1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/pathname.h> 32 #include <sys/vnode.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/mntent.h> 36 #include <sys/mount.h> 37 #include <sys/cmn_err.h> 38 #include "fs/fs_subr.h" 39 #include <sys/zfs_znode.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/refstr.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa_boot.h> 63 64 int zfsfstype; 65 vfsops_t *zfs_vfsops = NULL; 66 static major_t zfs_major; 67 static minor_t zfs_minor; 68 static kmutex_t zfs_dev_mtx; 69 70 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 71 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 72 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 73 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 74 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 75 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 76 static void zfs_freevfs(vfs_t *vfsp); 77 78 static const fs_operation_def_t zfs_vfsops_template[] = { 79 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 80 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 81 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 82 VFSNAME_ROOT, { .vfs_root = zfs_root }, 83 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 84 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 85 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 86 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 87 NULL, NULL 88 }; 89 90 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 91 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 92 NULL, NULL 93 }; 94 95 /* 96 * We need to keep a count of active fs's. 97 * This is necessary to prevent our module 98 * from being unloaded after a umount -f 99 */ 100 static uint32_t zfs_active_fs_count = 0; 101 102 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 103 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 104 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 105 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 106 107 /* 108 * MO_DEFAULT is not used since the default value is determined 109 * by the equivalent property. 110 */ 111 static mntopt_t mntopts[] = { 112 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 113 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 114 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 115 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 116 }; 117 118 static mntopts_t zfs_mntopts = { 119 sizeof (mntopts) / sizeof (mntopt_t), 120 mntopts 121 }; 122 123 /*ARGSUSED*/ 124 int 125 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 126 { 127 /* 128 * Data integrity is job one. We don't want a compromised kernel 129 * writing to the storage pool, so we never sync during panic. 130 */ 131 if (panicstr) 132 return (0); 133 134 /* 135 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 136 * to sync metadata, which they would otherwise cache indefinitely. 137 * Semantically, the only requirement is that the sync be initiated. 138 * The DMU syncs out txgs frequently, so there's nothing to do. 139 */ 140 if (flag & SYNC_ATTR) 141 return (0); 142 143 if (vfsp != NULL) { 144 /* 145 * Sync a specific filesystem. 146 */ 147 zfsvfs_t *zfsvfs = vfsp->vfs_data; 148 149 ZFS_ENTER(zfsvfs); 150 if (zfsvfs->z_log != NULL) 151 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 152 else 153 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 154 ZFS_EXIT(zfsvfs); 155 } else { 156 /* 157 * Sync all ZFS filesystems. This is what happens when you 158 * run sync(1M). Unlike other filesystems, ZFS honors the 159 * request by waiting for all pools to commit all dirty data. 160 */ 161 spa_sync_allpools(); 162 } 163 164 return (0); 165 } 166 167 static int 168 zfs_create_unique_device(dev_t *dev) 169 { 170 major_t new_major; 171 172 do { 173 ASSERT3U(zfs_minor, <=, MAXMIN32); 174 minor_t start = zfs_minor; 175 do { 176 mutex_enter(&zfs_dev_mtx); 177 if (zfs_minor >= MAXMIN32) { 178 /* 179 * If we're still using the real major 180 * keep out of /dev/zfs and /dev/zvol minor 181 * number space. If we're using a getudev()'ed 182 * major number, we can use all of its minors. 183 */ 184 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 185 zfs_minor = ZFS_MIN_MINOR; 186 else 187 zfs_minor = 0; 188 } else { 189 zfs_minor++; 190 } 191 *dev = makedevice(zfs_major, zfs_minor); 192 mutex_exit(&zfs_dev_mtx); 193 } while (vfs_devismounted(*dev) && zfs_minor != start); 194 if (zfs_minor == start) { 195 /* 196 * We are using all ~262,000 minor numbers for the 197 * current major number. Create a new major number. 198 */ 199 if ((new_major = getudev()) == (major_t)-1) { 200 cmn_err(CE_WARN, 201 "zfs_mount: Can't get unique major " 202 "device number."); 203 return (-1); 204 } 205 mutex_enter(&zfs_dev_mtx); 206 zfs_major = new_major; 207 zfs_minor = 0; 208 209 mutex_exit(&zfs_dev_mtx); 210 } else { 211 break; 212 } 213 /* CONSTANTCONDITION */ 214 } while (1); 215 216 return (0); 217 } 218 219 static void 220 atime_changed_cb(void *arg, uint64_t newval) 221 { 222 zfsvfs_t *zfsvfs = arg; 223 224 if (newval == TRUE) { 225 zfsvfs->z_atime = TRUE; 226 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 227 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 228 } else { 229 zfsvfs->z_atime = FALSE; 230 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 231 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 232 } 233 } 234 235 static void 236 xattr_changed_cb(void *arg, uint64_t newval) 237 { 238 zfsvfs_t *zfsvfs = arg; 239 240 if (newval == TRUE) { 241 /* XXX locking on vfs_flag? */ 242 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 243 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 244 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 245 } else { 246 /* XXX locking on vfs_flag? */ 247 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 248 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 249 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 250 } 251 } 252 253 static void 254 blksz_changed_cb(void *arg, uint64_t newval) 255 { 256 zfsvfs_t *zfsvfs = arg; 257 258 if (newval < SPA_MINBLOCKSIZE || 259 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 260 newval = SPA_MAXBLOCKSIZE; 261 262 zfsvfs->z_max_blksz = newval; 263 zfsvfs->z_vfs->vfs_bsize = newval; 264 } 265 266 static void 267 readonly_changed_cb(void *arg, uint64_t newval) 268 { 269 zfsvfs_t *zfsvfs = arg; 270 271 if (newval) { 272 /* XXX locking on vfs_flag? */ 273 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 274 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 275 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 276 } else { 277 /* XXX locking on vfs_flag? */ 278 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 279 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 280 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 281 } 282 } 283 284 static void 285 devices_changed_cb(void *arg, uint64_t newval) 286 { 287 zfsvfs_t *zfsvfs = arg; 288 289 if (newval == FALSE) { 290 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 293 } else { 294 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 295 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 296 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 297 } 298 } 299 300 static void 301 setuid_changed_cb(void *arg, uint64_t newval) 302 { 303 zfsvfs_t *zfsvfs = arg; 304 305 if (newval == FALSE) { 306 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 307 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 308 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 309 } else { 310 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 311 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 312 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 313 } 314 } 315 316 static void 317 exec_changed_cb(void *arg, uint64_t newval) 318 { 319 zfsvfs_t *zfsvfs = arg; 320 321 if (newval == FALSE) { 322 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 323 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 324 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 325 } else { 326 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 327 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 328 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 329 } 330 } 331 332 /* 333 * The nbmand mount option can be changed at mount time. 334 * We can't allow it to be toggled on live file systems or incorrect 335 * behavior may be seen from cifs clients 336 * 337 * This property isn't registered via dsl_prop_register(), but this callback 338 * will be called when a file system is first mounted 339 */ 340 static void 341 nbmand_changed_cb(void *arg, uint64_t newval) 342 { 343 zfsvfs_t *zfsvfs = arg; 344 if (newval == FALSE) { 345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 347 } else { 348 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 349 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 350 } 351 } 352 353 static void 354 snapdir_changed_cb(void *arg, uint64_t newval) 355 { 356 zfsvfs_t *zfsvfs = arg; 357 358 zfsvfs->z_show_ctldir = newval; 359 } 360 361 static void 362 vscan_changed_cb(void *arg, uint64_t newval) 363 { 364 zfsvfs_t *zfsvfs = arg; 365 366 zfsvfs->z_vscan = newval; 367 } 368 369 static void 370 acl_mode_changed_cb(void *arg, uint64_t newval) 371 { 372 zfsvfs_t *zfsvfs = arg; 373 374 zfsvfs->z_acl_mode = newval; 375 } 376 377 static void 378 acl_inherit_changed_cb(void *arg, uint64_t newval) 379 { 380 zfsvfs_t *zfsvfs = arg; 381 382 zfsvfs->z_acl_inherit = newval; 383 } 384 385 static int 386 zfs_register_callbacks(vfs_t *vfsp) 387 { 388 struct dsl_dataset *ds = NULL; 389 objset_t *os = NULL; 390 zfsvfs_t *zfsvfs = NULL; 391 uint64_t nbmand; 392 int readonly, do_readonly = B_FALSE; 393 int setuid, do_setuid = B_FALSE; 394 int exec, do_exec = B_FALSE; 395 int devices, do_devices = B_FALSE; 396 int xattr, do_xattr = B_FALSE; 397 int atime, do_atime = B_FALSE; 398 int error = 0; 399 400 ASSERT(vfsp); 401 zfsvfs = vfsp->vfs_data; 402 ASSERT(zfsvfs); 403 os = zfsvfs->z_os; 404 405 /* 406 * The act of registering our callbacks will destroy any mount 407 * options we may have. In order to enable temporary overrides 408 * of mount options, we stash away the current values and 409 * restore them after we register the callbacks. 