1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 27 */ 28 29 /* 30 * This file contains the code to implement file range locking in 31 * ZFS, although there isn't much specific to ZFS (all that comes to mind is 32 * support for growing the blocksize). 33 * 34 * Interface 35 * --------- 36 * Defined in zfs_rlock.h but essentially: 37 * lr = rangelock_enter(zp, off, len, lock_type); 38 * rangelock_reduce(lr, off, len); // optional 39 * rangelock_exit(lr); 40 * 41 * AVL tree 42 * -------- 43 * An AVL tree is used to maintain the state of the existing ranges 44 * that are locked for exclusive (writer) or shared (reader) use. 45 * The starting range offset is used for searching and sorting the tree. 46 * 47 * Common case 48 * ----------- 49 * The (hopefully) usual case is of no overlaps or contention for locks. On 50 * entry to rangelock_enter(), a locked_range_t is allocated; the tree 51 * searched that finds no overlap, and *this* locked_range_t is placed in the 52 * tree. 53 * 54 * Overlaps/Reference counting/Proxy locks 55 * --------------------------------------- 56 * The avl code only allows one node at a particular offset. Also it's very 57 * inefficient to search through all previous entries looking for overlaps 58 * (because the very 1st in the ordered list might be at offset 0 but 59 * cover the whole file). 60 * So this implementation uses reference counts and proxy range locks. 61 * Firstly, only reader locks use reference counts and proxy locks, 62 * because writer locks are exclusive. 63 * When a reader lock overlaps with another then a proxy lock is created 64 * for that range and replaces the original lock. If the overlap 65 * is exact then the reference count of the proxy is simply incremented. 66 * Otherwise, the proxy lock is split into smaller lock ranges and 67 * new proxy locks created for non overlapping ranges. 68 * The reference counts are adjusted accordingly. 69 * Meanwhile, the orginal lock is kept around (this is the callers handle) 70 * and its offset and length are used when releasing the lock. 71 * 72 * Thread coordination 73 * ------------------- 74 * In order to make wakeups efficient and to ensure multiple continuous 75 * readers on a range don't starve a writer for the same range lock, 76 * two condition variables are allocated in each rl_t. 77 * If a writer (or reader) can't get a range it initialises the writer 78 * (or reader) cv; sets a flag saying there's a writer (or reader) waiting; 79 * and waits on that cv. When a thread unlocks that range it wakes up all 80 * writers then all readers before destroying the lock. 81 * 82 * Append mode writes 83 * ------------------ 84 * Append mode writes need to lock a range at the end of a file. 85 * The offset of the end of the file is determined under the 86 * range locking mutex, and the lock type converted from RL_APPEND to 87 * RL_WRITER and the range locked. 88 * 89 * Grow block handling 90 * ------------------- 91 * ZFS supports multiple block sizes, up to 16MB. The smallest 92 * block size is used for the file which is grown as needed. During this 93 * growth all other writers and readers must be excluded. 94 * So if the block size needs to be grown then the whole file is 95 * exclusively locked, then later the caller will reduce the lock 96 * range to just the range to be written using rangelock_reduce(). 97 */ 98 99 #include <sys/zfs_context.h> 100 #include <sys/zfs_rlock.h> 101 102 /* 103 * AVL comparison function used to order range locks 104 * Locks are ordered on the start offset of the range. 