1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2018 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/dmu.h> 28 #include <sys/avl.h> 29 #include <sys/zap.h> 30 #include <sys/refcount.h> 31 #include <sys/nvpair.h> 32 #ifdef _KERNEL 33 #include <sys/kidmap.h> 34 #include <sys/sid.h> 35 #include <sys/zfs_vfsops.h> 36 #include <sys/zfs_znode.h> 37 #endif 38 #include <sys/zfs_fuid.h> 39 40 /* 41 * FUID Domain table(s). 42 * 43 * The FUID table is stored as a packed nvlist of an array 44 * of nvlists which contain an index, domain string and offset 45 * 46 * During file system initialization the nvlist(s) are read and 47 * two AVL trees are created. One tree is keyed by the index number 48 * and the other by the domain string. Nodes are never removed from 49 * trees, but new entries may be added. If a new entry is added then 50 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then 51 * be responsible for calling zfs_fuid_sync() to sync the changes to disk. 52 * 53 */ 54 55 #define FUID_IDX "fuid_idx" 56 #define FUID_DOMAIN "fuid_domain" 57 #define FUID_OFFSET "fuid_offset" 58 #define FUID_NVP_ARRAY "fuid_nvlist" 59 60 typedef struct fuid_domain { 61 avl_node_t f_domnode; 62 avl_node_t f_idxnode; 63 ksiddomain_t *f_ksid; 64 uint64_t f_idx; 65 } fuid_domain_t; 66 67 static char *nulldomain = ""; 68 69 /* 70 * Compare two indexes. 71 */ 72 static int 73 idx_compare(const void *arg1, const void *arg2) 74 { 75 const fuid_domain_t *node1 = (const fuid_domain_t *)arg1; 76 const fuid_domain_t *node2 = (const fuid_domain_t *)arg2; 77 78 return (TREE_CMP(node1->f_idx, node2->f_idx)); 79 } 80 81 /* 82 * Compare two domain strings. 83 */ 84 static int 85 domain_compare(const void *arg1, const void *arg2) 86 { 87 const fuid_domain_t *node1 = (const fuid_domain_t *)arg1; 88 const fuid_domain_t *node2 = (const fuid_domain_t *)arg2; 89 int val; 90 91 val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name); 92 93 return (TREE_ISIGN(val)); 94 } 95 96 void 97 zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree) 98 { 99 avl_create(idx_tree, idx_compare, 100 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode)); 101 avl_create(domain_tree, domain_compare, 102 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode)); 103 } 104 105 /* 106 * load initial fuid domain and idx trees. This function is used by 107 * both the kernel and zdb. 108 */ 109 uint64_t 110 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree, 111 avl_tree_t *domain_tree) 112 { 113 dmu_buf_t *db; 114 uint64_t fuid_size; 115 116 ASSERT(fuid_obj != 0); 117 VERIFY(0 == dmu_bonus_hold(os, fuid_obj, 118 FTAG, &db)); 119 fuid_size = *(uint64_t *)db->db_data; 120 dmu_buf_rele(db, FTAG); 121 122 if (fuid_size) { 123 nvlist_t **fuidnvp; 124 nvlist_t *nvp = NULL; 125 uint_t count; 126 char *packed; 127 int i; 128 129 packed = kmem_alloc(fuid_size, KM_SLEEP); 130 VERIFY(dmu_read(os, fuid_obj, 0, 131 fuid_size, packed, DMU_READ_PREFETCH) == 0); 132 VERIFY(nvlist_unpack(packed, fuid_size, 133 &nvp, 0) == 0); 134 VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY, 135 &fuidnvp, &count) == 0); 136 137 for (i = 0; i != count; i++) { 138 fuid_domain_t *domnode; 139 char *domain; 140 uint64_t idx; 141 142 VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN, 143 &domain) == 0); 144 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX, 145 &idx) == 0); 146 147 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 148 149 domnode->f_idx = idx; 150 domnode->f_ksid = ksid_lookupdomain(domain); 151 avl_add(idx_tree, domnode); 152 avl_add(domain_tree, domnode); 153 } 154 nvlist_free(nvp); 155 