410 */ 411 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 412 readonly = B_TRUE; 413 do_readonly = B_TRUE; 414 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 415 readonly = B_FALSE; 416 do_readonly = B_TRUE; 417 } 418 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 419 devices = B_FALSE; 420 setuid = B_FALSE; 421 do_devices = B_TRUE; 422 do_setuid = B_TRUE; 423 } else { 424 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 425 devices = B_FALSE; 426 do_devices = B_TRUE; 427 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 428 devices = B_TRUE; 429 do_devices = B_TRUE; 430 } 431 432 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 433 setuid = B_FALSE; 434 do_setuid = B_TRUE; 435 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 436 setuid = B_TRUE; 437 do_setuid = B_TRUE; 438 } 439 } 440 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 441 exec = B_FALSE; 442 do_exec = B_TRUE; 443 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 444 exec = B_TRUE; 445 do_exec = B_TRUE; 446 } 447 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 448 xattr = B_FALSE; 449 do_xattr = B_TRUE; 450 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 451 xattr = B_TRUE; 452 do_xattr = B_TRUE; 453 } 454 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 455 atime = B_FALSE; 456 do_atime = B_TRUE; 457 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 458 atime = B_TRUE; 459 do_atime = B_TRUE; 460 } 461 462 /* 463 * nbmand is a special property. It can only be changed at 464 * mount time. 465 * 466 * This is weird, but it is documented to only be changeable 467 * at mount time. 468 */ 469 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 470 nbmand = B_FALSE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 472 nbmand = B_TRUE; 473 } else { 474 char osname[MAXNAMELEN]; 475 476 dmu_objset_name(os, osname); 477 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 478 NULL)) { 479 return (error); 480 } 481 } 482 483 /* 484 * Register property callbacks. 485 * 486 * It would probably be fine to just check for i/o error from 487 * the first prop_register(), but I guess I like to go 488 * overboard... 489 */ 490 ds = dmu_objset_ds(os); 491 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 492 error = error ? error : dsl_prop_register(ds, 493 "xattr", xattr_changed_cb, zfsvfs); 494 error = error ? error : dsl_prop_register(ds, 495 "recordsize", blksz_changed_cb, zfsvfs); 496 error = error ? error : dsl_prop_register(ds, 497 "readonly", readonly_changed_cb, zfsvfs); 498 error = error ? error : dsl_prop_register(ds, 499 "devices", devices_changed_cb, zfsvfs); 500 error = error ? error : dsl_prop_register(ds, 501 "setuid", setuid_changed_cb, zfsvfs); 502 error = error ? error : dsl_prop_register(ds, 503 "exec", exec_changed_cb, zfsvfs); 504 error = error ? error : dsl_prop_register(ds, 505 "snapdir", snapdir_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "aclmode", acl_mode_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "aclinherit", acl_inherit_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "vscan", vscan_changed_cb, zfsvfs); 512 if (error) 513 goto unregister; 514 515 /* 516 * Invoke our callbacks to restore temporary mount options. 517 */ 518 if (do_readonly) 519 readonly_changed_cb(zfsvfs, readonly); 520 if (do_setuid) 521 setuid_changed_cb(zfsvfs, setuid); 522 if (do_exec) 523 exec_changed_cb(zfsvfs, exec); 524 if (do_devices) 525 devices_changed_cb(zfsvfs, devices); 526 if (do_xattr) 527 xattr_changed_cb(zfsvfs, xattr); 528 if (do_atime) 529 atime_changed_cb(zfsvfs, atime); 530 531 nbmand_changed_cb(zfsvfs, nbmand); 532 533 return (0); 534 535 unregister: 536 /* 537 * We may attempt to unregister some callbacks that are not 538 * registered, but this is OK; it will simply return ENOMSG, 539 * which we will ignore. 540 */ 541 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 542 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 543 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 544 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 545 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 546 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 547 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 548 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 549 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 551 zfsvfs); 552 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 553 return (error); 554 555 } 556 557 static int 558 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 559 { 560 int error; 561 562 error = zfs_register_callbacks(zfsvfs->z_vfs); 563 if (error) 564 return (error); 565 566 /* 567 * Set the objset user_ptr to track its zfsvfs. 568 */ 569 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 570 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 571 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 572 573 /* 574 * If we are not mounting (ie: online recv), then we don't 575 * have to worry about replaying the log as we blocked all 576 * operations out since we closed the ZIL. 577 */ 578 if (mounting) { 579 boolean_t readonly; 580 581 /* 582 * During replay we remove the read only flag to 583 * allow replays to succeed. 584 */ 585 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 586 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 587 588 /* 589 * Parse and replay the intent log. 590 */ 591 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 592 zfs_replay_vector, zfs_unlinked_drain); 593 594 zfs_unlinked_drain(zfsvfs); 595 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 596 } 597 598 if (!zil_disable) 599 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 600 601 return (0); 602 } 603 604 static void 605 zfs_freezfsvfs(zfsvfs_t *zfsvfs) 606 { 607 mutex_destroy(&zfsvfs->z_znodes_lock); 608 mutex_destroy(&zfsvfs->z_online_recv_lock); 609 list_destroy(&zfsvfs->z_all_znodes); 610 rrw_destroy(&zfsvfs->z_teardown_lock); 611 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 612 rw_destroy(&zfsvfs->z_fuid_lock); 613 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 614 } 615 616 static int 617 zfs_domount(vfs_t *vfsp, char *osname) 618 { 619 dev_t mount_dev; 620 uint64_t recordsize, readonly; 621 int error = 0; 622 int mode; 623 zfsvfs_t *zfsvfs; 624 znode_t *zp = NULL; 625 626 ASSERT(vfsp); 627 ASSERT(osname); 628 629 /* 630 * Initialize the zfs-specific filesystem structure. 