1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 27 */ 28 29 /* 30 * This file contains the code to implement file range locking in 31 * ZFS, although there isn't much specific to ZFS (all that comes to mind is 32 * support for growing the blocksize). 33 * 34 * Interface 35 * --------- 36 * Defined in zfs_rlock.h but essentially: 37 * lr = rangelock_enter(zp, off, len, lock_type); 38 * rangelock_reduce(lr, off, len); // optional 39 * rangelock_exit(lr); 40 * 41 * AVL tree 42 * -------- 43 * An AVL tree is used to maintain the state of the existing ranges 44 * that are locked for exclusive (writer) or shared (reader) use. 45 * The starting range offset is used for searching and sorting the tree. 46 * 47 * Common case 48 * ----------- 49 * The (hopefully) usual case is of no overlaps or contention for locks. On 50 * entry to rangelock_enter(), a locked_range_t is allocated; the tree 51 * searched that finds no overlap, and *this* locked_range_t is placed in the 52 * tree. 53 * 54 * Overlaps/Reference counting/Proxy locks 55 * --------------------------------------- 56 * The avl code only allows one node at a particular offset. Also it's very 57 * inefficient to search through all previous entries looking for overlaps 58 * (because the very 1st in the ordered list might be at offset 0 but 59 * cover the whole file). 60 * So this implementation uses reference counts and proxy range locks. 61 * Firstly, only reader locks use reference counts and proxy locks, 62 * because writer locks are exclusive. 63 * When a reader lock overlaps with another then a proxy lock is created 64 * for that range and replaces the original lock. If the overlap 65 * is exact then the reference count of the proxy is simply incremented. 66 * Otherwise, the proxy lock is split into smaller lock ranges and 67 * new proxy locks created for non overlapping ranges. 68 * The reference counts are adjusted accordingly. 69 * Meanwhile, the orginal lock is kept around (this is the callers handle) 70 * and its offset and length are used when releasing the lock. 71 * 72 * Thread coordination 73 * ------------------- 74 * In order to make wakeups efficient and to ensure multiple continuous 75 * readers on a range don't starve a writer for the same range lock, 76 * two condition variables are allocated in each rl_t. 77 * If a writer (or reader) can't get a range it initialises the writer 78 * (or reader) cv; sets a flag saying there's a writer (or reader) waiting; 79 * and waits on that cv. When a thread unlocks that range it wakes up all 80 * writers then all readers before destroying the lock. 81 * 82 * Append mode writes 83 * ------------------ 84 * Append mode writes need to lock a range at the end of a file. 85 * The offset of the end of the file is determined under the 86 * range locking mutex, and the lock type converted from RL_APPEND to 87 * RL_WRITER and the range locked. 88 * 89 * Grow block handling 90 * ------------------- 91 * ZFS supports multiple block sizes, up to 16MB. The smallest 92 * block size is used for the file which is grown as needed. During this 93 * growth all other writers and readers must be excluded. 94 * So if the block size needs to be grown then the whole file is 95 * exclusively locked, then later the caller will reduce the lock 96 * range to just the range to be written using rangelock_reduce(). 97 */ 98 99 #include <sys/zfs_context.h> 100 #include <sys/zfs_rlock.h> 101 102 /* 103 * AVL comparison function used to order range locks 104 * Locks are ordered on the start offset of the range. 