kmem_free(packed, fuid_size); 156 } 157 return (fuid_size); 158 } 159 160 void 161 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree) 162 { 163 fuid_domain_t *domnode; 164 void *cookie; 165 166 cookie = NULL; 167 while (domnode = avl_destroy_nodes(domain_tree, &cookie)) 168 ksiddomain_rele(domnode->f_ksid); 169 170 avl_destroy(domain_tree); 171 cookie = NULL; 172 while (domnode = avl_destroy_nodes(idx_tree, &cookie)) 173 kmem_free(domnode, sizeof (fuid_domain_t)); 174 avl_destroy(idx_tree); 175 } 176 177 char * 178 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx) 179 { 180 fuid_domain_t searchnode, *findnode; 181 avl_index_t loc; 182 183 searchnode.f_idx = idx; 184 185 findnode = avl_find(idx_tree, &searchnode, &loc); 186 187 return (findnode ? findnode->f_ksid->kd_name : nulldomain); 188 } 189 190 #ifdef _KERNEL 191 /* 192 * Load the fuid table(s) into memory. 193 */ 194 static void 195 zfs_fuid_init(zfsvfs_t *zfsvfs) 196 { 197 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 198 199 if (zfsvfs->z_fuid_loaded) { 200 rw_exit(&zfsvfs->z_fuid_lock); 201 return; 202 } 203 204 zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); 205 206 (void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 207 ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); 208 if (zfsvfs->z_fuid_obj != 0) { 209 zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os, 210 zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx, 211 &zfsvfs->z_fuid_domain); 212 } 213 214 zfsvfs->z_fuid_loaded = B_TRUE; 215 rw_exit(&zfsvfs->z_fuid_lock); 216 } 217 218 /* 219 * sync out AVL trees to persistent storage. 220 */ 221 void 222 zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 223 { 224 nvlist_t *nvp; 225 nvlist_t **fuids; 226 size_t nvsize = 0; 227 char *packed; 228 dmu_buf_t *db; 229 fuid_domain_t *domnode; 230 int numnodes; 231 int i; 232 233 if (!zfsvfs->z_fuid_dirty) { 234 return; 235 } 236 237 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 238 239 /* 240 * First see if table needs to be created? 241 */ 242 if (zfsvfs->z_fuid_obj == 0) { 243 zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os, 244 DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE, 245 sizeof (uint64_t), tx); 246 VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 247 ZFS_FUID_TABLES, sizeof (uint64_t), 1, 248 &zfsvfs->z_fuid_obj, tx) == 0); 249 } 250 251 VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 252 253 numnodes = avl_numnodes(&zfsvfs->z_fuid_idx); 254 fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP); 255 for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++, 256 domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) { 257 VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0); 258 VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX, 259 domnode->f_idx) == 0); 260 VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0); 261 VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN, 262 domnode->f_ksid->kd_name) == 0); 263 } 264 VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY, 265 fuids, numnodes) == 0); 266 for (i = 0; i != numnodes; i++) 267 nvlist_free(fuids[i]); 268 kmem_free(fuids, numnodes * sizeof (void *)); 269 VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0); 270 packed = kmem_alloc(nvsize, KM_SLEEP); 271 VERIFY(nvlist_pack(nvp, &packed, &nvsize, 272 NV_ENCODE_XDR, KM_SLEEP) == 0); 273 nvlist_free(nvp); 274 zfsvfs->z_fuid_size = nvsize; 275 dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0, 276 zfsvfs->z_fuid_size, packed, tx); 277 kmem_free(packed, zfsvfs->z_fuid_size); 278 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj, 279 FTAG, &db)); 280 dmu_buf_will_dirty(db, tx); 281 *(uint64_t *)db->db_data = zfsvfs->z_fuid_size; 282 dmu_buf_rele(db, FTAG); 283 284 zfsvfs->z_fuid_dirty = B_FALSE; 285 rw_exit(&zfsvfs->z_fuid_lock); 286 } 287 288 /* 289 * Query domain table for a given domain. 