631 * Should probably make this a kmem cache, shuffle fields, 632 * and just bzero up to z_hold_mtx[]. 633 */ 634 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 635 zfsvfs->z_vfs = vfsp; 636 zfsvfs->z_parent = zfsvfs; 637 zfsvfs->z_assign = TXG_NOWAIT; 638 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 639 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 640 641 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 642 mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL); 643 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 644 offsetof(znode_t, z_link_node)); 645 rrw_init(&zfsvfs->z_teardown_lock); 646 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 647 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 648 649 /* Initialize the generic filesystem structure. */ 650 vfsp->vfs_bcount = 0; 651 vfsp->vfs_data = NULL; 652 653 if (zfs_create_unique_device(&mount_dev) == -1) { 654 error = ENODEV; 655 goto out; 656 } 657 ASSERT(vfs_devismounted(mount_dev) == 0); 658 659 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 660 NULL)) 661 goto out; 662 663 vfsp->vfs_dev = mount_dev; 664 vfsp->vfs_fstype = zfsfstype; 665 vfsp->vfs_bsize = recordsize; 666 vfsp->vfs_flag |= VFS_NOTRUNC; 667 vfsp->vfs_data = zfsvfs; 668 669 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 670 goto out; 671 672 mode = DS_MODE_OWNER; 673 if (readonly) 674 mode |= DS_MODE_READONLY; 675 676 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 677 if (error == EROFS) { 678 mode = DS_MODE_OWNER | DS_MODE_READONLY; 679 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 680 &zfsvfs->z_os); 681 } 682 683 if (error) 684 goto out; 685 686 if (error = zfs_init_fs(zfsvfs, &zp)) 687 goto out; 688 689 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 690 VN_RELE(ZTOV(zp)); 691 692 /* 693 * Set features for file system. 694 */ 695 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 696 if (zfsvfs->z_use_fuids) { 697 vfs_set_feature(vfsp, VFSFT_XVATTR); 698 vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS); 699 vfs_set_feature(vfsp, VFSFT_ACLONCREATE); 700 } 701 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 702 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 703 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 704 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 705 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 706 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 707 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 708 } 709 710 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 711 uint64_t pval; 712 713 ASSERT(mode & DS_MODE_READONLY); 714 atime_changed_cb(zfsvfs, B_FALSE); 715 readonly_changed_cb(zfsvfs, B_TRUE); 716 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 717 goto out; 718 xattr_changed_cb(zfsvfs, pval); 719 zfsvfs->z_issnap = B_TRUE; 720 } else { 721 error = zfsvfs_setup(zfsvfs, B_TRUE); 722 } 723 724 if (!zfsvfs->z_issnap) 725 zfsctl_create(zfsvfs); 726 out: 727 if (error) { 728 if (zfsvfs->z_os) 729 dmu_objset_close(zfsvfs->z_os); 730 zfs_freezfsvfs(zfsvfs); 731 } else { 732 atomic_add_32(&zfs_active_fs_count, 1); 733 } 734 735 return (error); 736 } 737 738 void 739 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 740 { 741 objset_t *os = zfsvfs->z_os; 742 struct dsl_dataset *ds; 743 744 /* 745 * Unregister properties. 746 */ 747 if (!dmu_objset_is_snapshot(os)) { 748 ds = dmu_objset_ds(os); 749 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 750 zfsvfs) == 0); 751 752 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 753 zfsvfs) == 0); 754 755 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 756 zfsvfs) == 0); 757 758 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 759 zfsvfs) == 0); 760 761 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 762 zfsvfs) == 0); 763 764 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 765 zfsvfs) == 0); 766 767 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 768 zfsvfs) == 0); 769 770 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 771 zfsvfs) == 0); 772 773 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 774 zfsvfs) == 0); 775 776 VERIFY(dsl_prop_unregister(ds, "aclinherit", 777 acl_inherit_changed_cb, zfsvfs) == 0); 778 779 VERIFY(dsl_prop_unregister(ds, "vscan", 780 vscan_changed_cb, zfsvfs) == 0); 781 } 782 } 783 784 /* 785 * Convert a decimal digit string to a uint64_t integer. 786 */ 787 static int 788 str_to_uint64(char *str, uint64_t *objnum) 789 { 790 uint64_t num = 0; 791 792 while (*str) { 793 if (*str < '0' || *str > '9') 794 return (EINVAL); 795 796 num = num*10 + *str++ - '0'; 797 } 798 799 *objnum = num; 800 return (0); 801 } 802 803 /* 804 * The boot path passed from the boot loader is in the form of 805 * "rootpool-name/root-filesystem-object-number'. Convert this 806 * string to a dataset name: "rootpool-name/root-filesystem-name". 