105 */ 106 static int 107 rangelock_compare(const void *arg1, const void *arg2) 108 { 109 const locked_range_t *rl1 = (const locked_range_t *)arg1; 110 const locked_range_t *rl2 = (const locked_range_t *)arg2; 111 112 return (AVL_CMP(rl1->lr_offset, rl2->lr_offset)); 113 } 114 115 /* 116 * The callback is invoked when acquiring a RL_WRITER or RL_APPEND lock. 117 * It must convert RL_APPEND to RL_WRITER (starting at the end of the file), 118 * and may increase the range that's locked for RL_WRITER. 119 */ 120 void 121 rangelock_init(rangelock_t *rl, rangelock_cb_t *cb, void *arg) 122 { 123 mutex_init(&rl->rl_lock, NULL, MUTEX_DEFAULT, NULL); 124 avl_create(&rl->rl_tree, rangelock_compare, 125 sizeof (locked_range_t), offsetof(locked_range_t, lr_node)); 126 rl->rl_cb = cb; 127 rl->rl_arg = arg; 128 } 129 130 void 131 rangelock_fini(rangelock_t *rl) 132 { 133 mutex_destroy(&rl->rl_lock); 134 avl_destroy(&rl->rl_tree); 135 } 136 137 /* 138 * Check if a write lock can be grabbed, or wait and recheck until available. 139 */ 140 static void 141 rangelock_enter_writer(rangelock_t *rl, locked_range_t *new) 142 { 143 avl_tree_t *tree = &rl->rl_tree; 144 locked_range_t *lr; 145 avl_index_t where; 146 uint64_t orig_off = new->lr_offset; 147 uint64_t orig_len = new->lr_length; 148 rangelock_type_t orig_type = new->lr_type; 149 150 for (;;) { 151 /* 152 * Call callback which can modify new->r_off,len,type. 153 * Note, the callback is used by the ZPL to handle appending 154 * and changing blocksizes. It isn't needed for zvols. 155 */ 156 if (rl->rl_cb != NULL) { 157 rl->rl_cb(new, rl->rl_arg); 158 } 159 160 /* 161 * If the type was APPEND, the callback must convert it to 162 * WRITER. 163 */ 164 ASSERT3U(new->lr_type, ==, RL_WRITER); 165 166 /* 167 * First check for the usual case of no locks 168 */ 169 if (avl_numnodes(tree) == 0) { 170 avl_add(tree, new); 171 return; 172 } 173 174 /* 175 * Look for any locks in the range. 176 */ 177 lr = avl_find(tree, new, &where); 178 if (lr != NULL) 179 goto wait; /* already locked at same offset */ 180 181 lr = (locked_range_t *)avl_nearest(tree, where, AVL_AFTER); 182 if (lr != NULL && 183 lr->lr_offset < new->lr_offset + new->lr_length) 184 goto wait; 185 186 lr = (locked_range_t *)avl_nearest(tree, where, AVL_BEFORE); 187 if (lr != NULL && 188 lr->lr_offset + lr->lr_length > new->lr_offset) 189 goto wait; 190 191 avl_insert(tree, new, where); 192 return; 193 wait: 194 if (!lr->lr_write_wanted) { 195 cv_init(&lr->lr_write_cv, NULL, CV_DEFAULT, NULL); 196 lr->lr_write_wanted = B_TRUE; 197 } 198 cv_wait(&lr->lr_write_cv, &rl->rl_lock); 199 200 /* reset to original */ 201 new->lr_offset = orig_off; 202 new->lr_length = orig_len; 203 new->lr_type = orig_type; 204 } 205 } 206 207 /* 208 * If this is an original (non-proxy) lock then replace it by 209 * a proxy and return the proxy. 210 */ 211 static locked_range_t * 212 rangelock_proxify(avl_tree_t *tree, locked_range_t *lr) 213 { 214 locked_range_t *proxy; 215 216 if (lr->lr_proxy) 217 return (lr); /* already a proxy */ 218 219 ASSERT3U(lr->lr_count, ==, 1); 220 ASSERT(lr->lr_write_wanted == B_FALSE); 221 ASSERT(lr->lr_read_wanted == B_FALSE); 222 avl_remove(tree, lr); 223 lr->lr_count = 0; 224 225 /* create a proxy range lock */ 226 proxy = kmem_alloc(sizeof (locked_range_t), KM_SLEEP); 227 proxy->lr_offset = lr->lr_offset; 228 proxy->lr_length = lr->lr_length; 229 proxy->lr_count = 1; 230 proxy->lr_type = RL_READER; 231 proxy->lr_proxy = B_TRUE; 232 proxy->lr_write_wanted = B_FALSE; 233 proxy->lr_read_wanted = B_FALSE; 234 avl_add(tree, proxy); 235 236 return (proxy); 237 } 238 239 /* 240 * Split the range lock at the supplied offset 241 * returning the *front* proxy. 