290 * 291 * If domain isn't found and addok is set, it is added to AVL trees and 292 * the zfsvfs->z_fuid_dirty flag will be set to TRUE. It will then be 293 * necessary for the caller or another thread to detect the dirty table 294 * and sync out the changes. 295 */ 296 int 297 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, 298 char **retdomain, boolean_t addok) 299 { 300 fuid_domain_t searchnode, *findnode; 301 avl_index_t loc; 302 krw_t rw = RW_READER; 303 304 /* 305 * If the dummy "nobody" domain then return an index of 0 306 * to cause the created FUID to be a standard POSIX id 307 * for the user nobody. 308 */ 309 if (domain[0] == '\0') { 310 if (retdomain) 311 *retdomain = nulldomain; 312 return (0); 313 } 314 315 searchnode.f_ksid = ksid_lookupdomain(domain); 316 if (retdomain) 317 *retdomain = searchnode.f_ksid->kd_name; 318 if (!zfsvfs->z_fuid_loaded) 319 zfs_fuid_init(zfsvfs); 320 321 retry: 322 rw_enter(&zfsvfs->z_fuid_lock, rw); 323 findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc); 324 325 if (findnode) { 326 rw_exit(&zfsvfs->z_fuid_lock); 327 ksiddomain_rele(searchnode.f_ksid); 328 return (findnode->f_idx); 329 } else if (addok) { 330 fuid_domain_t *domnode; 331 uint64_t retidx; 332 333 if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) { 334 rw_exit(&zfsvfs->z_fuid_lock); 335 rw = RW_WRITER; 336 goto retry; 337 } 338 339 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 340 domnode->f_ksid = searchnode.f_ksid; 341 342 retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1; 343 344 avl_add(&zfsvfs->z_fuid_domain, domnode); 345 avl_add(&zfsvfs->z_fuid_idx, domnode); 346 zfsvfs->z_fuid_dirty = B_TRUE; 347 rw_exit(&zfsvfs->z_fuid_lock); 348 return (retidx); 349 } else { 350 rw_exit(&zfsvfs->z_fuid_lock); 351 return (-1); 352 } 353 } 354 355 /* 356 * Query domain table by index, returning domain string 357 * 358 * Returns a pointer from an avl node of the domain string. 359 * 360 */ 361 const char * 362 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx) 363 { 364 char *domain; 365 366 if (idx == 0 || !zfsvfs->z_use_fuids) 367 return (NULL); 368 369 if (!zfsvfs->z_fuid_loaded) 370 zfs_fuid_init(zfsvfs); 371 372 rw_enter(&zfsvfs->z_fuid_lock, RW_READER); 373 374 if (zfsvfs->z_fuid_obj || zfsvfs->z_fuid_dirty) 375 domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx); 376 else 377 domain = nulldomain; 378 rw_exit(&zfsvfs->z_fuid_lock); 379 380 ASSERT(domain); 381 return (domain); 382 } 383 384 void 385 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp) 386 { 387 *uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER); 388 *gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_gid, cr, ZFS_GROUP); 389 } 390 391 uid_t 392 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid, 393 cred_t *cr, zfs_fuid_type_t type) 394 { 395 uint32_t index = FUID_INDEX(fuid); 396 const char *domain; 397 uid_t id; 398 399 if (index == 0) 400 return (fuid); 401 402 domain = zfs_fuid_find_by_idx(zfsvfs, index); 403 ASSERT(domain != NULL); 404 405 if (type == ZFS_OWNER || type == ZFS_ACE_USER) { 406 (void) kidmap_getuidbysid(crgetzone(cr), domain, 407 FUID_RID(fuid), &id); 408 } else { 409 (void) kidmap_getgidbysid(crgetzone(cr), domain, 410 FUID_RID(fuid), &id); 411 } 412 return (id); 413 } 414 415 /* 416 * Add a FUID node to the list of fuid's being created for this 417 * ACL 418 * 419 * If ACL has multiple domains, then keep only one copy of each unique 420 * domain. 