xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_rlock.c (revision c5749750a3e052f1194f65a303456224c51dea63)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
27  */
28 
29 /*
30  * This file contains the code to implement file range locking in
31  * ZFS, although there isn't much specific to ZFS (all that comes to mind is
32  * support for growing the blocksize).
33  *
34  * Interface
35  * ---------
36  * Defined in zfs_rlock.h but essentially:
37  *	lr = rangelock_enter(zp, off, len, lock_type);
38  *	rangelock_reduce(lr, off, len); // optional
39  *	rangelock_exit(lr);
40  *
41  * AVL tree
42  * --------
43  * An AVL tree is used to maintain the state of the existing ranges
44  * that are locked for exclusive (writer) or shared (reader) use.
45  * The starting range offset is used for searching and sorting the tree.
46  *
47  * Common case
48  * -----------
49  * The (hopefully) usual case is of no overlaps or contention for locks. On
50  * entry to rangelock_enter(), a locked_range_t is allocated; the tree
51  * searched that finds no overlap, and *this* locked_range_t is placed in the
52  * tree.
53  *
54  * Overlaps/Reference counting/Proxy locks
55  * ---------------------------------------
56  * The avl code only allows one node at a particular offset. Also it's very
57  * inefficient to search through all previous entries looking for overlaps
58  * (because the very 1st in the ordered list might be at offset 0 but
59  * cover the whole file).
60  * So this implementation uses reference counts and proxy range locks.
61  * Firstly, only reader locks use reference counts and proxy locks,
62  * because writer locks are exclusive.
63  * When a reader lock overlaps with another then a proxy lock is created
64  * for that range and replaces the original lock. If the overlap
65  * is exact then the reference count of the proxy is simply incremented.
66  * Otherwise, the proxy lock is split into smaller lock ranges and
67  * new proxy locks created for non overlapping ranges.
68  * The reference counts are adjusted accordingly.
69  * Meanwhile, the orginal lock is kept around (this is the callers handle)
70  * and its offset and length are used when releasing the lock.
71  *
72  * Thread coordination
73  * -------------------
74  * In order to make wakeups efficient and to ensure multiple continuous
75  * readers on a range don't starve a writer for the same range lock,
76  * two condition variables are allocated in each rl_t.
77  * If a writer (or reader) can't get a range it initialises the writer
78  * (or reader) cv; sets a flag saying there's a writer (or reader) waiting;
79  * and waits on that cv. When a thread unlocks that range it wakes up all
80  * writers then all readers before destroying the lock.
81  *
82  * Append mode writes
83  * ------------------
84  * Append mode writes need to lock a range at the end of a file.
85  * The offset of the end of the file is determined under the
86  * range locking mutex, and the lock type converted from RL_APPEND to
87  * RL_WRITER and the range locked.
88  *
89  * Grow block handling
90  * -------------------
91  * ZFS supports multiple block sizes, up to 16MB. The smallest
92  * block size is used for the file which is grown as needed. During this
93  * growth all other writers and readers must be excluded.
94  * So if the block size needs to be grown then the whole file is
95  * exclusively locked, then later the caller will reduce the lock
96  * range to just the range to be written using rangelock_reduce().
97  */
98 
99 #include <sys/zfs_context.h>
100 #include <sys/zfs_rlock.h>
101 
102 /*
103  * AVL comparison function used to order range locks
104  * Locks are ordered on the start offset of the range.
105  */
106 static int
107 rangelock_compare(const void *arg1, const void *arg2)
108 {
109 	const locked_range_t *rl1 = arg1;
110 	const locked_range_t *rl2 = arg2;
111 
112 	if (rl1->lr_offset > rl2->lr_offset)
113 		return (1);
114 	if (rl1->lr_offset < rl2->lr_offset)
115 		return (-1);
116 	return (0);
117 }
118 
119 /*
120  * The callback is invoked when acquiring a RL_WRITER or RL_APPEND lock.
