1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/unistd.h> 30 #include <sys/sysmacros.h> 31 #include <sys/sunddi.h> 32 #include <sys/zfs_vfsops.h> 33 #include <sys/zfs_znode.h> 34 #include <sys/zfs_fuid.h> 35 #include <sys/dmu.h> 36 #include <sys/refcount.h> 37 #include <sys/avl.h> 38 #include <sys/zap.h> 39 #include <sys/nvpair.h> 40 #include <sys/kidmap.h> 41 #include <sys/sid.h> 42 43 /* 44 * FUID Domain table(s). 45 * 46 * The FUID table is stored as a packed nvlist of an array 47 * of nvlists which contain an index, domain string and offset 48 * 49 * During file system initialization the nvlist(s) are read and 50 * two AVL trees are created. One tree is keyed by the index number 51 * and the other by the domain string. Nodes are never removed from 52 * trees, but new entries may be added. If a new entry is added then the 53 * on-disk packed nvlist will also be updated. 54 */ 55 56 #define FUID_IDX "fuid_idx" 57 #define FUID_DOMAIN "fuid_domain" 58 #define FUID_OFFSET "fuid_offset" 59 #define FUID_NVP_ARRAY "fuid_nvlist" 60 61 typedef struct fuid_domain { 62 avl_node_t f_node; 63 ksiddomain_t *f_ksid; 64 int f_idx; 65 uint32_t f_offset; 66 } fuid_domain_t; 67 68 typedef struct fuid_idx { 69 avl_node_t f_node; 70 int f_idx; 71 fuid_domain_t *f_domain; 72 } fuid_idx_t; 73 74 /* 75 * Compare two indexes. 76 */ 77 static int 78 idx_compare(const void *arg1, const void *arg2) 79 { 80 const fuid_idx_t *node1 = arg1; 81 const fuid_idx_t *node2 = arg2; 82 83 if (node1->f_idx < node2->f_idx) 84 return (-1); 85 else if (node1->f_idx > node2->f_idx) 86 return (1); 87 return (0); 88 } 89 90 /* 91 * Compare two domain strings. 92 */ 93 static int 94 domain_compare(const void *arg1, const void *arg2) 95 { 96 const fuid_domain_t *node1 = arg1; 97 const fuid_domain_t *node2 = arg2; 98 int val; 99 100 val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name); 101 if (val == 0) 102 return (0); 103 return (val > 0 ? 1 : -1); 104 } 105 106 /* 107 * Load the fuid table(s) into memory. 108 */ 109 static void 110 zfs_fuid_init(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 111 { 112 dmu_buf_t *db; 113 char *packed; 114 size_t nvsize = 0; 115 int error = 0; 116 int i; 117 118 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 119 120 if (zfsvfs->z_fuid_loaded) { 121 rw_exit(&zfsvfs->z_fuid_lock); 122 return; 123 } 124 125 if (zfsvfs->z_fuid_obj == 0) { 126 127 /* first make sure we need to allocate object */ 128 129 error = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 130 ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); 131 if (error == ENOENT && tx != NULL) { 132 zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os, 133 DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE, 134 sizeof (uint64_t), tx); 135 VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 136 ZFS_FUID_TABLES, sizeof (uint64_t), 1, 137 &zfsvfs->z_fuid_obj, tx) == 0); 138 } 139 } 140 141 avl_create(&zfsvfs->z_fuid_idx, idx_compare, 142 sizeof (fuid_idx_t), offsetof(fuid_idx_t, f_node)); 143 avl_create(&zfsvfs->z_fuid_domain, domain_compare, 144 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_node)); 145 146 if (zfsvfs->z_fuid_obj) { 147 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj, 148 FTAG, &db)); 