_high only; no other checks are needed.
1697 	 */
1698 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1699 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1700 		uint64_t zoned;
1701 
1702 		zone_rele(mntzone);
1703 
1704 		if (dsl_prop_get_integer(osname,
1705 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1706 			return (SET_ERROR(EACCES));
1707 		if (!zoned)
1708 			return (zfs_check_global_label(osname, ds_hexsl));
1709 		else
1710 			/*
1711 			 * This is the case of a zone dataset being mounted
1712 			 * initially, before the zone has been fully created;
1713 			 * allow this mount into global zone.
1714 			 */
1715 			return (0);
1716 	}
1717 
1718 	mnt_tsl = mntzone->zone_slabel;
1719 	ASSERT(mnt_tsl != NULL);
1720 	label_hold(mnt_tsl);
1721 	mnt_sl = label2bslabel(mnt_tsl);
1722 
1723 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1724 		/*
1725 		 * The dataset doesn't have a real label, so fabricate one.
1726 		 */
1727 		char *str = NULL;
1728 
1729 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1730 		    dsl_prop_set_string(osname,
1731 		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1732 		    ZPROP_SRC_LOCAL, str) == 0)
1733 			retv = 0;
1734 		if (str != NULL)
1735 			kmem_free(str, strlen(str) + 1);
1736 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1737 		/*
1738 		 * Now compare labels to complete the MAC check.  If the
1739 		 * labels are equal then allow access.  If the mountpoint
1740 		 * label dominates the dataset label, allow readonly access.
1741 		 * Otherwise, access is denied.
1742 		 */
1743 		if (blequal(mnt_sl, &ds_sl))
1744 			retv = 0;
1745 		else if (bldominates(mnt_sl, &ds_sl)) {
1746 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1747 			retv = 0;
1748 		}
1749 	}
1750 
1751 	label_rele(mnt_tsl);
1752 	zone_rele(mntzone);
1753 	return (retv);
1754 }
1755 
1756 /*
1757  * Load a string-valued boot property and attempt to convert it to a 64-bit
1758  * unsigned integer.  If the value is not present, or the conversion fails,
1759  * return the provided default value.
1760  */
1761 static uint64_t
1762 spa_get_bootprop_uint64(const char *name, uint64_t defval)
1763 {
1764 	char *propval;
1765 	u_longlong_t r;
1766 	int e;
1767 
1768 	if ((propval = spa_get_bootprop(name)) == NULL) {
1769 		/*
1770 		 * The property does not exist.
1771 		 */
1772 		return (defval);
1773 	}
1774 
1775 	e = ddi_strtoull(propval, NULL, 10, &r);
1776 
1777 	spa_free_bootprop(propval);
1778 
1779 	/*
1780 	 * If the conversion succeeded, return the value.  If there was any
1781 	 * kind of failure, just return the default value.
1782 	 */
1783 	return (e == 0 ? r : defval);
1784 }
1785 
1786 static int
1787 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1788 {
1789 	int error = 0;
1790 	static int zfsrootdone = 0;
1791 	zfsvfs_t *zfsvfs = NULL;
1792 	znode_t *zp = NULL;
1793 	vnode_t *vp = NULL;
1794 	char *zfs_bootfs;
1795 	char *zfs_devid;
1796 	char *zfs_rootdisk_path;
1797 	uint64_t zfs_bootpool;
1798 	uint64_t zfs_bootvdev;
1799 
1800 	ASSERT(vfsp);
1801 
1802 	/*
1803 	 * The filesystem that we mount as root is defined in the
1804 	 * boot property "zfs-bootfs" with a format of
1805 	 * "poolname/root-dataset-objnum".
1806 	 */
1807 	if (why == ROOT_INIT) {
1808 		if (zfsrootdone++)
1809 			return (SET_ERROR(EBUSY));
1810 
1811 		/*
1812 		 * the process of doing a spa_load will require the
1813 		 * clock to be set before we could (for example) do
1814 		 * something better by looking at the timestamp on
1815 		 * an uberblock, so just set it to -1.
1816 		 */
1817 		clkset(-1);
1818 
1819 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1820 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1821 			    "bootfs name");
1822 			return (SET_ERROR(EINVAL));
1823 		}
1824 		zfs_devid = spa_get_bootprop("diskdevid");
1825 
1826 		/*
1827 		 * The boot loader may also provide us with the GUID for both
1828 		 * the pool and the nominated boot vdev.  A GUID value of 0 is
1829 		 * explicitly invalid (see "spa_change_guid()"), so we use this
1830 		 * as a sentinel value when no GUID is present.
