1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/kmem.h> 35 #include <sys/pathname.h> 36 #include <sys/vnode.h> 37 #include <sys/vfs.h> 38 #include <sys/vfs_opreg.h> 39 #include <sys/mntent.h> 40 #include <sys/mount.h> 41 #include <sys/cmn_err.h> 42 #include "fs/fs_subr.h" 43 #include <sys/zfs_znode.h> 44 #include <sys/zfs_dir.h> 45 #include <sys/zil.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/dmu.h> 48 #include <sys/dsl_prop.h> 49 #include <sys/dsl_dataset.h> 50 #include <sys/dsl_deleg.h> 51 #include <sys/spa.h> 52 #include <sys/zap.h> 53 #include <sys/sa.h> 54 #include <sys/sa_impl.h> 55 #include <sys/varargs.h> 56 #include <sys/policy.h> 57 #include <sys/atomic.h> 58 #include <sys/mkdev.h> 59 #include <sys/modctl.h> 60 #include <sys/refstr.h> 61 #include <sys/zfs_ioctl.h> 62 #include <sys/zfs_ctldir.h> 63 #include <sys/zfs_fuid.h> 64 #include <sys/bootconf.h> 65 #include <sys/sunddi.h> 66 #include <sys/dnlc.h> 67 #include <sys/dmu_objset.h> 68 #include <sys/spa_boot.h> 69 #include "zfs_comutil.h" 70 71 int zfsfstype; 72 vfsops_t *zfs_vfsops = NULL; 73 static major_t zfs_major; 74 static minor_t zfs_minor; 75 static kmutex_t zfs_dev_mtx; 76 77 extern int sys_shutdown; 78 79 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 80 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 81 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 82 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 83 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 84 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 85 static void zfs_freevfs(vfs_t *vfsp); 86 87 static const fs_operation_def_t zfs_vfsops_template[] = { 88 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 89 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 90 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 91 VFSNAME_ROOT, { .vfs_root = zfs_root }, 92 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 93 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 94 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 95 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 96 NULL, NULL 97 }; 98 99 /* 100 * We need to keep a count of active fs's. 101 * This is necessary to prevent our module 102 * from being unloaded after a umount -f 103 */ 104 static uint32_t zfs_active_fs_count = 0; 105 106 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 107 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 108 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 109 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 110 111 /* 112 * MO_DEFAULT is not used since the default value is determined 113 * by the equivalent property. 114 */ 115 static mntopt_t mntopts[] = { 116 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 117 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 118 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 119 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 120 }; 121 122 static mntopts_t zfs_mntopts = { 123 sizeof (mntopts) / sizeof (mntopt_t), 124 mntopts 125 }; 126 127 /*ARGSUSED*/ 128 int 129 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 130 { 131 /* 132 * Data integrity is job one. We don't want a compromised kernel 133 * writing to the storage pool, so we never sync during panic. 134 */ 135 if (panicstr) 136 return (0); 137 138 /* 139 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 140 * to sync metadata, which they would otherwise cache indefinitely. 141 * Semantically, the only requirement is that the sync be initiated. 142 * The DMU syncs out txgs frequently, so there's nothing to do. 143 */ 144 if (flag & SYNC_ATTR) 145 return (0); 146 147 if (vfsp != NULL) { 148 /* 149 * Sync a specific filesystem. 150 */ 151 zfsvfs_t *zfsvfs = vfsp->vfs_data; 152 dsl_pool_t *dp; 153 154 ZFS_ENTER(zfsvfs); 155 dp = dmu_objset_pool(zfsvfs->z_os); 156 157 /* 158 * If the system is shutting down, then skip any 159 * filesystems which may exist on a suspended pool. 160 */ 161 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 162 ZFS_EXIT(zfsvfs); 163 return (0); 164 } 165 166 if (zfsvfs->z_log != NULL) 167 zil_commit(zfsvfs->z_log, 0); 168 169 ZFS_EXIT(zfsvfs); 170 } else { 171 /* 172 * Sync all ZFS filesystems. This is what happens when you 173 * run sync(1M). Unlike other filesystems, ZFS honors the 174 * request by waiting for all pools to commit all dirty data. 175 */ 176 spa_sync_allpools(); 177 } 178 179 return (0); 180 } 181 182 static int 183 zfs_create_unique_device(dev_t *dev) 184 { 185 major_t new_major; 186 187 do { 188 ASSERT3U(zfs_minor, <=, MAXMIN32); 189 minor_t start = zfs_minor; 190 do { 191 mutex_enter(&zfs_dev_mtx); 192 if (zfs_minor >= MAXMIN32) { 193 /* 194 * If we're still using the real major 195 * keep out of /dev/zfs and /dev/zvol minor 196 * number space. If we're using a getudev()'ed 197 * major number, we can use all of its minors. 198 */ 199 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 200 zfs_minor = ZFS_MIN_MINOR; 201 else 202 zfs_minor = 0; 203 } else { 204 zfs_minor++; 205 } 206 *dev = makedevice(zfs_major, zfs_minor); 207 mutex_exit(&zfs_dev_mtx); 208 } while (vfs_devismounted(*dev) && zfs_minor != start); 209 if (zfs_minor == start) { 210 /* 211 * We are using all ~262,000 minor numbers for the 212 * current major number. Create a new major number. 213 */ 214 if ((new_major = getudev()) == (major_t)-1) { 215 cmn_err(CE_WARN, 216 "zfs_mount: Can't get unique major " 217 "device number."); 218 return (-1); 219 } 220 mutex_enter(&zfs_dev_mtx); 221 zfs_major = new_major; 222 zfs_minor = 0; 223 224 mutex_exit(&zfs_dev_mtx); 225 } else { 226 break; 227 } 228 /* CONSTANTCONDITION */ 229 } while (1); 230 231 return (0); 232 } 233 234 static void 235 atime_changed_cb(void *arg, uint64_t newval) 236 { 237 zfsvfs_t *zfsvfs = arg; 238 239 if (newval == TRUE) { 240 zfsvfs->z_atime = TRUE; 241 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 242 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 243 } else { 244 zfsvfs->z_atime = FALSE; 245 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 246 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 247 } 248 } 249 250 static void 251 xattr_changed_cb(void *arg, uint64_t newval) 252 { 253 zfsvfs_t *zfsvfs = arg; 254 255 if (newval == TRUE) { 256 /* XXX locking on vfs_flag? */ 257 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 258 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 259 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 260 } else { 261 /* XXX locking on vfs_flag? */ 262 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 263 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 264 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 265 } 266 } 267 268 static void 269 blksz_changed_cb(void *arg, uint64_t newval) 270 { 271 zfsvfs_t *zfsvfs = arg; 272 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); 273 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); 274 ASSERT(ISP2(newval)); 275 276 zfsvfs->z_max_blksz = newval; 277 zfsvfs->z_vfs->vfs_bsize = newval; 278 } 279 280 static void 281 readonly_changed_cb(void *arg, uint64_t newval) 282 { 283 zfsvfs_t *zfsvfs = arg; 284 285 if (newval) { 286 /* XXX locking on vfs_flag? */ 287 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 288 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 289 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 290 } else { 291 /* XXX locking on vfs_flag? */ 292 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 295 } 296 } 297 298 static void 299 devices_changed_cb(void *arg, uint64_t newval) 300 { 301 zfsvfs_t *zfsvfs = arg; 302 303 if (newval == FALSE) { 304 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 305 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 306 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 307 } else { 308 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 311 } 312 } 313 314 static void 315 setuid_changed_cb(void *arg, uint64_t newval) 316 { 317 zfsvfs_t *zfsvfs = arg; 318 319 if (newval == FALSE) { 320 