xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_fuid.c (revision d321a33cdd896e6b211d113a33698dd76e89b861)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/unistd.h>
30 #include <sys/sysmacros.h>
31 #include <sys/sunddi.h>
32 #include <sys/zfs_vfsops.h>
33 #include <sys/zfs_znode.h>
34 #include <sys/zfs_fuid.h>
35 #include <sys/dmu.h>
36 #include <sys/refcount.h>
37 #include <sys/avl.h>
38 #include <sys/zap.h>
39 #include <sys/nvpair.h>
40 #include <sys/kidmap.h>
41 #include <sys/sid.h>
42 
43 /*
44  * FUID Domain table(s).
45  *
46  * The FUID table is stored as a packed nvlist of an array
47  * of nvlists which contain an index, domain string and offset
48  *
49  * During file system initialization the nvlist(s) are read and
50  * two AVL trees are created.  One tree is keyed by the index number
51  * and the other by the domain string.  Nodes are never removed from
52  * trees, but new entries may be added.  If a new entry is added then the
53  * on-disk packed nvlist will also be updated.
54  */
55 
56 #define	FUID_IDX	"fuid_idx"
57 #define	FUID_DOMAIN	"fuid_domain"
58 #define	FUID_OFFSET	"fuid_offset"
59 #define	FUID_NVP_ARRAY	"fuid_nvlist"
60 
61 typedef struct fuid_domain {
62 	avl_node_t	f_node;
63 	ksiddomain_t	*f_ksid;
64 	int		f_idx;
65 	uint32_t	f_offset;
66 } fuid_domain_t;
67 
68 typedef struct fuid_idx {
69 	avl_node_t	f_node;
70 	int		f_idx;
71 	fuid_domain_t	*f_domain;
72 } fuid_idx_t;
73 
74 /*
75  * Compare two indexes.
76  */
77 static int
78 idx_compare(const void *arg1, const void *arg2)
79 {
80 	const fuid_idx_t *node1 = arg1;
81 	const fuid_idx_t *node2 = arg2;
82 
83 	if (node1->f_idx < node2->f_idx)
84 		return (-1);
85 	else if (node1->f_idx > node2->f_idx)
86 		return (1);
87 	return (0);
88 }
89 
90 /*
91  * Compare two domain strings.
92  */
93 static int
94 domain_compare(const void *arg1, const void *arg2)
95 {
96 	const fuid_domain_t *node1 = arg1;
97 	const fuid_domain_t *node2 = arg2;
98 	int val;
99 
100 	val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
101 	if (val == 0)
102 		return (0);
103 	return (val > 0 ? 1 : -1);
104 }
105 
106 /*
107  * Load the fuid table(s) into memory.
108  */
109 static void
110 zfs_fuid_init(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
111 {
112 	dmu_buf_t *db;
113 	char *packed;
114 	int error = 0;
115 	int i;
116 
117 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
118 
119 	if (zfsvfs->z_fuid_loaded) {
120 		rw_exit(&zfsvfs->z_fuid_lock);
121 		return;
122 	}
123 
124 	if (zfsvfs->z_fuid_obj == 0) {
125 
126 		/* first make sure we need to allocate object */
127 
128 		error = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
129 		    ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
130 		if (error == ENOENT && tx != NULL) {
131 			zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
132 			    DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
133 			    sizeof (uint64_t), tx);
134 			VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
135 			    ZFS_FUID_TABLES, sizeof (uint64_t), 1,
136 			    &zfsvfs->z_fuid_obj, tx) == 0);
137 		}
138 	}
139 
140 	avl_create(&zfsvfs->z_fuid_idx, idx_compare,
141 	    sizeof (fuid_idx_t), offsetof(fuid_idx_t, f_node));
142 	avl_create(&zfsvfs->z_fuid_domain, domain_compare,
143 	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_node));
144 
145 	if (zfsvfs->z_fuid_obj) {
146 		VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
147 		    FTAG, &db));
148 		zfsvfs->z_fuid_size = *(uint64_t *)db->db_data;
149 		dmu_buf_rele(db, FTAG);
150 	}
151 
152 	if (zfsvfs->z_fuid_size == 0)