1831 		 */
1832 		zfs_bootpool = spa_get_bootprop_uint64("zfs-bootpool", 0);
1833 		zfs_bootvdev = spa_get_bootprop_uint64("zfs-bootvdev", 0);
1834 
1835 		/*
1836 		 * If we have been given a root disk override path, we want to
1837 		 * ignore device paths from the pool configuration and use only
1838 		 * the specific path we were given in the boot properties.
1839 		 */
1840 		zfs_rootdisk_path = spa_get_bootprop("zfs-rootdisk-path");
1841 
1842 		/*
1843 		 * Initialise the early boot device rescan mechanism.  A scan
1844 		 * will not actually be performed unless we need to do so in
1845 		 * order to find the correct /devices path for a relocated
1846 		 * device.
1847 		 */
1848 		vdev_disk_preroot_init(zfs_rootdisk_path);
1849 
1850 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid,
1851 		    zfs_bootpool, zfs_bootvdev);
1852 
1853 		spa_free_bootprop(zfs_devid);
1854 
1855 		if (error != 0) {
1856 			spa_free_bootprop(zfs_bootfs);
1857 			spa_free_bootprop(zfs_rootdisk_path);
1858 			vdev_disk_preroot_fini();
1859 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1860 			    error);
1861 			return (error);
1862 		}
1863 
1864 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1865 			spa_free_bootprop(zfs_bootfs);
1866 			spa_free_bootprop(zfs_rootdisk_path);
1867 			vdev_disk_preroot_fini();
1868 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1869 			    error);
1870 			return (error);
1871 		}
1872 
1873 		spa_free_bootprop(zfs_bootfs);
1874 		spa_free_bootprop(zfs_rootdisk_path);
1875 
1876 		if ((error = vfs_lock(vfsp)) != 0) {
1877 			vdev_disk_preroot_fini();
1878 			return (error);
1879 		}
1880 
1881 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1882 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1883 			goto out;
1884 		}
1885 
1886 		/* zfs_domount has already cached the root vnode for us */
1887 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1888 		ASSERT(zfsvfs);
1889 		ASSERT(zfsvfs->z_rootdir);
1890 
1891 		vp = zfsvfs->z_rootdir;
1892 		mutex_enter(&vp->v_lock);
1893 		vp->v_flag |= VROOT;
1894 		mutex_exit(&vp->v_lock);
1895 
1896 		/*
1897 		 * Leave rootvp held.  The root file system is never unmounted.
1898 		 */
1899 		VN_HOLD(vp);
1900 		rootvp = vp;
1901 
1902 		vfs_add((struct vnode *)0, vfsp,
1903 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1904 out:
1905 		vdev_disk_preroot_fini();
1906 		vfs_unlock(vfsp);
1907 		return (error);
1908 	} else if (why == ROOT_REMOUNT) {
1909 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1910 		vfsp->vfs_flag |= VFS_REMOUNT;
1911 
1912 		/* refresh mount options */
1913 		zfs_unregister_callbacks(vfsp->vfs_data);
1914 		return (zfs_register_callbacks(vfsp));
1915 
1916 	} else if (why == ROOT_UNMOUNT) {
1917 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1918 		(void) zfs_sync(vfsp, 0, 0);
1919 		return (0);
1920 	}
1921 
1922 	/*
1923 	 * if "why" is equal to anything else other than ROOT_INIT,
1924 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1925 	 */
1926 	return (SET_ERROR(ENOTSUP));
1927 }
1928 
1929 /*ARGSUSED*/
1930 static int
1931 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1932 {
1933 	char		*osname;
1934 	pathname_t	spn;
1935 	int		error = 0;
1936 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1937 	    UIO_SYSSPACE : UIO_USERSPACE;
1938 	int		canwrite;
1939 
1940 	if (mvp->v_type != VDIR)
1941 		return (SET_ERROR(ENOTDIR));
1942 
1943 	mutex_enter(&mvp->v_lock);
1944 	if ((uap->flags & MS_REMOUNT) == 0 &&
1945 	    (uap->flags & MS_OVERLAY) == 0 &&
1946 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1947 		mutex_exit(&mvp->v_lock);
1948 		return (SET_ERROR(EBUSY));
1949 	}
1950 	mutex_exit(&mvp->v_lock);
1951 
1952 	/*
1953 	 * ZFS does not support passing unparsed data in via MS_DATA.