121  * It must convert RL_APPEND to RL_WRITER (starting at the end of the file),
122  * and may increase the range that's locked for RL_WRITER.
123  */
124 void
125 rangelock_init(rangelock_t *rl, rangelock_cb_t *cb, void *arg)
126 {
127 	mutex_init(&rl->rl_lock, NULL, MUTEX_DEFAULT, NULL);
128 	avl_create(&rl->rl_tree, rangelock_compare,
129 	    sizeof (locked_range_t), offsetof(locked_range_t, lr_node));
130 	rl->rl_cb = cb;
131 	rl->rl_arg = arg;
132 }
133 
134 void
135 rangelock_fini(rangelock_t *rl)
136 {
137 	mutex_destroy(&rl->rl_lock);
138 	avl_destroy(&rl->rl_tree);
139 }
140 
141 /*
142  * Check if a write lock can be grabbed, or wait and recheck until available.
143  */
144 static void
145 rangelock_enter_writer(rangelock_t *rl, locked_range_t *new)
146 {
147 	avl_tree_t *tree = &rl->rl_tree;
148 	locked_range_t *lr;
149 	avl_index_t where;
150 	uint64_t orig_off = new->lr_offset;
151 	uint64_t orig_len = new->lr_length;
152 	rangelock_type_t orig_type = new->lr_type;
153 
154 	for (;;) {
155 		/*
156 		 * Call callback which can modify new->r_off,len,type.
157 		 * Note, the callback is used by the ZPL to handle appending
158 		 * and changing blocksizes.  It isn't needed for zvols.
159 		 */
160 		if (rl->rl_cb != NULL) {
161 			rl->rl_cb(new, rl->rl_arg);
162 		}
163 
164 		/*
165 		 * If the type was APPEND, the callback must convert it to
166 		 * WRITER.
167 		 */
168 		ASSERT3U(new->lr_type, ==, RL_WRITER);
169 
170 		/*
171 		 * First check for the usual case of no locks
172 		 */
173 		if (avl_numnodes(tree) == 0) {
174 			avl_add(tree, new);
175 			return;
176 		}
177 
178 		/*
179 		 * Look for any locks in the range.
180 		 */
181 		lr = avl_find(tree, new, &where);
182 		if (lr != NULL)
183 			goto wait; /* already locked at same offset */
184 
185 		lr = (locked_range_t *)avl_nearest(tree, where, AVL_AFTER);
186 		if (lr != NULL &&
187 		    lr->lr_offset < new->lr_offset + new->lr_length)
188 			goto wait;
189 
190 		lr = (locked_range_t *)avl_nearest(tree, where, AVL_BEFORE);
191 		if (lr != NULL &&
192 		    lr->lr_offset + lr->lr_length > new->lr_offset)
193 			goto wait;
194 
195 		avl_insert(tree, new, where);
196 		return;
197 wait:
198 		if (!lr->lr_write_wanted) {
199 			cv_init(&lr->lr_write_cv, NULL, CV_DEFAULT, NULL);
200 			lr->lr_write_wanted = B_TRUE;
201 		}
202 		cv_wait(&lr->lr_write_cv, &rl->rl_lock);
203 
204 		/* reset to original */
205 		new->lr_offset = orig_off;
206 		new->lr_length = orig_len;
207 		new->lr_type = orig_type;
208 	}
209 }
210 
211 /*
212  * If this is an original (non-proxy) lock then replace it by
213  * a proxy and return the proxy.