242 */ 243 static locked_range_t * 244 rangelock_split(avl_tree_t *tree, locked_range_t *lr, uint64_t off) 245 { 246 ASSERT3U(lr->lr_length, >, 1); 247 ASSERT3U(off, >, lr->lr_offset); 248 ASSERT3U(off, <, lr->lr_offset + lr->lr_length); 249 ASSERT(lr->lr_write_wanted == B_FALSE); 250 ASSERT(lr->lr_read_wanted == B_FALSE); 251 252 /* create the rear proxy range lock */ 253 locked_range_t *rear = kmem_alloc(sizeof (locked_range_t), KM_SLEEP); 254 rear->lr_offset = off; 255 rear->lr_length = lr->lr_offset + lr->lr_length - off; 256 rear->lr_count = lr->lr_count; 257 rear->lr_type = RL_READER; 258 rear->lr_proxy = B_TRUE; 259 rear->lr_write_wanted = B_FALSE; 260 rear->lr_read_wanted = B_FALSE; 261 262 locked_range_t *front = rangelock_proxify(tree, lr); 263 front->lr_length = off - lr->lr_offset; 264 265 avl_insert_here(tree, rear, front, AVL_AFTER); 266 return (front); 267 } 268 269 /* 270 * Create and add a new proxy range lock for the supplied range. 271 */ 272 static void 273 rangelock_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len) 274 { 275 ASSERT(len != 0); 276 locked_range_t *lr = kmem_alloc(sizeof (locked_range_t), KM_SLEEP); 277 lr->lr_offset = off; 278 lr->lr_length = len; 279 lr->lr_count = 1; 280 lr->lr_type = RL_READER; 281 lr->lr_proxy = B_TRUE; 282 lr->lr_write_wanted = B_FALSE; 283 lr->lr_read_wanted = B_FALSE; 284 avl_add(tree, lr); 285 } 286 287 static void 288 rangelock_add_reader(avl_tree_t *tree, locked_range_t *new, 289 locked_range_t *prev, avl_index_t where) 290 { 291 locked_range_t *next; 292 uint64_t off = new->lr_offset; 293 uint64_t len = new->lr_length; 294 295 /* 296 * prev arrives either: 297 * - pointing to an entry at the same offset 298 * - pointing to the entry with the closest previous offset whose 299 * range may overlap with the new range 300 * - null, if there were no ranges starting before the new one 301 */ 302 if (prev != NULL) { 303 if (prev->lr_offset + prev->lr_length <= off) { 304 prev = NULL; 305 } else if (prev->lr_offset != off) { 306 /* 307 * convert to proxy if needed then 308 * split this entry and bump ref count 309 */ 310 prev = rangelock_split(tree, prev, off); 311 prev = AVL_NEXT(tree, prev); /* move to rear range */ 312 } 313 } 314 ASSERT((prev == NULL) || (prev->lr_offset == off)); 315 316 if (prev != NULL) 317 next = prev; 318 else 319 next = avl_nearest(tree, where, AVL_AFTER); 320 321 if (next == NULL || off + len <= next->lr_offset) { 322 /* no overlaps, use the original new rl_t in the tree */ 323 avl_insert(tree, new, where); 324 return; 325 } 326 327 if (off < next->lr_offset) { 328 /* Add a proxy for initial range before the overlap */ 329 rangelock_new_proxy(tree, off, next->lr_offset - off); 330 } 331 332 new->lr_count = 0; /* will use proxies in tree */ 333 /* 334 * We now search forward through the ranges, until we go past the end 335 * of the new range. For each entry we make it a proxy if it 336 * isn't already, then bump its reference count. If there's any 337 * gaps between the ranges then we create a new proxy range. 338 */ 339 for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) { 340 if (off + len <= next->lr_offset) 341 break; 342 if (prev != NULL && prev->lr_offset + prev->lr_length < 343 next->lr_offset) { 344 /* there's a gap */ 345 ASSERT3U(next->lr_offset, >, 346 prev->lr_offset + prev->lr_length); 347 rangelock_new_proxy(tree, 348 prev->lr_offset + prev->lr_length, 349 next->lr_offset - 350 (prev->lr_offset + prev->lr_length)); 351 } 352 if (off + len == next->lr_offset + next->lr_length) { 353 /* exact overlap with end */ 354 next = rangelock_proxify(tree, next); 355 next->lr_count++; 356 return; 357 } 358 if (off + len < next->lr_offset + next->lr_length) { 359 /* new range ends in the middle of this block */ 360 next = rangelock_split(tree, next, off + len); 361 next->lr_count++; 362 return; 363 } 364 ASSERT3U(off + len, >, next->lr_offset + next->lr_length); 365 next = rangelock_proxify(tree, next); 366 next->lr_count++; 367 } 368 369 /* Add the remaining end range. */ 370 rangelock_new_proxy(tree, prev->lr_offset + prev->lr_length, 371 (off + len) - (prev->lr_offset + prev->lr_length)); 372 } 373 374 /* 375 * Check if a reader lock can be grabbed, or wait and recheck until available. 