xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision 1667122dc3c9d4356089cb2f8f9b2e9f2d7fa604)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/sysmacros.h>
30 #include <sys/kmem.h>
31 #include <sys/pathname.h>
32 #include <sys/vnode.h>
33 #include <sys/vfs.h>
34 #include <sys/vfs_opreg.h>
35 #include <sys/mntent.h>
36 #include <sys/mount.h>
37 #include <sys/cmn_err.h>
38 #include "fs/fs_subr.h"
39 #include <sys/zfs_znode.h>
40 #include <sys/zfs_dir.h>
41 #include <sys/zil.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/dmu.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_dataset.h>
46 #include <sys/dsl_deleg.h>
47 #include <sys/spa.h>
48 #include <sys/zap.h>
49 #include <sys/varargs.h>
50 #include <sys/policy.h>
51 #include <sys/atomic.h>
52 #include <sys/mkdev.h>
53 #include <sys/modctl.h>
54 #include <sys/refstr.h>
55 #include <sys/zfs_ioctl.h>
56 #include <sys/zfs_ctldir.h>
57 #include <sys/zfs_fuid.h>
58 #include <sys/bootconf.h>
59 #include <sys/sunddi.h>
60 #include <sys/dnlc.h>
61 #include <sys/dmu_objset.h>
62 #include <sys/spa_boot.h>
63 
64 int zfsfstype;
65 vfsops_t *zfs_vfsops = NULL;
66 static major_t zfs_major;
67 static minor_t zfs_minor;
68 static kmutex_t	zfs_dev_mtx;
69 
70 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
71 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
72 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
73 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
74 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
75 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
76 static void zfs_freevfs(vfs_t *vfsp);
77 
78 static const fs_operation_def_t zfs_vfsops_template[] = {
79 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
80 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
81 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
82 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
83 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
84 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
85 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
86 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
87 	NULL,			NULL
88 };
89 
90 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
91 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
92 	NULL,			NULL
93 };
94 
95 /*
96  * We need to keep a count of active fs's.
97  * This is necessary to prevent our module
98  * from being unloaded after a umount -f
99  */
100 static uint32_t	zfs_active_fs_count = 0;
101 
102 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
103 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
104 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
105 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
106 
107 /*
108  * MO_DEFAULT is not used since the default value is determined
109  * by the equivalent property.
110  */
111 static mntopt_t mntopts[] = {
112 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
113 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
114 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
115 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
116 };
117 
118 static mntopts_t zfs_mntopts = {
119 	sizeof (mntopts) / sizeof (mntopt_t),
120 	mntopts
121 };
122 
123 /*ARGSUSED*/
124 int
125 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
126 {
127 	/*
128 	 * Data integrity is job one.  We don't want a compromised kernel
129 	 * writing to the storage pool, so we never sync during panic.
130 	 */
131 	if (panicstr)
132 		return (0);
133 
134 	/*
135 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
136 	 * to sync metadata, which they would otherwise cache indefinitely.
137 	 * Semantically, the only requirement is that the sync be initiated.
138 	 * The DMU syncs out txgs frequently, so there's nothing to do.
139 	 */
140 	if (flag & SYNC_ATTR)
141 		return (0);
142 
143 	if (vfsp != NULL) {
144 		/*
145 		 * Sync a specific filesystem.
146 		 */
147 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
148 
149 		ZFS_ENTER(zfsvfs);
150 		if (zfsvfs->z_log != NULL)
151 			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
152 		else
153 			txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
154 		ZFS_EXIT(zfsvfs);
155 	} else {
156 		/*
157 		 * Sync all ZFS filesystems.  This is what happens when you
158 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
159 		 * request by waiting for all pools to commit all dirty data.
160 		 */
161 		spa_sync_allpools();
162 	}
163 
164 	return (0);
165 }
166 
167 static int
168 zfs_create_unique_device(dev_t *dev)
169 {
170 	major_t new_major;
171 
172 	do {
173 		ASSERT3U(zfs_minor, <=, MAXMIN32);
174 		minor_t start = zfs_minor;
175 		do {
176 			mutex_enter(&zfs_dev_mtx);
177 			if (zfs_minor >= MAXMIN32) {
178 				/*
179 				 * If we're still using the real major
180 				 * keep out of /dev/zfs and /dev/zvol minor
181 				 * number space.  If we're using a getudev()'ed
182 				 * major number, we can use all of its minors.
183 				 */
184 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
185 					zfs_minor = ZFS_MIN_MINOR;
186 				else
187 					zfs_minor = 0;
188 			} else {
189 				zfs_minor++;
190 			}
191 			*dev = makedevice(zfs_major, zfs_minor);
192 			mutex_exit(&zfs_dev_mtx);
193 		} while (vfs_devismounted(*dev) && zfs_minor != start);
194 		if (zfs_minor == start) {
195 			/*
196 			 * We are using all ~262,000 minor numbers for the
197 			 * current major number.  Create a new major number.