214  */
215 static locked_range_t *
216 rangelock_proxify(avl_tree_t *tree, locked_range_t *lr)
217 {
218 	locked_range_t *proxy;
219 
220 	if (lr->lr_proxy)
221 		return (lr); /* already a proxy */
222 
223 	ASSERT3U(lr->lr_count, ==, 1);
224 	ASSERT(lr->lr_write_wanted == B_FALSE);
225 	ASSERT(lr->lr_read_wanted == B_FALSE);
226 	avl_remove(tree, lr);
227 	lr->lr_count = 0;
228 
229 	/* create a proxy range lock */
230 	proxy = kmem_alloc(sizeof (locked_range_t), KM_SLEEP);
231 	proxy->lr_offset = lr->lr_offset;
232 	proxy->lr_length = lr->lr_length;
233 	proxy->lr_count = 1;
234 	proxy->lr_type = RL_READER;
235 	proxy->lr_proxy = B_TRUE;
236 	proxy->lr_write_wanted = B_FALSE;
237 	proxy->lr_read_wanted = B_FALSE;
238 	avl_add(tree, proxy);
239 
240 	return (proxy);
241 }
242 
243 /*
244  * Split the range lock at the supplied offset
245  * returning the *front* proxy.
246  */
247 static locked_range_t *
248 rangelock_split(avl_tree_t *tree, locked_range_t *lr, uint64_t off)
249 {
250 	ASSERT3U(lr->lr_length, >, 1);
251 	ASSERT3U(off, >, lr->lr_offset);
252 	ASSERT3U(off, <, lr->lr_offset + lr->lr_length);
253 	ASSERT(lr->lr_write_wanted == B_FALSE);
254 	ASSERT(lr->lr_read_wanted == B_FALSE);
255 
256 	/* create the rear proxy range lock */
257 	locked_range_t *rear = kmem_alloc(sizeof (locked_range_t), KM_SLEEP);
258 	rear->lr_offset = off;
259 	rear->lr_length = lr->lr_offset + lr->lr_length - off;
260 	rear->lr_count = lr->lr_count;
261 	rear->lr_type = RL_READER;
262 	rear->lr_proxy = B_TRUE;
263 	rear->lr_write_wanted = B_FALSE;
264 	rear->lr_read_wanted = B_FALSE;
265 
266 	locked_range_t *front = rangelock_proxify(tree, lr);
267 	front->lr_length = off - lr->lr_offset;
268 
269 	avl_insert_here(tree, rear, front, AVL_AFTER);
270 	return (front);
271 }
272 
273 /*
274  * Create and add a new proxy range lock for the supplied range.
275  */
276 static void
277 rangelock_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len)
278 {
279 	ASSERT(len != 0);
280 	locked_range_t *lr = kmem_alloc(sizeof (locked_range_t), KM_SLEEP);
281 	lr->lr_offset = off;
282 	lr->lr_length = len;
283 	lr->lr_count = 1;
284 	lr->lr_type = RL_READER;
285 	lr->lr_proxy = B_TRUE;
286 	lr->lr_write_wanted = B_FALSE;
287 	lr->lr_read_wanted = B_FALSE;
288 	avl_add(tree, lr);
289 }
290 
291 static void
292 rangelock_add_reader(avl_tree_t *tree, locked_range_t *new,
293     locked_range_t *prev, avl_index_t where)
294 {
295 	locked_range_t *next;
296 	uint64_t off = new->lr_offset;
297 	uint64_t len = new->lr_length;
298 
299 	/*
300 	 * prev arrives either:
301 	 * - pointing to an entry at the same offset
302 	 * - pointing to the entry with the closest previous offset whose
303 	 *   range may overlap with the new range
304 	 * - null, if there were no ranges starting before the new one
305 	 */
306 	if (prev != NULL) {
307 		if (prev->lr_offset + prev->lr_length <= off) {
308 			prev = NULL;
309 		} else if (prev->lr_offset != off) {
310 			/*
311 			 * convert to proxy if needed then
312 			 * split this entry and bump ref count
313 			 */
314 			prev = rangelock_split(tree, prev, off);
315 			prev = AVL_NEXT(tree, prev); /* move to rear range */
316 		}
317 	}
318 	ASSERT((prev == NULL) || (prev->lr_offset == off));
319 
320 	if (prev != NULL)
321 		next = prev;
322 	else
323 		next = avl_nearest(tree, where, AVL_AFTER);
324 
325 	if (next == NULL || off + len <= next->lr_offset) {
326 		/* no overlaps, use the original new rl_t in the tree */
327 		avl_insert(tree, new, where);
328 		return;
329 	}
330 
331 	if (off < next->lr_offset) {
332 		/* Add a proxy for initial range before the overlap */
333 		rangelock_new_proxy(tree, off, next->lr_offset - off);
334 	}
335 
336 	new->lr_count = 0; /* will use proxies in tree */
337 	/*
338 	 * We now search forward through the ranges, until we go past the end
339 	 * of the new range. For each entry we make it a proxy if it
340 	 * isn't already, then bump its reference count. If there's any
341 	 * gaps between the ranges then we create a new proxy range.
