1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2012 by Delphix. All rights reserved. 27 */ 28 29 /* 30 * This file contains the code to implement file range locking in 31 * ZFS, although there isn't much specific to ZFS (all that comes to mind 32 * support for growing the blocksize). 33 * 34 * Interface 35 * --------- 36 * Defined in zfs_rlock.h but essentially: 37 * rl = zfs_range_lock(zp, off, len, lock_type); 38 * zfs_range_unlock(rl); 39 * zfs_range_reduce(rl, off, len); 40 * 41 * AVL tree 42 * -------- 43 * An AVL tree is used to maintain the state of the existing ranges 44 * that are locked for exclusive (writer) or shared (reader) use. 45 * The starting range offset is used for searching and sorting the tree. 46 * 47 * Common case 48 * ----------- 49 * The (hopefully) usual case is of no overlaps or contention for 50 * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree 51 * searched that finds no overlap, and *this* rl_t is placed in the tree. 52 * 53 * Overlaps/Reference counting/Proxy locks 54 * --------------------------------------- 55 * The avl code only allows one node at a particular offset. Also it's very 56 * inefficient to search through all previous entries looking for overlaps 57 * (because the very 1st in the ordered list might be at offset 0 but 58 * cover the whole file). 59 * So this implementation uses reference counts and proxy range locks. 60 * Firstly, only reader locks use reference counts and proxy locks, 61 * because writer locks are exclusive. 62 * When a reader lock overlaps with another then a proxy lock is created 63 * for that range and replaces the original lock. If the overlap 64 * is exact then the reference count of the proxy is simply incremented. 65 * Otherwise, the proxy lock is split into smaller lock ranges and 66 * new proxy locks created for non overlapping ranges. 67 * The reference counts are adjusted accordingly. 68 * Meanwhile, the orginal lock is kept around (this is the callers handle) 69 * and its offset and length are used when releasing the lock. 70 * 71 * Thread coordination 72 * ------------------- 73 * In order to make wakeups efficient and to ensure multiple continuous 74 * readers on a range don't starve a writer for the same range lock, 75 * two condition variables are allocated in each rl_t. 76 * If a writer (or reader) can't get a range it initialises the writer 77 * (or reader) cv; sets a flag saying there's a writer (or reader) waiting; 78 * and waits on that cv. When a thread unlocks that range it wakes up all 79 * writers then all readers before destroying the lock. 80 * 81 * Append mode writes 82 * ------------------ 83 * Append mode writes need to lock a range at the end of a file. 84 * The offset of the end of the file is determined under the 85 * range locking mutex, and the lock type converted from RL_APPEND to 86 * RL_WRITER and the range locked. 87 * 88 * Grow block handling 89 * ------------------- 90 * ZFS supports multiple block sizes currently upto 128K. The smallest 91 * block size is used for the file which is grown as needed. During this 92 * growth all other writers and readers must be excluded. 93 * So if the block size needs to be grown then the whole file is 94 * exclusively locked, then later the caller will reduce the lock 95 * range to just the range to be written using zfs_reduce_range. 96 */ 97 98 #include <sys/zfs_rlock.h> 99 100 /* 101 * Check if a write lock can be grabbed, or wait and recheck until available. 