198 			 */
199 			if ((new_major = getudev()) == (major_t)-1) {
200 				cmn_err(CE_WARN,
201 				    "zfs_mount: Can't get unique major "
202 				    "device number.");
203 				return (-1);
204 			}
205 			mutex_enter(&zfs_dev_mtx);
206 			zfs_major = new_major;
207 			zfs_minor = 0;
208 
209 			mutex_exit(&zfs_dev_mtx);
210 		} else {
211 			break;
212 		}
213 		/* CONSTANTCONDITION */
214 	} while (1);
215 
216 	return (0);
217 }
218 
219 static void
220 atime_changed_cb(void *arg, uint64_t newval)
221 {
222 	zfsvfs_t *zfsvfs = arg;
223 
224 	if (newval == TRUE) {
225 		zfsvfs->z_atime = TRUE;
226 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
227 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
228 	} else {
229 		zfsvfs->z_atime = FALSE;
230 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
231 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
232 	}
233 }
234 
235 static void
236 xattr_changed_cb(void *arg, uint64_t newval)
237 {
238 	zfsvfs_t *zfsvfs = arg;
239 
240 	if (newval == TRUE) {
241 		/* XXX locking on vfs_flag? */
242 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
243 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
244 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
245 	} else {
246 		/* XXX locking on vfs_flag? */
247 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
248 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
249 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
250 	}
251 }
252 
253 static void
254 blksz_changed_cb(void *arg, uint64_t newval)
255 {
256 	zfsvfs_t *zfsvfs = arg;
257 
258 	if (newval < SPA_MINBLOCKSIZE ||
259 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
260 		newval = SPA_MAXBLOCKSIZE;
261 
262 	zfsvfs->z_max_blksz = newval;
263 	zfsvfs->z_vfs->vfs_bsize = newval;
264 }
265 
266 static void
267 readonly_changed_cb(void *arg, uint64_t newval)
268 {
269 	zfsvfs_t *zfsvfs = arg;
270 
271 	if (newval) {
272 		/* XXX locking on vfs_flag? */
273 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
274 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
275 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
276 	} else {
277 		/* XXX locking on vfs_flag? */
278 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
279 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
280 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
281 	}
282 }
283 
284 static void
285 devices_changed_cb(void *arg, uint64_t newval)
286 {
287 	zfsvfs_t *zfsvfs = arg;
288 
289 	if (newval == FALSE) {
290 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
291 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
292 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
293 	} else {
294 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
295 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
296 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
297 	}
298 }
299 
300 static void
301 setuid_changed_cb(void *arg, uint64_t newval)
302 {
303 	zfsvfs_t *zfsvfs = arg;
304 
305 	if (newval == FALSE) {
306 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
307 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
308 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
309 	} else {
310 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
311 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
312 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
313 	}
314 }
315 
316 static void
317 exec_changed_cb(void *arg, uint64_t newval)
318 {
319 	zfsvfs_t *zfsvfs = arg;
320 
321 	if (newval == FALSE) {
322 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
323 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
324 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
325 	} else {
326 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
327 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
328 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
329 	}
330 }
331 
332 /*
333  * The nbmand mount option can be changed at mount time.
334  * We can't allow it to be toggled on live file systems or incorrect
335  * behavior may be seen from cifs clients
336  *
337  * This property isn't registered via dsl_prop_register(), but this callback
338  * will be called when a file system is first mounted
339  */
340 static void
341 nbmand_changed_cb(void *arg, uint64_t newval)
342 {
343 	zfsvfs_t *zfsvfs = arg;
344 	if (newval == FALSE) {
345 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
346 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
347 	} else {
348 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
349 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
350 	}
351 }
352 
353 static void
354 snapdir_changed_cb(void *arg, uint64_t newval)
355 {
356 	zfsvfs_t *zfsvfs = arg;
357 
358 	zfsvfs->z_show_ctldir = newval;
359 }
360 
361 static void
362 vscan_changed_cb(void *arg, uint64_t newval)
363 {
364 	zfsvfs_t *zfsvfs = arg;
365 
366 	zfsvfs->z_vscan = newval;
367 }
368 
369 static void
370 acl_mode_changed_cb(void *arg, uint64_t newval)
371 {
372 	zfsvfs_t *zfsvfs = arg;
373 
374 	zfsvfs->z_acl_mode = newval;
375 }
376 
377 static void
378 acl_inherit_changed_cb(void *arg, uint64_t newval)
379 {
380 	zfsvfs_t *zfsvfs = arg;
381 
382 	zfsvfs->z_acl_inherit = newval;
383 }
384 
385 static int
386 zfs_register_callbacks(vfs_t *vfsp)
387 {
388 	struct dsl_dataset *ds = NULL;
389 	objset_t *os = NULL;
390 	zfsvfs_t *zfsvfs = NULL;
391 	uint64_t nbmand;
392 	int readonly, do_readonly = B_FALSE;
393 	int setuid, do_setuid = B_FALSE;
394 	int exec, do_exec = B_FALSE;
395 	int devices, do_devices = B_FALSE;
396 	int xattr, do_xattr = B_FALSE;
397 	int atime, do_atime = B_FALSE;
398 	int error = 0;
399 
400 	ASSERT(vfsp);
401 	zfsvfs = vfsp->vfs_data;
402 	ASSERT(zfsvfs);
403 	os = zfsvfs->z_os;
404 
405 	/*
406 	 * The act of registering our callbacks will destroy any mount
407 	 * options we may have.  In order to enable temporary overrides
408 	 * of mount options, we stash away the current values and
409 	 * restore them after we register the callbacks.
410 	 */
411 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
412 		readonly = B_TRUE;
413 		do_readonly = B_TRUE;
414 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
415 		readonly = B_FALSE;
416 		do_readonly = B_TRUE;
417 	}
418 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
419 		devices = B_FALSE;
420 		setuid = B_FALSE;
421 		do_devices = B_TRUE;
422 		do_setuid = B_TRUE;
423 	} else {
424 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
425 			devices = B_FALSE;
426 			do_devices = B_TRUE;
427 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
428 			devices = B_TRUE;
429 			do_devices = B_TRUE;
430 		}
431 
432 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
433 			setuid = B_FALSE;
434 			do_setuid = B_TRUE;
435 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
436 			setuid = B_TRUE;
437 			do_setuid = B_TRUE;
438 		}
439 	}
440 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
441 		exec = B_FALSE;
442 		do_exec = B_TRUE;
443 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
444 		exec = B_TRUE;
445 		do_exec = B_TRUE;
446 	}
447 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
448 		xattr = B_FALSE;
449 		do_xattr = B_TRUE;
450 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
451 		xattr = B_TRUE;
452 		do_xattr = B_TRUE;
453 	}
454 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
455 		atime = B_FALSE;
456 		do_atime = B_TRUE;
457 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
458 		atime = B_TRUE;
459 		do_atime = B_TRUE;
460 	}
461 
462 	/*
463 	 * nbmand is a special property.  It can only be changed at
464 	 * mount time.