1954 	 * Users should use the MS_OPTIONSTR interface; this means
1955 	 * that all option parsing is already done and the options struct
1956 	 * can be interrogated.
1957 	 */
1958 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1959 		return (SET_ERROR(EINVAL));
1960 
1961 	/*
1962 	 * Get the objset name (the "special" mount argument).
1963 	 */
1964 	if (error = pn_get(uap->spec, fromspace, &spn))
1965 		return (error);
1966 
1967 	osname = spn.pn_path;
1968 
1969 	/*
1970 	 * Check for mount privilege?
1971 	 *
1972 	 * If we don't have privilege then see if
1973 	 * we have local permission to allow it
1974 	 */
1975 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1976 	if (error) {
1977 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1978 			vattr_t		vattr;
1979 
1980 			/*
1981 			 * Make sure user is the owner of the mount point
1982 			 * or has sufficient privileges.
1983 			 */
1984 
1985 			vattr.va_mask = AT_UID;
1986 
1987 			if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1988 				goto out;
1989 			}
1990 
1991 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1992 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1993 				goto out;
1994 			}
1995 			secpolicy_fs_mount_clearopts(cr, vfsp);
1996 		} else {
1997 			goto out;
1998 		}
1999 	}
2000 
2001 	/*
2002 	 * Refuse to mount a filesystem if we are in a local zone and the
2003 	 * dataset is not visible.
2004 	 */
2005 	if (!INGLOBALZONE(curproc) &&
2006 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
2007 		error = SET_ERROR(EPERM);
2008 		goto out;
2009 	}
2010 
2011 	error = zfs_mount_label_policy(vfsp, osname);
2012 	if (error)
2013 		goto out;
2014 
2015 	/*
2016 	 * When doing a remount, we simply refresh our temporary properties
2017 	 * according to those options set in the current VFS options.
2018 	 */
2019 	if (uap->flags & MS_REMOUNT) {
2020 		/* refresh mount options */
2021 		zfs_unregister_callbacks(vfsp->vfs_data);
2022 		error = zfs_register_callbacks(vfsp);
2023 		goto out;
2024 	}
2025 
2026 	error = zfs_domount(vfsp, osname);
2027 
2028 	/*
2029 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
2030 	 * disappear due to a forced unmount.
2031 	 */
2032 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
2033 		VFS_HOLD(mvp->v_vfsp);
2034 
2035 out:
2036 	pn_free(&spn);
2037 	return (error);
2038 }
2039 
2040 static int
2041 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
2042 {
2043 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2044 	dev32_t d32;
2045 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
2046 	int err = 0;
2047 
2048 	ZFS_ENTER(zfsvfs);
2049 
2050 	dmu_objset_space(zfsvfs->z_os,
2051 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
2052 
2053 	/*
2054 	 * The underlying storage pool actually uses multiple block sizes.
2055 	 * We report the fragsize as the smallest block size we support,
2056 	 * and we report our blocksize as the filesystem's maximum blocksize.
2057 	 */
2058 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
2059 	statp->f_bsize = zfsvfs->z_max_blksz;
2060 
2061 	/*
2062 	 * The following report "total" blocks of various kinds in the
2063 	 * file system, but reported in terms of f_frsize - the
2064 	 * "fragment" size.
2065 	 */
2066 
2067 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
2068 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
2069 	statp->f_bavail = statp->f_bfree; /* no root reservation */
2070 
2071 	/*
2072 	 * statvfs() should really be called statufs(), because it assumes
2073 	 * static metadata.  ZFS doesn't preallocate files, so the best
2074 	 * we can do is report the max that could possibly fit in f_files,
2075 	 * and that minus the number actually used in f_ffree.
2076 	 * For f_ffree, report the smaller of the number of object available
2077 	 * and the number of blocks (each object will take at least a block).
2078 	 */
2079 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
2080 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
2081 	statp->f_files = statp->f_ffree + usedobjs;
2082 
2083 	(void) cmpldev(&d32, vfsp->vfs_dev);
2084 	statp->f_fsid = d32;
2085 
2086 	/*
2087 	 * We're a zfs filesystem.
2088 	 */
2089 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
2090 
2091 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
2092 
2093 	statp->f_namemax = MAXNAMELEN - 1;
2094 
2095 	/*
2096 	 * We have all of 32 characters to stuff a string here.
2097 	 * Is there anything useful we could/should provide?