102 */ 103 static void 104 zfs_range_lock_writer(znode_t *zp, rl_t *new) 105 { 106 avl_tree_t *tree = &zp->z_range_avl; 107 rl_t *rl; 108 avl_index_t where; 109 uint64_t end_size; 110 uint64_t off = new->r_off; 111 uint64_t len = new->r_len; 112 113 for (;;) { 114 /* 115 * Range locking is also used by zvol and uses a 116 * dummied up znode. However, for zvol, we don't need to 117 * append or grow blocksize, and besides we don't have 118 * a "sa" data or z_zfsvfs - so skip that processing. 119 * 120 * Yes, this is ugly, and would be solved by not handling 121 * grow or append in range lock code. If that was done then 122 * we could make the range locking code generically available 123 * to other non-zfs consumers. 124 */ 125 if (zp->z_vnode) { /* caller is ZPL */ 126 /* 127 * If in append mode pick up the current end of file. 128 * This is done under z_range_lock to avoid races. 129 */ 130 if (new->r_type == RL_APPEND) 131 new->r_off = zp->z_size; 132 133 /* 134 * If we need to grow the block size then grab the whole 135 * file range. This is also done under z_range_lock to 136 * avoid races. 137 */ 138 end_size = MAX(zp->z_size, new->r_off + len); 139 if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) || 140 zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) { 141 new->r_off = 0; 142 new->r_len = UINT64_MAX; 143 } 144 } 145 146 /* 147 * First check for the usual case of no locks 148 */ 149 if (avl_numnodes(tree) == 0) { 150 new->r_type = RL_WRITER; /* convert to writer */ 151 avl_add(tree, new); 152 return; 153 } 154 155 /* 156 * Look for any locks in the range. 157 */ 158 rl = avl_find(tree, new, &where); 159 if (rl) 160 goto wait; /* already locked at same offset */ 161 162 rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER); 163 if (rl && (rl->r_off < new->r_off + new->r_len)) 164 goto wait; 165 166 rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE); 167 if (rl && rl->r_off + rl->r_len > new->r_off) 168 goto wait; 169 170 new->r_type = RL_WRITER; /* convert possible RL_APPEND */ 171 avl_insert(tree, new, where); 172 return; 173 wait: 174 if (!rl->r_write_wanted) { 175 cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL); 176 rl->r_write_wanted = B_TRUE; 177 } 178 cv_wait(&rl->r_wr_cv, &zp->z_range_lock); 179 180 /* reset to original */ 181 new->r_off = off; 182 new->r_len = len; 183 } 184 } 185 186 /* 187 * If this is an original (non-proxy) lock then replace it by 188 * a proxy and return the proxy. 189 */ 190 static rl_t * 191 zfs_range_proxify(avl_tree_t *tree, rl_t *rl) 192 { 193 rl_t *proxy; 194 195 if (rl->r_proxy) 196 return (rl); /* already a proxy */ 197 198 ASSERT3U(rl->r_cnt, ==, 1); 199 ASSERT(rl->r_write_wanted == B_FALSE); 200 ASSERT(rl->r_read_wanted == B_FALSE); 201 avl_remove(tree, rl); 202 rl->r_cnt = 0; 203 204 /* create a proxy range lock */ 205 proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP); 206 proxy->r_off = rl->r_off; 207 proxy->r_len = rl->r_len; 208 proxy->r_cnt = 1; 209 proxy->r_type = RL_READER; 210 proxy->r_proxy = B_TRUE; 211 proxy->r_write_wanted = B_FALSE; 212 proxy->r_read_wanted = B_FALSE; 213 avl_add(tree, proxy); 214 215 return (proxy); 216 } 217 218 /* 219 * Split the range lock at the supplied offset 220 * returning the *front* proxy. 