1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/sunddi.h> 28 #include <sys/dmu.h> 29 #include <sys/avl.h> 30 #include <sys/zap.h> 31 #include <sys/refcount.h> 32 #include <sys/nvpair.h> 33 #ifdef _KERNEL 34 #include <sys/kidmap.h> 35 #include <sys/sid.h> 36 #include <sys/zfs_vfsops.h> 37 #include <sys/zfs_znode.h> 38 #endif 39 #include <sys/zfs_fuid.h> 40 41 /* 42 * FUID Domain table(s). 43 * 44 * The FUID table is stored as a packed nvlist of an array 45 * of nvlists which contain an index, domain string and offset 46 * 47 * During file system initialization the nvlist(s) are read and 48 * two AVL trees are created. One tree is keyed by the index number 49 * and the other by the domain string. Nodes are never removed from 50 * trees, but new entries may be added. If a new entry is added then 51 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then 52 * be responsible for calling zfs_fuid_sync() to sync the changes to disk. 53 * 54 */ 55 56 #define FUID_IDX "fuid_idx" 57 #define FUID_DOMAIN "fuid_domain" 58 #define FUID_OFFSET "fuid_offset" 59 #define FUID_NVP_ARRAY "fuid_nvlist" 60 61 typedef struct fuid_domain { 62 avl_node_t f_domnode; 63 avl_node_t f_idxnode; 64 ksiddomain_t *f_ksid; 65 uint64_t f_idx; 66 } fuid_domain_t; 67 68 static char *nulldomain = ""; 69 70 /* 71 * Compare two indexes. 72 */ 73 static int 74 idx_compare(const void *arg1, const void *arg2) 75 { 76 const fuid_domain_t *node1 = arg1; 77 const fuid_domain_t *node2 = arg2; 78 79 if (node1->f_idx < node2->f_idx) 80 return (-1); 81 else if (node1->f_idx > node2->f_idx) 82 return (1); 83 return (0); 84 } 85 86 /* 87 * Compare two domain strings. 88 */ 89 static int 90 domain_compare(const void *arg1, const void *arg2) 91 { 92 const fuid_domain_t *node1 = arg1; 93 const fuid_domain_t *node2 = arg2; 94 int val; 95 96 val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name); 97 if (val == 0) 98 return (0); 99 return (val > 0 ? 1 : -1); 100 } 101 102 void 103 zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree) 104 { 105 avl_create(idx_tree, idx_compare, 106 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode)); 107 avl_create(domain_tree, domain_compare, 108 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode)); 109 } 110 111 /* 112 * load initial fuid domain and idx trees. This function is used by 113 * both the kernel and zdb. 114 */ 115 uint64_t 116 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree, 117 avl_tree_t *domain_tree) 118 { 119 dmu_buf_t *db; 120 uint64_t fuid_size; 121 122 ASSERT(fuid_obj != 0); 123 VERIFY(0 == dmu_bonus_hold(os, fuid_obj, 124 FTAG, &db)); 125 fuid_size = *(uint64_t *)db->db_data; 126 dmu_buf_rele(db, FTAG); 127 128 if (fuid_size) { 129 nvlist_t **fuidnvp; 130 nvlist_t *nvp = NULL; 131 uint_t count; 132 char *packed; 133 int i; 134 135 packed = kmem_alloc(fuid_size, KM_SLEEP); 136 VERIFY(dmu_read(os, fuid_obj, 0, 137 fuid_size, packed) == 0); 138 VERIFY(nvlist_unpack(packed, fuid_size, 139 &nvp, 0) == 0); 140 VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY, 141 &fuidnvp, &count) == 0); 142 143 for (i = 0; i != count; i++) { 144 fuid_domain_t *domnode; 145 char *domain; 146 uint64_t idx; 147 148 VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN, 149 &domain) == 0); 150 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX, 151 &idx) == 0); 152 153 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 154 155 domnode->f_idx = idx; 156 domnode->f_ksid = ksid_lookupdomain(domain); 157 avl_add(idx_tree, domnode); 158 avl_add(domain_tree, domnode); 159 } 160 nvlist_free(nvp); 161 kmem_free(packed, fuid_size); 162 } 163 return (fuid_size); 164 } 165 166 void 167 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree) 168 { 169 fuid_domain_t *domnode; 