105 */ 106 static int 107 rangelock_compare(const void *arg1, const void *arg2) 108 { 109 const locked_range_t *rl1 = arg1; 110 const locked_range_t *rl2 = arg2; 111 112 if (rl1->lr_offset > rl2->lr_offset) 113 return (1); 114 if (rl1->lr_offset < rl2->lr_offset) 115 return (-1); 116 return (0); 117 } 118 119 /* 120 * The callback is invoked when acquiring a RL_WRITER or RL_APPEND lock. 121 * It must convert RL_APPEND to RL_WRITER (starting at the end of the file), 122 * and may increase the range that's locked for RL_WRITER. 123 */ 124 void 125 rangelock_init(rangelock_t *rl, rangelock_cb_t *cb, void *arg) 126 { 127 mutex_init(&rl->rl_lock, NULL, MUTEX_DEFAULT, NULL); 128 avl_create(&rl->rl_tree, rangelock_compare, 129 sizeof (locked_range_t), offsetof(locked_range_t, lr_node)); 130 rl->rl_cb = cb; 131 rl->rl_arg = arg; 132 } 133 134 void 135 rangelock_fini(rangelock_t *rl) 136 { 137 mutex_destroy(&rl->rl_lock); 138 avl_destroy(&rl->rl_tree); 139 } 140 141 /* 142 * Check if a write lock can be grabbed, or wait and recheck until available. 143 */ 144 static void 145 rangelock_enter_writer(rangelock_t *rl, locked_range_t *new) 146 { 147 avl_tree_t *tree = &rl->rl_tree; 148 locked_range_t *lr; 149 avl_index_t where; 150 uint64_t orig_off = new->lr_offset; 151 uint64_t orig_len = new->lr_length; 152 rangelock_type_t orig_type = new->lr_type; 153 154 for (;;) { 155 /* 156 * Call callback which can modify new->r_off,len,type. 157 * Note, the callback is used by the ZPL to handle appending 158 * and changing blocksizes. It isn't needed for zvols. 159 */ 160 if (rl->rl_cb != NULL) { 161 rl->rl_cb(new, rl->rl_arg); 162 } 163 164 /* 165 * If the type was APPEND, the callback must convert it to 166 * WRITER. 167 */ 168 ASSERT3U(new->lr_type, ==, RL_WRITER); 169 170 /* 171 * First check for the usual case of no locks 172 */ 173 if (avl_numnodes(tree) == 0) { 174 avl_add(tree, new); 175 return; 176 } 177 178 /* 179 * Look for any locks in the range. 180 */ 181 lr = avl_find(tree, new, &where); 182 if (lr != NULL) 183 goto wait; /* already locked at same offset */ 184 185 lr = (locked_range_t *)avl_nearest(tree, where, AVL_AFTER); 186 if (lr != NULL && 187 lr->lr_offset < new->lr_offset + new->lr_length) 188 goto wait; 189 190 lr = (locked_range_t *)avl_nearest(tree, where, AVL_BEFORE); 191 if (lr != NULL && 192 lr->lr_offset + lr->lr_length > new->lr_offset) 193 goto wait; 194 195 avl_insert(tree, new, where); 196 return; 197 wait: 198 if (!lr->lr_write_wanted) { 199 cv_init(&lr->lr_write_cv, NULL, CV_DEFAULT, NULL); 200 lr->lr_write_wanted = B_TRUE; 201 } 202 cv_wait(&lr->lr_write_cv, &rl->rl_lock); 203 204 /* reset to original */ 205 new->lr_offset = orig_off; 206 new->lr_length = orig_len; 207 new->lr_type = orig_type; 208 } 209 } 210 211 /* 212 * If this is an original (non-proxy) lock then replace it by 213 * a proxy and return the proxy. 214 */ 215 static locked_range_t * 216 rangelock_proxify(avl_tree_t *tree, locked_range_t *lr) 217 { 218 locked_range_t *proxy; 219 220 if (lr->lr_proxy) 221 return (lr); /* already a proxy */ 222 223 ASSERT3U(lr->lr_count, ==, 1); 224 ASSERT(lr->lr_write_wanted == B_FALSE); 225 ASSERT(lr->lr_read_wanted == B_FALSE); 226 avl_remove(tree, lr); 227 lr->lr_count = 0; 228 229 /* create a proxy range lock */ 230 proxy = kmem_alloc(sizeof (locked_range_t), KM_SLEEP); 231 proxy->lr_offset = lr->lr_offset; 232 proxy->lr_length = lr->lr_length; 233 proxy->lr_count = 1; 234 proxy->lr_type = RL_READER; 235 proxy->lr_proxy = B_TRUE; 236 proxy->lr_write_wanted = B_FALSE; 237 proxy->lr_read_wanted = B_FALSE; 238 avl_add(tree, proxy); 239 240 return (proxy); 241 } 242 243 /* 244 * Split the range lock at the supplied offset 245 * returning the *front* proxy. 