149 nvsize = *(uint64_t *)db->db_data; 150 dmu_buf_rele(db, FTAG); 151 } 152 153 if (nvsize == 0) 154 goto initialized; 155 156 packed = kmem_alloc(nvsize, KM_SLEEP); 157 error = dmu_read(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0, nvsize, packed); 158 if (error == 0) { 159 nvlist_t **fuidnvp; 160 nvlist_t *nvp = NULL; 161 uint_t count; 162 163 VERIFY(nvlist_unpack(packed, nvsize, &nvp, 0) == 0); 164 VERIFY((error = nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY, 165 &fuidnvp, &count)) == 0); 166 167 for (i = 0; i != count; i++) { 168 fuid_idx_t *idxnode; 169 fuid_domain_t *domnode; 170 char *domain; 171 avl_index_t loc; 172 uint64_t idx, offset; 173 174 VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN, 175 &domain) == 0); 176 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX, 177 &idx) == 0); 178 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_OFFSET, 179 &offset) == 0); 180 181 idxnode = kmem_alloc(sizeof (fuid_idx_t), KM_SLEEP); 182 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 183 184 domnode->f_idx = idxnode->f_idx = idx; 185 domnode->f_ksid = ksid_lookupdomain(domain); 186 idxnode->f_domain = domnode; 187 domnode->f_offset = offset; 188 if (avl_find(&zfsvfs->z_fuid_idx, 189 idxnode, &loc) == NULL) { 190 avl_insert(&zfsvfs->z_fuid_idx, idxnode, loc); 191 } 192 if (avl_find(&zfsvfs->z_fuid_domain, 193 domnode, &loc) == NULL) { 194 avl_insert(&zfsvfs->z_fuid_domain, 195 domnode, loc); 196 } 197 } 198 nvlist_free(nvp); 199 } 200 kmem_free(packed, nvsize); 201 202 initialized: 203 zfsvfs->z_fuid_loaded = B_TRUE; 204 rw_exit(&zfsvfs->z_fuid_lock); 205 } 206 207 /* 208 * Query domain table for a given domain. 209 * 210 * If domain isn't found it is added to AVL trees and 211 * the results are pushed out to disk. 212 */ 213 int 214 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, char **retdomain, 215 dmu_tx_t *tx) 216 { 217 fuid_domain_t searchnode, *findnode; 218 avl_index_t loc; 219 220 /* 221 * If the dummy "nobody" domain then return an index of 0 222 * to cause the created FUID to be a standard POSIX id 223 * for the user nobody. 224 */ 225 if (domain[0] == '\0') { 226 *retdomain = ""; 227 return (0); 228 } 229 230 searchnode.f_ksid = ksid_lookupdomain(domain); 231 if (retdomain) { 232 *retdomain = searchnode.f_ksid->kd_name; 233 } 234 if (zfsvfs->z_fuid_loaded == B_FALSE) 235 zfs_fuid_init(zfsvfs, tx); 236 237 rw_enter(&zfsvfs->z_fuid_lock, RW_READER); 238 findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc); 239 rw_exit(&zfsvfs->z_fuid_lock); 240 241 if (findnode) { 242 ksiddomain_rele(searchnode.f_ksid); 243 return (findnode->f_idx); 244 } else { 245 fuid_domain_t *domnode; 246 fuid_idx_t *newidxnode; 247 nvlist_t *nvp; 248 nvlist_t **fuids; 249 uint64_t retidx; 250 size_t nvsize = 0; 251 char *packed; 252 dmu_buf_t *db; 253 int i = 0; 254 255 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 256 domnode->f_ksid = searchnode.f_ksid; 257 domnode->f_offset = 0; 258 259 newidxnode = kmem_alloc(sizeof (fuid_idx_t), KM_SLEEP); 260 newidxnode->f_domain = domnode; 261 262 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 263 retidx = domnode->f_idx = newidxnode->f_idx = 264 avl_numnodes(&zfsvfs->z_fuid_idx) + 1; 265 266 avl_add(&zfsvfs->z_fuid_domain, domnode); 267 avl_add(&zfsvfs->z_fuid_idx, newidxnode); 268 /* 269 * Now resync the on-disk nvlist. 