2098 	 */
2099 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
2100 
2101 	if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
2102 	    dmu_objset_projectquota_present(zfsvfs->z_os)) {
2103 		znode_t *zp;
2104 
2105 		/*
2106 		 * In ZoL, zfs_statvfs is passed a Linux dentry (directory
2107 		 * entry), instead of a vfsp. The ZoL code uses the dentry
2108 		 * to get the znode from the dentry's inode. This represents
2109 		 * whatever filename was passed to the user-level statvfs
2110 		 * syscall.
2111 		 *
2112 		 * We're using the VFS root znode here, so this represents a
2113 		 * potential difference from ZoL.
2114 		 */
2115 		if (zfs_zget(zfsvfs, zfsvfs->z_root, &zp) == 0) {
2116 			uint32_t bshift = ddi_fls(statp->f_bsize) - 1;
2117 
2118 			if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
2119 			    zpl_is_valid_projid(zp->z_projid))
2120 				err = zfs_statfs_project(zfsvfs, zp, statp,
2121 				    bshift);
2122 			VN_RELE(ZTOV(zp));
2123 		}
2124 	}
2125 
2126 	ZFS_EXIT(zfsvfs);
2127 	return (err);
2128 }
2129 
2130 static int
2131 zfs_root(vfs_t *vfsp, vnode_t **vpp)
2132 {
2133 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2134 	struct vnode *vp;
2135 	int error;
2136 
2137 	ZFS_ENTER(zfsvfs);
2138 
2139 	vp = zfsvfs->z_rootdir;
2140 	if (vp != NULL) {
2141 		VN_HOLD(vp);
2142 		error = 0;
2143 	} else {
2144 		/* forced unmount */
2145 		error = EIO;
2146 	}
2147 	*vpp = vp;
2148 
2149 	ZFS_EXIT(zfsvfs);
2150 	return (error);
2151 
2152 }
2153 
2154 /*
2155  * Teardown the zfsvfs::z_os.
2156  *
2157  * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
2158  * and 'z_teardown_inactive_lock' held.
2159  */
2160 static int
2161 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
2162 {
2163 	znode_t	*zp;
2164 
2165 	zfs_unlinked_drain_stop_wait(zfsvfs);
2166 
2167 	rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
2168 
2169 	if (!unmounting) {
2170 		/*
2171 		 * We purge the parent filesystem's vfsp as the parent
2172 		 * filesystem and all of its snapshots have their vnode's
2173 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
2174 		 * 'z_parent' is self referential for non-snapshots.
2175 		 */
2176 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
2177 	}
2178 
2179 	/*
2180 	 * Close the zil. NB: Can't close the zil while zfs_inactive
2181 	 * threads are blocked as zil_close can call zfs_inactive.
2182 	 */
2183 	if (zfsvfs->z_log) {
2184 		zil_close(zfsvfs->z_log);
2185 		zfsvfs->z_log = NULL;
2186 	}
2187 
2188 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
2189 
2190 	/*
2191 	 * If we are not unmounting (ie: online recv) and someone already
2192 	 * unmounted this file system while we were doing the switcheroo,
2193 	 * or a reopen of z_os failed then just bail out now.
2194 	 */
2195 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
2196 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
2197 		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2198 		return (SET_ERROR(EIO));
2199 	}
2200 
2201 	/*
2202 	 * At this point there are no vops active, and any new vops will
2203 	 * fail with EIO since we have z_teardown_lock for writer (only
2204 	 * relavent for forced unmount).
2205 	 *
2206 	 * Release all holds on dbufs.
2207 	 */
2208 	mutex_enter(&zfsvfs->z_znodes_lock);
2209 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
2210 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
2211 		if (zp->z_sa_hdl) {
2212 			ASSERT(ZTOV(zp)->v_count > 0);
2213 			zfs_znode_dmu_fini(zp);
2214 		}
2215 	mutex_exit(&zfsvfs->z_znodes_lock);
2216 
2217 	/*
2218 	 * If we are unmounting, set the unmounted flag and let new vops
2219 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
2220 	 * other vops will fail with EIO.
2221 	 */
2222 	if (unmounting) {
2223 		/*
2224 		 * Clear the cached root vnode now that we are unmounted.
2225 		 * Its release must be performed outside the teardown locks to
2226 		 * avoid recursive lock entry via zfs_inactive().