421 */ 422 void 423 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid, 424 uint64_t idx, uint64_t id, zfs_fuid_type_t type) 425 { 426 zfs_fuid_t *fuid; 427 zfs_fuid_domain_t *fuid_domain; 428 zfs_fuid_info_t *fuidp; 429 uint64_t fuididx; 430 boolean_t found = B_FALSE; 431 432 if (*fuidpp == NULL) 433 *fuidpp = zfs_fuid_info_alloc(); 434 435 fuidp = *fuidpp; 436 /* 437 * First find fuid domain index in linked list 438 * 439 * If one isn't found then create an entry. 440 */ 441 442 for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains); 443 fuid_domain; fuid_domain = list_next(&fuidp->z_domains, 444 fuid_domain), fuididx++) { 445 if (idx == fuid_domain->z_domidx) { 446 found = B_TRUE; 447 break; 448 } 449 } 450 451 if (!found) { 452 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP); 453 fuid_domain->z_domain = domain; 454 fuid_domain->z_domidx = idx; 455 list_insert_tail(&fuidp->z_domains, fuid_domain); 456 fuidp->z_domain_str_sz += strlen(domain) + 1; 457 fuidp->z_domain_cnt++; 458 } 459 460 if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) { 461 462 /* 463 * Now allocate fuid entry and add it on the end of the list 464 */ 465 466 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP); 467 fuid->z_id = id; 468 fuid->z_domidx = idx; 469 fuid->z_logfuid = FUID_ENCODE(fuididx, rid); 470 471 list_insert_tail(&fuidp->z_fuids, fuid); 472 fuidp->z_fuid_cnt++; 473 } else { 474 if (type == ZFS_OWNER) 475 fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid); 476 else 477 fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid); 478 } 479 } 480 481 /* 482 * Create a file system FUID, based on information in the users cred 483 * 484 * If cred contains KSID_OWNER then it should be used to determine 485 * the uid otherwise cred's uid will be used. By default cred's gid 486 * is used unless it's an ephemeral ID in which case KSID_GROUP will 487 * be used if it exists. 488 */ 489 uint64_t 490 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type, 491 cred_t *cr, zfs_fuid_info_t **fuidp) 492 { 493 uint64_t idx; 494 ksid_t *ksid; 495 uint32_t rid; 496 char *kdomain; 497 const char *domain; 498 uid_t id; 499 500 VERIFY(type == ZFS_OWNER || type == ZFS_GROUP); 501 502 ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP); 503 504 if (!zfsvfs->z_use_fuids || (ksid == NULL)) { 505 id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr); 506 507 if (IS_EPHEMERAL(id)) 508 return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY); 509 510 return ((uint64_t)id); 511 } 512 513 /* 514 * ksid is present and FUID is supported 515 */ 516 id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr); 517 518 if (!IS_EPHEMERAL(id)) 519 return ((uint64_t)id); 520 521 if (type == ZFS_GROUP) 522 id = ksid_getid(ksid); 523 524 rid = ksid_getrid(ksid); 525 domain = ksid_getdomain(ksid); 526 527 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE); 528 529 zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type); 530 531 return (FUID_ENCODE(idx, rid)); 532 } 533 534 /* 535 * Create a file system FUID for an ACL ace 536 * or a chown/chgrp of the file. 537 * This is similar to zfs_fuid_create_cred, except that 538 * we can't find the domain + rid information in the 539 * cred. Instead we have to query Winchester for the 540 * domain and rid. 541 * 542 * During replay operations the domain+rid information is 543 * found in the zfs_fuid_info_t that the replay code has 544 * attached to the zfsvfs of the file system. 