465 	 *
466 	 * This is weird, but it is documented to only be changeable
467 	 * at mount time.
468 	 */
469 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
470 		nbmand = B_FALSE;
471 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
472 		nbmand = B_TRUE;
473 	} else {
474 		char osname[MAXNAMELEN];
475 
476 		dmu_objset_name(os, osname);
477 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
478 		    NULL)) {
479 			return (error);
480 		}
481 	}
482 
483 	/*
484 	 * Register property callbacks.
485 	 *
486 	 * It would probably be fine to just check for i/o error from
487 	 * the first prop_register(), but I guess I like to go
488 	 * overboard...
489 	 */
490 	ds = dmu_objset_ds(os);
491 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
492 	error = error ? error : dsl_prop_register(ds,
493 	    "xattr", xattr_changed_cb, zfsvfs);
494 	error = error ? error : dsl_prop_register(ds,
495 	    "recordsize", blksz_changed_cb, zfsvfs);
496 	error = error ? error : dsl_prop_register(ds,
497 	    "readonly", readonly_changed_cb, zfsvfs);
498 	error = error ? error : dsl_prop_register(ds,
499 	    "devices", devices_changed_cb, zfsvfs);
500 	error = error ? error : dsl_prop_register(ds,
501 	    "setuid", setuid_changed_cb, zfsvfs);
502 	error = error ? error : dsl_prop_register(ds,
503 	    "exec", exec_changed_cb, zfsvfs);
504 	error = error ? error : dsl_prop_register(ds,
505 	    "snapdir", snapdir_changed_cb, zfsvfs);
506 	error = error ? error : dsl_prop_register(ds,
507 	    "aclmode", acl_mode_changed_cb, zfsvfs);
508 	error = error ? error : dsl_prop_register(ds,
509 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
510 	error = error ? error : dsl_prop_register(ds,
511 	    "vscan", vscan_changed_cb, zfsvfs);
512 	if (error)
513 		goto unregister;
514 
515 	/*
516 	 * Invoke our callbacks to restore temporary mount options.
517 	 */
518 	if (do_readonly)
519 		readonly_changed_cb(zfsvfs, readonly);
520 	if (do_setuid)
521 		setuid_changed_cb(zfsvfs, setuid);
522 	if (do_exec)
523 		exec_changed_cb(zfsvfs, exec);
524 	if (do_devices)
525 		devices_changed_cb(zfsvfs, devices);
526 	if (do_xattr)
527 		xattr_changed_cb(zfsvfs, xattr);
528 	if (do_atime)
529 		atime_changed_cb(zfsvfs, atime);
530 
531 	nbmand_changed_cb(zfsvfs, nbmand);
532 
533 	return (0);
534 
535 unregister:
536 	/*
537 	 * We may attempt to unregister some callbacks that are not
538 	 * registered, but this is OK; it will simply return ENOMSG,
539 	 * which we will ignore.
540 	 */
541 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
542 	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
543 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
544 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
545 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
546 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
547 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
548 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
549 	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
550 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
551 	    zfsvfs);
552 	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
553 	return (error);
554 
555 }
556 
557 static int
558 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
559 {
560 	int error;
561 
562 	error = zfs_register_callbacks(zfsvfs->z_vfs);
563 	if (error)
564 		return (error);
565 
566 	/*
567 	 * Set the objset user_ptr to track its zfsvfs.
568 	 */
569 	mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock);
570 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
571 	mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock);
572 
573 	/*
574 	 * If we are not mounting (ie: online recv), then we don't
575 	 * have to worry about replaying the log as we blocked all
576 	 * operations out since we closed the ZIL.
577 	 */
578 	if (mounting) {
579 		boolean_t readonly;
580 
581 		/*
582 		 * During replay we remove the read only flag to
583 		 * allow replays to succeed.
584 		 */
585 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
586 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
587 
588 		/*
589 		 * Parse and replay the intent log.
590 		 */
591 		zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign,
592 		    zfs_replay_vector, zfs_unlinked_drain);
593 
594 		zfs_unlinked_drain(zfsvfs);
595 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
596 	}
597 
598 	if (!zil_disable)
599 		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
600 
601 	return (0);
602 }
603 
604 static void
605 zfs_freezfsvfs(zfsvfs_t *zfsvfs)
606 {
607 	mutex_destroy(&zfsvfs->z_znodes_lock);
608 	mutex_destroy(&zfsvfs->z_online_recv_lock);
609 	list_destroy(&zfsvfs->z_all_znodes);
610 	rrw_destroy(&zfsvfs->z_teardown_lock);
611 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
612 	rw_destroy(&zfsvfs->z_fuid_lock);
613 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
614 }
615 
616 static int
617 zfs_domount(vfs_t *vfsp, char *osname)
618 {
619 	dev_t mount_dev;
620 	uint64_t recordsize, readonly;
621 	int error = 0;
622 	int mode;
623 	zfsvfs_t *zfsvfs;
624 	znode_t *zp = NULL;
625 
626 	ASSERT(vfsp);
627 	ASSERT(osname);
628 
629 	/*
630 	 * Initialize the zfs-specific filesystem structure.
631 	 * Should probably make this a kmem cache, shuffle fields,
632 	 * and just bzero up to z_hold_mtx[].