2227 		 */
2228 		vnode_t *vp = zfsvfs->z_rootdir;
2229 		zfsvfs->z_rootdir = NULL;
2230 
2231 		zfsvfs->z_unmounted = B_TRUE;
2232 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
2233 		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2234 
2235 		/* Drop the cached root vp now that it is safe */
2236 		VN_RELE(vp);
2237 	}
2238 
2239 	/*
2240 	 * z_os will be NULL if there was an error in attempting to reopen
2241 	 * zfsvfs, so just return as the properties had already been
2242 	 * unregistered and cached data had been evicted before.
2243 	 */
2244 	if (zfsvfs->z_os == NULL)
2245 		return (0);
2246 
2247 	/*
2248 	 * Unregister properties.
2249 	 */
2250 	zfs_unregister_callbacks(zfsvfs);
2251 
2252 	/*
2253 	 * Evict cached data
2254 	 */
2255 	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
2256 	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
2257 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
2258 	dmu_objset_evict_dbufs(zfsvfs->z_os);
2259 
2260 	return (0);
2261 }
2262 
2263 /*ARGSUSED*/
2264 static int
2265 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
2266 {
2267 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2268 	objset_t *os;
2269 	int ret;
2270 
2271 	ret = secpolicy_fs_unmount(cr, vfsp);
2272 	if (ret) {
2273 		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
2274 		    ZFS_DELEG_PERM_MOUNT, cr))
2275 			return (ret);
2276 	}
2277 
2278 	/*
2279 	 * We purge the parent filesystem's vfsp as the parent filesystem
2280 	 * and all of its snapshots have their vnode's v_vfsp set to the
2281 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
2282 	 * referential for non-snapshots.
2283 	 */
2284 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
2285 
2286 	/*
2287 	 * Unmount any snapshots mounted under .zfs before unmounting the
2288 	 * dataset itself.
2289 	 */
2290 	if (zfsvfs->z_ctldir != NULL &&
2291 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
2292 		return (ret);
2293 	}
2294 
2295 	if (!(fflag & MS_FORCE)) {
2296 		/*
2297 		 * Check the number of active vnodes in the file system.
2298 		 * Our count is maintained in the vfs structure, but the
2299 		 * number is off by 1 to indicate a hold on the vfs
2300 		 * structure itself.
2301 		 */
2302 		boolean_t draining;
2303 		uint_t thresh = 1;
2304 		vnode_t *ctlvp, *rvp;
2305 
2306 		/*
2307 		 * The cached vnode for the root directory of the mount also
2308 		 * maintains a hold on the vfs structure.
2309 		 */
2310 		rvp = zfsvfs->z_rootdir;
2311 		thresh++;
2312 
2313 		/*
2314 		 * The '.zfs' directory maintains a reference of its own, and
2315 		 * any active references underneath are reflected in the vnode
2316 		 * count. Allow one additional reference for it.
2317 		 */
2318 		ctlvp = zfsvfs->z_ctldir;
2319 		if (ctlvp != NULL) {
2320 			thresh++;
2321 		}
2322 
2323 		/*
2324 		 * If it's running, the asynchronous unlinked drain task needs
2325 		 * to be stopped before the number of active vnodes can be
2326 		 * reliably checked.
2327 		 */
2328 		draining = zfsvfs->z_draining;
2329 		if (draining)
2330 			zfs_unlinked_drain_stop_wait(zfsvfs);
2331 
2332 		if (vfsp->vfs_count > thresh || rvp->v_count > 1 ||
2333 		    (ctlvp != NULL && ctlvp->v_count > 1)) {
2334 			if (draining) {
2335 				/* If it was draining, restart the task */
2336 				zfs_unlinked_drain(zfsvfs);
2337 			}
2338 			return (SET_ERROR(EBUSY));
2339 		}
2340 	}
2341 
2342 	vfsp->vfs_flag |= VFS_UNMOUNTED;
2343 
2344 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
2345 	os = zfsvfs->z_os;
2346 
2347 	/*
2348 	 * z_os will be NULL if there was an error in
2349 	 * attempting to reopen zfsvfs.
2350 	 */
2351 	if (os != NULL) {
2352 		/*
2353 		 * Unset the objset user_ptr.
2354 		 */
2355 		mutex_enter(&os->os_user_ptr_lock);
2356 		dmu_objset_set_user(os, NULL);
2357 		mutex_exit(&os->os_user_ptr_lock);
2358 
2359 		/*
2360 		 * Finally release the objset
2361 		 */
2362 		dmu_objset_disown(os, B_TRUE, zfsvfs);
2363 	}
2364 
2365 	/*
2366 	 * We can now safely destroy the '.zfs' directory node.