246 */ 247 static locked_range_t * 248 rangelock_split(avl_tree_t *tree, locked_range_t *lr, uint64_t off) 249 { 250 ASSERT3U(lr->lr_length, >, 1); 251 ASSERT3U(off, >, lr->lr_offset); 252 ASSERT3U(off, <, lr->lr_offset + lr->lr_length); 253 ASSERT(lr->lr_write_wanted == B_FALSE); 254 ASSERT(lr->lr_read_wanted == B_FALSE); 255 256 /* create the rear proxy range lock */ 257 locked_range_t *rear = kmem_alloc(sizeof (locked_range_t), KM_SLEEP); 258 rear->lr_offset = off; 259 rear->lr_length = lr->lr_offset + lr->lr_length - off; 260 rear->lr_count = lr->lr_count; 261 rear->lr_type = RL_READER; 262 rear->lr_proxy = B_TRUE; 263 rear->lr_write_wanted = B_FALSE; 264 rear->lr_read_wanted = B_FALSE; 265 266 locked_range_t *front = rangelock_proxify(tree, lr); 267 front->lr_length = off - lr->lr_offset; 268 269 avl_insert_here(tree, rear, front, AVL_AFTER); 270 return (front); 271 } 272 273 /* 274 * Create and add a new proxy range lock for the supplied range. 275 */ 276 static void 277 rangelock_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len) 278 { 279 ASSERT(len != 0); 280 locked_range_t *lr = kmem_alloc(sizeof (locked_range_t), KM_SLEEP); 281 lr->lr_offset = off; 282 lr->lr_length = len; 283 lr->lr_count = 1; 284 lr->lr_type = RL_READER; 285 lr->lr_proxy = B_TRUE; 286 lr->lr_write_wanted = B_FALSE; 287 lr->lr_read_wanted = B_FALSE; 288 avl_add(tree, lr); 289 } 290 291 static void 292 rangelock_add_reader(avl_tree_t *tree, locked_range_t *new, 293 locked_range_t *prev, avl_index_t where) 294 { 295 locked_range_t *next; 296 uint64_t off = new->lr_offset; 297 uint64_t len = new->lr_length; 298 299 /* 300 * prev arrives either: 301 * - pointing to an entry at the same offset 302 * - pointing to the entry with the closest previous offset whose 303 * range may overlap with the new range 304 * - null, if there were no ranges starting before the new one 305 */ 306 if (prev != NULL) { 307 if (prev->lr_offset + prev->lr_length <= off) { 308 prev = NULL; 309 } else if (prev->lr_offset != off) { 310 /* 311 * convert to proxy if needed then 312 * split this entry and bump ref count 313 */ 314 prev = rangelock_split(tree, prev, off); 315 prev = AVL_NEXT(tree, prev); /* move to rear range */ 316 } 317 } 318 ASSERT((prev == NULL) || (prev->lr_offset == off)); 319 320 if (prev != NULL) 321 next = prev; 322 else 323 next = avl_nearest(tree, where, AVL_AFTER); 324 325 if (next == NULL || off + len <= next->lr_offset) { 326 /* no overlaps, use the original new rl_t in the tree */ 327 avl_insert(tree, new, where); 328 return; 329 } 330 331 if (off < next->lr_offset) { 332 /* Add a proxy for initial range before the overlap */ 333 rangelock_new_proxy(tree, off, next->lr_offset - off); 334 } 335 336 new->lr_count = 0; /* will use proxies in tree */ 337 /* 338 * We now search forward through the ranges, until we go past the end 339 * of the new range. For each entry we make it a proxy if it 340 * isn't already, then bump its reference count. If there's any 341 * gaps between the ranges then we create a new proxy range. 342 */ 343 for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) { 344 if (off + len <= next->lr_offset) 345 break; 346 if (prev != NULL && prev->lr_offset + prev->lr_length < 347 next->lr_offset) { 348 /* there's a gap */ 349 ASSERT3U(next->lr_offset, >, 350 prev->lr_offset + prev->lr_length); 351 rangelock_new_proxy(tree, 352 prev->lr_offset + prev->lr_length, 353 next->lr_offset - 354 (prev->lr_offset + prev->lr_length)); 355 } 356 if (off + len == next->lr_offset + next->lr_length) { 357 /* exact overlap with end */ 358 next = rangelock_proxify(tree, next); 359 next->lr_count++; 360 return; 361 } 362 if (off + len < next->lr_offset + next->lr_length) { 363 /* new range ends in the middle of this block */ 364 next = rangelock_split(tree, next, off + len); 365 next->lr_count++; 366 return; 367 } 368 ASSERT3U(off + len, >, next->lr_offset + next->lr_length); 369 next = rangelock_proxify(tree, next); 370 next->lr_count++; 371 } 372 373 /* Add the remaining end range. */ 374 rangelock_new_proxy(tree, prev->lr_offset + prev->lr_length, 375 (off + len) - (prev->lr_offset + prev->lr_length)); 376 } 377 378 /* 379 * Check if a reader lock can be grabbed, or wait and recheck until available. 