270 */ 271 VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 272 273 domnode = avl_first(&zfsvfs->z_fuid_domain); 274 fuids = kmem_alloc(retidx * sizeof (void *), KM_SLEEP); 275 while (domnode) { 276 VERIFY(nvlist_alloc(&fuids[i], 277 NV_UNIQUE_NAME, KM_SLEEP) == 0); 278 VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX, 279 domnode->f_idx) == 0); 280 VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 281 domnode->f_offset) == 0); 282 VERIFY(nvlist_add_string(fuids[i++], FUID_DOMAIN, 283 domnode->f_ksid->kd_name) == 0); 284 domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode); 285 } 286 VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY, 287 fuids, retidx) == 0); 288 for (i = 0; i != retidx; i++) 289 nvlist_free(fuids[i]); 290 kmem_free(fuids, retidx * sizeof (void *)); 291 VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0); 292 packed = kmem_alloc(nvsize, KM_SLEEP); 293 VERIFY(nvlist_pack(nvp, &packed, &nvsize, 294 NV_ENCODE_XDR, KM_SLEEP) == 0); 295 nvlist_free(nvp); 296 dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0, nvsize, 297 packed, tx); 298 kmem_free(packed, nvsize); 299 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj, 300 FTAG, &db)); 301 dmu_buf_will_dirty(db, tx); 302 *(uint64_t *)db->db_data = nvsize; 303 dmu_buf_rele(db, FTAG); 304 305 rw_exit(&zfsvfs->z_fuid_lock); 306 return (retidx); 307 } 308 } 309 310 /* 311 * Query domain table by index, returning domain string 312 * 313 * Returns a pointer from an avl node of the domain string. 314 * 315 */ 316 char * 317 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint64_t idx) 318 { 319 fuid_idx_t searchnode, *findnode; 320 avl_index_t loc; 321 322 if (idx == 0 || zfsvfs->z_use_fuids == B_FALSE) 323 return (NULL); 324 325 if (zfsvfs->z_fuid_loaded == B_FALSE) 326 zfs_fuid_init(zfsvfs, NULL); 327 328 searchnode.f_idx = idx; 329 330 rw_enter(&zfsvfs->z_fuid_lock, RW_READER); 331 findnode = avl_find(&zfsvfs->z_fuid_idx, &searchnode, &loc); 332 rw_exit(&zfsvfs->z_fuid_lock); 333 334 ASSERT(findnode); 335 return (findnode->f_domain->f_ksid->kd_name); 336 } 337 338 void 339 zfs_fuid_get_mappings(zfs_fuid_hdl_t *hdl) 340 { 341 VERIFY(hdl != NULL); 342 if (hdl->z_map_needed == B_FALSE) 343 return; 344 345 (void) kidmap_get_mappings(hdl->z_hdl); 346 347 kidmap_get_destroy(hdl->z_hdl); 348 hdl->z_hdl = NULL; 349 hdl->z_map_needed = B_FALSE; 350 } 351 352 void 353 zfs_fuid_queue_map_id(zfsvfs_t *zfsvfs, zfs_fuid_hdl_t *hdl, 354 uint64_t fuid, cred_t *cr, zfs_fuid_type_t type, uid_t *id) 355 { 356 uint32_t index = FUID_INDEX(fuid); 357 char *domain; 358 int status; 359 360 VERIFY(hdl); 361 362 if (index == 0 || zfsvfs->z_use_fuids == B_FALSE) { 363 *id = (uid_t)fuid; 364 return; 365 } 366 367 if (hdl->z_hdl == NULL) { 368 hdl->z_hdl = kidmap_get_create(crgetzone(cr)); 369 hdl->z_map_needed = B_TRUE; 370 } 371 372 domain = zfs_fuid_find_by_idx(zfsvfs, index); 373 ASSERT(domain != NULL); 374 375 if (type == ZFS_OWNER || type == ZFS_ACE_USER) 376 status = kidmap_batch_getuidbysid(hdl->z_hdl, domain, 377 FUID_RID(fuid), id, &hdl->z_status); 378 else 379 status = kidmap_batch_getgidbysid(hdl->z_hdl, domain, 