xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_rlock.c (revision d5285cae913f4e01ffa0e6693a6d8ef1fbea30ba)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2012 by Delphix. All rights reserved.
27  */
28 
29 /*
30  * This file contains the code to implement file range locking in
31  * ZFS, although there isn't much specific to ZFS (all that comes to mind
32  * support for growing the blocksize).
33  *
34  * Interface
35  * ---------
36  * Defined in zfs_rlock.h but essentially:
37  *	rl = zfs_range_lock(zp, off, len, lock_type);
38  *	zfs_range_unlock(rl);
39  *	zfs_range_reduce(rl, off, len);
40  *
41  * AVL tree
42  * --------
43  * An AVL tree is used to maintain the state of the existing ranges
44  * that are locked for exclusive (writer) or shared (reader) use.
45  * The starting range offset is used for searching and sorting the tree.
46  *
47  * Common case
48  * -----------
49  * The (hopefully) usual case is of no overlaps or contention for
50  * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree
51  * searched that finds no overlap, and *this* rl_t is placed in the tree.
52  *
53  * Overlaps/Reference counting/Proxy locks
54  * ---------------------------------------
55  * The avl code only allows one node at a particular offset. Also it's very
56  * inefficient to search through all previous entries looking for overlaps
57  * (because the very 1st in the ordered list might be at offset 0 but
58  * cover the whole file).
59  * So this implementation uses reference counts and proxy range locks.
60  * Firstly, only reader locks use reference counts and proxy locks,
61  * because writer locks are exclusive.
62  * When a reader lock overlaps with another then a proxy lock is created
63  * for that range and replaces the original lock. If the overlap
64  * is exact then the reference count of the proxy is simply incremented.
65  * Otherwise, the proxy lock is split into smaller lock ranges and
66  * new proxy locks created for non overlapping ranges.
67  * The reference counts are adjusted accordingly.
68  * Meanwhile, the orginal lock is kept around (this is the callers handle)
69  * and its offset and length are used when releasing the lock.
70  *
71  * Thread coordination
72  * -------------------
73  * In order to make wakeups efficient and to ensure multiple continuous
74  * readers on a range don't starve a writer for the same range lock,
75  * two condition variables are allocated in each rl_t.
76  * If a writer (or reader) can't get a range it initialises the writer
77  * (or reader) cv; sets a flag saying there's a writer (or reader) waiting;
78  * and waits on that cv. When a thread unlocks that range it wakes up all
79  * writers then all readers before destroying the lock.
80  *
81  * Append mode writes
82  * ------------------
83  * Append mode writes need to lock a range at the end of a file.
84  * The offset of the end of the file is determined under the
85  * range locking mutex, and the lock type converted from RL_APPEND to
86  * RL_WRITER and the range locked.
87  *
88  * Grow block handling
89  * -------------------
90  * ZFS supports multiple block sizes currently upto 128K. The smallest
91  * block size is used for the file which is grown as needed. During this
92  * growth all other writers and readers must be excluded.
93  * So if the block size needs to be grown then the whole file is
94  * exclusively locked, then later the caller will reduce the lock
95  * range to just the range to be written using zfs_reduce_range.
96  */
97 
98 #include <sys/zfs_rlock.h>
99 
100 /*
101  * Check if a write lock can be grabbed, or wait and recheck until available.
102  */
103 static void
104 zfs_range_lock_writer(znode_t *zp, rl_t *new)
105 {
106 	avl_tree_t *tree = &zp->z_range_avl;
107 	rl_t *rl;
108 	avl_index_t where;
109 	uint64_t end_size;
110 	uint64_t off = new->r_off;
111 	uint64_t len = new->r_len;
112 
113 	for (;;) {
114 		/*
115 		 * Range locking is also used by zvol and uses a
116 		 * dummied up znode. However, for zvol, we don't need to
117 		 * append or grow blocksize, and besides we don't have
118 		 * a "sa" data or z_zfsvfs - so skip that processing.
119 		 *
120 		 * Yes, this is ugly, and would be solved by not handling
121 		 * grow or append in range lock code. If that was done then
122 		 * we could make the range locking code generically available
123 		 * to other non-zfs consumers.