2367 	 */
2368 	if (zfsvfs->z_ctldir != NULL)
2369 		zfsctl_destroy(zfsvfs);
2370 
2371 	return (0);
2372 }
2373 
2374 static int
2375 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
2376 {
2377 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2378 	znode_t		*zp;
2379 	uint64_t	object = 0;
2380 	uint64_t	fid_gen = 0;
2381 	uint64_t	gen_mask;
2382 	uint64_t	zp_gen;
2383 	int		i, err;
2384 
2385 	*vpp = NULL;
2386 
2387 	ZFS_ENTER(zfsvfs);
2388 
2389 	if (fidp->fid_len == LONG_FID_LEN) {
2390 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2391 		uint64_t	objsetid = 0;
2392 		uint64_t	setgen = 0;
2393 
2394 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2395 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2396 
2397 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2398 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2399 
2400 		ZFS_EXIT(zfsvfs);
2401 
2402 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2403 		if (err)
2404 			return (SET_ERROR(EINVAL));
2405 		ZFS_ENTER(zfsvfs);
2406 	}
2407 
2408 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2409 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2410 
2411 		for (i = 0; i < sizeof (zfid->zf_object); i++)
2412 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2413 
2414 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2415 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2416 	} else {
2417 		ZFS_EXIT(zfsvfs);
2418 		return (SET_ERROR(EINVAL));
2419 	}
2420 
2421 	/* A zero fid_gen means we are in the .zfs control directories */
2422 	if (fid_gen == 0 &&
2423 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
2424 		*vpp = zfsvfs->z_ctldir;
2425 		ASSERT(*vpp != NULL);
2426 		if (object == ZFSCTL_INO_SNAPDIR) {
2427 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2428 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2429 		} else {
2430 			VN_HOLD(*vpp);
2431 		}
2432 		ZFS_EXIT(zfsvfs);
2433 		return (0);
2434 	}
2435 
2436 	gen_mask = -1ULL >> (64 - 8 * i);
2437 
2438 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2439 	if (err = zfs_zget(zfsvfs, object, &zp)) {
2440 		ZFS_EXIT(zfsvfs);
2441 		return (err);
2442 	}
2443 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2444 	    sizeof (uint64_t));
2445 	zp_gen = zp_gen & gen_mask;
2446 	if (zp_gen == 0)
2447 		zp_gen = 1;
2448 	if (zp->z_unlinked || zp_gen != fid_gen) {
2449 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2450 		VN_RELE(ZTOV(zp));
2451 		ZFS_EXIT(zfsvfs);
2452 		return (SET_ERROR(EINVAL));
2453 	}
2454 
2455 	*vpp = ZTOV(zp);
2456 	ZFS_EXIT(zfsvfs);
2457 	return (0);
2458 }
2459 
2460 /*
2461  * Block out VOPs and close zfsvfs_t::z_os
2462  *
2463  * Note, if successful, then we return with the 'z_teardown_lock' and
2464  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2465  * dataset and objset intact so that they can be atomically handed off during
2466  * a subsequent rollback or recv operation and the resume thereafter.
2467  */
2468 int
2469 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2470 {
2471 	int error;
2472 
2473 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2474 		return (error);
2475 
2476 	return (0);
2477 }
2478 
2479 /*
2480  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2481  * is an invariant across any of the operations that can be performed while the
2482  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2483  * are the same: the relevant objset and associated dataset are owned by
2484  * zfsvfs, held, and long held on entry.
2485  */
2486 int
2487 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
2488 {
2489 	int err;
2490 	znode_t *zp;
2491 
2492 	ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2493 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2494 
2495 	/*
2496 	 * We already own this, so just update the objset_t, as the one we
2497 	 * had before may have been evicted.
2498 	 */
2499 	objset_t *os;
2500 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
2501 	VERIFY(dsl_dataset_long_held(ds));
2502 	VERIFY0(dmu_objset_from_ds(ds, &os));
2503 
2504 	err = zfsvfs_init(zfsvfs, os);
2505 	if (err != 0)
2506 		goto bail;
2507 
2508 	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2509 
2510 	zfs_set_fuid_feature(zfsvfs);
2511 
2512 	/*
2513 	 * Attempt to re-establish all the active znodes with
2514 	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2515 	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2516 	 * when they try to use their znode.