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 321 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 322 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 323 } else { 324 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 327 } 328 } 329 330 static void 331 exec_changed_cb(void *arg, uint64_t newval) 332 { 333 zfsvfs_t *zfsvfs = arg; 334 335 if (newval == FALSE) { 336 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 337 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 338 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 339 } else { 340 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 343 } 344 } 345 346 /* 347 * The nbmand mount option can be changed at mount time. 348 * We can't allow it to be toggled on live file systems or incorrect 349 * behavior may be seen from cifs clients 350 * 351 * This property isn't registered via dsl_prop_register(), but this callback 352 * will be called when a file system is first mounted 353 */ 354 static void 355 nbmand_changed_cb(void *arg, uint64_t newval) 356 { 357 zfsvfs_t *zfsvfs = arg; 358 if (newval == FALSE) { 359 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 360 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 361 } else { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 364 } 365 } 366 367 static void 368 snapdir_changed_cb(void *arg, uint64_t newval) 369 { 370 zfsvfs_t *zfsvfs = arg; 371 372 zfsvfs->z_show_ctldir = newval; 373 } 374 375 static void 376 vscan_changed_cb(void *arg, uint64_t newval) 377 { 378 zfsvfs_t *zfsvfs = arg; 379 380 zfsvfs->z_vscan = newval; 381 } 382 383 static void 384 acl_mode_changed_cb(void *arg, uint64_t newval) 385 { 386 zfsvfs_t *zfsvfs = arg; 387 388 zfsvfs->z_acl_mode = newval; 389 } 390 391 static void 392 acl_inherit_changed_cb(void *arg, uint64_t newval) 393 { 394 zfsvfs_t *zfsvfs = arg; 395 396 zfsvfs->z_acl_inherit = newval; 397 } 398 399 static int 400 zfs_register_callbacks(vfs_t *vfsp) 401 { 402 struct dsl_dataset *ds = NULL; 403 objset_t *os = NULL; 404 zfsvfs_t *zfsvfs = NULL; 405 uint64_t nbmand; 406 boolean_t readonly = B_FALSE; 407 boolean_t do_readonly = B_FALSE; 408 boolean_t setuid = B_FALSE; 409 boolean_t do_setuid = B_FALSE; 410 boolean_t exec = B_FALSE; 411 boolean_t do_exec = B_FALSE; 412 boolean_t devices = B_FALSE; 413 boolean_t do_devices = B_FALSE; 414 boolean_t xattr = B_FALSE; 415 boolean_t do_xattr = B_FALSE; 416 boolean_t atime = B_FALSE; 417 boolean_t do_atime = B_FALSE; 418 int error = 0; 419 420 ASSERT(vfsp); 421 zfsvfs = vfsp->vfs_data; 422 ASSERT(zfsvfs); 423 os = zfsvfs->z_os; 424 425 /* 426 * The act of registering our callbacks will destroy any mount 427 * options we may have. In order to enable temporary overrides 428 * of mount options, we stash away the current values and 429 * restore them after we register the callbacks. 430 */ 431 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || 432 !spa_writeable(dmu_objset_spa(os))) { 433 readonly = B_TRUE; 434 do_readonly = B_TRUE; 435 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 436 readonly = B_FALSE; 437 do_readonly = B_TRUE; 438 } 439 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 440 devices = B_FALSE; 441 setuid = B_FALSE; 442 do_devices = B_TRUE; 443 do_setuid = B_TRUE; 444 } else { 445 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 446 devices = B_FALSE; 447 do_devices = B_TRUE; 448 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 449 devices = B_TRUE; 450 do_devices = B_TRUE; 451 } 452 453 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 454 setuid = B_FALSE; 455 do_setuid = B_TRUE; 456 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 457 setuid = B_TRUE; 458 do_setuid = B_TRUE; 459 } 460 } 461 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 462 exec = B_FALSE; 463 do_exec = B_TRUE; 464 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 465 exec = B_TRUE; 466 do_exec = B_TRUE; 467 } 468 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 469 xattr = B_FALSE; 470 do_xattr = B_TRUE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 472 xattr = B_TRUE; 473 do_xattr = B_TRUE; 474 } 475 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 476 atime = B_FALSE; 477 do_atime = B_TRUE; 478 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 479 atime = B_TRUE; 480 do_atime = B_TRUE; 481 } 482 483 /* 484 * nbmand is a special property. It can only be changed at 485 * mount time. 486 * 487 * This is weird, but it is documented to only be changeable 488 * at mount time. 489 */ 490 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 491 nbmand = B_FALSE; 492 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 493 nbmand = B_TRUE; 494 } else { 495 char osname[ZFS_MAX_DATASET_NAME_LEN]; 496 497 dmu_objset_name(os, osname); 498 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 499 NULL)) { 500 return (error); 501 } 502 } 503 504 /* 505 * Register property callbacks. 506 * 507 * It would probably be fine to just check for i/o error from 508 * the first prop_register(), but I guess I like to go 509 * overboard... 510 */ 511 ds = dmu_objset_ds(os); 512 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 513 error = dsl_prop_register(ds, 514 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 515 error = error ? error : dsl_prop_register(ds, 516 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 517 error = error ? error : dsl_prop_register(ds, 518 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 519 error = error ? error : dsl_prop_register(ds, 520 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 521 error = error ? error : dsl_prop_register(ds, 522 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 523 error = error ? error : dsl_prop_register(ds, 524 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 525 error = error ? error : dsl_prop_register(ds, 526 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 527 error = error ? error : dsl_prop_register(ds, 528 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 529 error = error ? error : dsl_prop_register(ds, 530 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 531 error = error ? error : dsl_prop_register(ds, 532 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 533 zfsvfs); 534 error = error ? error : dsl_prop_register(ds, 535 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); 536 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 537 if (error) 538 goto unregister; 539 540 /* 541 * Invoke our callbacks to restore temporary mount options. 542 */ 543 if (do_readonly) 544 readonly_changed_cb(zfsvfs, readonly); 545 if (do_setuid) 546 setuid_changed_cb(zfsvfs, setuid); 547 if (do_exec) 548 exec_changed_cb(zfsvfs, exec); 549 if (do_devices) 550 devices_changed_cb(zfsvfs, devices); 551 if (do_xattr) 552 xattr_changed_cb(zfsvfs, xattr); 553 if (do_atime) 554 atime_changed_cb(zfsvfs, atime); 555 556 nbmand_changed_cb(zfsvfs, nbmand); 557 558 return (0); 559 560 unregister: 561 dsl_prop_unregister_all(ds, zfsvfs); 562 return (error); 563 } 564 565 static int 566 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 567 uint64_t *userp, uint64_t *groupp) 568 { 569 /* 570 * Is it a valid type of object to track? 