153 		goto initialized;
154 
155 	packed = kmem_alloc(zfsvfs->z_fuid_size, KM_SLEEP);
156 	error = dmu_read(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
157 	    zfsvfs->z_fuid_size, packed);
158 	if (error == 0)  {
159 		nvlist_t **fuidnvp;
160 		nvlist_t *nvp = NULL;
161 		uint_t count;
162 
163 		VERIFY(nvlist_unpack(packed, zfsvfs->z_fuid_size,
164 		    &nvp, 0) == 0);
165 		VERIFY((error = nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
166 		    &fuidnvp, &count)) == 0);
167 
168 		for (i = 0; i != count; i++) {
169 			fuid_idx_t *idxnode;
170 			fuid_domain_t *domnode;
171 			char *domain;
172 			avl_index_t loc;
173 			uint64_t idx, offset;
174 
175 			VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
176 			    &domain) == 0);
177 			VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
178 			    &idx) == 0);
179 			VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_OFFSET,
180 			    &offset) == 0);
181 
182 			idxnode = kmem_alloc(sizeof (fuid_idx_t), KM_SLEEP);
183 			domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
184 
185 			domnode->f_idx = idxnode->f_idx = idx;
186 			domnode->f_ksid = ksid_lookupdomain(domain);
187 			idxnode->f_domain = domnode;
188 			domnode->f_offset = offset;
189 			if (avl_find(&zfsvfs->z_fuid_idx,
190 			    idxnode, &loc) == NULL) {
191 				avl_insert(&zfsvfs->z_fuid_idx, idxnode, loc);
192 			}
193 			if (avl_find(&zfsvfs->z_fuid_domain,
194 			    domnode, &loc) == NULL) {
195 				avl_insert(&zfsvfs->z_fuid_domain,
196 				    domnode, loc);
197 			}
198 		}
199 		nvlist_free(nvp);
200 	}
201 	kmem_free(packed, zfsvfs->z_fuid_size);
202 
203 initialized:
204 	zfsvfs->z_fuid_loaded = B_TRUE;
205 	rw_exit(&zfsvfs->z_fuid_lock);
206 }
207 
208 /*
209  * Query domain table for a given domain.
210  *
211  * If domain isn't found it is added to AVL trees and
212  * the results are pushed out to disk.
213  */
214 int
215 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, char **retdomain,
216     dmu_tx_t *tx)
217 {
218 	fuid_domain_t searchnode, *findnode;
219 	avl_index_t loc;
220 
221 	/*
222 	 * If the dummy "nobody" domain then return an index of 0
223 	 * to cause the created FUID to be a standard POSIX id
224 	 * for the user nobody.
225 	 */
226 	if (domain[0] == '\0') {
227 		*retdomain = "";
228 		return (0);
229 	}
230 
231 	searchnode.f_ksid = ksid_lookupdomain(domain);
232 	if (retdomain) {
233 		*retdomain = searchnode.f_ksid->kd_name;
234 	}
235 	if (zfsvfs->z_fuid_loaded == B_FALSE)
236 		zfs_fuid_init(zfsvfs, tx);
237 
238 	rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
239 	findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
240 	rw_exit(&zfsvfs->z_fuid_lock);
241 
242 	if (findnode) {
243 		ksiddomain_rele(searchnode.f_ksid);
244 		return (findnode->f_idx);
245 	} else {
246 		fuid_domain_t *domnode;
247 		fuid_idx_t *newidxnode;
248 		nvlist_t *nvp;
249 		nvlist_t **fuids;
250 		uint64_t retidx;
251 		size_t nvsize = 0;
252 		char *packed;
253 		dmu_buf_t *db;
254 		int i = 0;
255 
256 		domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
257 		domnode->f_ksid = searchnode.f_ksid;
258 		domnode->f_offset = 0;
259 
260 		newidxnode = kmem_alloc(sizeof (fuid_idx_t), KM_SLEEP);
261 		newidxnode->f_domain = domnode;
262 
263 		rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
264 		retidx = domnode->f_idx = newidxnode->f_idx =
265 		    avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
266 
267 		avl_add(&zfsvfs->z_fuid_domain, domnode);
268 		avl_add(&zfsvfs->z_fuid_idx, newidxnode);
269 		/*
270 		 * Now resync the on-disk nvlist.