170 void *cookie; 171 172 cookie = NULL; 173 while (domnode = avl_destroy_nodes(domain_tree, &cookie)) 174 ksiddomain_rele(domnode->f_ksid); 175 176 avl_destroy(domain_tree); 177 cookie = NULL; 178 while (domnode = avl_destroy_nodes(idx_tree, &cookie)) 179 kmem_free(domnode, sizeof (fuid_domain_t)); 180 avl_destroy(idx_tree); 181 } 182 183 char * 184 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx) 185 { 186 fuid_domain_t searchnode, *findnode; 187 avl_index_t loc; 188 189 searchnode.f_idx = idx; 190 191 findnode = avl_find(idx_tree, &searchnode, &loc); 192 193 return (findnode ? findnode->f_ksid->kd_name : nulldomain); 194 } 195 196 #ifdef _KERNEL 197 /* 198 * Load the fuid table(s) into memory. 199 */ 200 static void 201 zfs_fuid_init(zfsvfs_t *zfsvfs) 202 { 203 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 204 205 if (zfsvfs->z_fuid_loaded) { 206 rw_exit(&zfsvfs->z_fuid_lock); 207 return; 208 } 209 210 zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); 211 212 (void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 213 ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); 214 if (zfsvfs->z_fuid_obj != 0) { 215 zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os, 216 zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx, 217 &zfsvfs->z_fuid_domain); 218 } 219 220 zfsvfs->z_fuid_loaded = B_TRUE; 221 rw_exit(&zfsvfs->z_fuid_lock); 222 } 223 224 /* 225 * sync out AVL trees to persistent storage. 226 */ 227 void 228 zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 229 { 230 nvlist_t *nvp; 231 nvlist_t **fuids; 232 size_t nvsize = 0; 233 char *packed; 234 dmu_buf_t *db; 235 fuid_domain_t *domnode; 236 int numnodes; 237 int i; 238 239 if (!zfsvfs->z_fuid_dirty) { 240 return; 241 } 242 243 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 244 245 /* 246 * First see if table needs to be created? 247 */ 248 if (zfsvfs->z_fuid_obj == 0) { 249 zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os, 250 DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE, 251 sizeof (uint64_t), tx); 252 VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 253 ZFS_FUID_TABLES, sizeof (uint64_t), 1, 254 &zfsvfs->z_fuid_obj, tx) == 0); 255 } 256 257 VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 258 259 numnodes = avl_numnodes(&zfsvfs->z_fuid_idx); 260 fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP); 261 for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++, 262 domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) { 263 VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0); 264 VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX, 265 domnode->f_idx) == 0); 266 VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0); 267 VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN, 268 domnode->f_ksid->kd_name) == 0); 269 } 270 VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY, 271 fuids, numnodes) == 0); 272 for (i = 0; i != numnodes; i++) 273 nvlist_free(fuids[i]); 274 kmem_free(fuids, numnodes * sizeof (void *)); 275 VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0); 276 packed = kmem_alloc(nvsize, KM_SLEEP); 277 VERIFY(nvlist_pack(nvp, &packed, &nvsize, 278 NV_ENCODE_XDR, KM_SLEEP) == 0); 279 nvlist_free(nvp); 280 zfsvfs->z_fuid_size = nvsize; 281 dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0, 282 zfsvfs->z_fuid_size, packed, tx); 283 kmem_free(packed, zfsvfs->z_fuid_size); 284 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj, 285 FTAG, &db)); 286 dmu_buf_will_dirty(db, tx); 287 *(uint64_t *)db->db_data = zfsvfs->z_fuid_size; 288 dmu_buf_rele(db, FTAG); 289 290 zfsvfs->z_fuid_dirty = B_FALSE; 291 rw_exit(&zfsvfs->z_fuid_lock); 292 } 293 294 /* 295 * Query domain table for a given domain. 