380 */ 381 static void 382 rangelock_enter_reader(rangelock_t *rl, locked_range_t *new) 383 { 384 avl_tree_t *tree = &rl->rl_tree; 385 locked_range_t *prev, *next; 386 avl_index_t where; 387 uint64_t off = new->lr_offset; 388 uint64_t len = new->lr_length; 389 390 /* 391 * Look for any writer locks in the range. 392 */ 393 retry: 394 prev = avl_find(tree, new, &where); 395 if (prev == NULL) 396 prev = (locked_range_t *)avl_nearest(tree, where, AVL_BEFORE); 397 398 /* 399 * Check the previous range for a writer lock overlap. 400 */ 401 if (prev && (off < prev->lr_offset + prev->lr_length)) { 402 if ((prev->lr_type == RL_WRITER) || (prev->lr_write_wanted)) { 403 if (!prev->lr_read_wanted) { 404 cv_init(&prev->lr_read_cv, 405 NULL, CV_DEFAULT, NULL); 406 prev->lr_read_wanted = B_TRUE; 407 } 408 cv_wait(&prev->lr_read_cv, &rl->rl_lock); 409 goto retry; 410 } 411 if (off + len < prev->lr_offset + prev->lr_length) 412 goto got_lock; 413 } 414 415 /* 416 * Search through the following ranges to see if there's 417 * write lock any overlap. 418 */ 419 if (prev != NULL) 420 next = AVL_NEXT(tree, prev); 421 else 422 next = (locked_range_t *)avl_nearest(tree, where, AVL_AFTER); 423 for (; next != NULL; next = AVL_NEXT(tree, next)) { 424 if (off + len <= next->lr_offset) 425 goto got_lock; 426 if ((next->lr_type == RL_WRITER) || (next->lr_write_wanted)) { 427 if (!next->lr_read_wanted) { 428 cv_init(&next->lr_read_cv, 429 NULL, CV_DEFAULT, NULL); 430 next->lr_read_wanted = B_TRUE; 431 } 432 cv_wait(&next->lr_read_cv, &rl->rl_lock); 433 goto retry; 434 } 435 if (off + len <= next->lr_offset + next->lr_length) 436 goto got_lock; 437 } 438 439 got_lock: 440 /* 441 * Add the read lock, which may involve splitting existing 442 * locks and bumping ref counts (r_count). 443 */ 444 rangelock_add_reader(tree, new, prev, where); 445 } 446 447 /* 448 * Lock a range (offset, length) as either shared (RL_READER) or exclusive 449 * (RL_WRITER or RL_APPEND). If RL_APPEND is specified, rl_cb() will convert 450 * it to a RL_WRITER lock (with the offset at the end of the file). Returns 451 * the range lock structure for later unlocking (or reduce range if the 452 * entire file is locked as RL_WRITER). 453 */ 454 locked_range_t * 455 rangelock_enter(rangelock_t *rl, uint64_t off, uint64_t len, 456 rangelock_type_t type) 457 { 458 ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND); 459 460 locked_range_t *new = kmem_alloc(sizeof (locked_range_t), KM_SLEEP); 461 new->lr_rangelock = rl; 462 new->lr_offset = off; 463 if (len + off < off) /* overflow */ 464 len = UINT64_MAX - off; 465 new->lr_length = len; 466 new->lr_count = 1; /* assume it's going to be in the tree */ 467 new->lr_type = type; 468 new->lr_proxy = B_FALSE; 469 new->lr_write_wanted = B_FALSE; 470 new->lr_read_wanted = B_FALSE; 471 472 mutex_enter(&rl->rl_lock); 473 if (type == RL_READER) { 474 /* 475 * First check for the usual case of no locks 476 */ 477 if (avl_numnodes(&rl->rl_tree) == 0) 478 avl_add(&rl->rl_tree, new); 479 else 480 rangelock_enter_reader(rl, new); 481 } else 482 rangelock_enter_writer(rl, new); /* RL_WRITER or RL_APPEND */ 483 mutex_exit(&rl->rl_lock); 484 return (new); 485 } 486 487 /* 488 * Unlock a reader lock 489 */ 490 static void 491 rangelock_exit_reader(rangelock_t *rl, locked_range_t *remove) 492 { 493 avl_tree_t *tree = &rl->rl_tree; 494 uint64_t len; 495 496 /* 497 * The common case is when the remove entry is in the tree 498 * (cnt == 1) meaning there's been no other reader locks overlapping 499 * with this one. Otherwise the remove entry will have been 500 * removed from the tree and replaced by proxies (one or 501 * more ranges mapping to the entire range). 