633 	 */
634 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
635 	zfsvfs->z_vfs = vfsp;
636 	zfsvfs->z_parent = zfsvfs;
637 	zfsvfs->z_assign = TXG_NOWAIT;
638 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
639 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
640 
641 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
642 	mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL);
643 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
644 	    offsetof(znode_t, z_link_node));
645 	rrw_init(&zfsvfs->z_teardown_lock);
646 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
647 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
648 
649 	/* Initialize the generic filesystem structure. */
650 	vfsp->vfs_bcount = 0;
651 	vfsp->vfs_data = NULL;
652 
653 	if (zfs_create_unique_device(&mount_dev) == -1) {
654 		error = ENODEV;
655 		goto out;
656 	}
657 	ASSERT(vfs_devismounted(mount_dev) == 0);
658 
659 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
660 	    NULL))
661 		goto out;
662 
663 	vfsp->vfs_dev = mount_dev;
664 	vfsp->vfs_fstype = zfsfstype;
665 	vfsp->vfs_bsize = recordsize;
666 	vfsp->vfs_flag |= VFS_NOTRUNC;
667 	vfsp->vfs_data = zfsvfs;
668 
669 	if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL))
670 		goto out;
671 
672 	mode = DS_MODE_OWNER;
673 	if (readonly)
674 		mode |= DS_MODE_READONLY;
675 
676 	error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
677 	if (error == EROFS) {
678 		mode = DS_MODE_OWNER | DS_MODE_READONLY;
679 		error = dmu_objset_open(osname, DMU_OST_ZFS, mode,
680 		    &zfsvfs->z_os);
681 	}
682 
683 	if (error)
684 		goto out;
685 
686 	if (error = zfs_init_fs(zfsvfs, &zp))
687 		goto out;
688 
689 	/* The call to zfs_init_fs leaves the vnode held, release it here. */
690 	VN_RELE(ZTOV(zp));
691 
692 	/*
693 	 * Set features for file system.
694 	 */
695 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
696 	if (zfsvfs->z_use_fuids) {
697 		vfs_set_feature(vfsp, VFSFT_XVATTR);
698 		vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS);
699 		vfs_set_feature(vfsp, VFSFT_ACLONCREATE);
700 	}
701 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
702 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
703 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
704 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
705 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
706 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
707 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
708 	}
709 
710 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
711 		uint64_t pval;
712 
713 		ASSERT(mode & DS_MODE_READONLY);
714 		atime_changed_cb(zfsvfs, B_FALSE);
715 		readonly_changed_cb(zfsvfs, B_TRUE);
716 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
717 			goto out;
718 		xattr_changed_cb(zfsvfs, pval);
719 		zfsvfs->z_issnap = B_TRUE;
720 	} else {
721 		error = zfsvfs_setup(zfsvfs, B_TRUE);
722 	}
723 
724 	if (!zfsvfs->z_issnap)
725 		zfsctl_create(zfsvfs);
726 out:
727 	if (error) {
728 		if (zfsvfs->z_os)
729 			dmu_objset_close(zfsvfs->z_os);
730 		zfs_freezfsvfs(zfsvfs);
731 	} else {
732 		atomic_add_32(&zfs_active_fs_count, 1);
733 	}
734 
735 	return (error);
736 }
737 
738 void
739 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
740 {
741 	objset_t *os = zfsvfs->z_os;
742 	struct dsl_dataset *ds;
743 
744 	/*
745 	 * Unregister properties.
746 	 */
747 	if (!dmu_objset_is_snapshot(os)) {
748 		ds = dmu_objset_ds(os);
749 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
750 		    zfsvfs) == 0);
751 
752 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
753 		    zfsvfs) == 0);
754 
755 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
756 		    zfsvfs) == 0);
757 
758 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
759 		    zfsvfs) == 0);
760 
761 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
762 		    zfsvfs) == 0);
763 
764 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
765 		    zfsvfs) == 0);
766 
767 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
768 		    zfsvfs) == 0);
769 
770 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
771 		    zfsvfs) == 0);
772 
773 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
774 		    zfsvfs) == 0);
775 
776 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
777 		    acl_inherit_changed_cb, zfsvfs) == 0);
778 
779 		VERIFY(dsl_prop_unregister(ds, "vscan",
780 		    vscan_changed_cb, zfsvfs) == 0);
781 	}
782 }
783 
784 /*
785  * Convert a decimal digit string to a uint64_t integer.
786  */
787 static int
788 str_to_uint64(char *str, uint64_t *objnum)
789 {
790 	uint64_t num = 0;
791 
792 	while (*str) {
793 		if (*str < '0' || *str > '9')
794 			return (EINVAL);
795 
796 		num = num*10 + *str++ - '0';
797 	}
798 
799 	*objnum = num;
800 	return (0);
801 }
802 
803 /*
804  * The boot path passed from the boot loader is in the form of
805  * "rootpool-name/root-filesystem-object-number'. Convert this
806  * string to a dataset name: "rootpool-name/root-filesystem-name".
807  */
808 static int
809 zfs_parse_bootfs(char *bpath, char *outpath)
810 {
811 	char *slashp;
812 	uint64_t objnum;
813 	int error;
814 
815 	if (*bpath == 0 || *bpath == '/')
816 		return (EINVAL);
817 
818 	slashp = strchr(bpath, '/');
819 
820 	/* if no '/', just return the pool name */
821 	if (slashp == NULL) {
822 		(void) strcpy(outpath, bpath);
823 		return (0);
824 	}
825 
826 	if (error = str_to_uint64(slashp+1, &objnum))
827 		return (error);
828 
829 	*slashp = '\0';
830 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
831 	*slashp = '/';
832 
833 	return (error);
834 }
835 
836 static int
837 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
838 {
839 	int error = 0;
840 	static int zfsrootdone = 0;
841 	zfsvfs_t *zfsvfs = NULL;
842 	znode_t *zp = NULL;
843 	vnode_t *vp = NULL;
844 	char *zfs_bootfs;
845 	char *zfs_devid;
846 
847 	ASSERT(vfsp);
848 
849 	/*
850 	 * The filesystem that we mount as root is defined in the
851 	 * boot property "zfs-bootfs" with a format of
852 	 * "poolname/root-dataset-objnum".