571 */ 572 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 573 return (SET_ERROR(ENOENT)); 574 575 /* 576 * If we have a NULL data pointer 577 * then assume the id's aren't changing and 578 * return EEXIST to the dmu to let it know to 579 * use the same ids 580 */ 581 if (data == NULL) 582 return (SET_ERROR(EEXIST)); 583 584 if (bonustype == DMU_OT_ZNODE) { 585 znode_phys_t *znp = data; 586 *userp = znp->zp_uid; 587 *groupp = znp->zp_gid; 588 } else { 589 int hdrsize; 590 sa_hdr_phys_t *sap = data; 591 sa_hdr_phys_t sa = *sap; 592 boolean_t swap = B_FALSE; 593 594 ASSERT(bonustype == DMU_OT_SA); 595 596 if (sa.sa_magic == 0) { 597 /* 598 * This should only happen for newly created 599 * files that haven't had the znode data filled 600 * in yet. 601 */ 602 *userp = 0; 603 *groupp = 0; 604 return (0); 605 } 606 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) { 607 sa.sa_magic = SA_MAGIC; 608 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info); 609 swap = B_TRUE; 610 } else { 611 VERIFY3U(sa.sa_magic, ==, SA_MAGIC); 612 } 613 614 hdrsize = sa_hdrsize(&sa); 615 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t)); 616 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 617 SA_UID_OFFSET)); 618 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 619 SA_GID_OFFSET)); 620 if (swap) { 621 *userp = BSWAP_64(*userp); 622 *groupp = BSWAP_64(*groupp); 623 } 624 } 625 return (0); 626 } 627 628 static void 629 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 630 char *domainbuf, int buflen, uid_t *ridp) 631 { 632 uint64_t fuid; 633 const char *domain; 634 635 fuid = strtonum(fuidstr, NULL); 636 637 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 638 if (domain) 639 (void) strlcpy(domainbuf, domain, buflen); 640 else 641 domainbuf[0] = '\0'; 642 *ridp = FUID_RID(fuid); 643 } 644 645 static uint64_t 646 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 647 { 648 switch (type) { 649 case ZFS_PROP_USERUSED: 650 return (DMU_USERUSED_OBJECT); 651 case ZFS_PROP_GROUPUSED: 652 return (DMU_GROUPUSED_OBJECT); 653 case ZFS_PROP_USERQUOTA: 654 return (zfsvfs->z_userquota_obj); 655 case ZFS_PROP_GROUPQUOTA: 656 return (zfsvfs->z_groupquota_obj); 657 } 658 return (0); 659 } 660 661 int 662 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 663 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 664 { 665 int error; 666 zap_cursor_t zc; 667 zap_attribute_t za; 668 zfs_useracct_t *buf = vbuf; 669 uint64_t obj; 670 671 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 672 return (SET_ERROR(ENOTSUP)); 673 674 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 675 if (obj == 0) { 676 *bufsizep = 0; 677 return (0); 678 } 679 680 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 681 (error = zap_cursor_retrieve(&zc, &za)) == 0; 682 zap_cursor_advance(&zc)) { 683 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 684 *bufsizep) 685 break; 686 687 fuidstr_to_sid(zfsvfs, za.za_name, 688 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 689 690 buf->zu_space = za.za_first_integer; 691 buf++; 692 } 693 if (error == ENOENT) 694 error = 0; 695 696 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 697 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 698 *cookiep = zap_cursor_serialize(&zc); 699 zap_cursor_fini(&zc); 700 return (error); 701 } 702 703 /* 704 * buf must be big enough (eg, 32 bytes) 705 */ 706 static int 707 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 708 char *buf, boolean_t addok) 709 { 710 uint64_t fuid; 711 int domainid = 0; 712 713 if (domain && domain[0]) { 714 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 715 if (domainid == -1) 716 return (SET_ERROR(ENOENT)); 717 } 718 fuid = FUID_ENCODE(domainid, rid); 719 (void) sprintf(buf, "%llx", (longlong_t)fuid); 720 return (0); 721 } 722 723 int 724 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 725 const char *domain, uint64_t rid, uint64_t *valp) 726 { 727 char buf[32]; 728 int err; 729 uint64_t obj; 730 731 *valp = 0; 732 733 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 734 return (SET_ERROR(ENOTSUP)); 735 736 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 737 if (obj == 0) 738 return (0); 739 740 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 741 if (err) 742 return (err); 743 744 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 745 if (err == ENOENT) 746 err = 0; 747 return (err); 748 } 749 750 int 751 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 752 const char *domain, uint64_t rid, uint64_t quota) 753 { 754 char buf[32]; 755 int err; 756 dmu_tx_t *tx; 757 uint64_t *objp; 758 boolean_t fuid_dirtied; 759 760 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 761 return (SET_ERROR(EINVAL)); 762 763 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 764 return (SET_ERROR(ENOTSUP)); 765 766 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 767 &zfsvfs->z_groupquota_obj; 768 769 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 770 if (err) 771 return (err); 772 fuid_dirtied = zfsvfs->z_fuid_dirty; 773 774 tx = dmu_tx_create(zfsvfs->z_os); 775 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 776 if (*objp == 0) { 777 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 778 zfs_userquota_prop_prefixes[type]); 779 } 780 if (fuid_dirtied) 781 zfs_fuid_txhold(zfsvfs, tx); 782 err = dmu_tx_assign(tx, TXG_WAIT); 783 if (err) { 784 dmu_tx_abort(tx); 785 return (err); 786 } 787 788 mutex_enter(&zfsvfs->z_lock); 789 if (*objp == 0) { 790 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 791 DMU_OT_NONE, 0, tx); 792 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 793 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 794 } 795 mutex_exit(&zfsvfs->z_lock); 796 797 if (quota == 0) { 798 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 799 if (err == ENOENT) 800 err = 0; 801 } else { 802 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 803 } 804 ASSERT(err == 0); 805 if (fuid_dirtied) 806 zfs_fuid_sync(zfsvfs, tx); 807 dmu_tx_commit(tx); 808 return (err); 809 } 810 811 boolean_t 812 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 813 { 814 char buf[32]; 815 uint64_t used, quota, usedobj, quotaobj; 816 int err; 817 818 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 819 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 820 821 if (quotaobj == 0 || zfsvfs->z_replay) 822 return (B_FALSE); 823 824 (void) sprintf(buf, "%llx", (longlong_t)fuid); 825 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 826 if (err != 0) 827 return (B_FALSE); 828 829 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 830 if (err != 0) 831 return (B_FALSE); 832 return (used >= quota); 833 } 834 835 boolean_t 836 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 837 { 838 uint64_t fuid; 839 uint64_t quotaobj; 840 841 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 842 843 fuid = isgroup ? zp->z_gid : zp->z_uid; 844 845 if (quotaobj == 0 || zfsvfs->z_replay) 846 return (B_FALSE); 847 848 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 849 } 850 851 /* 852 * Associate this zfsvfs with the given objset, which must be owned. 853 * This will cache a bunch of on-disk state from the objset in the 854 * zfsvfs. 855 */ 856 static int 857 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os) 858 { 859 int error; 860 uint64_t val; 861 862 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; 863 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 864 zfsvfs->z_os = os; 865 866 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 867 if (error != 0) 868 return (error); 869 if (zfsvfs->z_version > 870 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 871 (void) printf("Can't mount a version %lld file system " 872 "on a version %lld pool\n. Pool must be upgraded to mount " 873 "this file system.", (u_longlong_t)zfsvfs->z_version, 874 (u_longlong_t)spa_version(dmu_objset_spa(os))); 875 return (SET_ERROR(ENOTSUP)); 876 } 877 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val); 878 if (error != 0) 879 return (error); 880 zfsvfs->z_norm = (int)val; 881 882 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val); 883 if (error != 0) 884 return (error); 885 zfsvfs->z_utf8 = (val != 0); 886 887 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val); 888 if (error != 0) 889 return (error); 890 zfsvfs->z_case = (uint_t)val; 891 892 /* 893 * Fold case on file systems that are always or sometimes case 894 * insensitive. 