124 		 */
125 		if (zp->z_vnode) { /* caller is ZPL */
126 			/*
127 			 * If in append mode pick up the current end of file.
128 			 * This is done under z_range_lock to avoid races.
129 			 */
130 			if (new->r_type == RL_APPEND)
131 				new->r_off = zp->z_size;
132 
133 			/*
134 			 * If we need to grow the block size then grab the whole
135 			 * file range. This is also done under z_range_lock to
136 			 * avoid races.
137 			 */
138 			end_size = MAX(zp->z_size, new->r_off + len);
139 			if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
140 			    zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) {
141 				new->r_off = 0;
142 				new->r_len = UINT64_MAX;
143 			}
144 		}
145 
146 		/*
147 		 * First check for the usual case of no locks
148 		 */
149 		if (avl_numnodes(tree) == 0) {
150 			new->r_type = RL_WRITER; /* convert to writer */
151 			avl_add(tree, new);
152 			return;
153 		}
154 
155 		/*
156 		 * Look for any locks in the range.
157 		 */
158 		rl = avl_find(tree, new, &where);
159 		if (rl)
160 			goto wait; /* already locked at same offset */
161 
162 		rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
163 		if (rl && (rl->r_off < new->r_off + new->r_len))
164 			goto wait;
165 
166 		rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
167 		if (rl && rl->r_off + rl->r_len > new->r_off)
168 			goto wait;
169 
170 		new->r_type = RL_WRITER; /* convert possible RL_APPEND */
171 		avl_insert(tree, new, where);
172 		return;
173 wait:
174 		if (!rl->r_write_wanted) {
175 			cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL);
176 			rl->r_write_wanted = B_TRUE;
177 		}
178 		cv_wait(&rl->r_wr_cv, &zp->z_range_lock);
179 
180 		/* reset to original */
181 		new->r_off = off;
182 		new->r_len = len;
183 	}
184 }
185 
186 /*
187  * If this is an original (non-proxy) lock then replace it by
188  * a proxy and return the proxy.
189  */
190 static rl_t *
191 zfs_range_proxify(avl_tree_t *tree, rl_t *rl)
192 {
193 	rl_t *proxy;
194 
195 	if (rl->r_proxy)
196 		return (rl); /* already a proxy */
197 
198 	ASSERT3U(rl->r_cnt, ==, 1);
199 	ASSERT(rl->r_write_wanted == B_FALSE);
200 	ASSERT(rl->r_read_wanted == B_FALSE);
201 	avl_remove(tree, rl);
202 	rl->r_cnt = 0;
203 
204 	/* create a proxy range lock */
205 	proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP);
206 	proxy->r_off = rl->r_off;
207 	proxy->r_len = rl->r_len;
208 	proxy->r_cnt = 1;
209 	proxy->r_type = RL_READER;
210 	proxy->r_proxy = B_TRUE;
211 	proxy->r_write_wanted = B_FALSE;
212 	proxy->r_read_wanted = B_FALSE;
213 	avl_add(tree, proxy);
214 
215 	return (proxy);
216 }
217 
218 /*
219  * Split the range lock at the supplied offset
220  * returning the *front* proxy.
221  */
222 static rl_t *
223 zfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off)
224 {
225 	rl_t *front, *rear;
226 
227 	ASSERT3U(rl->r_len, >, 1);
228 	ASSERT3U(off, >, rl->r_off);
229 	ASSERT3U(off, <, rl->r_off + rl->r_len);
230 	ASSERT(rl->r_write_wanted == B_FALSE);
231 	ASSERT(rl->r_read_wanted == B_FALSE);
232 
233 	/* create the rear proxy range lock */
234 	rear = kmem_alloc(sizeof (rl_t), KM_SLEEP);
235 	rear->r_off = off;
236 	rear->r_len = rl->r_off + rl->r_len - off;
237 	rear->r_cnt = rl->r_cnt;
238 	rear->r_type = RL_READER;
239 	rear->r_proxy = B_TRUE;
240 	rear->r_write_wanted = B_FALSE;
241 	rear->r_read_wanted = B_FALSE;
242 
243 	front = zfs_range_proxify(tree, rl);
244 	front->r_len = off - rl->r_off;
245 
246 	avl_insert_here(tree, rear, front, AVL_AFTER);
247 	return (front);
248 }
249 
250 /*
251  * Create and add a new proxy range lock for the supplied range.