342 	 */
343 	for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) {
344 		if (off + len <= next->lr_offset)
345 			break;
346 		if (prev != NULL && prev->lr_offset + prev->lr_length <
347 		    next->lr_offset) {
348 			/* there's a gap */
349 			ASSERT3U(next->lr_offset, >,
350 			    prev->lr_offset + prev->lr_length);
351 			rangelock_new_proxy(tree,
352 			    prev->lr_offset + prev->lr_length,
353 			    next->lr_offset -
354 			    (prev->lr_offset + prev->lr_length));
355 		}
356 		if (off + len == next->lr_offset + next->lr_length) {
357 			/* exact overlap with end */
358 			next = rangelock_proxify(tree, next);
359 			next->lr_count++;
360 			return;
361 		}
362 		if (off + len < next->lr_offset + next->lr_length) {
363 			/* new range ends in the middle of this block */
364 			next = rangelock_split(tree, next, off + len);
365 			next->lr_count++;
366 			return;
367 		}
368 		ASSERT3U(off + len, >, next->lr_offset + next->lr_length);
369 		next = rangelock_proxify(tree, next);
370 		next->lr_count++;
371 	}
372 
373 	/* Add the remaining end range. */
374 	rangelock_new_proxy(tree, prev->lr_offset + prev->lr_length,
375 	    (off + len) - (prev->lr_offset + prev->lr_length));
376 }
377 
378 /*
379  * Check if a reader lock can be grabbed, or wait and recheck until available.
380  */
381 static void
382 rangelock_enter_reader(rangelock_t *rl, locked_range_t *new)
383 {
384 	avl_tree_t *tree = &rl->rl_tree;
385 	locked_range_t *prev, *next;
386 	avl_index_t where;
387 	uint64_t off = new->lr_offset;
388 	uint64_t len = new->lr_length;
389 
390 	/*
391 	 * Look for any writer locks in the range.
392 	 */
393 retry:
394 	prev = avl_find(tree, new, &where);
395 	if (prev == NULL)
396 		prev = (locked_range_t *)avl_nearest(tree, where, AVL_BEFORE);
397 
398 	/*
399 	 * Check the previous range for a writer lock overlap.
400 	 */
401 	if (prev && (off < prev->lr_offset + prev->lr_length)) {
402 		if ((prev->lr_type == RL_WRITER) || (prev->lr_write_wanted)) {
403 			if (!prev->lr_read_wanted) {
404 				cv_init(&prev->lr_read_cv,
405 				    NULL, CV_DEFAULT, NULL);
406 				prev->lr_read_wanted = B_TRUE;
407 			}
408 			cv_wait(&prev->lr_read_cv, &rl->rl_lock);
409 			goto retry;
410 		}
411 		if (off + len < prev->lr_offset + prev->lr_length)
412 			goto got_lock;
413 	}
414 
415 	/*
416 	 * Search through the following ranges to see if there's
417 	 * write lock any overlap.