807 */ 808 static int 809 zfs_parse_bootfs(char *bpath, char *outpath) 810 { 811 char *slashp; 812 uint64_t objnum; 813 int error; 814 815 if (*bpath == 0 || *bpath == '/') 816 return (EINVAL); 817 818 slashp = strchr(bpath, '/'); 819 820 /* if no '/', just return the pool name */ 821 if (slashp == NULL) { 822 (void) strcpy(outpath, bpath); 823 return (0); 824 } 825 826 if (error = str_to_uint64(slashp+1, &objnum)) 827 return (error); 828 829 *slashp = '\0'; 830 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 831 *slashp = '/'; 832 833 return (error); 834 } 835 836 static int 837 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 838 { 839 int error = 0; 840 static int zfsrootdone = 0; 841 zfsvfs_t *zfsvfs = NULL; 842 znode_t *zp = NULL; 843 vnode_t *vp = NULL; 844 char *zfs_bootfs; 845 char *zfs_devid; 846 847 ASSERT(vfsp); 848 849 /* 850 * The filesystem that we mount as root is defined in the 851 * boot property "zfs-bootfs" with a format of 852 * "poolname/root-dataset-objnum". 853 */ 854 if (why == ROOT_INIT) { 855 if (zfsrootdone++) 856 return (EBUSY); 857 /* 858 * the process of doing a spa_load will require the 859 * clock to be set before we could (for example) do 860 * something better by looking at the timestamp on 861 * an uberblock, so just set it to -1. 862 */ 863 clkset(-1); 864 865 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 866 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 867 "bootfs name"); 868 return (EINVAL); 869 } 870 zfs_devid = spa_get_bootprop("diskdevid"); 871 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 872 if (zfs_devid) 873 spa_free_bootprop(zfs_devid); 874 if (error) { 875 spa_free_bootprop(zfs_bootfs); 876 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 877 error); 878 return (error); 879 } 880 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 881 spa_free_bootprop(zfs_bootfs); 882 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 883 error); 884 return (error); 885 } 886 887 spa_free_bootprop(zfs_bootfs); 888 889 if (error = vfs_lock(vfsp)) 890 return (error); 891 892 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 893 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 894 goto out; 895 } 896 897 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 898 ASSERT(zfsvfs); 899 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 900 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 901 goto out; 902 } 903 904 vp = ZTOV(zp); 905 mutex_enter(&vp->v_lock); 906 vp->v_flag |= VROOT; 907 mutex_exit(&vp->v_lock); 908 rootvp = vp; 909 910 /* 911 * Leave rootvp held. The root file system is never unmounted. 912 */ 913 914 vfs_add((struct vnode *)0, vfsp, 915 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 916 out: 917 vfs_unlock(vfsp); 918 return (error); 919 } else if (why == ROOT_REMOUNT) { 920 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 921 vfsp->vfs_flag |= VFS_REMOUNT; 922 923 /* refresh mount options */ 924 zfs_unregister_callbacks(vfsp->vfs_data); 925 return (zfs_register_callbacks(vfsp)); 926 927 } else if (why == ROOT_UNMOUNT) { 928 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 929 (void) zfs_sync(vfsp, 0, 0); 930 return (0); 931 } 932 933 /* 934 * if "why" is equal to anything else other than ROOT_INIT, 935 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 936 */ 937 return (ENOTSUP); 938 } 939 940 /*ARGSUSED*/ 941 static int 942 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 943 { 944 char *osname; 945 pathname_t spn; 946 int error = 0; 947 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 948 UIO_SYSSPACE : UIO_USERSPACE; 949 int canwrite; 950 951 if (mvp->v_type != VDIR) 952 return (ENOTDIR); 953 954 mutex_enter(&mvp->v_lock); 955 if ((uap->flags & MS_REMOUNT) == 0 && 956 (uap->flags & MS_OVERLAY) == 0 && 957 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 958 mutex_exit(&mvp->v_lock); 959 return (EBUSY); 960 } 961 mutex_exit(&mvp->v_lock); 962 963 /* 964 * ZFS does not support passing unparsed data in via MS_DATA. 965 * Users should use the MS_OPTIONSTR interface; this means 966 * that all option parsing is already done and the options struct 967 * can be interrogated. 968 */ 969 if ((uap->flags & MS_DATA) && uap->datalen > 0) 970 return (EINVAL); 971 972 /* 973 * Get the objset name (the "special" mount argument). 974 */ 975 if (error = pn_get(uap->spec, fromspace, &spn)) 976 return (error); 977 978 osname = spn.pn_path; 979 980 /* 981 * Check for mount privilege? 982 * 983 * If we don't have privilege then see if 984 * we have local permission to allow it 985 */ 986 error = secpolicy_fs_mount(cr, mvp, vfsp); 987 if (error) { 988 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 989 if (error == 0) { 990 vattr_t vattr; 991 992 /* 993 * Make sure user is the owner of the mount point 994 * or has sufficient privileges. 995 */ 996 997 vattr.va_mask = AT_UID; 998 999 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1000 goto out; 1001 } 1002 1003 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1004 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1005 error = EPERM; 1006 goto out; 1007 } 1008 1009 secpolicy_fs_mount_clearopts(cr, vfsp); 1010 } else { 1011 goto out; 1012 } 1013 } 1014 1015 /* 1016 * Refuse to mount a filesystem if we are in a local zone and the 1017 * dataset is not visible. 1018 */ 1019 if (!INGLOBALZONE(curproc) && 1020 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1021 error = EPERM; 1022 goto out; 1023 } 1024 1025 /* 1026 * When doing a remount, we simply refresh our temporary properties 1027 * according to those options set in the current VFS options. 