252  */
253 static void
254 zfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len)
255 {
256 	rl_t *rl;
257 
258 	ASSERT(len);
259 	rl = kmem_alloc(sizeof (rl_t), KM_SLEEP);
260 	rl->r_off = off;
261 	rl->r_len = len;
262 	rl->r_cnt = 1;
263 	rl->r_type = RL_READER;
264 	rl->r_proxy = B_TRUE;
265 	rl->r_write_wanted = B_FALSE;
266 	rl->r_read_wanted = B_FALSE;
267 	avl_add(tree, rl);
268 }
269 
270 static void
271 zfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where)
272 {
273 	rl_t *next;
274 	uint64_t off = new->r_off;
275 	uint64_t len = new->r_len;
276 
277 	/*
278 	 * prev arrives either:
279 	 * - pointing to an entry at the same offset
280 	 * - pointing to the entry with the closest previous offset whose
281 	 *   range may overlap with the new range
282 	 * - null, if there were no ranges starting before the new one
283 	 */
284 	if (prev) {
285 		if (prev->r_off + prev->r_len <= off) {
286 			prev = NULL;
287 		} else if (prev->r_off != off) {
288 			/*
289 			 * convert to proxy if needed then
290 			 * split this entry and bump ref count
291 			 */
292 			prev = zfs_range_split(tree, prev, off);
293 			prev = AVL_NEXT(tree, prev); /* move to rear range */
294 		}
295 	}
296 	ASSERT((prev == NULL) || (prev->r_off == off));
297 
298 	if (prev)
299 		next = prev;
300 	else
301 		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
302 
303 	if (next == NULL || off + len <= next->r_off) {
304 		/* no overlaps, use the original new rl_t in the tree */
305 		avl_insert(tree, new, where);
306 		return;
307 	}
308 
309 	if (off < next->r_off) {
310 		/* Add a proxy for initial range before the overlap */
311 		zfs_range_new_proxy(tree, off, next->r_off - off);
312 	}
313 
314 	new->r_cnt = 0; /* will use proxies in tree */
315 	/*
316 	 * We now search forward through the ranges, until we go past the end
317 	 * of the new range. For each entry we make it a proxy if it
318 	 * isn't already, then bump its reference count. If there's any
319 	 * gaps between the ranges then we create a new proxy range.
320 	 */
321 	for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) {
322 		if (off + len <= next->r_off)
323 			break;
324 		if (prev && prev->r_off + prev->r_len < next->r_off) {
325 			/* there's a gap */
326 			ASSERT3U(next->r_off, >, prev->r_off + prev->r_len);
327 			zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
328 			    next->r_off - (prev->r_off + prev->r_len));
329 		}
330 		if (off + len == next->r_off + next->r_len) {
331 			/* exact overlap with end */
332 			next = zfs_range_proxify(tree, next);
333 			next->r_cnt++;
334 			return;
335 		}
336 		if (off + len < next->r_off + next->r_len) {
337 			/* new range ends in the middle of this block */
338 			next = zfs_range_split(tree, next, off + len);
339 			next->r_cnt++;
340 			return;
341 		}
342 		ASSERT3U(off + len, >, next->r_off + next->r_len);
343 		next = zfs_range_proxify(tree, next);
344 		next->r_cnt++;
345 	}
346 
347 	/* Add the remaining end range. */
348 	zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
349 	    (off + len) - (prev->r_off + prev->r_len));
350 }
351 
352 /*
353  * Check if a reader lock can be grabbed, or wait and recheck until available.
354  */
355 static void
356 zfs_range_lock_reader(znode_t *zp, rl_t *new)
357 {
358 	avl_tree_t *tree = &zp->z_range_avl;
359 	rl_t *prev, *next;
360 	avl_index_t where;
361 	uint64_t off = new->r_off;
362 	uint64_t len = new->r_len;
363 
364 	/*
365 	 * Look for any writer locks in the range.
366 	 */
367 retry:
368 	prev = avl_find(tree, new, &where);
369 	if (prev == NULL)
370 		prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
371 
372 	/*
373 	 * Check the previous range for a writer lock overlap.