376 */ 377 static void 378 rangelock_enter_reader(rangelock_t *rl, locked_range_t *new) 379 { 380 avl_tree_t *tree = &rl->rl_tree; 381 locked_range_t *prev, *next; 382 avl_index_t where; 383 uint64_t off = new->lr_offset; 384 uint64_t len = new->lr_length; 385 386 /* 387 * Look for any writer locks in the range. 388 */ 389 retry: 390 prev = avl_find(tree, new, &where); 391 if (prev == NULL) 392 prev = (locked_range_t *)avl_nearest(tree, where, AVL_BEFORE); 393 394 /* 395 * Check the previous range for a writer lock overlap. 396 */ 397 if (prev && (off < prev->lr_offset + prev->lr_length)) { 398 if ((prev->lr_type == RL_WRITER) || (prev->lr_write_wanted)) { 399 if (!prev->lr_read_wanted) { 400 cv_init(&prev->lr_read_cv, 401 NULL, CV_DEFAULT, NULL); 402 prev->lr_read_wanted = B_TRUE; 403 } 404 cv_wait(&prev->lr_read_cv, &rl->rl_lock); 405 goto retry; 406 } 407 if (off + len < prev->lr_offset + prev->lr_length) 408 goto got_lock; 409 } 410 411 /* 412 * Search through the following ranges to see if there's 413 * write lock any overlap. 414 */ 415 if (prev != NULL) 416 next = AVL_NEXT(tree, prev); 417 else 418 next = (locked_range_t *)avl_nearest(tree, where, AVL_AFTER); 419 for (; next != NULL; next = AVL_NEXT(tree, next)) { 420 if (off + len <= next->lr_offset) 421 goto got_lock; 422 if ((next->lr_type == RL_WRITER) || (next->lr_write_wanted)) { 423 if (!next->lr_read_wanted) { 424 cv_init(&next->lr_read_cv, 425 NULL, CV_DEFAULT, NULL); 426 next->lr_read_wanted = B_TRUE; 427 } 428 cv_wait(&next->lr_read_cv, &rl->rl_lock); 429 goto retry; 430 } 431 if (off + len <= next->lr_offset + next->lr_length) 432 goto got_lock; 433 } 434 435 got_lock: 436 /* 437 * Add the read lock, which may involve splitting existing 438 * locks and bumping ref counts (r_count). 439 */ 440 rangelock_add_reader(tree, new, prev, where); 441 } 442 443 /* 444 * Lock a range (offset, length) as either shared (RL_READER) or exclusive 445 * (RL_WRITER or RL_APPEND). If RL_APPEND is specified, rl_cb() will convert 446 * it to a RL_WRITER lock (with the offset at the end of the file). Returns 447 * the range lock structure for later unlocking (or reduce range if the 448 * entire file is locked as RL_WRITER). 449 */ 450 locked_range_t * 451 rangelock_enter(rangelock_t *rl, uint64_t off, uint64_t len, 452 rangelock_type_t type) 453 { 454 ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND); 455 456 locked_range_t *new = kmem_alloc(sizeof (locked_range_t), KM_SLEEP); 457 new->lr_rangelock = rl; 458 new->lr_offset = off; 459 if (len + off < off) /* overflow */ 460 len = UINT64_MAX - off; 461 new->lr_length = len; 462 new->lr_count = 1; /* assume it's going to be in the tree */ 463 new->lr_type = type; 464 new->lr_proxy = B_FALSE; 465 new->lr_write_wanted = B_FALSE; 466 new->lr_read_wanted = B_FALSE; 467 468 mutex_enter(&rl->rl_lock); 469 if (type == RL_READER) { 470 /* 471 * First check for the usual case of no locks 472 */ 473 if (avl_numnodes(&rl->rl_tree) == 0) 474 avl_add(&rl->rl_tree, new); 475 else 476 rangelock_enter_reader(rl, new); 477 } else 478 rangelock_enter_writer(rl, new); /* RL_WRITER or RL_APPEND */ 479 mutex_exit(&rl->rl_lock); 480 return (new); 481 } 482 483 /* 484 * Unlock a reader lock 485 */ 486 static void 487 rangelock_exit_reader(rangelock_t *rl, locked_range_t *remove) 488 { 489 avl_tree_t *tree = &rl->rl_tree; 490 uint64_t len; 491 492 /* 493 * The common case is when the remove entry is in the tree 494 * (cnt == 1) meaning there's been no other reader locks overlapping 495 * with this one. Otherwise the remove entry will have been 496 * removed from the tree and replaced by proxies (one or 497 * more ranges mapping to the entire range). 