853 	 */
854 	if (why == ROOT_INIT) {
855 		if (zfsrootdone++)
856 			return (EBUSY);
857 		/*
858 		 * the process of doing a spa_load will require the
859 		 * clock to be set before we could (for example) do
860 		 * something better by looking at the timestamp on
861 		 * an uberblock, so just set it to -1.
862 		 */
863 		clkset(-1);
864 
865 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
866 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
867 			    "bootfs name");
868 			return (EINVAL);
869 		}
870 		zfs_devid = spa_get_bootprop("diskdevid");
871 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
872 		if (zfs_devid)
873 			spa_free_bootprop(zfs_devid);
874 		if (error) {
875 			spa_free_bootprop(zfs_bootfs);
876 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
877 			    error);
878 			return (error);
879 		}
880 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
881 			spa_free_bootprop(zfs_bootfs);
882 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
883 			    error);
884 			return (error);
885 		}
886 
887 		spa_free_bootprop(zfs_bootfs);
888 
889 		if (error = vfs_lock(vfsp))
890 			return (error);
891 
892 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
893 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
894 			goto out;
895 		}
896 
897 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
898 		ASSERT(zfsvfs);
899 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
900 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
901 			goto out;
902 		}
903 
904 		vp = ZTOV(zp);
905 		mutex_enter(&vp->v_lock);
906 		vp->v_flag |= VROOT;
907 		mutex_exit(&vp->v_lock);
908 		rootvp = vp;
909 
910 		/*
911 		 * Leave rootvp held.  The root file system is never unmounted.
912 		 */
913 
914 		vfs_add((struct vnode *)0, vfsp,
915 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
916 out:
917 		vfs_unlock(vfsp);
918 		return (error);
919 	} else if (why == ROOT_REMOUNT) {
920 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
921 		vfsp->vfs_flag |= VFS_REMOUNT;
922 
923 		/* refresh mount options */
924 		zfs_unregister_callbacks(vfsp->vfs_data);
925 		return (zfs_register_callbacks(vfsp));
926 
927 	} else if (why == ROOT_UNMOUNT) {
928 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
929 		(void) zfs_sync(vfsp, 0, 0);
930 		return (0);
931 	}
932 
933 	/*
934 	 * if "why" is equal to anything else other than ROOT_INIT,
935 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
936 	 */
937 	return (ENOTSUP);
938 }
939 
940 /*ARGSUSED*/
941 static int
942 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
943 {
944 	char		*osname;
945 	pathname_t	spn;
946 	int		error = 0;
947 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
948 	    UIO_SYSSPACE : UIO_USERSPACE;
949 	int		canwrite;
950 
951 	if (mvp->v_type != VDIR)
952 		return (ENOTDIR);
953 
954 	mutex_enter(&mvp->v_lock);
955 	if ((uap->flags & MS_REMOUNT) == 0 &&
956 	    (uap->flags & MS_OVERLAY) == 0 &&
957 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
958 		mutex_exit(&mvp->v_lock);
959 		return (EBUSY);
960 	}
961 	mutex_exit(&mvp->v_lock);
962 
963 	/*
964 	 * ZFS does not support passing unparsed data in via MS_DATA.
965 	 * Users should use the MS_OPTIONSTR interface; this means
966 	 * that all option parsing is already done and the options struct
967 	 * can be interrogated.
968 	 */
969 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
970 		return (EINVAL);
971 
972 	/*
973 	 * Get the objset name (the "special" mount argument).
974 	 */
975 	if (error = pn_get(uap->spec, fromspace, &spn))
976 		return (error);
977 
978 	osname = spn.pn_path;
979 
980 	/*
981 	 * Check for mount privilege?
982 	 *
983 	 * If we don't have privilege then see if
984 	 * we have local permission to allow it
985 	 */
986 	error = secpolicy_fs_mount(cr, mvp, vfsp);
987 	if (error) {
988 		error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr);
989 		if (error == 0) {
990 			vattr_t		vattr;
991 
992 			/*
993 			 * Make sure user is the owner of the mount point
994 			 * or has sufficient privileges.
995 			 */
996 
997 			vattr.va_mask = AT_UID;
998 
999 			if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1000 				goto out;
1001 			}
1002 
1003 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1004 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1005 				error = EPERM;
1006 				goto out;
1007 			}
1008 
1009 			secpolicy_fs_mount_clearopts(cr, vfsp);
1010 		} else {
1011 			goto out;
1012 		}
1013 	}
1014 
1015 	/*
1016 	 * Refuse to mount a filesystem if we are in a local zone and the
1017 	 * dataset is not visible.
1018 	 */
1019 	if (!INGLOBALZONE(curproc) &&
1020 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1021 		error = EPERM;
1022 		goto out;
1023 	}
1024 
1025 	/*
1026 	 * When doing a remount, we simply refresh our temporary properties
1027 	 * according to those options set in the current VFS options.