296 * 297 * If domain isn't found it is added to AVL trees and 298 * the zfsvfs->z_fuid_dirty flag will be set to TRUE. 299 * it will then be necessary for the caller or another 300 * thread to detect the dirty table and sync out the changes. 301 */ 302 static int 303 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, char **retdomain) 304 { 305 fuid_domain_t searchnode, *findnode; 306 avl_index_t loc; 307 krw_t rw = RW_READER; 308 309 /* 310 * If the dummy "nobody" domain then return an index of 0 311 * to cause the created FUID to be a standard POSIX id 312 * for the user nobody. 313 */ 314 if (domain[0] == '\0') { 315 *retdomain = nulldomain; 316 return (0); 317 } 318 319 searchnode.f_ksid = ksid_lookupdomain(domain); 320 if (retdomain) { 321 *retdomain = searchnode.f_ksid->kd_name; 322 } 323 if (!zfsvfs->z_fuid_loaded) 324 zfs_fuid_init(zfsvfs); 325 326 retry: 327 rw_enter(&zfsvfs->z_fuid_lock, rw); 328 findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc); 329 330 if (findnode) { 331 rw_exit(&zfsvfs->z_fuid_lock); 332 ksiddomain_rele(searchnode.f_ksid); 333 return (findnode->f_idx); 334 } else { 335 fuid_domain_t *domnode; 336 uint64_t retidx; 337 338 if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) { 339 rw_exit(&zfsvfs->z_fuid_lock); 340 rw = RW_WRITER; 341 goto retry; 342 } 343 344 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 345 domnode->f_ksid = searchnode.f_ksid; 346 347 retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1; 348 349 avl_add(&zfsvfs->z_fuid_domain, domnode); 350 avl_add(&zfsvfs->z_fuid_idx, domnode); 351 zfsvfs->z_fuid_dirty = B_TRUE; 352 rw_exit(&zfsvfs->z_fuid_lock); 353 return (retidx); 354 } 355 } 356 357 /* 358 * Query domain table by index, returning domain string 359 * 360 * Returns a pointer from an avl node of the domain string. 361 * 362 */ 363 static char * 364 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx) 365 { 366 char *domain; 367 368 if (idx == 0 || !zfsvfs->z_use_fuids) 369 return (NULL); 370 371 if (!zfsvfs->z_fuid_loaded) 372 zfs_fuid_init(zfsvfs); 373 374 rw_enter(&zfsvfs->z_fuid_lock, RW_READER); 375 376 if (zfsvfs->z_fuid_obj) 377 domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx); 378 else 379 domain = nulldomain; 380 rw_exit(&zfsvfs->z_fuid_lock); 381 382 ASSERT(domain); 383 return (domain); 384 } 385 386 void 387 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp) 388 { 389 *uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_uid, 390 cr, ZFS_OWNER); 391 *gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_gid, 392 cr, ZFS_GROUP); 393 } 394 395 uid_t 396 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid, 397 cred_t *cr, zfs_fuid_type_t type) 398 { 399 uint32_t index = FUID_INDEX(fuid); 400 char *domain; 401 uid_t id; 402 403 if (index == 0) 404 return (fuid); 405 406 domain = zfs_fuid_find_by_idx(zfsvfs, index); 407 ASSERT(domain != NULL); 408 409 if (type == ZFS_OWNER || type == ZFS_ACE_USER) { 410 (void) kidmap_getuidbysid(crgetzone(cr), domain, 411 FUID_RID(fuid), &id); 412 } else { 413 (void) kidmap_getgidbysid(crgetzone(cr), domain, 414 FUID_RID(fuid), &id); 415 } 416 return (id); 417 } 418 419 /* 420 * Add a FUID node to the list of fuid's being created for this 421 * ACL 422 * 423 * If ACL has multiple domains, then keep only one copy of each unique 424 * domain. 425 */ 426 static void 427 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid, 428 uint64_t idx, uint64_t id, zfs_fuid_type_t type) 429 { 430 zfs_fuid_t *fuid; 431 zfs_fuid_domain_t *fuid_domain; 432 zfs_fuid_info_t *fuidp; 433 uint64_t fuididx; 434 boolean_t found = B_FALSE; 435 436 if (*fuidpp == NULL) 437 *fuidpp = zfs_fuid_info_alloc(); 438 439 fuidp = *fuidpp; 440 /* 441 * First find fuid domain index in linked list 442 * 443 * If one isn't found then create an entry. 