498 */ 499 if (remove->lr_count == 1) { 500 avl_remove(tree, remove); 501 if (remove->lr_write_wanted) { 502 cv_broadcast(&remove->lr_write_cv); 503 cv_destroy(&remove->lr_write_cv); 504 } 505 if (remove->lr_read_wanted) { 506 cv_broadcast(&remove->lr_read_cv); 507 cv_destroy(&remove->lr_read_cv); 508 } 509 } else { 510 ASSERT0(remove->lr_count); 511 ASSERT0(remove->lr_write_wanted); 512 ASSERT0(remove->lr_read_wanted); 513 /* 514 * Find start proxy representing this reader lock, 515 * then decrement ref count on all proxies 516 * that make up this range, freeing them as needed. 517 */ 518 locked_range_t *lr = avl_find(tree, remove, NULL); 519 ASSERT3P(lr, !=, NULL); 520 ASSERT3U(lr->lr_count, !=, 0); 521 ASSERT3U(lr->lr_type, ==, RL_READER); 522 locked_range_t *next = NULL; 523 for (len = remove->lr_length; len != 0; lr = next) { 524 len -= lr->lr_length; 525 if (len != 0) { 526 next = AVL_NEXT(tree, lr); 527 ASSERT3P(next, !=, NULL); 528 ASSERT3U(lr->lr_offset + lr->lr_length, ==, 529 next->lr_offset); 530 ASSERT3U(next->lr_count, !=, 0); 531 ASSERT3U(next->lr_type, ==, RL_READER); 532 } 533 lr->lr_count--; 534 if (lr->lr_count == 0) { 535 avl_remove(tree, lr); 536 if (lr->lr_write_wanted) { 537 cv_broadcast(&lr->lr_write_cv); 538 cv_destroy(&lr->lr_write_cv); 539 } 540 if (lr->lr_read_wanted) { 541 cv_broadcast(&lr->lr_read_cv); 542 cv_destroy(&lr->lr_read_cv); 543 } 544 kmem_free(lr, sizeof (locked_range_t)); 545 } 546 } 547 } 548 kmem_free(remove, sizeof (locked_range_t)); 549 } 550 551 /* 552 * Unlock range and destroy range lock structure. 553 */ 554 void 555 rangelock_exit(locked_range_t *lr) 556 { 557 rangelock_t *rl = lr->lr_rangelock; 558 559 ASSERT(lr->lr_type == RL_WRITER || lr->lr_type == RL_READER); 560 ASSERT(lr->lr_count == 1 || lr->lr_count == 0); 561 ASSERT(!lr->lr_proxy); 562 563 mutex_enter(&rl->rl_lock); 564 if (lr->lr_type == RL_WRITER) { 565 /* writer locks can't be shared or split */ 566 avl_remove(&rl->rl_tree, lr); 567 mutex_exit(&rl->rl_lock); 568 if (lr->lr_write_wanted) { 569 cv_broadcast(&lr->lr_write_cv); 570 cv_destroy(&lr->lr_write_cv); 571 } 572 if (lr->lr_read_wanted) { 573 cv_broadcast(&lr->lr_read_cv); 574 cv_destroy(&lr->lr_read_cv); 575 } 576 kmem_free(lr, sizeof (locked_range_t)); 577 } else { 578 /* 579 * lock may be shared, let rangelock_exit_reader() 580 * release the lock and free the rl_t 581 */ 582 rangelock_exit_reader(rl, lr); 583 mutex_exit(&rl->rl_lock); 584 } 585 } 586 587 /* 588 * Reduce range locked as RL_WRITER from whole file to specified range. 589 * Asserts the whole file is exclusively locked and so there's only one 590 * entry in the tree. 591 */ 592 void 593 rangelock_reduce(locked_range_t *lr, uint64_t off, uint64_t len) 594 { 595 rangelock_t *rl = lr->lr_rangelock; 596 597 /* Ensure there are no other locks */ 598 ASSERT3U(avl_numnodes(&rl->rl_tree), ==, 1); 599 ASSERT3U(lr->lr_offset, ==, 0); 600 ASSERT3U(lr->lr_type, ==, RL_WRITER); 601 ASSERT(!lr->lr_proxy); 602 ASSERT3U(lr->lr_length, ==, UINT64_MAX); 603 ASSERT3U(lr->lr_count, ==, 1); 604 605 mutex_enter(&rl->rl_lock); 606 lr->lr_offset = off; 607 lr->lr_length = len; 608 mutex_exit(&rl->rl_lock); 609 if (lr->lr_write_wanted) 610 cv_broadcast(&lr->lr_write_cv); 611 if (lr->lr_read_wanted) 612 cv_broadcast(&lr->lr_read_cv); 613 } 614