2517 	 */
2518 	mutex_enter(&zfsvfs->z_znodes_lock);
2519 	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2520 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2521 		(void) zfs_rezget(zp);
2522 	}
2523 	mutex_exit(&zfsvfs->z_znodes_lock);
2524 
2525 	if (((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0) &&
2526 	    !zfsvfs->z_unmounted) {
2527 		/*
2528 		 * zfs_suspend_fs() could have interrupted freeing
2529 		 * of dnodes. We need to restart this freeing so
2530 		 * that we don't "leak" the space.
2531 		 */
2532 		zfs_unlinked_drain(zfsvfs);
2533 	}
2534 
2535 bail:
2536 	/* release the VOPs */
2537 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2538 	rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2539 
2540 	if (err) {
2541 		/*
2542 		 * Since we couldn't setup the sa framework, try to force
2543 		 * unmount this file system.
2544 		 */
2545 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2546 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2547 	}
2548 	return (err);
2549 }
2550 
2551 static void
2552 zfs_freevfs(vfs_t *vfsp)
2553 {
2554 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2555 
2556 	/*
2557 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2558 	 * from zfs_mount().  Release it here.  If we came through
2559 	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2560 	 * skip the VFS_RELE for rootvfs.
2561 	 */
2562 	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2563 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2564 
2565 	zfsvfs_free(zfsvfs);
2566 
2567 	atomic_dec_32(&zfs_active_fs_count);
2568 }
2569 
2570 /*
2571  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2572  * so we can't safely do any non-idempotent initialization here.
2573  * Leave that to zfs_init() and zfs_fini(), which are called
2574  * from the module's _init() and _fini() entry points.
2575  */
2576 /*ARGSUSED*/
2577 static int
2578 zfs_vfsinit(int fstype, char *name)
2579 {
2580 	int error;
2581 
2582 	zfsfstype = fstype;
2583 
2584 	/*
2585 	 * Setup vfsops and vnodeops tables.
2586 	 */
2587 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2588 	if (error != 0) {
2589 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2590 	}
2591 
2592 	error = zfs_create_op_tables();
2593 	if (error) {
2594 		zfs_remove_op_tables();
2595 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2596 		(void) vfs_freevfsops_by_type(zfsfstype);
2597 		return (error);
2598 	}
2599 
2600 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2601 
2602 	/*
2603 	 * Unique major number for all zfs mounts.
2604 	 * If we run out of 32-bit minors, we'll getudev() another major.
2605 	 */
2606 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2607 	zfs_minor = ZFS_MIN_MINOR;
2608 
2609 	return (0);
2610 }
2611 
2612 void
2613 zfs_init(void)
2614 {
2615 	/*
2616 	 * Initialize .zfs directory structures
2617 	 */
2618 	zfsctl_init();
2619 
2620 	/*
2621 	 * Initialize znode cache, vnode ops, etc...
2622 	 */
2623 	zfs_znode_init();
2624 
2625 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2626 }
2627 
2628 void
2629 zfs_fini(void)
2630 {
2631 	zfsctl_fini();
2632 	zfs_znode_fini();
2633 }
2634 
2635 int
2636 zfs_busy(void)
2637 {
2638 	return (zfs_active_fs_count != 0);
2639 }
2640 
2641 int
2642 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2643 {
2644 	int error;
2645 	objset_t *os = zfsvfs->z_os;
2646 	dmu_tx_t *tx;
2647 
2648 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2649 		return (SET_ERROR(EINVAL));
2650 
2651 	if (newvers < zfsvfs->z_version)
2652 		return (SET_ERROR(EINVAL));
2653 
2654 	if (zfs_spa_version_map(newvers) >
2655 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2656 		return (SET_ERROR(ENOTSUP));
2657 
2658 	tx = dmu_tx_create(os);
2659 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2660 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2661 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2662 		    ZFS_SA_ATTRS);
2663 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2664 	}
2665 	error = dmu_tx_assign(tx, TXG_WAIT);
2666 	if (error) {
2667 		dmu_tx_abort(tx);
2668 		return (error);
2669 	}
2670 
2671 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2672 	    8, 1, &newvers, tx);
2673 
2674 	if (error) {
2675 		dmu_tx_commit(tx);
2676 		return (error);
2677 	}
2678 
2679 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2680 		uint64_t sa_obj;
2681 
2682 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2683 		    SPA_VERSION_SA);
2684 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2685 		    DMU_OT_NONE, 0, tx);
2686 
2687 		error = zap_add(os, MASTER_NODE_OBJ,
2688 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2689 		ASSERT0(error);
2690 
2691 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2692 		sa_register_update_callback(os, zfs_sa_upgrade);
2693 	}
2694 
2695 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2696 	    "from %llu to %llu", zfsvfs->z_version, newvers);
2697 
2698 	dmu_tx_commit(tx);
2699 
2700 	zfsvfs->z_version = newvers;
2701 	os->os_version = newvers;
2702 
2703 	zfs_set_fuid_feature(zfsvfs);
2704 
2705 	return (0);
2706 }
2707 
2708 /*
2709  * Read a property stored within the master node.