1028 */ 1029 if (uap->flags & MS_REMOUNT) { 1030 /* refresh mount options */ 1031 zfs_unregister_callbacks(vfsp->vfs_data); 1032 error = zfs_register_callbacks(vfsp); 1033 goto out; 1034 } 1035 1036 error = zfs_domount(vfsp, osname); 1037 1038 out: 1039 pn_free(&spn); 1040 return (error); 1041 } 1042 1043 static int 1044 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1045 { 1046 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1047 dev32_t d32; 1048 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1049 1050 ZFS_ENTER(zfsvfs); 1051 1052 dmu_objset_space(zfsvfs->z_os, 1053 &refdbytes, &availbytes, &usedobjs, &availobjs); 1054 1055 /* 1056 * The underlying storage pool actually uses multiple block sizes. 1057 * We report the fragsize as the smallest block size we support, 1058 * and we report our blocksize as the filesystem's maximum blocksize. 1059 */ 1060 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1061 statp->f_bsize = zfsvfs->z_max_blksz; 1062 1063 /* 1064 * The following report "total" blocks of various kinds in the 1065 * file system, but reported in terms of f_frsize - the 1066 * "fragment" size. 1067 */ 1068 1069 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1070 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1071 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1072 1073 /* 1074 * statvfs() should really be called statufs(), because it assumes 1075 * static metadata. ZFS doesn't preallocate files, so the best 1076 * we can do is report the max that could possibly fit in f_files, 1077 * and that minus the number actually used in f_ffree. 1078 * For f_ffree, report the smaller of the number of object available 1079 * and the number of blocks (each object will take at least a block). 1080 */ 1081 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1082 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1083 statp->f_files = statp->f_ffree + usedobjs; 1084 1085 (void) cmpldev(&d32, vfsp->vfs_dev); 1086 statp->f_fsid = d32; 1087 1088 /* 1089 * We're a zfs filesystem. 1090 */ 1091 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1092 1093 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1094 1095 statp->f_namemax = ZFS_MAXNAMELEN; 1096 1097 /* 1098 * We have all of 32 characters to stuff a string here. 1099 * Is there anything useful we could/should provide? 1100 */ 1101 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1102 1103 ZFS_EXIT(zfsvfs); 1104 return (0); 1105 } 1106 1107 static int 1108 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1109 { 1110 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1111 znode_t *rootzp; 1112 int error; 1113 1114 ZFS_ENTER(zfsvfs); 1115 1116 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1117 if (error == 0) 1118 *vpp = ZTOV(rootzp); 1119 1120 ZFS_EXIT(zfsvfs); 1121 return (error); 1122 } 1123 1124 /* 1125 * Teardown the zfsvfs::z_os. 1126 * 1127 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1128 * and 'z_teardown_inactive_lock' held. 1129 */ 1130 static int 1131 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1132 { 1133 znode_t *zp; 1134 1135 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1136 1137 if (!unmounting) { 1138 /* 1139 * We purge the parent filesystem's vfsp as the parent 1140 * filesystem and all of its snapshots have their vnode's 1141 * v_vfsp set to the parent's filesystem's vfsp. Note, 1142 * 'z_parent' is self referential for non-snapshots. 1143 */ 1144 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1145 } 1146 1147 /* 1148 * Close the zil. NB: Can't close the zil while zfs_inactive 1149 * threads are blocked as zil_close can call zfs_inactive. 1150 */ 1151 if (zfsvfs->z_log) { 1152 zil_close(zfsvfs->z_log); 1153 zfsvfs->z_log = NULL; 1154 } 1155 1156 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1157 1158 /* 1159 * If we are not unmounting (ie: online recv) and someone already 1160 * unmounted this file system while we were doing the switcheroo, 1161 * or a reopen of z_os failed then just bail out now. 1162 */ 1163 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1164 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1165 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1166 return (EIO); 1167 } 1168 1169 /* 1170 * At this point there are no vops active, and any new vops will 1171 * fail with EIO since we have z_teardown_lock for writer (only 1172 * relavent for forced unmount). 1173 * 1174 * Release all holds on dbufs. 1175 */ 1176 mutex_enter(&zfsvfs->z_znodes_lock); 1177 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1178 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1179 if (zp->z_dbuf) { 1180 ASSERT(ZTOV(zp)->v_count > 0); 1181 zfs_znode_dmu_fini(zp); 1182 } 1183 mutex_exit(&zfsvfs->z_znodes_lock); 1184 1185 /* 1186 * If we are unmounting, set the unmounted flag and let new vops 1187 * unblock. zfs_inactive will have the unmounted behavior, and all 1188 * other vops will fail with EIO. 1189 */ 1190 if (unmounting) { 1191 zfsvfs->z_unmounted = B_TRUE; 1192 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1193 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1194 } 1195 1196 /* 1197 * z_os will be NULL if there was an error in attempting to reopen 1198 * zfsvfs, so just return as the properties had already been 1199 * unregistered and cached data had been evicted before. 1200 */ 1201 if (zfsvfs->z_os == NULL) 1202 return (0); 1203 1204 /* 1205 * Unregister properties. 