418 	 */
419 	if (prev != NULL)
420 		next = AVL_NEXT(tree, prev);
421 	else
422 		next = (locked_range_t *)avl_nearest(tree, where, AVL_AFTER);
423 	for (; next != NULL; next = AVL_NEXT(tree, next)) {
424 		if (off + len <= next->lr_offset)
425 			goto got_lock;
426 		if ((next->lr_type == RL_WRITER) || (next->lr_write_wanted)) {
427 			if (!next->lr_read_wanted) {
428 				cv_init(&next->lr_read_cv,
429 				    NULL, CV_DEFAULT, NULL);
430 				next->lr_read_wanted = B_TRUE;
431 			}
432 			cv_wait(&next->lr_read_cv, &rl->rl_lock);
433 			goto retry;
434 		}
435 		if (off + len <= next->lr_offset + next->lr_length)
436 			goto got_lock;
437 	}
438 
439 got_lock:
440 	/*
441 	 * Add the read lock, which may involve splitting existing
442 	 * locks and bumping ref counts (r_count).
443 	 */
444 	rangelock_add_reader(tree, new, prev, where);
445 }
446 
447 /*
448  * Lock a range (offset, length) as either shared (RL_READER) or exclusive
449  * (RL_WRITER or RL_APPEND).  If RL_APPEND is specified, rl_cb() will convert
450  * it to a RL_WRITER lock (with the offset at the end of the file).  Returns
451  * the range lock structure for later unlocking (or reduce range if the
452  * entire file is locked as RL_WRITER).
453  */
454 locked_range_t *
455 rangelock_enter(rangelock_t *rl, uint64_t off, uint64_t len,
456     rangelock_type_t type)
457 {
458 	ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND);
459 
460 	locked_range_t *new = kmem_alloc(sizeof (locked_range_t), KM_SLEEP);
461 	new->lr_rangelock = rl;
462 	new->lr_offset = off;
463 	if (len + off < off)	/* overflow */
464 		len = UINT64_MAX - off;
465 	new->lr_length = len;
466 	new->lr_count = 1; /* assume it's going to be in the tree */
467 	new->lr_type = type;
468 	new->lr_proxy = B_FALSE;
469 	new->lr_write_wanted = B_FALSE;
470 	new->lr_read_wanted = B_FALSE;
471 
472 	mutex_enter(&rl->rl_lock);
473 	if (type == RL_READER) {
474 		/*
475 		 * First check for the usual case of no locks
476 		 */
477 		if (avl_numnodes(&rl->rl_tree) == 0)
478 			avl_add(&rl->rl_tree, new);
479 		else
480 			rangelock_enter_reader(rl, new);
481 	} else
482 		rangelock_enter_writer(rl, new); /* RL_WRITER or RL_APPEND */
483 	mutex_exit(&rl->rl_lock);
484 	return (new);
485 }
486 
487 /*
488  * Unlock a reader lock
489  */
490 static void
491 rangelock_exit_reader(rangelock_t *rl, locked_range_t *remove)
492 {
493 	avl_tree_t *tree = &rl->rl_tree;
494 	uint64_t len;
495 
496 	/*
497 	 * The common case is when the remove entry is in the tree
498 	 * (cnt == 1) meaning there's been no other reader locks overlapping
499 	 * with this one. Otherwise the remove entry will have been
500 	 * removed from the tree and replaced by proxies (one or
501 	 * more ranges mapping to the entire range).
502 	 */
503 	if (remove->lr_count == 1) {
504 		avl_remove(tree, remove);
505 		if (remove->lr_write_wanted) {
506 			cv_broadcast(&remove->lr_write_cv);
507 			cv_destroy(&remove->lr_write_cv);
508 		}
509 		if (remove->lr_read_wanted) {
510 			cv_broadcast(&remove->lr_read_cv);
511 			cv_destroy(&remove->lr_read_cv);
512 		}
513 	} else {
514 		ASSERT0(remove->lr_count);
515 		ASSERT0(remove->lr_write_wanted);
516 		ASSERT0(remove->lr_read_wanted);
517 		/*
518 		 * Find start proxy representing this reader lock,
519 		 * then decrement ref count on all proxies
520 		 * that make up this range, freeing them as needed.