271 		 */
272 		VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
273 
274 		domnode = avl_first(&zfsvfs->z_fuid_domain);
275 		fuids = kmem_alloc(retidx * sizeof (void *), KM_SLEEP);
276 		while (domnode) {
277 			VERIFY(nvlist_alloc(&fuids[i],
278 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
279 			VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
280 			    domnode->f_idx) == 0);
281 			VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET,
282 			    domnode->f_offset) == 0);
283 			VERIFY(nvlist_add_string(fuids[i++], FUID_DOMAIN,
284 			    domnode->f_ksid->kd_name) == 0);
285 			domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode);
286 		}
287 		VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
288 		    fuids, retidx) == 0);
289 		for (i = 0; i != retidx; i++)
290 			nvlist_free(fuids[i]);
291 		kmem_free(fuids, retidx * sizeof (void *));
292 		VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
293 		packed = kmem_alloc(nvsize, KM_SLEEP);
294 		VERIFY(nvlist_pack(nvp, &packed, &nvsize,
295 		    NV_ENCODE_XDR, KM_SLEEP) == 0);
296 		nvlist_free(nvp);
297 		zfsvfs->z_fuid_size = nvsize;
298 		dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
299 		    zfsvfs->z_fuid_size, packed, tx);
300 		kmem_free(packed, zfsvfs->z_fuid_size);
301 		VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
302 		    FTAG, &db));
303 		dmu_buf_will_dirty(db, tx);
304 		*(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
305 		dmu_buf_rele(db, FTAG);
306 
307 		rw_exit(&zfsvfs->z_fuid_lock);
308 		return (retidx);
309 	}
310 }
311 
312 /*
313  * Query domain table by index, returning domain string
314  *
315  * Returns a pointer from an avl node of the domain string.
316  *
317  */
318 char *
319 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint64_t idx)
320 {
321 	fuid_idx_t searchnode, *findnode;
322 	avl_index_t loc;
323 
324 	if (idx == 0 || zfsvfs->z_use_fuids == B_FALSE)
325 		return (NULL);
326 
327 	if (zfsvfs->z_fuid_loaded == B_FALSE)
328 		zfs_fuid_init(zfsvfs, NULL);
329 
330 	searchnode.f_idx = idx;
331 
332 	rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
333 	findnode = avl_find(&zfsvfs->z_fuid_idx, &searchnode, &loc);
334 	rw_exit(&zfsvfs->z_fuid_lock);
335 
336 	ASSERT(findnode);
337 	return (findnode->f_domain->f_ksid->kd_name);
338 }
339 
340 void
341 zfs_fuid_get_mappings(zfs_fuid_hdl_t *hdl)
342 {
343 	VERIFY(hdl != NULL);
344 	if (hdl->z_map_needed == B_FALSE)
345 		return;
346 
347 	(void) kidmap_get_mappings(hdl->z_hdl);
348 
349 	kidmap_get_destroy(hdl->z_hdl);
350 	hdl->z_hdl = NULL;
351 	hdl->z_map_needed = B_FALSE;
352 }
353 
354 void
355 zfs_fuid_queue_map_id(zfsvfs_t *zfsvfs, zfs_fuid_hdl_t *hdl,
356     uint64_t fuid, cred_t *cr, zfs_fuid_type_t type, uid_t *id)
357 {
358 	uint32_t index = FUID_INDEX(fuid);
359 	char *domain;
360 	int status;
361 
362 	VERIFY(hdl);
363 
364 	if (index == 0 || zfsvfs->z_use_fuids == B_FALSE) {
365 		*id = (uid_t)fuid;
366 		return;
367 	}
368 
369 	if (hdl->z_hdl == NULL) {
370 		hdl->z_hdl = kidmap_get_create(crgetzone(cr));
371 		hdl->z_map_needed = B_TRUE;
372 	}
373 
374 	domain = zfs_fuid_find_by_idx(zfsvfs, index);
375 	ASSERT(domain != NULL);
376 
377 	if (type == ZFS_OWNER || type == ZFS_ACE_USER)
378 		status = kidmap_batch_getuidbysid(hdl->z_hdl, domain,
379 		    FUID_RID(fuid), id, &hdl->z_status);
380 	else
381 		status = kidmap_batch_getgidbysid(hdl->z_hdl, domain,
382 		    FUID_RID(fuid), id, &hdl->z_status);
383 	ASSERT(status == 0);
384 }
385 
386 void
387 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uid, uid_t *gid)
388 {
389 	uint32_t uid_index = FUID_INDEX(zp->z_phys->zp_uid);
390 	uint32_t gid_index = FUID_INDEX(zp->z_phys->zp_gid);
391 
392 	/* Favor the common case, neither will be ephemeral */
393 	if (uid_index == 0 && gid_index == 0) {