1028 	 */
1029 	if (uap->flags & MS_REMOUNT) {
1030 		/* refresh mount options */
1031 		zfs_unregister_callbacks(vfsp->vfs_data);
1032 		error = zfs_register_callbacks(vfsp);
1033 		goto out;
1034 	}
1035 
1036 	error = zfs_domount(vfsp, osname);
1037 
1038 out:
1039 	pn_free(&spn);
1040 	return (error);
1041 }
1042 
1043 static int
1044 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1045 {
1046 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1047 	dev32_t d32;
1048 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1049 
1050 	ZFS_ENTER(zfsvfs);
1051 
1052 	dmu_objset_space(zfsvfs->z_os,
1053 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1054 
1055 	/*
1056 	 * The underlying storage pool actually uses multiple block sizes.
1057 	 * We report the fragsize as the smallest block size we support,
1058 	 * and we report our blocksize as the filesystem's maximum blocksize.
1059 	 */
1060 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1061 	statp->f_bsize = zfsvfs->z_max_blksz;
1062 
1063 	/*
1064 	 * The following report "total" blocks of various kinds in the
1065 	 * file system, but reported in terms of f_frsize - the
1066 	 * "fragment" size.
1067 	 */
1068 
1069 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1070 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1071 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1072 
1073 	/*
1074 	 * statvfs() should really be called statufs(), because it assumes
1075 	 * static metadata.  ZFS doesn't preallocate files, so the best
1076 	 * we can do is report the max that could possibly fit in f_files,
1077 	 * and that minus the number actually used in f_ffree.
1078 	 * For f_ffree, report the smaller of the number of object available
1079 	 * and the number of blocks (each object will take at least a block).
1080 	 */
1081 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1082 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1083 	statp->f_files = statp->f_ffree + usedobjs;
1084 
1085 	(void) cmpldev(&d32, vfsp->vfs_dev);
1086 	statp->f_fsid = d32;
1087 
1088 	/*
1089 	 * We're a zfs filesystem.
1090 	 */
1091 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1092 
1093 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1094 
1095 	statp->f_namemax = ZFS_MAXNAMELEN;
1096 
1097 	/*
1098 	 * We have all of 32 characters to stuff a string here.
1099 	 * Is there anything useful we could/should provide?
1100 	 */
1101 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1102 
1103 	ZFS_EXIT(zfsvfs);
1104 	return (0);
1105 }
1106 
1107 static int
1108 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1109 {
1110 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1111 	znode_t *rootzp;
1112 	int error;
1113 
1114 	ZFS_ENTER(zfsvfs);
1115 
1116 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1117 	if (error == 0)
1118 		*vpp = ZTOV(rootzp);
1119 
1120 	ZFS_EXIT(zfsvfs);
1121 	return (error);
1122 }
1123 
1124 /*
1125  * Teardown the zfsvfs::z_os.
1126  *
1127  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1128  * and 'z_teardown_inactive_lock' held.
1129  */
1130 static int
1131 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1132 {
1133 	znode_t	*zp;
1134 
1135 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1136 
1137 	if (!unmounting) {
1138 		/*
1139 		 * We purge the parent filesystem's vfsp as the parent
1140 		 * filesystem and all of its snapshots have their vnode's
1141 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1142 		 * 'z_parent' is self referential for non-snapshots.
1143 		 */
1144 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1145 	}
1146 
1147 	/*
1148 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1149 	 * threads are blocked as zil_close can call zfs_inactive.
1150 	 */
1151 	if (zfsvfs->z_log) {
1152 		zil_close(zfsvfs->z_log);
1153 		zfsvfs->z_log = NULL;
1154 	}
1155 
1156 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1157 
1158 	/*
1159 	 * If we are not unmounting (ie: online recv) and someone already
1160 	 * unmounted this file system while we were doing the switcheroo,
1161 	 * or a reopen of z_os failed then just bail out now.
1162 	 */
1163 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1164 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1165 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1166 		return (EIO);
1167 	}
1168 
1169 	/*
1170 	 * At this point there are no vops active, and any new vops will
1171 	 * fail with EIO since we have z_teardown_lock for writer (only
1172 	 * relavent for forced unmount).
1173 	 *
1174 	 * Release all holds on dbufs.
1175 	 */
1176 	mutex_enter(&zfsvfs->z_znodes_lock);
1177 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1178 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1179 		if (zp->z_dbuf) {
1180 			ASSERT(ZTOV(zp)->v_count > 0);
1181 			zfs_znode_dmu_fini(zp);
1182 		}
1183 	mutex_exit(&zfsvfs->z_znodes_lock);
1184 
1185 	/*
1186 	 * If we are unmounting, set the unmounted flag and let new vops
1187 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1188 	 * other vops will fail with EIO.
1189 	 */
1190 	if (unmounting) {
1191 		zfsvfs->z_unmounted = B_TRUE;
1192 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1193 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1194 	}
1195 
1196 	/*
1197 	 * z_os will be NULL if there was an error in attempting to reopen
1198 	 * zfsvfs, so just return as the properties had already been
1199 	 * unregistered and cached data had been evicted before.
1200 	 */
1201 	if (zfsvfs->z_os == NULL)
1202 		return (0);
1203 
1204 	/*
1205 	 * Unregister properties.
1206 	 */
1207 	zfs_unregister_callbacks(zfsvfs);
1208 
1209 	/*
1210 	 * Evict cached data
1211 	 */
1212 	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
1213 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1214 		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1215 	}
1216 
1217 	return (0);
1218 }
1219 
1220 /*ARGSUSED*/
1221 static int
1222 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1223 {
1224 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1225 	objset_t *os;
1226 	int ret;
1227 
1228 	ret = secpolicy_fs_unmount(cr, vfsp);
1229 	if (ret) {
1230 		ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1231 		    ZFS_DELEG_PERM_MOUNT, cr);
1232 		if (ret)
1233 			return (ret);
1234 	}
1235 
1236 	/*
1237 	 * We purge the parent filesystem's vfsp as the parent filesystem
1238 	 * and all of its snapshots have their vnode's v_vfsp set to the
1239 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1240 	 * referential for non-snapshots.