374 	 */
375 	if (prev && (off < prev->r_off + prev->r_len)) {
376 		if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) {
377 			if (!prev->r_read_wanted) {
378 				cv_init(&prev->r_rd_cv, NULL, CV_DEFAULT, NULL);
379 				prev->r_read_wanted = B_TRUE;
380 			}
381 			cv_wait(&prev->r_rd_cv, &zp->z_range_lock);
382 			goto retry;
383 		}
384 		if (off + len < prev->r_off + prev->r_len)
385 			goto got_lock;
386 	}
387 
388 	/*
389 	 * Search through the following ranges to see if there's
390 	 * write lock any overlap.
391 	 */
392 	if (prev)
393 		next = AVL_NEXT(tree, prev);
394 	else
395 		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
396 	for (; next; next = AVL_NEXT(tree, next)) {
397 		if (off + len <= next->r_off)
398 			goto got_lock;
399 		if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) {
400 			if (!next->r_read_wanted) {
401 				cv_init(&next->r_rd_cv, NULL, CV_DEFAULT, NULL);
402 				next->r_read_wanted = B_TRUE;
403 			}
404 			cv_wait(&next->r_rd_cv, &zp->z_range_lock);
405 			goto retry;
406 		}
407 		if (off + len <= next->r_off + next->r_len)
408 			goto got_lock;
409 	}
410 
411 got_lock:
412 	/*
413 	 * Add the read lock, which may involve splitting existing
414 	 * locks and bumping ref counts (r_cnt).
415 	 */
416 	zfs_range_add_reader(tree, new, prev, where);
417 }
418 
419 /*
420  * Lock a range (offset, length) as either shared (RL_READER)
421  * or exclusive (RL_WRITER). Returns the range lock structure
422  * for later unlocking or reduce range (if entire file
423  * previously locked as RL_WRITER).
424  */
425 rl_t *
426 zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type)
427 {
428 	rl_t *new;
429 
430 	ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND);
431 
432 	new = kmem_alloc(sizeof (rl_t), KM_SLEEP);
433 	new->r_zp = zp;
434 	new->r_off = off;
435 	if (len + off < off)	/* overflow */
436 		len = UINT64_MAX - off;
437 	new->r_len = len;
438 	new->r_cnt = 1; /* assume it's going to be in the tree */
439 	new->r_type = type;
440 	new->r_proxy = B_FALSE;
441 	new->r_write_wanted = B_FALSE;
442 	new->r_read_wanted = B_FALSE;
443 
444 	mutex_enter(&zp->z_range_lock);
445 	if (type == RL_READER) {
446 		/*
447 		 * First check for the usual case of no locks
448 		 */
449 		if (avl_numnodes(&zp->z_range_avl) == 0)
450 			avl_add(&zp->z_range_avl, new);
451 		else
452 			zfs_range_lock_reader(zp, new);
453 	} else
454 		zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */
455 	mutex_exit(&zp->z_range_lock);
456 	return (new);
457 }
458 
459 /*
460  * Unlock a reader lock
461  */
462 static void
463 zfs_range_unlock_reader(znode_t *zp, rl_t *remove)
464 {
465 	avl_tree_t *tree = &zp->z_range_avl;
466 	rl_t *rl, *next = NULL;
467 	uint64_t len;
468 
469 	/*
470 	 * The common case is when the remove entry is in the tree
471 	 * (cnt == 1) meaning there's been no other reader locks overlapping
472 	 * with this one. Otherwise the remove entry will have been
473 	 * removed from the tree and replaced by proxies (one or
474 	 * more ranges mapping to the entire range).
475 	 */
476 	if (remove->r_cnt == 1) {
477 		avl_remove(tree, remove);
478 		if (remove->r_write_wanted) {
479 			cv_broadcast(&remove->r_wr_cv);
480 			cv_destroy(&remove->r_wr_cv);
481 		}
482 		if (remove->r_read_wanted) {
483 			cv_broadcast(&remove->r_rd_cv);
484 			cv_destroy(&remove->r_rd_cv);
485 		}
486 	} else {
487 		ASSERT0(remove->r_cnt);
488 		ASSERT0(remove->r_write_wanted);
489 		ASSERT0(remove->r_read_wanted);
490 		/*
491 		 * Find start proxy representing this reader lock,
492 		 * then decrement ref count on all proxies
493 		 * that make up this range, freeing them as needed.