221 */ 222 static rl_t * 223 zfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off) 224 { 225 rl_t *front, *rear; 226 227 ASSERT3U(rl->r_len, >, 1); 228 ASSERT3U(off, >, rl->r_off); 229 ASSERT3U(off, <, rl->r_off + rl->r_len); 230 ASSERT(rl->r_write_wanted == B_FALSE); 231 ASSERT(rl->r_read_wanted == B_FALSE); 232 233 /* create the rear proxy range lock */ 234 rear = kmem_alloc(sizeof (rl_t), KM_SLEEP); 235 rear->r_off = off; 236 rear->r_len = rl->r_off + rl->r_len - off; 237 rear->r_cnt = rl->r_cnt; 238 rear->r_type = RL_READER; 239 rear->r_proxy = B_TRUE; 240 rear->r_write_wanted = B_FALSE; 241 rear->r_read_wanted = B_FALSE; 242 243 front = zfs_range_proxify(tree, rl); 244 front->r_len = off - rl->r_off; 245 246 avl_insert_here(tree, rear, front, AVL_AFTER); 247 return (front); 248 } 249 250 /* 251 * Create and add a new proxy range lock for the supplied range. 252 */ 253 static void 254 zfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len) 255 { 256 rl_t *rl; 257 258 ASSERT(len); 259 rl = kmem_alloc(sizeof (rl_t), KM_SLEEP); 260 rl->r_off = off; 261 rl->r_len = len; 262 rl->r_cnt = 1; 263 rl->r_type = RL_READER; 264 rl->r_proxy = B_TRUE; 265 rl->r_write_wanted = B_FALSE; 266 rl->r_read_wanted = B_FALSE; 267 avl_add(tree, rl); 268 } 269 270 static void 271 zfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where) 272 { 273 rl_t *next; 274 uint64_t off = new->r_off; 275 uint64_t len = new->r_len; 276 277 /* 278 * prev arrives either: 279 * - pointing to an entry at the same offset 280 * - pointing to the entry with the closest previous offset whose 281 * range may overlap with the new range 282 * - null, if there were no ranges starting before the new one 283 */ 284 if (prev) { 285 if (prev->r_off + prev->r_len <= off) { 286 prev = NULL; 287 } else if (prev->r_off != off) { 288 /* 289 * convert to proxy if needed then 290 * split this entry and bump ref count 291 */ 292 prev = zfs_range_split(tree, prev, off); 293 prev = AVL_NEXT(tree, prev); /* move to rear range */ 294 } 295 } 296 ASSERT((prev == NULL) || (prev->r_off == off)); 297 298 if (prev) 299 next = prev; 300 else 301 next = (rl_t *)avl_nearest(tree, where, AVL_AFTER); 302 303 if (next == NULL || off + len <= next->r_off) { 304 /* no overlaps, use the original new rl_t in the tree */ 305 avl_insert(tree, new, where); 306 return; 307 } 308 309 if (off < next->r_off) { 310 /* Add a proxy for initial range before the overlap */ 311 zfs_range_new_proxy(tree, off, next->r_off - off); 312 } 313 314 new->r_cnt = 0; /* will use proxies in tree */ 315 /* 316 * We now search forward through the ranges, until we go past the end 317 * of the new range. For each entry we make it a proxy if it 318 * isn't already, then bump its reference count. If there's any 319 * gaps between the ranges then we create a new proxy range. 320 */ 321 for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) { 322 if (off + len <= next->r_off) 323 break; 324 if (prev && prev->r_off + prev->r_len < next->r_off) { 325 /* there's a gap */ 326 ASSERT3U(next->r_off, >, prev->r_off + prev->r_len); 327 zfs_range_new_proxy(tree, prev->r_off + prev->r_len, 328 next->r_off - (prev->r_off + prev->r_len)); 329 } 330 if (off + len == next->r_off + next->r_len) { 331 /* exact overlap with end */ 332 next = zfs_range_proxify(tree, next); 333 next->r_cnt++; 334 return; 335 } 336 if (off + len < next->r_off + next->r_len) { 337 /* new range ends in the middle of this block */ 338 next = zfs_range_split(tree, next, off + len); 339 next->r_cnt++; 340 return; 341 } 342 ASSERT3U(off + len, >, next->r_off + next->r_len); 343 next = zfs_range_proxify(tree, next); 344 next->r_cnt++; 345 } 346 347 /* Add the remaining end range. */ 348 zfs_range_new_proxy(tree, prev->r_off + prev->r_len, 349 (off + len) - (prev->r_off + prev->r_len)); 350 } 351 352 /* 353 * Check if a reader lock can be grabbed, or wait and recheck until available. 