394 		*uid = zp->z_phys->zp_uid;
395 		*gid = zp->z_phys->zp_gid;
396 		return;
397 	} else {
398 		zfs_fuid_hdl_t hdl = { 0 };
399 
400 		zfs_fuid_queue_map_id(zp->z_zfsvfs, &hdl,
401 		    zp->z_phys->zp_uid, cr, ZFS_OWNER, uid);
402 
403 		zfs_fuid_queue_map_id(zp->z_zfsvfs, &hdl,
404 		    zp->z_phys->zp_gid, cr, ZFS_GROUP, gid);
405 
406 		zfs_fuid_get_mappings(&hdl);
407 	}
408 }
409 
410 void
411 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
412     cred_t *cr, zfs_fuid_type_t type, uid_t *id)
413 {
414 	uint32_t index = FUID_INDEX(fuid);
415 	char *domain;
416 
417 	if (index == 0) {
418 		*id = (uid_t)fuid;
419 		return;
420 	}
421 
422 	domain = zfs_fuid_find_by_idx(zfsvfs, index);
423 	ASSERT(domain != NULL);
424 
425 	if (type == ZFS_OWNER || type == ZFS_ACE_USER)
426 		(void) kidmap_getuidbysid(crgetzone(cr), domain,
427 		    FUID_RID(fuid), id);
428 	else
429 		(void) kidmap_getgidbysid(crgetzone(cr), domain,
430 		    FUID_RID(fuid), id);
431 }
432 
433 /*
434  * Add a FUID node to the list of fuid's being created for this
435  * ACL
436  *
437  * If ACL has multiple domains, then keep only one copy of each unique
438  * domain.
439  */
440 static void
441 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
442     uint64_t idx, uint64_t id, zfs_fuid_type_t type)
443 {
444 	zfs_fuid_t *fuid;
445 	zfs_fuid_domain_t *fuid_domain;
446 	zfs_fuid_info_t *fuidp;
447 	uint64_t fuididx;
448 	boolean_t found = B_FALSE;
449 
450 	if (*fuidpp == NULL)
451 		*fuidpp = zfs_fuid_info_alloc();
452 
453 	fuidp = *fuidpp;
454 	/*
455 	 * First find fuid domain index in linked list
456 	 *
457 	 * If one isn't found then create an entry.
458 	 */
459 
460 	for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
461 	    fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
462 	    fuid_domain), fuididx++) {
463 		if (idx == fuid_domain->z_domidx) {
464 			found = B_TRUE;
465 			break;
466 		}
467 	}
468 
469 	if (found == B_FALSE) {
470 		fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
471 		fuid_domain->z_domain = domain;
472 		fuid_domain->z_domidx = idx;
473 		list_insert_tail(&fuidp->z_domains, fuid_domain);
474 		fuidp->z_domain_str_sz += strlen(domain) + 1;
475 		fuidp->z_domain_cnt++;
476 	}
477 
478 	if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
479 		/*
480 		 * Now allocate fuid entry and add it on the end of the list
481 		 */
482 
483 		fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
484 		fuid->z_id = id;
485 		fuid->z_domidx = idx;
486 		fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
487 
488 		list_insert_tail(&fuidp->z_fuids, fuid);
489 		fuidp->z_fuid_cnt++;
490 	} else {
491 		if (type == ZFS_OWNER)
492 			fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
493 		else
494 			fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
495 	}
496 }
497 
498 /*
499  * Create a file system FUID, based on information in the users cred
500  */
501 uint64_t
502 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, uint64_t id,
503     zfs_fuid_type_t type, dmu_tx_t *tx, cred_t *cr, zfs_fuid_info_t **fuidp)
504 {
505 	uint64_t	idx;
506 	ksid_t		*ksid;
507 	uint32_t	rid;
508 	char 		*kdomain;
509 	const char	*domain;
510 
511 	VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
512 
513 	if (zfsvfs->z_use_fuids == B_FALSE || !IS_EPHEMERAL(id))
514 		return ((uint64_t)id);
515 
516 	ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
517 
518 	VERIFY(ksid != NULL);
519 	rid = ksid_getrid(ksid);
520 	domain = ksid_getdomain(ksid);
521 
522 	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx);
523 
524 	zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
525 
526 	return (FUID_ENCODE(idx, rid));
527 }
528 
529 /*
530  * Create a file system FUID for an ACL ace
531  * or a chown/chgrp of the file.