895 */ 896 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 897 zfsvfs->z_case == ZFS_CASE_MIXED) 898 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 899 900 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 901 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 902 903 uint64_t sa_obj = 0; 904 if (zfsvfs->z_use_sa) { 905 /* should either have both of these objects or none */ 906 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 907 &sa_obj); 908 if (error != 0) 909 return (error); 910 } 911 912 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 913 &zfsvfs->z_attr_table); 914 if (error != 0) 915 return (error); 916 917 if (zfsvfs->z_version >= ZPL_VERSION_SA) 918 sa_register_update_callback(os, zfs_sa_upgrade); 919 920 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 921 &zfsvfs->z_root); 922 if (error != 0) 923 return (error); 924 ASSERT(zfsvfs->z_root != 0); 925 926 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 927 &zfsvfs->z_unlinkedobj); 928 if (error != 0) 929 return (error); 930 931 error = zap_lookup(os, MASTER_NODE_OBJ, 932 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 933 8, 1, &zfsvfs->z_userquota_obj); 934 if (error == ENOENT) 935 zfsvfs->z_userquota_obj = 0; 936 else if (error != 0) 937 return (error); 938 939 error = zap_lookup(os, MASTER_NODE_OBJ, 940 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 941 8, 1, &zfsvfs->z_groupquota_obj); 942 if (error == ENOENT) 943 zfsvfs->z_groupquota_obj = 0; 944 else if (error != 0) 945 return (error); 946 947 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 948 &zfsvfs->z_fuid_obj); 949 if (error == ENOENT) 950 zfsvfs->z_fuid_obj = 0; 951 else if (error != 0) 952 return (error); 953 954 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 955 &zfsvfs->z_shares_dir); 956 if (error == ENOENT) 957 zfsvfs->z_shares_dir = 0; 958 else if (error != 0) 959 return (error); 960 961 return (0); 962 } 963 964 int 965 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 966 { 967 objset_t *os; 968 zfsvfs_t *zfsvfs; 969 int error; 970 971 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 972 973 /* 974 * We claim to always be readonly so we can open snapshots; 975 * other ZPL code will prevent us from writing to snapshots. 976 */ 977 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 978 if (error) { 979 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 980 return (error); 981 } 982 983 zfsvfs->z_vfs = NULL; 984 zfsvfs->z_parent = zfsvfs; 985 986 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 987 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 988 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 989 offsetof(znode_t, z_link_node)); 990 rrm_init(&zfsvfs->z_teardown_lock, B_FALSE); 991 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 992 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 993 for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++) 994 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 995 996 error = zfsvfs_init(zfsvfs, os); 997 if (error != 0) { 998 dmu_objset_disown(os, zfsvfs); 999 *zfvp = NULL; 1000 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1001 return (error); 1002 } 1003 1004 *zfvp = zfsvfs; 1005 return (0); 1006 } 1007 1008 static int 1009 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 1010 { 1011 int error; 1012 1013 error = zfs_register_callbacks(zfsvfs->z_vfs); 1014 if (error) 1015 return (error); 1016 1017 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1018 1019 /* 1020 * If we are not mounting (ie: online recv), then we don't 1021 * have to worry about replaying the log as we blocked all 1022 * operations out since we closed the ZIL. 1023 */ 1024 if (mounting) { 1025 boolean_t readonly; 1026 1027 /* 1028 * During replay we remove the read only flag to 1029 * allow replays to succeed. 1030 */ 1031 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1032 if (readonly != 0) 1033 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1034 else 1035 zfs_unlinked_drain(zfsvfs); 1036 1037 /* 1038 * Parse and replay the intent log. 1039 * 1040 * Because of ziltest, this must be done after 1041 * zfs_unlinked_drain(). (Further note: ziltest 1042 * doesn't use readonly mounts, where 1043 * zfs_unlinked_drain() isn't called.) This is because 1044 * ziltest causes spa_sync() to think it's committed, 1045 * but actually it is not, so the intent log contains 1046 * many txg's worth of changes. 1047 * 1048 * In particular, if object N is in the unlinked set in 1049 * the last txg to actually sync, then it could be 1050 * actually freed in a later txg and then reallocated 1051 * in a yet later txg. This would write a "create 1052 * object N" record to the intent log. Normally, this 1053 * would be fine because the spa_sync() would have 1054 * written out the fact that object N is free, before 1055 * we could write the "create object N" intent log 1056 * record. 1057 * 1058 * But when we are in ziltest mode, we advance the "open 1059 * txg" without actually spa_sync()-ing the changes to 1060 * disk. So we would see that object N is still 1061 * allocated and in the unlinked set, and there is an 1062 * intent log record saying to allocate it. 1063 */ 1064 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 1065 if (zil_replay_disable) { 1066 zil_destroy(zfsvfs->z_log, B_FALSE); 1067 } else { 1068 zfsvfs->z_replay = B_TRUE; 1069 zil_replay(zfsvfs->z_os, zfsvfs, 1070 zfs_replay_vector); 1071 zfsvfs->z_replay = B_FALSE; 1072 } 1073 } 1074 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1075 } 1076 1077 /* 1078 * Set the objset user_ptr to track its zfsvfs. 1079 */ 1080 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1081 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1082 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1083 1084 return (0); 1085 } 1086 1087 void 1088 zfsvfs_free(zfsvfs_t *zfsvfs) 1089 { 1090 int i; 1091 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1092 1093 /* 1094 * This is a barrier to prevent the filesystem from going away in 1095 * zfs_znode_move() until we can safely ensure that the filesystem is 1096 * not unmounted. We consider the filesystem valid before the barrier 1097 * and invalid after the barrier. 1098 */ 1099 rw_enter(&zfsvfs_lock, RW_READER); 1100 rw_exit(&zfsvfs_lock); 1101 1102 zfs_fuid_destroy(zfsvfs); 1103 1104 mutex_destroy(&zfsvfs->z_znodes_lock); 1105 mutex_destroy(&zfsvfs->z_lock); 1106 list_destroy(&zfsvfs->z_all_znodes); 1107 rrm_destroy(&zfsvfs->z_teardown_lock); 1108 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1109 rw_destroy(&zfsvfs->z_fuid_lock); 1110 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1111 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1112 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1113 } 1114 1115 static void 1116 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1117 { 1118 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1119 if (zfsvfs->z_vfs) { 1120 if (zfsvfs->z_use_fuids) { 1121 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1122 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1123 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1124 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1125 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1126 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1127 } else { 1128 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1129 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1130 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1131 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1132 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1133 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1134 } 1135 } 1136 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1137 } 1138 1139 static int 1140 zfs_domount(vfs_t *vfsp, char *osname) 1141 { 1142 dev_t mount_dev; 1143 uint64_t recordsize, fsid_guid; 1144 int error = 0; 1145 zfsvfs_t *zfsvfs; 1146 1147 ASSERT(vfsp); 1148 ASSERT(osname); 1149 1150 error = zfsvfs_create(osname, &zfsvfs); 1151 if (error) 1152 return (error); 1153 zfsvfs->z_vfs = vfsp; 1154 1155 /* Initialize the generic filesystem structure. */ 1156 vfsp->vfs_bcount = 0; 1157 vfsp->vfs_data = NULL; 1158 1159 if (zfs_create_unique_device(&mount_dev) == -1) { 1160 error = SET_ERROR(ENODEV); 1161 goto out; 1162 } 1163 ASSERT(vfs_devismounted(mount_dev) == 0); 1164 1165 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1166 NULL)) 1167 goto out; 1168 1169 vfsp->vfs_dev = mount_dev; 1170 vfsp->vfs_fstype = zfsfstype; 1171 vfsp->vfs_bsize = recordsize; 1172 vfsp->vfs_flag |= VFS_NOTRUNC; 1173 vfsp->vfs_data = zfsvfs; 1174 1175 /* 1176 * The fsid is 64 bits, composed of an 8-bit fs type, which 1177 * separates our fsid from any other filesystem types, and a 1178 * 56-bit objset unique ID. The objset unique ID is unique to 1179 * all objsets open on this system, provided by unique_create(). 