354 */ 355 static void 356 zfs_range_lock_reader(znode_t *zp, rl_t *new) 357 { 358 avl_tree_t *tree = &zp->z_range_avl; 359 rl_t *prev, *next; 360 avl_index_t where; 361 uint64_t off = new->r_off; 362 uint64_t len = new->r_len; 363 364 /* 365 * Look for any writer locks in the range. 366 */ 367 retry: 368 prev = avl_find(tree, new, &where); 369 if (prev == NULL) 370 prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE); 371 372 /* 373 * Check the previous range for a writer lock overlap. 374 */ 375 if (prev && (off < prev->r_off + prev->r_len)) { 376 if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) { 377 if (!prev->r_read_wanted) { 378 cv_init(&prev->r_rd_cv, NULL, CV_DEFAULT, NULL); 379 prev->r_read_wanted = B_TRUE; 380 } 381 cv_wait(&prev->r_rd_cv, &zp->z_range_lock); 382 goto retry; 383 } 384 if (off + len < prev->r_off + prev->r_len) 385 goto got_lock; 386 } 387 388 /* 389 * Search through the following ranges to see if there's 390 * write lock any overlap. 391 */ 392 if (prev) 393 next = AVL_NEXT(tree, prev); 394 else 395 next = (rl_t *)avl_nearest(tree, where, AVL_AFTER); 396 for (; next; next = AVL_NEXT(tree, next)) { 397 if (off + len <= next->r_off) 398 goto got_lock; 399 if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) { 400 if (!next->r_read_wanted) { 401 cv_init(&next->r_rd_cv, NULL, CV_DEFAULT, NULL); 402 next->r_read_wanted = B_TRUE; 403 } 404 cv_wait(&next->r_rd_cv, &zp->z_range_lock); 405 goto retry; 406 } 407 if (off + len <= next->r_off + next->r_len) 408 goto got_lock; 409 } 410 411 got_lock: 412 /* 413 * Add the read lock, which may involve splitting existing 414 * locks and bumping ref counts (r_cnt). 415 */ 416 zfs_range_add_reader(tree, new, prev, where); 417 } 418 419 /* 420 * Lock a range (offset, length) as either shared (RL_READER) 421 * or exclusive (RL_WRITER). Returns the range lock structure 422 * for later unlocking or reduce range (if entire file 423 * previously locked as RL_WRITER). 424 */ 425 rl_t * 426 zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type) 427 { 428 rl_t *new; 429 430 ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND); 431 432 new = kmem_alloc(sizeof (rl_t), KM_SLEEP); 433 new->r_zp = zp; 434 new->r_off = off; 435 if (len + off < off) /* overflow */ 436 len = UINT64_MAX - off; 437 new->r_len = len; 438 new->r_cnt = 1; /* assume it's going to be in the tree */ 439 new->r_type = type; 440 new->r_proxy = B_FALSE; 441 new->r_write_wanted = B_FALSE; 442 new->r_read_wanted = B_FALSE; 443 444 mutex_enter(&zp->z_range_lock); 445 if (type == RL_READER) { 446 /* 447 * First check for the usual case of no locks 448 */ 449 if (avl_numnodes(&zp->z_range_avl) == 0) 450 avl_add(&zp->z_range_avl, new); 451 else 452 zfs_range_lock_reader(zp, new); 453 } else 454 zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */ 455 mutex_exit(&zp->z_range_lock); 456 return (new); 457 } 458 459 /* 460 * Unlock a reader lock 461 */ 462 static void 463 zfs_range_unlock_reader(znode_t *zp, rl_t *remove) 464 { 465 avl_tree_t *tree = &zp->z_range_avl; 466 rl_t *rl, *next; 467 uint64_t len; 468 469 /* 470 * The common case is when the remove entry is in the tree 471 * (cnt == 1) meaning there's been no other reader locks overlapping 472 * with this one. Otherwise the remove entry will have been 473 * removed from the tree and replaced by proxies (one or 474 * more ranges mapping to the entire range). 