380 FUID_RID(fuid), id, &hdl->z_status); 381 ASSERT(status == 0); 382 } 383 384 void 385 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uid, uid_t *gid) 386 { 387 uint32_t uid_index = FUID_INDEX(zp->z_phys->zp_uid); 388 uint32_t gid_index = FUID_INDEX(zp->z_phys->zp_gid); 389 390 /* Favor the common case, neither will be ephemeral */ 391 if (uid_index == 0 && gid_index == 0) { 392 *uid = zp->z_phys->zp_uid; 393 *gid = zp->z_phys->zp_gid; 394 return; 395 } else { 396 zfs_fuid_hdl_t hdl = { 0 }; 397 398 zfs_fuid_queue_map_id(zp->z_zfsvfs, &hdl, 399 zp->z_phys->zp_uid, cr, ZFS_OWNER, uid); 400 401 zfs_fuid_queue_map_id(zp->z_zfsvfs, &hdl, 402 zp->z_phys->zp_gid, cr, ZFS_GROUP, gid); 403 404 zfs_fuid_get_mappings(&hdl); 405 } 406 } 407 408 void 409 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid, 410 cred_t *cr, zfs_fuid_type_t type, uid_t *id) 411 { 412 uint32_t index = FUID_INDEX(fuid); 413 char *domain; 414 415 if (index == 0) { 416 *id = (uid_t)fuid; 417 return; 418 } 419 420 domain = zfs_fuid_find_by_idx(zfsvfs, index); 421 ASSERT(domain != NULL); 422 423 if (type == ZFS_OWNER || type == ZFS_ACE_USER) 424 (void) kidmap_getuidbysid(crgetzone(cr), domain, 425 FUID_RID(fuid), id); 426 else 427 (void) kidmap_getgidbysid(crgetzone(cr), domain, 428 FUID_RID(fuid), id); 429 } 430 431 /* 432 * Add a FUID node to the list of fuid's being created for this 433 * ACL 434 * 435 * If ACL has multiple domains, then keep only one copy of each unique 436 * domain. 437 */ 438 static void 439 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid, 440 uint64_t idx, uint64_t id, zfs_fuid_type_t type) 441 { 442 zfs_fuid_t *fuid; 443 zfs_fuid_domain_t *fuid_domain; 444 zfs_fuid_info_t *fuidp; 445 uint64_t fuididx; 446 boolean_t found = B_FALSE; 447 448 if (*fuidpp == NULL) 449 *fuidpp = zfs_fuid_info_alloc(); 450 451 fuidp = *fuidpp; 452 /* 453 * First find fuid domain index in linked list 454 * 455 * If one isn't found then create an entry. 456 */ 457 458 for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains); 459 fuid_domain; fuid_domain = list_next(&fuidp->z_domains, 460 fuid_domain), fuididx++) { 461 if (idx == fuid_domain->z_domidx) { 462 found = B_TRUE; 463 break; 464 } 465 } 466 467 if (found == B_FALSE) { 468 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP); 469 fuid_domain->z_domain = domain; 470 fuid_domain->z_domidx = idx; 471 list_insert_tail(&fuidp->z_domains, fuid_domain); 472 fuidp->z_domain_str_sz += strlen(domain) + 1; 473 fuidp->z_domain_cnt++; 474 } 475 476 if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) { 477 /* 478 * Now allocate fuid entry and add it on the end of the list 479 */ 480 481 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP); 482 fuid->z_id = id; 483 fuid->z_domidx = idx; 484 fuid->z_logfuid = FUID_ENCODE(fuididx, rid); 485 486 list_insert_tail(&fuidp->z_fuids, fuid); 487 fuidp->z_fuid_cnt++; 488 } else { 489 if (type == ZFS_OWNER) 490 fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid); 491 else 492 fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid); 493 } 494 } 495 496 /* 497 * Create a file system FUID, based on information in the users cred 498 */ 499 uint64_t 500 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, uint64_t