1180 * The 8-bit fs type must be put in the low bits of fsid[1] 1181 * because that's where other Solaris filesystems put it. 1182 */ 1183 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1184 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1185 vfsp->vfs_fsid.val[0] = fsid_guid; 1186 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1187 zfsfstype & 0xFF; 1188 1189 /* 1190 * Set features for file system. 1191 */ 1192 zfs_set_fuid_feature(zfsvfs); 1193 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1194 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1195 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1196 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1197 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1198 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1199 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1200 } 1201 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1202 1203 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1204 uint64_t pval; 1205 1206 atime_changed_cb(zfsvfs, B_FALSE); 1207 readonly_changed_cb(zfsvfs, B_TRUE); 1208 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1209 goto out; 1210 xattr_changed_cb(zfsvfs, pval); 1211 zfsvfs->z_issnap = B_TRUE; 1212 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1213 1214 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1215 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1216 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1217 } else { 1218 error = zfsvfs_setup(zfsvfs, B_TRUE); 1219 } 1220 1221 if (!zfsvfs->z_issnap) 1222 zfsctl_create(zfsvfs); 1223 out: 1224 if (error) { 1225 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1226 zfsvfs_free(zfsvfs); 1227 } else { 1228 atomic_inc_32(&zfs_active_fs_count); 1229 } 1230 1231 return (error); 1232 } 1233 1234 void 1235 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1236 { 1237 objset_t *os = zfsvfs->z_os; 1238 1239 if (!dmu_objset_is_snapshot(os)) 1240 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); 1241 } 1242 1243 /* 1244 * Convert a decimal digit string to a uint64_t integer. 1245 */ 1246 static int 1247 str_to_uint64(char *str, uint64_t *objnum) 1248 { 1249 uint64_t num = 0; 1250 1251 while (*str) { 1252 if (*str < '0' || *str > '9') 1253 return (SET_ERROR(EINVAL)); 1254 1255 num = num*10 + *str++ - '0'; 1256 } 1257 1258 *objnum = num; 1259 return (0); 1260 } 1261 1262 /* 1263 * The boot path passed from the boot loader is in the form of 1264 * "rootpool-name/root-filesystem-object-number'. Convert this 1265 * string to a dataset name: "rootpool-name/root-filesystem-name". 1266 */ 1267 static int 1268 zfs_parse_bootfs(char *bpath, char *outpath) 1269 { 1270 char *slashp; 1271 uint64_t objnum; 1272 int error; 1273 1274 if (*bpath == 0 || *bpath == '/') 1275 return (SET_ERROR(EINVAL)); 1276 1277 (void) strcpy(outpath, bpath); 1278 1279 slashp = strchr(bpath, '/'); 1280 1281 /* if no '/', just return the pool name */ 1282 if (slashp == NULL) { 1283 return (0); 1284 } 1285 1286 /* if not a number, just return the root dataset name */ 1287 if (str_to_uint64(slashp+1, &objnum)) { 1288 return (0); 1289 } 1290 1291 *slashp = '\0'; 1292 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1293 *slashp = '/'; 1294 1295 return (error); 1296 } 1297 1298 /* 1299 * Check that the hex label string is appropriate for the dataset being 1300 * mounted into the global_zone proper. 1301 * 1302 * Return an error if the hex label string is not default or 1303 * admin_low/admin_high. For admin_low labels, the corresponding 1304 * dataset must be readonly. 1305 */ 1306 int 1307 zfs_check_global_label(const char *dsname, const char *hexsl) 1308 { 1309 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1310 return (0); 1311 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1312 return (0); 1313 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1314 /* must be readonly */ 1315 uint64_t rdonly; 1316 1317 if (dsl_prop_get_integer(dsname, 1318 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1319 return (SET_ERROR(EACCES)); 1320 return (rdonly ? 0 : EACCES); 1321 } 1322 return (SET_ERROR(EACCES)); 1323 } 1324 1325 /* 1326 * Determine whether the mount is allowed according to MAC check. 1327 * by comparing (where appropriate) label of the dataset against 1328 * the label of the zone being mounted into. If the dataset has 1329 * no label, create one. 1330 * 1331 * Returns 0 if access allowed, error otherwise (e.g. EACCES) 1332 */ 1333 static int 1334 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1335 { 1336 int error, retv; 1337 zone_t *mntzone = NULL; 1338 ts_label_t *mnt_tsl; 1339 bslabel_t *mnt_sl; 1340 bslabel_t ds_sl; 1341 char ds_hexsl[MAXNAMELEN]; 1342 1343 retv = EACCES; /* assume the worst */ 1344 1345 /* 1346 * Start by getting the dataset label if it exists. 1347 */ 1348 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1349 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1350 if (error) 1351 return (SET_ERROR(EACCES)); 1352 1353 /* 1354 * If labeling is NOT enabled, then disallow the mount of datasets 1355 * which have a non-default label already. No other label checks 1356 * are needed. 1357 */ 1358 if (!is_system_labeled()) { 1359 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1360 return (0); 1361 return (SET_ERROR(EACCES)); 1362 } 1363 1364 /* 1365 * Get the label of the mountpoint. If mounting into the global 1366 * zone (i.e. mountpoint is not within an active zone and the 1367 * zoned property is off), the label must be default or 1368 * admin_low/admin_high only; no other checks are needed. 1369 */ 1370 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1371 if (mntzone->zone_id == GLOBAL_ZONEID) { 1372 uint64_t zoned; 1373 1374 zone_rele(mntzone); 1375 1376 if (dsl_prop_get_integer(osname, 1377 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1378 return (SET_ERROR(EACCES)); 1379 if (!zoned) 1380 return (zfs_check_global_label(osname, ds_hexsl)); 1381 else 1382 /* 1383 * This is the case of a zone dataset being mounted 1384 * initially, before the zone has been fully created; 1385 * allow this mount into global zone. 1386 */ 1387 return (0); 1388 } 1389 1390 mnt_tsl = mntzone->zone_slabel; 1391 ASSERT(mnt_tsl != NULL); 1392 label_hold(mnt_tsl); 1393 mnt_sl = label2bslabel(mnt_tsl); 1394 1395 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1396 /* 1397 * The dataset doesn't have a real label, so fabricate one. 1398 */ 1399 char *str = NULL; 1400 1401 if (l_to_str_internal(mnt_sl, &str) == 0 && 1402 dsl_prop_set_string(osname, 1403 zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1404 ZPROP_SRC_LOCAL, str) == 0) 1405 retv = 0; 1406 if (str != NULL) 1407 kmem_free(str, strlen(str) + 1); 1408 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1409 /* 1410 * Now compare labels to complete the MAC check. If the 1411 * labels are equal then allow access. If the mountpoint 1412 * label dominates the dataset label, allow readonly access. 1413 * Otherwise, access is denied. 1414 */ 1415 if (blequal(mnt_sl, &ds_sl)) 1416 retv = 0; 1417 else if (bldominates(mnt_sl, &ds_sl)) { 1418 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1419 retv = 0; 1420 } 1421 } 1422 1423 label_rele(mnt_tsl); 1424 zone_rele(mntzone); 1425 return (retv); 1426 } 1427 1428 static int 1429 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1430 { 1431 int error = 0; 1432 static int zfsrootdone = 0; 1433 zfsvfs_t *zfsvfs = NULL; 1434 znode_t *zp = NULL; 1435 vnode_t *vp = NULL; 1436 char *zfs_bootfs; 1437 char *zfs_devid; 1438 1439 ASSERT(vfsp); 1440 1441 /* 1442 * The filesystem that we mount as root is defined in the 1443 * boot property "zfs-bootfs" with a format of 1444 * "poolname/root-dataset-objnum". 