1206 */ 1207 zfs_unregister_callbacks(zfsvfs); 1208 1209 /* 1210 * Evict cached data 1211 */ 1212 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1213 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1214 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1215 } 1216 1217 return (0); 1218 } 1219 1220 /*ARGSUSED*/ 1221 static int 1222 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1223 { 1224 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1225 objset_t *os; 1226 int ret; 1227 1228 ret = secpolicy_fs_unmount(cr, vfsp); 1229 if (ret) { 1230 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1231 ZFS_DELEG_PERM_MOUNT, cr); 1232 if (ret) 1233 return (ret); 1234 } 1235 1236 /* 1237 * We purge the parent filesystem's vfsp as the parent filesystem 1238 * and all of its snapshots have their vnode's v_vfsp set to the 1239 * parent's filesystem's vfsp. Note, 'z_parent' is self 1240 * referential for non-snapshots. 1241 */ 1242 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1243 1244 /* 1245 * Unmount any snapshots mounted under .zfs before unmounting the 1246 * dataset itself. 1247 */ 1248 if (zfsvfs->z_ctldir != NULL && 1249 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1250 return (ret); 1251 } 1252 1253 if (!(fflag & MS_FORCE)) { 1254 /* 1255 * Check the number of active vnodes in the file system. 1256 * Our count is maintained in the vfs structure, but the 1257 * number is off by 1 to indicate a hold on the vfs 1258 * structure itself. 1259 * 1260 * The '.zfs' directory maintains a reference of its 1261 * own, and any active references underneath are 1262 * reflected in the vnode count. 1263 */ 1264 if (zfsvfs->z_ctldir == NULL) { 1265 if (vfsp->vfs_count > 1) 1266 return (EBUSY); 1267 } else { 1268 if (vfsp->vfs_count > 2 || 1269 zfsvfs->z_ctldir->v_count > 1) 1270 return (EBUSY); 1271 } 1272 } 1273 1274 vfsp->vfs_flag |= VFS_UNMOUNTED; 1275 1276 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1277 os = zfsvfs->z_os; 1278 1279 /* 1280 * z_os will be NULL if there was an error in 1281 * attempting to reopen zfsvfs. 1282 */ 1283 if (os != NULL) { 1284 /* 1285 * Unset the objset user_ptr. 1286 */ 1287 mutex_enter(&os->os->os_user_ptr_lock); 1288 dmu_objset_set_user(os, NULL); 1289 mutex_exit(&os->os->os_user_ptr_lock); 1290 1291 /* 1292 * Finally release the objset 1293 */ 1294 dmu_objset_close(os); 1295 } 1296 1297 /* 1298 * We can now safely destroy the '.zfs' directory node. 1299 */ 1300 if (zfsvfs->z_ctldir != NULL) 1301 zfsctl_destroy(zfsvfs); 1302 1303 return (0); 1304 } 1305 1306 static int 1307 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1308 { 1309 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1310 znode_t *zp; 1311 uint64_t object = 0; 1312 uint64_t fid_gen = 0; 1313 uint64_t gen_mask; 1314 uint64_t zp_gen; 1315 int i, err; 1316 1317 *vpp = NULL; 1318 1319 ZFS_ENTER(zfsvfs); 1320 1321 if (fidp->fid_len == LONG_FID_LEN) { 1322 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1323 uint64_t objsetid = 0; 1324 uint64_t setgen = 0; 1325 1326 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1327 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1328 1329 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1330 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1331 1332 ZFS_EXIT(zfsvfs); 1333 1334 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1335 if (err) 1336 return (EINVAL); 1337 ZFS_ENTER(zfsvfs); 1338 } 1339 1340 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1341 zfid_short_t *zfid = (zfid_short_t *)fidp; 1342 1343 for (i = 0; i < sizeof (zfid->zf_object); i++) 1344 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1345 1346 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1347 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1348 } else { 1349 ZFS_EXIT(zfsvfs); 1350 return (EINVAL); 1351 } 1352 1353 /* A zero fid_gen means we are in the .zfs control directories */ 1354 if (fid_gen == 0 && 1355 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1356 *vpp = zfsvfs->z_ctldir; 1357 ASSERT(*vpp != NULL); 1358 if (object == ZFSCTL_INO_SNAPDIR) { 1359 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1360 0, NULL, NULL, NULL, NULL, NULL) == 0); 1361 } else { 1362 VN_HOLD(*vpp); 1363 } 1364 ZFS_EXIT(zfsvfs); 1365 return (0); 1366 } 1367 1368 gen_mask = -1ULL >> (64 - 8 * i); 1369 1370 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1371 if (err = zfs_zget(zfsvfs, object, &zp)) { 1372 ZFS_EXIT(zfsvfs); 1373 return (err); 1374 } 1375 zp_gen = zp->z_phys->zp_gen & gen_mask; 1376 if (zp_gen == 0) 1377 zp_gen = 1; 1378 if (zp->z_unlinked || zp_gen != fid_gen) { 1379 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1380 VN_RELE(ZTOV(zp)); 1381 ZFS_EXIT(zfsvfs); 1382 return (EINVAL); 1383 } 1384 1385 *vpp = ZTOV(zp); 1386 ZFS_EXIT(zfsvfs); 1387 return (0); 1388 } 1389 1390 /* 1391 * Block out VOPs and close zfsvfs_t::z_os 1392 * 1393 * Note, if successful, then we return with the 'z_teardown_lock' and 1394 * 'z_teardown_inactive_lock' write held. 1395 */ 1396 int 1397 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode) 1398 { 1399 int error; 1400 1401 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1402 return (error); 1403 1404 *mode = zfsvfs->z_os->os_mode; 1405 dmu_objset_name(zfsvfs->z_os, name); 1406 dmu_objset_close(zfsvfs->z_os); 1407 1408 return (0); 1409 } 1410 1411 /* 1412 * Reopen zfsvfs_t::z_os and release VOPs. 1413 */ 1414 int 1415 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) 1416 { 1417 int err; 1418 1419 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1420 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1421 1422 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 1423 if (err) { 1424 zfsvfs->z_os = NULL; 1425 } else { 1426 znode_t *zp; 1427 1428 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1429 1430 /* 1431 * Attempt to re-establish all the active znodes with 1432 * their dbufs. If a zfs_rezget() fails, then we'll let 1433 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1434 * when they try to use their znode. 