444 */ 445 446 for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains); 447 fuid_domain; fuid_domain = list_next(&fuidp->z_domains, 448 fuid_domain), fuididx++) { 449 if (idx == fuid_domain->z_domidx) { 450 found = B_TRUE; 451 break; 452 } 453 } 454 455 if (!found) { 456 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP); 457 fuid_domain->z_domain = domain; 458 fuid_domain->z_domidx = idx; 459 list_insert_tail(&fuidp->z_domains, fuid_domain); 460 fuidp->z_domain_str_sz += strlen(domain) + 1; 461 fuidp->z_domain_cnt++; 462 } 463 464 if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) { 465 466 /* 467 * Now allocate fuid entry and add it on the end of the list 468 */ 469 470 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP); 471 fuid->z_id = id; 472 fuid->z_domidx = idx; 473 fuid->z_logfuid = FUID_ENCODE(fuididx, rid); 474 475 list_insert_tail(&fuidp->z_fuids, fuid); 476 fuidp->z_fuid_cnt++; 477 } else { 478 if (type == ZFS_OWNER) 479 fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid); 480 else 481 fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid); 482 } 483 } 484 485 /* 486 * Create a file system FUID, based on information in the users cred 487 */ 488 uint64_t 489 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type, 490 cred_t *cr, zfs_fuid_info_t **fuidp) 491 { 492 uint64_t idx; 493 ksid_t *ksid; 494 uint32_t rid; 495 char *kdomain; 496 const char *domain; 497 uid_t id; 498 499 VERIFY(type == ZFS_OWNER || type == ZFS_GROUP); 500 501 ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP); 502 if (ksid) { 503 id = ksid_getid(ksid); 504 } else { 505 if (type == ZFS_OWNER) 506 id = crgetuid(cr); 507 else 508 id = crgetgid(cr); 509 } 510 511 if (!zfsvfs->z_use_fuids || (!IS_EPHEMERAL(id))) 512 return ((uint64_t)id); 513 514 rid = ksid_getrid(ksid); 515 domain = ksid_getdomain(ksid); 516 517 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain); 518 519 zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type); 520 521 return (FUID_ENCODE(idx, rid)); 522 } 523 524 /* 525 * Create a file system FUID for an ACL ace 526 * or a chown/chgrp of the file. 527 * This is similar to zfs_fuid_create_cred, except that 528 * we can't find the domain + rid information in the 529 * cred. Instead we have to query Winchester for the 530 * domain and rid. 531 * 532 * During replay operations the domain+rid information is 533 * found in the zfs_fuid_info_t that the replay code has 534 * attached to the zfsvfs of the file system. 535 */ 536 uint64_t 537 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr, 538 zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp) 539 { 540 const char *domain; 541 char *kdomain; 542 uint32_t fuid_idx = FUID_INDEX(id); 543 uint32_t rid; 544 idmap_stat status; 545 uint64_t idx; 546 zfs_fuid_t *zfuid = NULL; 547 zfs_fuid_info_t *fuidp; 548 549 /* 550 * If POSIX ID, or entry is already a FUID then 551 * just return the id 552 * 553 * We may also be handed an already FUID'ized id via 554 * chmod. 555 */ 556 557 if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0) 558 return (id); 559 560 if (zfsvfs->z_replay) { 561 fuidp = zfsvfs->z_fuid_replay; 562 563 /* 564 * If we are passed an ephemeral id, but no 565 * fuid_info was logged then return NOBODY. 566 * This is most likely a result of idmap service 567 * not being available. 