1445 */ 1446 if (why == ROOT_INIT) { 1447 if (zfsrootdone++) 1448 return (SET_ERROR(EBUSY)); 1449 /* 1450 * the process of doing a spa_load will require the 1451 * clock to be set before we could (for example) do 1452 * something better by looking at the timestamp on 1453 * an uberblock, so just set it to -1. 1454 */ 1455 clkset(-1); 1456 1457 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1458 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1459 "bootfs name"); 1460 return (SET_ERROR(EINVAL)); 1461 } 1462 zfs_devid = spa_get_bootprop("diskdevid"); 1463 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1464 if (zfs_devid) 1465 spa_free_bootprop(zfs_devid); 1466 if (error) { 1467 spa_free_bootprop(zfs_bootfs); 1468 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1469 error); 1470 return (error); 1471 } 1472 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1473 spa_free_bootprop(zfs_bootfs); 1474 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1475 error); 1476 return (error); 1477 } 1478 1479 spa_free_bootprop(zfs_bootfs); 1480 1481 if (error = vfs_lock(vfsp)) 1482 return (error); 1483 1484 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1485 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1486 goto out; 1487 } 1488 1489 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1490 ASSERT(zfsvfs); 1491 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1492 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1493 goto out; 1494 } 1495 1496 vp = ZTOV(zp); 1497 mutex_enter(&vp->v_lock); 1498 vp->v_flag |= VROOT; 1499 mutex_exit(&vp->v_lock); 1500 rootvp = vp; 1501 1502 /* 1503 * Leave rootvp held. The root file system is never unmounted. 1504 */ 1505 1506 vfs_add((struct vnode *)0, vfsp, 1507 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1508 out: 1509 vfs_unlock(vfsp); 1510 return (error); 1511 } else if (why == ROOT_REMOUNT) { 1512 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1513 vfsp->vfs_flag |= VFS_REMOUNT; 1514 1515 /* refresh mount options */ 1516 zfs_unregister_callbacks(vfsp->vfs_data); 1517 return (zfs_register_callbacks(vfsp)); 1518 1519 } else if (why == ROOT_UNMOUNT) { 1520 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1521 (void) zfs_sync(vfsp, 0, 0); 1522 return (0); 1523 } 1524 1525 /* 1526 * if "why" is equal to anything else other than ROOT_INIT, 1527 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1528 */ 1529 return (SET_ERROR(ENOTSUP)); 1530 } 1531 1532 /*ARGSUSED*/ 1533 static int 1534 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1535 { 1536 char *osname; 1537 pathname_t spn; 1538 int error = 0; 1539 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1540 UIO_SYSSPACE : UIO_USERSPACE; 1541 int canwrite; 1542 1543 if (mvp->v_type != VDIR) 1544 return (SET_ERROR(ENOTDIR)); 1545 1546 mutex_enter(&mvp->v_lock); 1547 if ((uap->flags & MS_REMOUNT) == 0 && 1548 (uap->flags & MS_OVERLAY) == 0 && 1549 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1550 mutex_exit(&mvp->v_lock); 1551 return (SET_ERROR(EBUSY)); 1552 } 1553 mutex_exit(&mvp->v_lock); 1554 1555 /* 1556 * ZFS does not support passing unparsed data in via MS_DATA. 1557 * Users should use the MS_OPTIONSTR interface; this means 1558 * that all option parsing is already done and the options struct 1559 * can be interrogated. 1560 */ 1561 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1562 return (SET_ERROR(EINVAL)); 1563 1564 /* 1565 * Get the objset name (the "special" mount argument). 1566 */ 1567 if (error = pn_get(uap->spec, fromspace, &spn)) 1568 return (error); 1569 1570 osname = spn.pn_path; 1571 1572 /* 1573 * Check for mount privilege? 1574 * 1575 * If we don't have privilege then see if 1576 * we have local permission to allow it 1577 */ 1578 error = secpolicy_fs_mount(cr, mvp, vfsp); 1579 if (error) { 1580 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1581 vattr_t vattr; 1582 1583 /* 1584 * Make sure user is the owner of the mount point 1585 * or has sufficient privileges. 1586 */ 1587 1588 vattr.va_mask = AT_UID; 1589 1590 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1591 goto out; 1592 } 1593 1594 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1595 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1596 goto out; 1597 } 1598 secpolicy_fs_mount_clearopts(cr, vfsp); 1599 } else { 1600 goto out; 1601 } 1602 } 1603 1604 /* 1605 * Refuse to mount a filesystem if we are in a local zone and the 1606 * dataset is not visible. 1607 */ 1608 if (!INGLOBALZONE(curproc) && 1609 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1610 error = SET_ERROR(EPERM); 1611 goto out; 1612 } 1613 1614 error = zfs_mount_label_policy(vfsp, osname); 1615 if (error) 1616 goto out; 1617 1618 /* 1619 * When doing a remount, we simply refresh our temporary properties 1620 * according to those options set in the current VFS options. 1621 */ 1622 if (uap->flags & MS_REMOUNT) { 1623 /* refresh mount options */ 1624 zfs_unregister_callbacks(vfsp->vfs_data); 1625 error = zfs_register_callbacks(vfsp); 1626 goto out; 1627 } 1628 1629 error = zfs_domount(vfsp, osname); 1630 1631 /* 1632 * Add an extra VFS_HOLD on our parent vfs so that it can't 1633 * disappear due to a forced unmount. 1634 */ 1635 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1636 VFS_HOLD(mvp->v_vfsp); 1637 1638 out: 1639 pn_free(&spn); 1640 return (error); 1641 } 1642 1643 static int 1644 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1645 { 1646 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1647 dev32_t d32; 1648 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1649 1650 ZFS_ENTER(zfsvfs); 1651 1652 dmu_objset_space(zfsvfs->z_os, 1653 &refdbytes, &availbytes, &usedobjs, &availobjs); 1654 1655 /* 1656 * The underlying storage pool actually uses multiple block sizes. 1657 * We report the fragsize as the smallest block size we support, 1658 * and we report our blocksize as the filesystem's maximum blocksize. 1659 */ 1660 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1661 statp->f_bsize = zfsvfs->z_max_blksz; 1662 1663 /* 1664 * The following report "total" blocks of various kinds in the 1665 * file system, but reported in terms of f_frsize - the 1666 * "fragment" size. 1667 */ 1668 1669 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1670 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1671 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1672 1673 /* 1674 * statvfs() should really be called statufs(), because it assumes 1675 * static metadata. ZFS doesn't preallocate files, so the best 1676 * we can do is report the max that could possibly fit in f_files, 1677 * and that minus the number actually used in f_ffree. 1678 * For f_ffree, report the smaller of the number of object available 1679 * and the number of blocks (each object will take at least a block). 1680 */ 1681 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1682 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1683 statp->f_files = statp->f_ffree + usedobjs; 1684 1685 (void) cmpldev(&d32, vfsp->vfs_dev); 1686 statp->f_fsid = d32; 1687 1688 /* 1689 * We're a zfs filesystem. 1690 */ 1691 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1692 1693 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1694 1695 statp->f_namemax = MAXNAMELEN - 1; 1696 1697 /* 1698 * We have all of 32 characters to stuff a string here. 1699 * Is there anything useful we could/should provide? 