521 		 */
522 		locked_range_t *lr = avl_find(tree, remove, NULL);
523 		ASSERT3P(lr, !=, NULL);
524 		ASSERT3U(lr->lr_count, !=, 0);
525 		ASSERT3U(lr->lr_type, ==, RL_READER);
526 		locked_range_t *next = NULL;
527 		for (len = remove->lr_length; len != 0; lr = next) {
528 			len -= lr->lr_length;
529 			if (len != 0) {
530 				next = AVL_NEXT(tree, lr);
531 				ASSERT3P(next, !=, NULL);
532 				ASSERT3U(lr->lr_offset + lr->lr_length, ==,
533 				    next->lr_offset);
534 				ASSERT3U(next->lr_count, !=, 0);
535 				ASSERT3U(next->lr_type, ==, RL_READER);
536 			}
537 			lr->lr_count--;
538 			if (lr->lr_count == 0) {
539 				avl_remove(tree, lr);
540 				if (lr->lr_write_wanted) {
541 					cv_broadcast(&lr->lr_write_cv);
542 					cv_destroy(&lr->lr_write_cv);
543 				}
544 				if (lr->lr_read_wanted) {
545 					cv_broadcast(&lr->lr_read_cv);
546 					cv_destroy(&lr->lr_read_cv);
547 				}
548 				kmem_free(lr, sizeof (locked_range_t));
549 			}
550 		}
551 	}
552 	kmem_free(remove, sizeof (locked_range_t));
553 }
554 
555 /*
556  * Unlock range and destroy range lock structure.
557  */
558 void
559 rangelock_exit(locked_range_t *lr)
560 {
561 	rangelock_t *rl = lr->lr_rangelock;
562 
563 	ASSERT(lr->lr_type == RL_WRITER || lr->lr_type == RL_READER);
564 	ASSERT(lr->lr_count == 1 || lr->lr_count == 0);
565 	ASSERT(!lr->lr_proxy);
566 
567 	mutex_enter(&rl->rl_lock);
568 	if (lr->lr_type == RL_WRITER) {
569 		/* writer locks can't be shared or split */
570 		avl_remove(&rl->rl_tree, lr);
571 		mutex_exit(&rl->rl_lock);
572 		if (lr->lr_write_wanted) {
573 			cv_broadcast(&lr->lr_write_cv);
574 			cv_destroy(&lr->lr_write_cv);
575 		}
576 		if (lr->lr_read_wanted) {
577 			cv_broadcast(&lr->lr_read_cv);
578 			cv_destroy(&lr->lr_read_cv);
579 		}
580 		kmem_free(lr, sizeof (locked_range_t));
581 	} else {
582 		/*
583 		 * lock may be shared, let rangelock_exit_reader()
584 		 * release the lock and free the rl_t
585 		 */
586 		rangelock_exit_reader(rl, lr);
587 		mutex_exit(&rl->rl_lock);
588 	}
589 }
590 
591 /*
592  * Reduce range locked as RL_WRITER from whole file to specified range.
593  * Asserts the whole file is exclusively locked and so there's only one
594  * entry in the tree.
595  */
596 void
597 rangelock_reduce(locked_range_t *lr, uint64_t off, uint64_t len)
598 {
599 	rangelock_t *rl = lr->lr_rangelock;
600 
601 	/* Ensure there are no other locks */
602 	ASSERT3U(avl_numnodes(&rl->rl_tree), ==, 1);
603 	ASSERT3U(lr->lr_offset, ==, 0);
604 	ASSERT3U(lr->lr_type, ==, RL_WRITER);
605 	ASSERT(!lr->lr_proxy);
606 	ASSERT3U(lr->lr_length, ==, UINT64_MAX);
607 	ASSERT3U(lr->lr_count, ==, 1);
608 
609 	mutex_enter(&rl->rl_lock);
610 	lr->lr_offset = off;
611 	lr->lr_length = len;
612 	mutex_exit(&rl->rl_lock);
613 	if (lr->lr_write_wanted)
614 		cv_broadcast(&lr->lr_write_cv);
615 	if (lr->lr_read_wanted)
616 		cv_broadcast(&lr->lr_read_cv);
617 }
618