532  * This is similar to zfs_fuid_create_cred, except that
533  * we can't find the domain + rid information in the
534  * cred.  Instead we have to query Winchester for the
535  * domain and rid.
536  *
537  * During replay operations the domain+rid information is
538  * found in the zfs_fuid_info_t that the replay code has
539  * attached to the zfsvfs of the file system.
540  */
541 uint64_t
542 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
543     zfs_fuid_type_t type, dmu_tx_t *tx, zfs_fuid_info_t **fuidpp)
544 {
545 	const char *domain;
546 	char *kdomain;
547 	uint32_t fuid_idx = FUID_INDEX(id);
548 	uint32_t rid;
549 	idmap_stat status;
550 	uint64_t idx;
551 	boolean_t is_replay = (zfsvfs->z_assign >= TXG_INITIAL);
552 	zfs_fuid_t *zfuid = NULL;
553 	zfs_fuid_info_t *fuidp;
554 
555 	/*
556 	 * If POSIX ID, or entry is already a FUID then
557 	 * just return the id
558 	 */
559 	if (!IS_EPHEMERAL(id) || fuid_idx != 0)
560 		return (id);
561 
562 	if (is_replay) {
563 		fuidp = zfsvfs->z_fuid_replay;
564 
565 		/*
566 		 * If we are passed an ephemeral id, but no
567 		 * fuid_info was logged then return NOBODY.
568 		 * This is most likely a result of idmap service
569 		 * not being available.
570 		 */
571 		if (fuidp == NULL)
572 			return (UID_NOBODY);
573 
574 		switch (type) {
575 		case ZFS_ACE_USER:
576 		case ZFS_ACE_GROUP:
577 			zfuid = list_head(&fuidp->z_fuids);
578 			rid = FUID_RID(zfuid->z_logfuid);
579 			idx = FUID_INDEX(zfuid->z_logfuid);
580 			break;
581 		case ZFS_OWNER:
582 			rid = FUID_RID(fuidp->z_fuid_owner);
583 			idx = FUID_INDEX(fuidp->z_fuid_owner);
584 			break;
585 		case ZFS_GROUP:
586 			rid = FUID_RID(fuidp->z_fuid_group);
587 			idx = FUID_INDEX(fuidp->z_fuid_group);
588 			break;
589 		};
590 		domain = fuidp->z_domain_table[idx -1];
591 	} else {
592 		if (type == ZFS_OWNER || type == ZFS_ACE_USER)
593 			status = kidmap_getsidbyuid(crgetzone(cr), id,
594 			    &domain, &rid);
595 		else
596 			status = kidmap_getsidbygid(crgetzone(cr), id,
597 			    &domain, &rid);
598 
599 		if (status != 0) {
600 			/*
601 			 * When returning nobody we will need to
602 			 * make a dummy fuid table entry for logging
603 			 * purposes.