1700 */ 1701 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1702 1703 ZFS_EXIT(zfsvfs); 1704 return (0); 1705 } 1706 1707 static int 1708 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1709 { 1710 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1711 znode_t *rootzp; 1712 int error; 1713 1714 ZFS_ENTER(zfsvfs); 1715 1716 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1717 if (error == 0) 1718 *vpp = ZTOV(rootzp); 1719 1720 ZFS_EXIT(zfsvfs); 1721 return (error); 1722 } 1723 1724 /* 1725 * Teardown the zfsvfs::z_os. 1726 * 1727 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock' 1728 * and 'z_teardown_inactive_lock' held. 1729 */ 1730 static int 1731 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1732 { 1733 znode_t *zp; 1734 1735 rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1736 1737 if (!unmounting) { 1738 /* 1739 * We purge the parent filesystem's vfsp as the parent 1740 * filesystem and all of its snapshots have their vnode's 1741 * v_vfsp set to the parent's filesystem's vfsp. Note, 1742 * 'z_parent' is self referential for non-snapshots. 1743 */ 1744 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1745 } 1746 1747 /* 1748 * Close the zil. NB: Can't close the zil while zfs_inactive 1749 * threads are blocked as zil_close can call zfs_inactive. 1750 */ 1751 if (zfsvfs->z_log) { 1752 zil_close(zfsvfs->z_log); 1753 zfsvfs->z_log = NULL; 1754 } 1755 1756 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1757 1758 /* 1759 * If we are not unmounting (ie: online recv) and someone already 1760 * unmounted this file system while we were doing the switcheroo, 1761 * or a reopen of z_os failed then just bail out now. 1762 */ 1763 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1764 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1765 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1766 return (SET_ERROR(EIO)); 1767 } 1768 1769 /* 1770 * At this point there are no vops active, and any new vops will 1771 * fail with EIO since we have z_teardown_lock for writer (only 1772 * relavent for forced unmount). 1773 * 1774 * Release all holds on dbufs. 1775 */ 1776 mutex_enter(&zfsvfs->z_znodes_lock); 1777 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1778 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1779 if (zp->z_sa_hdl) { 1780 ASSERT(ZTOV(zp)->v_count > 0); 1781 zfs_znode_dmu_fini(zp); 1782 } 1783 mutex_exit(&zfsvfs->z_znodes_lock); 1784 1785 /* 1786 * If we are unmounting, set the unmounted flag and let new vops 1787 * unblock. zfs_inactive will have the unmounted behavior, and all 1788 * other vops will fail with EIO. 1789 */ 1790 if (unmounting) { 1791 zfsvfs->z_unmounted = B_TRUE; 1792 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1793 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1794 } 1795 1796 /* 1797 * z_os will be NULL if there was an error in attempting to reopen 1798 * zfsvfs, so just return as the properties had already been 1799 * unregistered and cached data had been evicted before. 1800 */ 1801 if (zfsvfs->z_os == NULL) 1802 return (0); 1803 1804 /* 1805 * Unregister properties. 1806 */ 1807 zfs_unregister_callbacks(zfsvfs); 1808 1809 /* 1810 * Evict cached data 1811 */ 1812 if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) && 1813 !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 1814 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1815 dmu_objset_evict_dbufs(zfsvfs->z_os); 1816 1817 return (0); 1818 } 1819 1820 /*ARGSUSED*/ 1821 static int 1822 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1823 { 1824 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1825 objset_t *os; 1826 int ret; 1827 1828 ret = secpolicy_fs_unmount(cr, vfsp); 1829 if (ret) { 1830 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1831 ZFS_DELEG_PERM_MOUNT, cr)) 1832 return (ret); 1833 } 1834 1835 /* 1836 * We purge the parent filesystem's vfsp as the parent filesystem 1837 * and all of its snapshots have their vnode's v_vfsp set to the 1838 * parent's filesystem's vfsp. Note, 'z_parent' is self 1839 * referential for non-snapshots. 1840 */ 1841 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1842 1843 /* 1844 * Unmount any snapshots mounted under .zfs before unmounting the 1845 * dataset itself. 1846 */ 1847 if (zfsvfs->z_ctldir != NULL && 1848 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1849 return (ret); 1850 } 1851 1852 if (!(fflag & MS_FORCE)) { 1853 /* 1854 * Check the number of active vnodes in the file system. 1855 * Our count is maintained in the vfs structure, but the 1856 * number is off by 1 to indicate a hold on the vfs 1857 * structure itself. 1858 * 1859 * The '.zfs' directory maintains a reference of its 1860 * own, and any active references underneath are 1861 * reflected in the vnode count. 1862 */ 1863 if (zfsvfs->z_ctldir == NULL) { 1864 if (vfsp->vfs_count > 1) 1865 return (SET_ERROR(EBUSY)); 1866 } else { 1867 if (vfsp->vfs_count > 2 || 1868 zfsvfs->z_ctldir->v_count > 1) 1869 return (SET_ERROR(EBUSY)); 1870 } 1871 } 1872 1873 vfsp->vfs_flag |= VFS_UNMOUNTED; 1874 1875 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1876 os = zfsvfs->z_os; 1877 1878 /* 1879 * z_os will be NULL if there was an error in 1880 * attempting to reopen zfsvfs. 1881 */ 1882 if (os != NULL) { 1883 /* 1884 * Unset the objset user_ptr. 1885 */ 1886 mutex_enter(&os->os_user_ptr_lock); 1887 dmu_objset_set_user(os, NULL); 1888 mutex_exit(&os->os_user_ptr_lock); 1889 1890 /* 1891 * Finally release the objset 1892 */ 1893 dmu_objset_disown(os, zfsvfs); 1894 } 1895 1896 /* 1897 * We can now safely destroy the '.zfs' directory node. 1898 */ 1899 if (zfsvfs->z_ctldir != NULL) 1900 zfsctl_destroy(zfsvfs); 1901 1902 return (0); 1903 } 1904 1905 static int 1906 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1907 { 1908 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1909 znode_t *zp; 1910 uint64_t object = 0; 1911 uint64_t fid_gen = 0; 1912 uint64_t gen_mask; 1913 uint64_t zp_gen; 1914 int i, err; 1915 1916 *vpp = NULL; 1917 1918 ZFS_ENTER(zfsvfs); 1919 1920 if (fidp->fid_len == LONG_FID_LEN) { 1921 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1922 uint64_t objsetid = 0; 1923 uint64_t setgen = 0; 1924 1925 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1926 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1927 1928 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1929 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1930 1931 ZFS_EXIT(zfsvfs); 1932 1933 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1934 if (err) 1935 return (SET_ERROR(EINVAL)); 1936 ZFS_ENTER(zfsvfs); 1937 } 1938 1939 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1940 zfid_short_t *zfid = (zfid_short_t *)fidp; 1941 1942 for (i = 0; i < sizeof (zfid->zf_object); i++) 1943 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1944 1945 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1946 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1947 } else { 1948 ZFS_EXIT(zfsvfs); 1949 return (SET_ERROR(EINVAL)); 1950 } 1951 1952 /* A zero fid_gen means we are in the .zfs control directories */ 1953 if (fid_gen == 0 && 1954 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1955 *vpp = zfsvfs->z_ctldir; 1956 ASSERT(*vpp != NULL); 1957 if (object == ZFSCTL_INO_SNAPDIR) { 1958 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1959 0, NULL, NULL, NULL, NULL, NULL) == 0); 1960 } else { 1961 VN_HOLD(*vpp); 1962 } 1963 ZFS_EXIT(zfsvfs); 1964 return (0); 1965 } 1966 1967 gen_mask = -1ULL >> (64 - 8 * i); 1968 1969 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1970 if (err = zfs_zget(zfsvfs, object, &zp)) { 1971 ZFS_EXIT(zfsvfs); 1972 return (err); 1973 } 1974 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1975 sizeof (uint64_t)); 1976 zp_gen = zp_gen & gen_mask; 1977 if (zp_gen == 0) 1978 zp_gen = 1; 1979 if (zp->z_unlinked || zp_gen != fid_gen) { 1980 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1981 VN_RELE(ZTOV(zp)); 1982 ZFS_EXIT(zfsvfs); 1983 return (SET_ERROR(EINVAL)); 1984 } 1985 1986 *vpp = ZTOV(zp); 1987 ZFS_EXIT(zfsvfs); 1988 return (0); 1989 } 1990 1991 /* 1992 * Block out VOPs and close zfsvfs_t::z_os 1993 * 1994 * Note, if successful, then we return with the 'z_teardown_lock' and 1995 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying 1996 * dataset and objset intact so that they can be atomically handed off during 1997 * a subsequent rollback or recv operation and the resume thereafter. 