2710  */
2711 int
2712 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2713 {
2714 	uint64_t *cached_copy = NULL;
2715 
2716 	/*
2717 	 * Figure out where in the objset_t the cached copy would live, if it
2718 	 * is available for the requested property.
2719 	 */
2720 	if (os != NULL) {
2721 		switch (prop) {
2722 		case ZFS_PROP_VERSION:
2723 			cached_copy = &os->os_version;
2724 			break;
2725 		case ZFS_PROP_NORMALIZE:
2726 			cached_copy = &os->os_normalization;
2727 			break;
2728 		case ZFS_PROP_UTF8ONLY:
2729 			cached_copy = &os->os_utf8only;
2730 			break;
2731 		case ZFS_PROP_CASE:
2732 			cached_copy = &os->os_casesensitivity;
2733 			break;
2734 		default:
2735 			break;
2736 		}
2737 	}
2738 	if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
2739 		*value = *cached_copy;
2740 		return (0);
2741 	}
2742 
2743 	/*
2744 	 * If the property wasn't cached, look up the file system's value for
2745 	 * the property. For the version property, we look up a slightly
2746 	 * different string.
2747 	 */
2748 	const char *pname;
2749 	int error = ENOENT;
2750 	if (prop == ZFS_PROP_VERSION) {
2751 		pname = ZPL_VERSION_STR;
2752 	} else {
2753 		pname = zfs_prop_to_name(prop);
2754 	}
2755 
2756 	if (os != NULL) {
2757 		ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
2758 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2759 	}
2760 
2761 	if (error == ENOENT) {
2762 		/* No value set, use the default value */
2763 		switch (prop) {
2764 		case ZFS_PROP_VERSION:
2765 			*value = ZPL_VERSION;
2766 			break;
2767 		case ZFS_PROP_NORMALIZE:
2768 		case ZFS_PROP_UTF8ONLY:
2769 			*value = 0;
2770 			break;
2771 		case ZFS_PROP_CASE:
2772 			*value = ZFS_CASE_SENSITIVE;
2773 			break;
2774 		default:
2775 			return (error);
2776 		}
2777 		error = 0;
2778 	}
2779 
2780 	/*
2781 	 * If one of the methods for getting the property value above worked,
2782 	 * copy it into the objset_t's cache.
2783 	 */
2784 	if (error == 0 && cached_copy != NULL) {
2785 		*cached_copy = *value;
2786 	}
2787 
2788 	return (error);
2789 }
2790 
2791 /*
2792  * Return true if the coresponding vfs's unmounted flag is set.
2793  * Otherwise return false.
2794  * If this function returns true we know VFS unmount has been initiated.
2795  */
2796 boolean_t
2797 zfs_get_vfs_flag_unmounted(objset_t *os)
2798 {
2799 	zfsvfs_t *zfvp;
2800 	boolean_t unmounted = B_FALSE;
2801 
2802 	ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2803 
2804 	mutex_enter(&os->os_user_ptr_lock);
2805 	zfvp = dmu_objset_get_user(os);
2806 	if (zfvp != NULL && zfvp->z_vfs != NULL &&
2807 	    (zfvp->z_vfs->vfs_flag & VFS_UNMOUNTED))
2808 		unmounted = B_TRUE;
2809 	mutex_exit(&os->os_user_ptr_lock);
2810 
2811 	return (unmounted);
2812 }
2813 
2814 static vfsdef_t vfw = {
2815 	VFSDEF_VERSION,
2816 	MNTTYPE_ZFS,
2817 	zfs_vfsinit,
2818 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2819 	    VSW_XID|VSW_ZMOUNT,
2820 	&zfs_mntopts
2821 };
2822 
2823 struct modlfs zfs_modlfs = {
2824 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2825 };
2826