604 			 */
605 			rid = UID_NOBODY;
606 			domain = "";
607 		}
608 
609 	}
610 
611 	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx);
612 
613 	if (is_replay == B_FALSE)
614 		zfs_fuid_node_add(fuidpp, kdomain, rid, idx, id, type);
615 	else if (zfuid != NULL) {
616 		list_remove(&fuidp->z_fuids, zfuid);
617 		kmem_free(zfuid, sizeof (zfs_fuid_t));
618 	}
619 	return (FUID_ENCODE(idx, rid));
620 }
621 
622 void
623 zfs_fuid_destroy(zfsvfs_t *zfsvfs)
624 {
625 	fuid_domain_t *domnode;
626 	fuid_idx_t *idxnode;
627 	void *cookie;
628 
629 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
630 	if (zfsvfs->z_fuid_loaded == B_FALSE) {
631 		rw_exit(&zfsvfs->z_fuid_lock);
632 		return;
633 	}
634 	cookie = NULL;
635 	while (domnode = avl_destroy_nodes(&zfsvfs->z_fuid_domain, &cookie)) {
636 		ksiddomain_rele(domnode->f_ksid);
637 		kmem_free(domnode, sizeof (fuid_domain_t));
638 	}
639 	avl_destroy(&zfsvfs->z_fuid_domain);
640 	cookie = NULL;
641 	while (idxnode = avl_destroy_nodes(&zfsvfs->z_fuid_idx, &cookie))
642 		kmem_free(idxnode, sizeof (fuid_idx_t));
643 	avl_destroy(&zfsvfs->z_fuid_idx);
644 	rw_exit(&zfsvfs->z_fuid_lock);
645 }
646 
647 /*
648  * Allocate zfs_fuid_info for tracking FUIDs created during
649  * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
650  */
651 zfs_fuid_info_t *
652 zfs_fuid_info_alloc(void)
653 {
654 	zfs_fuid_info_t *fuidp;
655 
656 	fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
657 	list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
658 	    offsetof(zfs_fuid_domain_t, z_next));
659 	list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
660 	    offsetof(zfs_fuid_t, z_next));
661 	return (fuidp);
662 }
663 
664 /*
665  * Release all memory associated with zfs_fuid_info_t
666  */
667 void
668 zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
669 {
670 	zfs_fuid_t *zfuid;
671 	zfs_fuid_domain_t *zdomain;
672 
673 	while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
674 		list_remove(&fuidp->z_fuids, zfuid);
675 		kmem_free(zfuid, sizeof (zfs_fuid_t));
676 	}
677 
678 	if (fuidp->z_domain_table != NULL)
679 		kmem_free(fuidp->z_domain_table,
680 		    (sizeof (char **)) * fuidp->z_domain_cnt);
681 
682 	while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
683 		list_remove(&fuidp->z_domains, zdomain);
684 		kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
685 	}
686 
687 	kmem_free(fuidp, sizeof (zfs_fuid_info_t));
688 }
689 
690 /*
691  * Check to see if id is a groupmember.  If cred
692  * has ksid info then sidlist is checked first
693  * and if still not found then POSIX groups are checked
694  *
695  * Will use a straight FUID compare when possible.
696  */
697 boolean_t
698 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
699 {
700 	ksid_t		*ksid = crgetsid(cr, KSID_GROUP);
701 	uid_t		gid;
702 
703 	if (ksid) {
704 		int 		i;
705 		ksid_t		*ksid_groups;
706 		ksidlist_t	*ksidlist = crgetsidlist(cr);
707 		uint32_t	idx = FUID_INDEX(id);
708 		uint32_t	rid = FUID_RID(id);
709 
710 		ASSERT(ksidlist);
711 		ksid_groups = ksidlist->ksl_sids;
712 
713 		for (i = 0; i != ksidlist->ksl_nsid; i++) {
714 			if (idx == 0) {
715 				if (id != IDMAP_WK_CREATOR_GROUP_GID &&
716 				    id == ksid_groups[i].ks_id) {
717 					return (B_TRUE);
718 				}
719 			} else {
720 				char *domain;
721 
722 				domain = zfs_fuid_find_by_idx(zfsvfs, idx);
723 				ASSERT(domain != NULL);
724 
725 				if (strcmp(domain,
726 				    IDMAP_WK_CREATOR_SID_AUTHORITY) == 0) {
727 					return (B_FALSE);
728 				}
729 
730 				if ((strcmp(domain,
731 				    ksid_groups[i].ks_domain->kd_name) == 0) &&
732 				    rid == ksid_groups[i].ks_rid) {
733 					return (B_TRUE);
734 				}
735 			}
736 		}
737 	}
738 
739 	/*
740 	 * Not found in ksidlist, check posix groups
741 	 */
742 	zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP, &gid);
743 	return (groupmember(gid, cr));
744 }
745