494 		 */
495 		rl = avl_find(tree, remove, NULL);
496 		ASSERT(rl);
497 		ASSERT(rl->r_cnt);
498 		ASSERT(rl->r_type == RL_READER);
499 		for (len = remove->r_len; len != 0; rl = next) {
500 			len -= rl->r_len;
501 			if (len) {
502 				next = AVL_NEXT(tree, rl);
503 				ASSERT(next);
504 				ASSERT(rl->r_off + rl->r_len == next->r_off);
505 				ASSERT(next->r_cnt);
506 				ASSERT(next->r_type == RL_READER);
507 			}
508 			rl->r_cnt--;
509 			if (rl->r_cnt == 0) {
510 				avl_remove(tree, rl);
511 				if (rl->r_write_wanted) {
512 					cv_broadcast(&rl->r_wr_cv);
513 					cv_destroy(&rl->r_wr_cv);
514 				}
515 				if (rl->r_read_wanted) {
516 					cv_broadcast(&rl->r_rd_cv);
517 					cv_destroy(&rl->r_rd_cv);
518 				}
519 				kmem_free(rl, sizeof (rl_t));
520 			}
521 		}
522 	}
523 	kmem_free(remove, sizeof (rl_t));
524 }
525 
526 /*
527  * Unlock range and destroy range lock structure.
528  */
529 void
530 zfs_range_unlock(rl_t *rl)
531 {
532 	znode_t *zp = rl->r_zp;
533 
534 	ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER);
535 	ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0);
536 	ASSERT(!rl->r_proxy);
537 
538 	mutex_enter(&zp->z_range_lock);
539 	if (rl->r_type == RL_WRITER) {
540 		/* writer locks can't be shared or split */
541 		avl_remove(&zp->z_range_avl, rl);
542 		mutex_exit(&zp->z_range_lock);
543 		if (rl->r_write_wanted) {
544 			cv_broadcast(&rl->r_wr_cv);
545 			cv_destroy(&rl->r_wr_cv);
546 		}
547 		if (rl->r_read_wanted) {
548 			cv_broadcast(&rl->r_rd_cv);
549 			cv_destroy(&rl->r_rd_cv);
550 		}
551 		kmem_free(rl, sizeof (rl_t));
552 	} else {
553 		/*
554 		 * lock may be shared, let zfs_range_unlock_reader()
555 		 * release the lock and free the rl_t
556 		 */
557 		zfs_range_unlock_reader(zp, rl);
558 		mutex_exit(&zp->z_range_lock);
559 	}
560 }
561 
562 /*
563  * Reduce range locked as RL_WRITER from whole file to specified range.
564  * Asserts the whole file is exclusivly locked and so there's only one
565  * entry in the tree.
566  */
567 void
568 zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len)
569 {
570 	znode_t *zp = rl->r_zp;
571 
572 	/* Ensure there are no other locks */
573 	ASSERT(avl_numnodes(&zp->z_range_avl) == 1);
574 	ASSERT(rl->r_off == 0);
575 	ASSERT(rl->r_type == RL_WRITER);
576 	ASSERT(!rl->r_proxy);
577 	ASSERT3U(rl->r_len, ==, UINT64_MAX);
578 	ASSERT3U(rl->r_cnt, ==, 1);
579 
580 	mutex_enter(&zp->z_range_lock);
581 	rl->r_off = off;
582 	rl->r_len = len;
583 	mutex_exit(&zp->z_range_lock);
584 	if (rl->r_write_wanted)
585 		cv_broadcast(&rl->r_wr_cv);
586 	if (rl->r_read_wanted)
587 		cv_broadcast(&rl->r_rd_cv);
588 }
589 
590 /*
591  * AVL comparison function used to order range locks
592  * Locks are ordered on the start offset of the range.
593  */
594 int
595 zfs_range_compare(const void *arg1, const void *arg2)
596 {
597 	const rl_t *rl1 = arg1;
598 	const rl_t *rl2 = arg2;
599 
600 	if (rl1->r_off > rl2->r_off)
601 		return (1);
602 	if (rl1->r_off < rl2->r_off)
603 		return (-1);
604 	return (0);
605 }
606