568 */ 569 if (fuidp == NULL) 570 return (UID_NOBODY); 571 572 switch (type) { 573 case ZFS_ACE_USER: 574 case ZFS_ACE_GROUP: 575 zfuid = list_head(&fuidp->z_fuids); 576 rid = FUID_RID(zfuid->z_logfuid); 577 idx = FUID_INDEX(zfuid->z_logfuid); 578 break; 579 case ZFS_OWNER: 580 rid = FUID_RID(fuidp->z_fuid_owner); 581 idx = FUID_INDEX(fuidp->z_fuid_owner); 582 break; 583 case ZFS_GROUP: 584 rid = FUID_RID(fuidp->z_fuid_group); 585 idx = FUID_INDEX(fuidp->z_fuid_group); 586 break; 587 }; 588 domain = fuidp->z_domain_table[idx -1]; 589 } else { 590 if (type == ZFS_OWNER || type == ZFS_ACE_USER) 591 status = kidmap_getsidbyuid(crgetzone(cr), id, 592 &domain, &rid); 593 else 594 status = kidmap_getsidbygid(crgetzone(cr), id, 595 &domain, &rid); 596 597 if (status != 0) { 598 /* 599 * When returning nobody we will need to 600 * make a dummy fuid table entry for logging 601 * purposes. 602 */ 603 rid = UID_NOBODY; 604 domain = nulldomain; 605 } 606 } 607 608 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain); 609 610 if (!zfsvfs->z_replay) 611 zfs_fuid_node_add(fuidpp, kdomain, 612 rid, idx, id, type); 613 else if (zfuid != NULL) { 614 list_remove(&fuidp->z_fuids, zfuid); 615 kmem_free(zfuid, sizeof (zfs_fuid_t)); 616 } 617 return (FUID_ENCODE(idx, rid)); 618 } 619 620 void 621 zfs_fuid_destroy(zfsvfs_t *zfsvfs) 622 { 623 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 624 if (!zfsvfs->z_fuid_loaded) { 625 rw_exit(&zfsvfs->z_fuid_lock); 626 return; 627 } 628 zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); 629 rw_exit(&zfsvfs->z_fuid_lock); 630 } 631 632 /* 633 * Allocate zfs_fuid_info for tracking FUIDs created during 634 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR() 635 */ 636 zfs_fuid_info_t * 637 zfs_fuid_info_alloc(void) 638 { 639 zfs_fuid_info_t *fuidp; 640 641 fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP); 642 list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t), 643 offsetof(zfs_fuid_domain_t, z_next)); 644 list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t), 645 offsetof(zfs_fuid_t, z_next)); 646 return (fuidp); 647 } 648 649 /* 650 * Release all memory associated with zfs_fuid_info_t 651 */ 652 void 653 zfs_fuid_info_free(zfs_fuid_info_t *fuidp) 654 { 655 zfs_fuid_t *zfuid; 656 zfs_fuid_domain_t *zdomain; 657 658 while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) { 659 list_remove(&fuidp->z_fuids, zfuid); 660 kmem_free(zfuid, sizeof (zfs_fuid_t)); 661 } 662 663 if (fuidp->z_domain_table != NULL) 664 kmem_free(fuidp->z_domain_table, 665 (sizeof (char **)) * fuidp->z_domain_cnt); 666 667 while ((zdomain = list_head(&fuidp->z_domains)) != NULL) { 668 list_remove(&fuidp->z_domains, zdomain); 669 kmem_free(zdomain, sizeof (zfs_fuid_domain_t)); 670 } 671 672 kmem_free(fuidp, sizeof (zfs_fuid_info_t)); 673 } 674 675 /* 676 * Check to see if id is a groupmember. If cred 677 * has ksid info then sidlist is checked first 678 * and if still not found then POSIX groups are checked 679 * 680 * Will use a straight FUID compare when possible. 681 */ 682 boolean_t 683 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr) 684 { 685 ksid_t *ksid = crgetsid(cr, KSID_GROUP); 686 uid_t gid; 687 688 if (ksid) { 689 int i; 690 ksid_t *ksid_groups; 691 ksidlist_t *ksidlist = crgetsidlist(cr); 692 uint32_t idx = FUID_INDEX(id); 693 uint32_t rid = FUID_RID(id); 694 695 ASSERT(ksidlist); 696 ksid_groups = ksidlist->ksl_sids; 697 698 for (i = 0; i != ksidlist->ksl_nsid; i++) { 699 if (idx == 0) { 700 if (id != IDMAP_WK_CREATOR_GROUP_GID && 701 id == ksid_groups[i].ks_id) { 702 return (B_TRUE); 703 } 704 } else { 705 char *domain; 706 707 domain = zfs_fuid_find_by_idx(zfsvfs, idx); 708 ASSERT(domain != NULL); 709 710 if (strcmp(domain, 711 IDMAP_WK_CREATOR_SID_AUTHORITY) == 0) 712 return (B_FALSE); 713 714 if ((strcmp(domain, 715 ksid_groups[i].ks_domain->kd_name) == 0) && 716 rid == ksid_groups[i].ks_rid) 717 return (B_TRUE); 718 } 719 } 720 } 721 722 /* 723 * Not found in ksidlist, check posix groups 724 */ 725 gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP); 726 return (groupmember(gid, cr)); 727 } 728 #endif 729