475 */ 476 if (remove->r_cnt == 1) { 477 avl_remove(tree, remove); 478 if (remove->r_write_wanted) { 479 cv_broadcast(&remove->r_wr_cv); 480 cv_destroy(&remove->r_wr_cv); 481 } 482 if (remove->r_read_wanted) { 483 cv_broadcast(&remove->r_rd_cv); 484 cv_destroy(&remove->r_rd_cv); 485 } 486 } else { 487 ASSERT0(remove->r_cnt); 488 ASSERT0(remove->r_write_wanted); 489 ASSERT0(remove->r_read_wanted); 490 /* 491 * Find start proxy representing this reader lock, 492 * then decrement ref count on all proxies 493 * that make up this range, freeing them as needed. 494 */ 495 rl = avl_find(tree, remove, NULL); 496 ASSERT(rl); 497 ASSERT(rl->r_cnt); 498 ASSERT(rl->r_type == RL_READER); 499 for (len = remove->r_len; len != 0; rl = next) { 500 len -= rl->r_len; 501 if (len) { 502 next = AVL_NEXT(tree, rl); 503 ASSERT(next); 504 ASSERT(rl->r_off + rl->r_len == next->r_off); 505 ASSERT(next->r_cnt); 506 ASSERT(next->r_type == RL_READER); 507 } 508 rl->r_cnt--; 509 if (rl->r_cnt == 0) { 510 avl_remove(tree, rl); 511 if (rl->r_write_wanted) { 512 cv_broadcast(&rl->r_wr_cv); 513 cv_destroy(&rl->r_wr_cv); 514 } 515 if (rl->r_read_wanted) { 516 cv_broadcast(&rl->r_rd_cv); 517 cv_destroy(&rl->r_rd_cv); 518 } 519 kmem_free(rl, sizeof (rl_t)); 520 } 521 } 522 } 523 kmem_free(remove, sizeof (rl_t)); 524 } 525 526 /* 527 * Unlock range and destroy range lock structure. 528 */ 529 void 530 zfs_range_unlock(rl_t *rl) 531 { 532 znode_t *zp = rl->r_zp; 533 534 ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER); 535 ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0); 536 ASSERT(!rl->r_proxy); 537 538 mutex_enter(&zp->z_range_lock); 539 if (rl->r_type == RL_WRITER) { 540 /* writer locks can't be shared or split */ 541 avl_remove(&zp->z_range_avl, rl); 542 mutex_exit(&zp->z_range_lock); 543 if (rl->r_write_wanted) { 544 cv_broadcast(&rl->r_wr_cv); 545 cv_destroy(&rl->r_wr_cv); 546 } 547 if (rl->r_read_wanted) { 548 cv_broadcast(&rl->r_rd_cv); 549 cv_destroy(&rl->r_rd_cv); 550 } 551 kmem_free(rl, sizeof (rl_t)); 552 } else { 553 /* 554 * lock may be shared, let zfs_range_unlock_reader() 555 * release the lock and free the rl_t 556 */ 557 zfs_range_unlock_reader(zp, rl); 558 mutex_exit(&zp->z_range_lock); 559 } 560 } 561 562 /* 563 * Reduce range locked as RL_WRITER from whole file to specified range. 564 * Asserts the whole file is exclusivly locked and so there's only one 565 * entry in the tree. 566 */ 567 void 568 zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len) 569 { 570 znode_t *zp = rl->r_zp; 571 572 /* Ensure there are no other locks */ 573 ASSERT(avl_numnodes(&zp->z_range_avl) == 1); 574 ASSERT(rl->r_off == 0); 575 ASSERT(rl->r_type == RL_WRITER); 576 ASSERT(!rl->r_proxy); 577 ASSERT3U(rl->r_len, ==, UINT64_MAX); 578 ASSERT3U(rl->r_cnt, ==, 1); 579 580 mutex_enter(&zp->z_range_lock); 581 rl->r_off = off; 582 rl->r_len = len; 583 mutex_exit(&zp->z_range_lock); 584 if (rl->r_write_wanted) 585 cv_broadcast(&rl->r_wr_cv); 586 if (rl->r_read_wanted) 587 cv_broadcast(&rl->r_rd_cv); 588 } 589 590 /* 591 * AVL comparison function used to order range locks 592 * Locks are ordered on the start offset of the range. 593 */ 594 int 595 zfs_range_compare(const void *arg1, const void *arg2) 596 { 597 const rl_t *rl1 = arg1; 598 const rl_t *rl2 = arg2; 599 600 if (rl1->r_off > rl2->r_off) 601 return (1); 602 if (rl1->r_off < rl2->r_off) 603 return (-1); 604 return (0); 605 } 606