1435 */ 1436 mutex_enter(&zfsvfs->z_znodes_lock); 1437 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1438 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1439 (void) zfs_rezget(zp); 1440 } 1441 mutex_exit(&zfsvfs->z_znodes_lock); 1442 1443 } 1444 1445 /* release the VOPs */ 1446 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1447 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1448 1449 if (err) { 1450 /* 1451 * Since we couldn't reopen zfsvfs::z_os, force 1452 * unmount this file system. 1453 */ 1454 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1455 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1456 } 1457 return (err); 1458 } 1459 1460 static void 1461 zfs_freevfs(vfs_t *vfsp) 1462 { 1463 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1464 int i; 1465 1466 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1467 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1468 1469 zfs_fuid_destroy(zfsvfs); 1470 zfs_freezfsvfs(zfsvfs); 1471 1472 atomic_add_32(&zfs_active_fs_count, -1); 1473 } 1474 1475 /* 1476 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1477 * so we can't safely do any non-idempotent initialization here. 1478 * Leave that to zfs_init() and zfs_fini(), which are called 1479 * from the module's _init() and _fini() entry points. 1480 */ 1481 /*ARGSUSED*/ 1482 static int 1483 zfs_vfsinit(int fstype, char *name) 1484 { 1485 int error; 1486 1487 zfsfstype = fstype; 1488 1489 /* 1490 * Setup vfsops and vnodeops tables. 1491 */ 1492 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1493 if (error != 0) { 1494 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1495 } 1496 1497 error = zfs_create_op_tables(); 1498 if (error) { 1499 zfs_remove_op_tables(); 1500 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1501 (void) vfs_freevfsops_by_type(zfsfstype); 1502 return (error); 1503 } 1504 1505 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1506 1507 /* 1508 * Unique major number for all zfs mounts. 1509 * If we run out of 32-bit minors, we'll getudev() another major. 1510 */ 1511 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1512 zfs_minor = ZFS_MIN_MINOR; 1513 1514 return (0); 1515 } 1516 1517 void 1518 zfs_init(void) 1519 { 1520 /* 1521 * Initialize .zfs directory structures 1522 */ 1523 zfsctl_init(); 1524 1525 /* 1526 * Initialize znode cache, vnode ops, etc... 1527 */ 1528 zfs_znode_init(); 1529 } 1530 1531 void 1532 zfs_fini(void) 1533 { 1534 zfsctl_fini(); 1535 zfs_znode_fini(); 1536 } 1537 1538 int 1539 zfs_busy(void) 1540 { 1541 return (zfs_active_fs_count != 0); 1542 } 1543 1544 int 1545 zfs_set_version(const char *name, uint64_t newvers) 1546 { 1547 int error; 1548 objset_t *os; 1549 dmu_tx_t *tx; 1550 uint64_t curvers; 1551 1552 /* 1553 * XXX for now, require that the filesystem be unmounted. Would 1554 * be nice to find the zfsvfs_t and just update that if 1555 * possible. 1556 */ 1557 1558 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1559 return (EINVAL); 1560 1561 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_OWNER, &os); 1562 if (error) 1563 return (error); 1564 1565 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1566 8, 1, &curvers); 1567 if (error) 1568 goto out; 1569 if (newvers < curvers) { 1570 error = EINVAL; 1571 goto out; 1572 } 1573 1574 tx = dmu_tx_create(os); 1575 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1576 error = dmu_tx_assign(tx, TXG_WAIT); 1577 if (error) { 1578 dmu_tx_abort(tx); 1579 goto out; 1580 } 1581 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1582 &newvers, tx); 1583 1584 spa_history_internal_log(LOG_DS_UPGRADE, 1585 dmu_objset_spa(os), tx, CRED(), 1586 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1587 dmu_objset_id(os)); 1588 dmu_tx_commit(tx); 1589 1590 out: 1591 dmu_objset_close(os); 1592 return (error); 1593 } 1594 1595 /* 1596 * Read a property stored within the master node. 1597 */ 1598 int 1599 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 1600 { 1601 const char *pname; 1602 int error = ENOENT; 1603 1604 /* 1605 * Look up the file system's value for the property. For the 1606 * version property, we look up a slightly different string. 1607 */ 1608 if (prop == ZFS_PROP_VERSION) 1609 pname = ZPL_VERSION_STR; 1610 else 1611 pname = zfs_prop_to_name(prop); 1612 1613 if (os != NULL) 1614 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 1615 1616 if (error == ENOENT) { 1617 /* No value set, use the default value */ 1618 switch (prop) { 1619 case ZFS_PROP_VERSION: 1620 *value = ZPL_VERSION; 1621 break; 1622 case ZFS_PROP_NORMALIZE: 1623 case ZFS_PROP_UTF8ONLY: 1624 *value = 0; 1625 break; 1626 case ZFS_PROP_CASE: 1627 *value = ZFS_CASE_SENSITIVE; 1628 break; 1629 default: 1630 return (error); 1631 } 1632 error = 0; 1633 } 1634 return (error); 1635 } 1636 1637 static vfsdef_t vfw = { 1638 VFSDEF_VERSION, 1639 MNTTYPE_ZFS, 1640 zfs_vfsinit, 1641 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 1642 VSW_XID, 1643 &zfs_mntopts 1644 }; 1645 1646 struct modlfs zfs_modlfs = { 1647 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1648 }; 1649