502 */ 503 if (remove->lr_count == 1) { 504 avl_remove(tree, remove); 505 if (remove->lr_write_wanted) { 506 cv_broadcast(&remove->lr_write_cv); 507 cv_destroy(&remove->lr_write_cv); 508 } 509 if (remove->lr_read_wanted) { 510 cv_broadcast(&remove->lr_read_cv); 511 cv_destroy(&remove->lr_read_cv); 512 } 513 } else { 514 ASSERT0(remove->lr_count); 515 ASSERT0(remove->lr_write_wanted); 516 ASSERT0(remove->lr_read_wanted); 517 /* 518 * Find start proxy representing this reader lock, 519 * then decrement ref count on all proxies 520 * that make up this range, freeing them as needed. 521 */ 522 locked_range_t *lr = avl_find(tree, remove, NULL); 523 ASSERT3P(lr, !=, NULL); 524 ASSERT3U(lr->lr_count, !=, 0); 525 ASSERT3U(lr->lr_type, ==, RL_READER); 526 locked_range_t *next = NULL; 527 for (len = remove->lr_length; len != 0; lr = next) { 528 len -= lr->lr_length; 529 if (len != 0) { 530 next = AVL_NEXT(tree, lr); 531 ASSERT3P(next, !=, NULL); 532 ASSERT3U(lr->lr_offset + lr->lr_length, ==, 533 next->lr_offset); 534 ASSERT3U(next->lr_count, !=, 0); 535 ASSERT3U(next->lr_type, ==, RL_READER); 536 } 537 lr->lr_count--; 538 if (lr->lr_count == 0) { 539 avl_remove(tree, lr); 540 if (lr->lr_write_wanted) { 541 cv_broadcast(&lr->lr_write_cv); 542 cv_destroy(&lr->lr_write_cv); 543 } 544 if (lr->lr_read_wanted) { 545 cv_broadcast(&lr->lr_read_cv); 546 cv_destroy(&lr->lr_read_cv); 547 } 548 kmem_free(lr, sizeof (locked_range_t)); 549 } 550 } 551 } 552 kmem_free(remove, sizeof (locked_range_t)); 553 } 554 555 /* 556 * Unlock range and destroy range lock structure. 557 */ 558 void 559 rangelock_exit(locked_range_t *lr) 560 { 561 rangelock_t *rl = lr->lr_rangelock; 562 563 ASSERT(lr->lr_type == RL_WRITER || lr->lr_type == RL_READER); 564 ASSERT(lr->lr_count == 1 || lr->lr_count == 0); 565 ASSERT(!lr->lr_proxy); 566 567 mutex_enter(&rl->rl_lock); 568 if (lr->lr_type == RL_WRITER) { 569 /* writer locks can't be shared or split */ 570 avl_remove(&rl->rl_tree, lr); 571 mutex_exit(&rl->rl_lock); 572 if (lr->lr_write_wanted) { 573 cv_broadcast(&lr->lr_write_cv); 574 cv_destroy(&lr->lr_write_cv); 575 } 576 if (lr->lr_read_wanted) { 577 cv_broadcast(&lr->lr_read_cv); 578 cv_destroy(&lr->lr_read_cv); 579 } 580 kmem_free(lr, sizeof (locked_range_t)); 581 } else { 582 /* 583 * lock may be shared, let rangelock_exit_reader() 584 * release the lock and free the rl_t 585 */ 586 rangelock_exit_reader(rl, lr); 587 mutex_exit(&rl->rl_lock); 588 } 589 } 590 591 /* 592 * Reduce range locked as RL_WRITER from whole file to specified range. 593 * Asserts the whole file is exclusively locked and so there's only one 594 * entry in the tree. 595 */ 596 void 597 rangelock_reduce(locked_range_t *lr, uint64_t off, uint64_t len) 598 { 599 rangelock_t *rl = lr->lr_rangelock; 600 601 /* Ensure there are no other locks */ 602 ASSERT3U(avl_numnodes(&rl->rl_tree), ==, 1); 603 ASSERT3U(lr->lr_offset, ==, 0); 604 ASSERT3U(lr->lr_type, ==, RL_WRITER); 605 ASSERT(!lr->lr_proxy); 606 ASSERT3U(lr->lr_length, ==, UINT64_MAX); 607 ASSERT3U(lr->lr_count, ==, 1); 608 609 mutex_enter(&rl->rl_lock); 610 lr->lr_offset = off; 611 lr->lr_length = len; 612 mutex_exit(&rl->rl_lock); 613 if (lr->lr_write_wanted) 614 cv_broadcast(&lr->lr_write_cv); 615 if (lr->lr_read_wanted) 616 cv_broadcast(&lr->lr_read_cv); 617 } 618