1998 */ 1999 int 2000 zfs_suspend_fs(zfsvfs_t *zfsvfs) 2001 { 2002 int error; 2003 2004 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2005 return (error); 2006 2007 return (0); 2008 } 2009 2010 /* 2011 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset 2012 * is an invariant across any of the operations that can be performed while the 2013 * filesystem was suspended. Whether it succeeded or failed, the preconditions 2014 * are the same: the relevant objset and associated dataset are owned by 2015 * zfsvfs, held, and long held on entry. 2016 */ 2017 int 2018 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) 2019 { 2020 int err; 2021 znode_t *zp; 2022 2023 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2024 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2025 2026 /* 2027 * We already own this, so just update the objset_t, as the one we 2028 * had before may have been evicted. 2029 */ 2030 objset_t *os; 2031 VERIFY3P(ds->ds_owner, ==, zfsvfs); 2032 VERIFY(dsl_dataset_long_held(ds)); 2033 VERIFY0(dmu_objset_from_ds(ds, &os)); 2034 2035 err = zfsvfs_init(zfsvfs, os); 2036 if (err != 0) 2037 goto bail; 2038 2039 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2040 2041 zfs_set_fuid_feature(zfsvfs); 2042 2043 /* 2044 * Attempt to re-establish all the active znodes with 2045 * their dbufs. If a zfs_rezget() fails, then we'll let 2046 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2047 * when they try to use their znode. 2048 */ 2049 mutex_enter(&zfsvfs->z_znodes_lock); 2050 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2051 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2052 (void) zfs_rezget(zp); 2053 } 2054 mutex_exit(&zfsvfs->z_znodes_lock); 2055 2056 bail: 2057 /* release the VOPs */ 2058 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2059 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 2060 2061 if (err) { 2062 /* 2063 * Since we couldn't setup the sa framework, try to force 2064 * unmount this file system. 2065 */ 2066 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2067 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2068 } 2069 return (err); 2070 } 2071 2072 static void 2073 zfs_freevfs(vfs_t *vfsp) 2074 { 2075 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2076 2077 /* 2078 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2079 * from zfs_mount(). Release it here. If we came through 2080 * zfs_mountroot() instead, we didn't grab an extra hold, so 2081 * skip the VFS_RELE for rootvfs. 2082 */ 2083 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2084 VFS_RELE(zfsvfs->z_parent->z_vfs); 2085 2086 zfsvfs_free(zfsvfs); 2087 2088 atomic_dec_32(&zfs_active_fs_count); 2089 } 2090 2091 /* 2092 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2093 * so we can't safely do any non-idempotent initialization here. 2094 * Leave that to zfs_init() and zfs_fini(), which are called 2095 * from the module's _init() and _fini() entry points. 2096 */ 2097 /*ARGSUSED*/ 2098 static int 2099 zfs_vfsinit(int fstype, char *name) 2100 { 2101 int error; 2102 2103 zfsfstype = fstype; 2104 2105 /* 2106 * Setup vfsops and vnodeops tables. 2107 */ 2108 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2109 if (error != 0) { 2110 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2111 } 2112 2113 error = zfs_create_op_tables(); 2114 if (error) { 2115 zfs_remove_op_tables(); 2116 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2117 (void) vfs_freevfsops_by_type(zfsfstype); 2118 return (error); 2119 } 2120 2121 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2122 2123 /* 2124 * Unique major number for all zfs mounts. 2125 * If we run out of 32-bit minors, we'll getudev() another major. 2126 */ 2127 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2128 zfs_minor = ZFS_MIN_MINOR; 2129 2130 return (0); 2131 } 2132 2133 void 2134 zfs_init(void) 2135 { 2136 /* 2137 * Initialize .zfs directory structures 2138 */ 2139 zfsctl_init(); 2140 2141 /* 2142 * Initialize znode cache, vnode ops, etc... 2143 */ 2144 zfs_znode_init(); 2145 2146 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2147 } 2148 2149 void 2150 zfs_fini(void) 2151 { 2152 zfsctl_fini(); 2153 zfs_znode_fini(); 2154 } 2155 2156 int 2157 zfs_busy(void) 2158 { 2159 return (zfs_active_fs_count != 0); 2160 } 2161 2162 int 2163 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2164 { 2165 int error; 2166 objset_t *os = zfsvfs->z_os; 2167 dmu_tx_t *tx; 2168 2169 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2170 return (SET_ERROR(EINVAL)); 2171 2172 if (newvers < zfsvfs->z_version) 2173 return (SET_ERROR(EINVAL)); 2174 2175 if (zfs_spa_version_map(newvers) > 2176 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2177 return (SET_ERROR(ENOTSUP)); 2178 2179 tx = dmu_tx_create(os); 2180 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2181 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2182 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2183 ZFS_SA_ATTRS); 2184 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2185 } 2186 error = dmu_tx_assign(tx, TXG_WAIT); 2187 if (error) { 2188 dmu_tx_abort(tx); 2189 return (error); 2190 } 2191 2192 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2193 8, 1, &newvers, tx); 2194 2195 if (error) { 2196 dmu_tx_commit(tx); 2197 return (error); 2198 } 2199 2200 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2201 uint64_t sa_obj; 2202 2203 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2204 SPA_VERSION_SA); 2205 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2206 DMU_OT_NONE, 0, tx); 2207 2208 error = zap_add(os, MASTER_NODE_OBJ, 2209 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2210 ASSERT0(error); 2211 2212 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2213 sa_register_update_callback(os, zfs_sa_upgrade); 2214 } 2215 2216 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2217 "from %llu to %llu", zfsvfs->z_version, newvers); 2218 2219 dmu_tx_commit(tx); 2220 2221 zfsvfs->z_version = newvers; 2222 2223 zfs_set_fuid_feature(zfsvfs); 2224 2225 return (0); 2226 } 2227 2228 /* 2229 * Read a property stored within the master node. 2230 */ 2231 int 2232 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2233 { 2234 const char *pname; 2235 int error = ENOENT; 2236 2237 /* 2238 * Look up the file system's value for the property. For the 2239 * version property, we look up a slightly different string. 2240 */ 2241 if (prop == ZFS_PROP_VERSION) 2242 pname = ZPL_VERSION_STR; 2243 else 2244 pname = zfs_prop_to_name(prop); 2245 2246 if (os != NULL) { 2247 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS); 2248 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2249 } 2250 2251 if (error == ENOENT) { 2252 /* No value set, use the default value */ 2253 switch (prop) { 2254 case ZFS_PROP_VERSION: 2255 *value = ZPL_VERSION; 2256 break; 2257 case ZFS_PROP_NORMALIZE: 2258 case ZFS_PROP_UTF8ONLY: 2259 *value = 0; 2260 break; 2261 case ZFS_PROP_CASE: 2262 *value = ZFS_CASE_SENSITIVE; 2263 break; 2264 default: 2265 return (error); 2266 } 2267 error = 0; 2268 } 2269 return (error); 2270 } 2271 2272 /* 2273 * Return true if the coresponding vfs's unmounted flag is set. 2274 * Otherwise return false. 2275 * If this function returns true we know VFS unmount has been initiated. 2276 */ 2277 boolean_t 2278 zfs_get_vfs_flag_unmounted(objset_t *os) 2279 { 2280 zfsvfs_t *zfvp; 2281 boolean_t unmounted = B_FALSE; 2282 2283 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS); 2284 2285 mutex_enter(&os->os_user_ptr_lock); 2286 zfvp = dmu_objset_get_user(os); 2287 if (zfvp != NULL && zfvp->z_vfs != NULL && 2288 (zfvp->z_vfs->vfs_flag & VFS_UNMOUNTED)) 2289 unmounted = B_TRUE; 2290 mutex_exit(&os->os_user_ptr_lock); 2291 2292 return (unmounted); 2293 } 2294 2295 static vfsdef_t vfw = { 2296 VFSDEF_VERSION, 2297 MNTTYPE_ZFS, 2298 zfs_vfsinit, 2299 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2300 VSW_XID|VSW_ZMOUNT, 2301 &zfs_mntopts 2302 }; 2303 2304 struct modlfs zfs_modlfs = { 2305 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2306 }; 2307