id, 501 zfs_fuid_type_t type, dmu_tx_t *tx, cred_t *cr, zfs_fuid_info_t **fuidp) 502 { 503 uint64_t idx; 504 ksid_t *ksid; 505 uint32_t rid; 506 char *kdomain; 507 const char *domain; 508 509 VERIFY(type == ZFS_OWNER || type == ZFS_GROUP); 510 511 if (zfsvfs->z_use_fuids == B_FALSE || !IS_EPHEMERAL(id)) 512 return ((uint64_t)id); 513 514 ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP); 515 516 VERIFY(ksid != NULL); 517 rid = ksid_getrid(ksid); 518 domain = ksid_getdomain(ksid); 519 520 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx); 521 522 zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type); 523 524 return (FUID_ENCODE(idx, rid)); 525 } 526 527 /* 528 * Create a file system FUID for an ACL ace 529 * or a chown/chgrp of the file. 530 * This is similar to zfs_fuid_create_cred, except that 531 * we can't find the domain + rid information in the 532 * cred. Instead we have to query Winchester for the 533 * domain and rid. 534 * 535 * During replay operations the domain+rid information is 536 * found in the zfs_fuid_info_t that the replay code has 537 * attached to the zfsvfs of the file system. 538 */ 539 uint64_t 540 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr, 541 zfs_fuid_type_t type, dmu_tx_t *tx, zfs_fuid_info_t **fuidpp) 542 { 543 const char *domain; 544 char *kdomain; 545 uint32_t fuid_idx = FUID_INDEX(id); 546 uint32_t rid; 547 idmap_stat status; 548 uint64_t idx; 549 boolean_t is_replay = (zfsvfs->z_assign >= TXG_INITIAL); 550 zfs_fuid_t *zfuid = NULL; 551 zfs_fuid_info_t *fuidp; 552 553 /* 554 * If POSIX ID, or entry is already a FUID then 555 * just return the id 556 */ 557 if (!IS_EPHEMERAL(id) || fuid_idx != 0) 558 return (id); 559 560 if (is_replay) { 561 fuidp = zfsvfs->z_fuid_replay; 562 563 /* 564 * If we are passed an ephemeral id, but no 565 * fuid_info was logged then return NOBODY. 566 * This is most likely a result of idmap service 567 * not being available. 568 */ 569 if (fuidp == NULL) 570 return (UID_NOBODY); 571 572 switch (type) { 573 case ZFS_ACE_USER: 574 case ZFS_ACE_GROUP: 575 zfuid = list_head(&fuidp->z_fuids); 576 rid = FUID_RID(zfuid->z_logfuid); 577 idx = FUID_INDEX(zfuid->z_logfuid); 578 break; 579 case ZFS_OWNER: 580 rid = FUID_RID(fuidp->z_fuid_owner); 581 idx = FUID_INDEX(fuidp->z_fuid_owner); 582 break; 583 case ZFS_GROUP: 584 rid = FUID_RID(fuidp->z_fuid_group); 585 idx = FUID_INDEX(fuidp->z_fuid_group); 586 break; 587 }; 588 domain = fuidp->z_domain_table[idx -1]; 589 } else { 590 if (type == ZFS_OWNER || type == ZFS_ACE_USER) 591 status = kidmap_getsidbyuid(crgetzone(cr), id, 592 &domain, &rid); 593 else 594 status = kidmap_getsidbygid(crgetzone(cr), id, 595 &domain, &rid); 596 597 if (status != 0) { 598 /* 599 * When returning nobody we will need to 600 * make a dummy fuid table entry for logging 601 * purposes. 