1241 	 */
1242 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1243 
1244 	/*
1245 	 * Unmount any snapshots mounted under .zfs before unmounting the
1246 	 * dataset itself.
1247 	 */
1248 	if (zfsvfs->z_ctldir != NULL &&
1249 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1250 		return (ret);
1251 	}
1252 
1253 	if (!(fflag & MS_FORCE)) {
1254 		/*
1255 		 * Check the number of active vnodes in the file system.
1256 		 * Our count is maintained in the vfs structure, but the
1257 		 * number is off by 1 to indicate a hold on the vfs
1258 		 * structure itself.
1259 		 *
1260 		 * The '.zfs' directory maintains a reference of its
1261 		 * own, and any active references underneath are
1262 		 * reflected in the vnode count.
1263 		 */
1264 		if (zfsvfs->z_ctldir == NULL) {
1265 			if (vfsp->vfs_count > 1)
1266 				return (EBUSY);
1267 		} else {
1268 			if (vfsp->vfs_count > 2 ||
1269 			    zfsvfs->z_ctldir->v_count > 1)
1270 				return (EBUSY);
1271 		}
1272 	}
1273 
1274 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1275 
1276 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1277 	os = zfsvfs->z_os;
1278 
1279 	/*
1280 	 * z_os will be NULL if there was an error in
1281 	 * attempting to reopen zfsvfs.
1282 	 */
1283 	if (os != NULL) {
1284 		/*
1285 		 * Unset the objset user_ptr.
1286 		 */
1287 		mutex_enter(&os->os->os_user_ptr_lock);
1288 		dmu_objset_set_user(os, NULL);
1289 		mutex_exit(&os->os->os_user_ptr_lock);
1290 
1291 		/*
1292 		 * Finally release the objset
1293 		 */
1294 		dmu_objset_close(os);
1295 	}
1296 
1297 	/*
1298 	 * We can now safely destroy the '.zfs' directory node.
1299 	 */
1300 	if (zfsvfs->z_ctldir != NULL)
1301 		zfsctl_destroy(zfsvfs);
1302 
1303 	return (0);
1304 }
1305 
1306 static int
1307 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1308 {
1309 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1310 	znode_t		*zp;
1311 	uint64_t	object = 0;
1312 	uint64_t	fid_gen = 0;
1313 	uint64_t	gen_mask;
1314 	uint64_t	zp_gen;
1315 	int 		i, err;
1316 
1317 	*vpp = NULL;
1318 
1319 	ZFS_ENTER(zfsvfs);
1320 
1321 	if (fidp->fid_len == LONG_FID_LEN) {
1322 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1323 		uint64_t	objsetid = 0;
1324 		uint64_t	setgen = 0;
1325 
1326 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1327 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1328 
1329 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1330 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1331 
1332 		ZFS_EXIT(zfsvfs);
1333 
1334 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1335 		if (err)
1336 			return (EINVAL);
1337 		ZFS_ENTER(zfsvfs);
1338 	}
1339 
1340 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1341 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1342 
1343 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1344 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1345 
1346 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1347 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1348 	} else {
1349 		ZFS_EXIT(zfsvfs);
1350 		return (EINVAL);
1351 	}
1352 
1353 	/* A zero fid_gen means we are in the .zfs control directories */
1354 	if (fid_gen == 0 &&
1355 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1356 		*vpp = zfsvfs->z_ctldir;
1357 		ASSERT(*vpp != NULL);
1358 		if (object == ZFSCTL_INO_SNAPDIR) {
1359 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1360 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1361 		} else {
1362 			VN_HOLD(*vpp);
1363 		}
1364 		ZFS_EXIT(zfsvfs);
1365 		return (0);
1366 	}
1367 
1368 	gen_mask = -1ULL >> (64 - 8 * i);
1369 
1370 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1371 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1372 		ZFS_EXIT(zfsvfs);
1373 		return (err);
1374 	}
1375 	zp_gen = zp->z_phys->zp_gen & gen_mask;
1376 	if (zp_gen == 0)
1377 		zp_gen = 1;
1378 	if (zp->z_unlinked || zp_gen != fid_gen) {
1379 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1380 		VN_RELE(ZTOV(zp));
1381 		ZFS_EXIT(zfsvfs);
1382 		return (EINVAL);
1383 	}
1384 
1385 	*vpp = ZTOV(zp);
1386 	ZFS_EXIT(zfsvfs);
1387 	return (0);
1388 }
1389 
1390 /*
1391  * Block out VOPs and close zfsvfs_t::z_os
1392  *
1393  * Note, if successful, then we return with the 'z_teardown_lock' and
1394  * 'z_teardown_inactive_lock' write held.
1395  */
1396 int
1397 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode)
1398 {
1399 	int error;
1400 
1401 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1402 		return (error);
1403 
1404 	*mode = zfsvfs->z_os->os_mode;
1405 	dmu_objset_name(zfsvfs->z_os, name);
1406 	dmu_objset_close(zfsvfs->z_os);
1407 
1408 	return (0);
1409 }
1410 
1411 /*
1412  * Reopen zfsvfs_t::z_os and release VOPs.
1413  */
1414 int
1415 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode)
1416 {
1417 	int err;
1418 
1419 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
1420 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1421 
1422 	err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
1423 	if (err) {
1424 		zfsvfs->z_os = NULL;
1425 	} else {
1426 		znode_t *zp;
1427 
1428 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1429 
1430 		/*
1431 		 * Attempt to re-establish all the active znodes with
1432 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
1433 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
1434 		 * when they try to use their znode.