602 */ 603 rid = UID_NOBODY; 604 domain = ""; 605 } 606 607 } 608 609 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx); 610 611 if (is_replay == B_FALSE) 612 zfs_fuid_node_add(fuidpp, kdomain, rid, idx, id, type); 613 else if (zfuid != NULL) { 614 list_remove(&fuidp->z_fuids, zfuid); 615 kmem_free(zfuid, sizeof (zfs_fuid_t)); 616 } 617 return (FUID_ENCODE(idx, rid)); 618 } 619 620 void 621 zfs_fuid_destroy(zfsvfs_t *zfsvfs) 622 { 623 fuid_domain_t *domnode; 624 fuid_idx_t *idxnode; 625 void *cookie; 626 627 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 628 if (zfsvfs->z_fuid_loaded == B_FALSE) { 629 rw_exit(&zfsvfs->z_fuid_lock); 630 return; 631 } 632 cookie = NULL; 633 while (domnode = avl_destroy_nodes(&zfsvfs->z_fuid_domain, &cookie)) { 634 ksiddomain_rele(domnode->f_ksid); 635 kmem_free(domnode, sizeof (fuid_domain_t)); 636 } 637 avl_destroy(&zfsvfs->z_fuid_domain); 638 cookie = NULL; 639 while (idxnode = avl_destroy_nodes(&zfsvfs->z_fuid_idx, &cookie)) 640 kmem_free(idxnode, sizeof (fuid_idx_t)); 641 avl_destroy(&zfsvfs->z_fuid_idx); 642 rw_exit(&zfsvfs->z_fuid_lock); 643 } 644 645 /* 646 * Allocate zfs_fuid_info for tracking FUIDs created during 647 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR() 648 */ 649 zfs_fuid_info_t * 650 zfs_fuid_info_alloc(void) 651 { 652 zfs_fuid_info_t *fuidp; 653 654 fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP); 655 list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t), 656 offsetof(zfs_fuid_domain_t, z_next)); 657 list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t), 658 offsetof(zfs_fuid_t, z_next)); 659 return (fuidp); 660 } 661 662 /* 663 * Release all memory associated with zfs_fuid_info_t 664 */ 665 void 666 zfs_fuid_info_free(zfs_fuid_info_t *fuidp) 667 { 668 zfs_fuid_t *zfuid; 669 zfs_fuid_domain_t *zdomain; 670 671 while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) { 672 list_remove(&fuidp->z_fuids, zfuid); 673 kmem_free(zfuid, sizeof (zfs_fuid_t)); 674 } 675 676 if (fuidp->z_domain_table != NULL) 677 kmem_free(fuidp->z_domain_table, 678 (sizeof (char **)) * fuidp->z_domain_cnt); 679 680 while ((zdomain = list_head(&fuidp->z_domains)) != NULL) { 681 list_remove(&fuidp->z_domains, zdomain); 682 kmem_free(zdomain, sizeof (zfs_fuid_domain_t)); 683 } 684 685 kmem_free(fuidp, sizeof (zfs_fuid_info_t)); 686 } 687 688 /* 689 * Check to see if id is a groupmember. If cred 690 * has ksid info then sidlist is checked first 691 * and if still not found then POSIX groups are checked 692 * 693 * Will use a straight FUID compare when possible. 694 */ 695 boolean_t 696 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr) 697 { 698 ksid_t *ksid = crgetsid(cr, KSID_GROUP); 699 uid_t gid; 700 701 if (ksid) { 702 int i; 703 ksid_t *ksid_groups; 704 ksidlist_t *ksidlist = crgetsidlist(cr); 705 uint32_t idx = FUID_INDEX(id); 706 uint32_t rid = FUID_RID(id); 707 708 ASSERT(ksidlist); 709 ksid_groups = ksidlist->ksl_sids; 710 711 for (i = 0; i != ksidlist->ksl_nsid; i++) { 712 if (idx == 0) { 713 if (id != IDMAP_WK_CREATOR_GROUP_GID && 714 id == ksid_groups[i].ks_id) { 715 return (B_TRUE); 716 } 717 } else { 718 char *domain; 719 720 domain = zfs_fuid_find_by_idx(zfsvfs, idx); 721 ASSERT(domain != NULL); 722 723 if (strcmp(domain, 724 IDMAP_WK_CREATOR_SID_AUTHORITY) == 0) { 725 return (B_FALSE); 726 } 727 728 if ((strcmp(domain, 729 ksid_groups[i].ks_domain->kd_name) == 0) && 730 rid == ksid_groups[i].ks_rid) { 731 return (B_TRUE); 732 } 733 } 734 } 735 } 736 737 /* 738 * Not found in ksidlist, check posix groups 739 */ 740 zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP, &gid); 741 return (groupmember(gid, cr)); 742 } 743