1435 		 */
1436 		mutex_enter(&zfsvfs->z_znodes_lock);
1437 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1438 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1439 			(void) zfs_rezget(zp);
1440 		}
1441 		mutex_exit(&zfsvfs->z_znodes_lock);
1442 
1443 	}
1444 
1445 	/* release the VOPs */
1446 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1447 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1448 
1449 	if (err) {
1450 		/*
1451 		 * Since we couldn't reopen zfsvfs::z_os, force
1452 		 * unmount this file system.
1453 		 */
1454 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
1455 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
1456 	}
1457 	return (err);
1458 }
1459 
1460 static void
1461 zfs_freevfs(vfs_t *vfsp)
1462 {
1463 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1464 	int i;
1465 
1466 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1467 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1468 
1469 	zfs_fuid_destroy(zfsvfs);
1470 	zfs_freezfsvfs(zfsvfs);
1471 
1472 	atomic_add_32(&zfs_active_fs_count, -1);
1473 }
1474 
1475 /*
1476  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
1477  * so we can't safely do any non-idempotent initialization here.
1478  * Leave that to zfs_init() and zfs_fini(), which are called
1479  * from the module's _init() and _fini() entry points.
1480  */
1481 /*ARGSUSED*/
1482 static int
1483 zfs_vfsinit(int fstype, char *name)
1484 {
1485 	int error;
1486 
1487 	zfsfstype = fstype;
1488 
1489 	/*
1490 	 * Setup vfsops and vnodeops tables.
1491 	 */
1492 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
1493 	if (error != 0) {
1494 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
1495 	}
1496 
1497 	error = zfs_create_op_tables();
1498 	if (error) {
1499 		zfs_remove_op_tables();
1500 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
1501 		(void) vfs_freevfsops_by_type(zfsfstype);
1502 		return (error);
1503 	}
1504 
1505 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
1506 
1507 	/*
1508 	 * Unique major number for all zfs mounts.
1509 	 * If we run out of 32-bit minors, we'll getudev() another major.
1510 	 */
1511 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
1512 	zfs_minor = ZFS_MIN_MINOR;
1513 
1514 	return (0);
1515 }
1516 
1517 void
1518 zfs_init(void)
1519 {
1520 	/*
1521 	 * Initialize .zfs directory structures
1522 	 */
1523 	zfsctl_init();
1524 
1525 	/*
1526 	 * Initialize znode cache, vnode ops, etc...
1527 	 */
1528 	zfs_znode_init();
1529 }
1530 
1531 void
1532 zfs_fini(void)
1533 {
1534 	zfsctl_fini();
1535 	zfs_znode_fini();
1536 }
1537 
1538 int
1539 zfs_busy(void)
1540 {
1541 	return (zfs_active_fs_count != 0);
1542 }
1543 
1544 int
1545 zfs_set_version(const char *name, uint64_t newvers)
1546 {
1547 	int error;
1548 	objset_t *os;
1549 	dmu_tx_t *tx;
1550 	uint64_t curvers;
1551 
1552 	/*
1553 	 * XXX for now, require that the filesystem be unmounted.  Would
1554 	 * be nice to find the zfsvfs_t and just update that if
1555 	 * possible.
1556 	 */
1557 
1558 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1559 		return (EINVAL);
1560 
1561 	error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_OWNER, &os);
1562 	if (error)
1563 		return (error);
1564 
1565 	error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1566 	    8, 1, &curvers);
1567 	if (error)
1568 		goto out;
1569 	if (newvers < curvers) {
1570 		error = EINVAL;
1571 		goto out;
1572 	}
1573 
1574 	tx = dmu_tx_create(os);
1575 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR);
1576 	error = dmu_tx_assign(tx, TXG_WAIT);
1577 	if (error) {
1578 		dmu_tx_abort(tx);
1579 		goto out;
1580 	}
1581 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1,
1582 	    &newvers, tx);
1583 
1584 	spa_history_internal_log(LOG_DS_UPGRADE,
1585 	    dmu_objset_spa(os), tx, CRED(),
1586 	    "oldver=%llu newver=%llu dataset = %llu", curvers, newvers,
1587 	    dmu_objset_id(os));
1588 	dmu_tx_commit(tx);
1589 
1590 out:
1591 	dmu_objset_close(os);
1592 	return (error);
1593 }
1594 
1595 /*
1596  * Read a property stored within the master node.
1597  */
1598 int
1599 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
1600 {
1601 	const char *pname;
1602 	int error = ENOENT;
1603 
1604 	/*
1605 	 * Look up the file system's value for the property.  For the
1606 	 * version property, we look up a slightly different string.
1607 	 */
1608 	if (prop == ZFS_PROP_VERSION)
1609 		pname = ZPL_VERSION_STR;
1610 	else
1611 		pname = zfs_prop_to_name(prop);
1612 
1613 	if (os != NULL)
1614 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
1615 
1616 	if (error == ENOENT) {
1617 		/* No value set, use the default value */
1618 		switch (prop) {
1619 		case ZFS_PROP_VERSION:
1620 			*value = ZPL_VERSION;
1621 			break;
1622 		case ZFS_PROP_NORMALIZE:
1623 		case ZFS_PROP_UTF8ONLY:
1624 			*value = 0;
1625 			break;
1626 		case ZFS_PROP_CASE:
1627 			*value = ZFS_CASE_SENSITIVE;
1628 			break;
1629 		default:
1630 			return (error);
1631 		}
1632 		error = 0;
1633 	}
1634 	return (error);
1635 }
1636 
1637 static vfsdef_t vfw = {
1638 	VFSDEF_VERSION,
1639 	MNTTYPE_ZFS,
1640 	zfs_vfsinit,
1641 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
1642 	    VSW_XID,
1643 	&zfs_mntopts
1644 };
1645 
1646 struct modlfs zfs_modlfs = {
1647 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
1648 };
1649