545 */ 546 uint64_t 547 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr, 548 zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp) 549 { 550 const char *domain; 551 char *kdomain; 552 uint32_t fuid_idx = FUID_INDEX(id); 553 uint32_t rid; 554 idmap_stat status; 555 uint64_t idx = 0; 556 zfs_fuid_t *zfuid = NULL; 557 zfs_fuid_info_t *fuidp = NULL; 558 559 /* 560 * If POSIX ID, or entry is already a FUID then 561 * just return the id 562 * 563 * We may also be handed an already FUID'ized id via 564 * chmod. 565 */ 566 567 if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0) 568 return (id); 569 570 if (zfsvfs->z_replay) { 571 fuidp = zfsvfs->z_fuid_replay; 572 573 /* 574 * If we are passed an ephemeral id, but no 575 * fuid_info was logged then return NOBODY. 576 * This is most likely a result of idmap service 577 * not being available. 578 */ 579 if (fuidp == NULL) 580 return (UID_NOBODY); 581 582 VERIFY3U(type, >=, ZFS_OWNER); 583 VERIFY3U(type, <=, ZFS_ACE_GROUP); 584 585 switch (type) { 586 case ZFS_ACE_USER: 587 case ZFS_ACE_GROUP: 588 zfuid = list_head(&fuidp->z_fuids); 589 rid = FUID_RID(zfuid->z_logfuid); 590 idx = FUID_INDEX(zfuid->z_logfuid); 591 break; 592 case ZFS_OWNER: 593 rid = FUID_RID(fuidp->z_fuid_owner); 594 idx = FUID_INDEX(fuidp->z_fuid_owner); 595 break; 596 case ZFS_GROUP: 597 rid = FUID_RID(fuidp->z_fuid_group); 598 idx = FUID_INDEX(fuidp->z_fuid_group); 599 break; 600 }; 601 domain = fuidp->z_domain_table[idx - 1]; 602 } else { 603 if (type == ZFS_OWNER || type == ZFS_ACE_USER) 604 status = kidmap_getsidbyuid(crgetzone(cr), id, 605 &domain, &rid); 606 else 607 status = kidmap_getsidbygid(crgetzone(cr), id, 608 &domain, &rid); 609 610 if (status != 0) { 611 /* 612 * When returning nobody we will need to 613 * make a dummy fuid table entry for logging 614 * purposes. 615 */ 616 rid = UID_NOBODY; 617 domain = nulldomain; 618 } 619 } 620 621 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE); 622 623 if (!zfsvfs->z_replay) 624 zfs_fuid_node_add(fuidpp, kdomain, 625 rid, idx, id, type); 626 else if (zfuid != NULL) { 627 list_remove(&fuidp->z_fuids, zfuid); 628 kmem_free(zfuid, sizeof (zfs_fuid_t)); 629 } 630 return (FUID_ENCODE(idx, rid)); 631 } 632 633 void 634 zfs_fuid_destroy(zfsvfs_t *zfsvfs) 635 { 636 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 637 if (!zfsvfs->z_fuid_loaded) { 638 rw_exit(&zfsvfs->z_fuid_lock); 639 return; 640 } 641 zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); 642 rw_exit(&zfsvfs->z_fuid_lock); 643 } 644 645 /* 646 * Allocate zfs_fuid_info for tracking FUIDs created during 647 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR() 648 */ 649 zfs_fuid_info_t * 650 zfs_fuid_info_alloc(void) 651 { 652 zfs_fuid_info_t *fuidp; 653 654 fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP); 655 list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t), 656 offsetof(zfs_fuid_domain_t, z_next)); 657 list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t), 658 offsetof(zfs_fuid_t, z_next)); 659 return (fuidp); 660 } 661 662 /* 663 * Release all memory associated with zfs_fuid_info_t 664 */ 665 void 666 zfs_fuid_info_free(zfs_fuid_info_t *fuidp) 667 { 668 zfs_fuid_t *zfuid; 669 zfs_fuid_domain_t *zdomain; 670 671 while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) { 672 list_remove(&fuidp->z_fuids, zfuid); 673 kmem_free(zfuid, sizeof (zfs_fuid_t)); 674 } 675 676 if (fuidp->z_domain_table != NULL) 677 kmem_free(fuidp->z_domain_table, 678 (sizeof (char **)) * fuidp->z_domain_cnt); 679 680 while ((zdomain = list_head(&fuidp->z_domains)) != NULL) { 681 list_remove(&fuidp->z_domains, zdomain); 682 kmem_free(zdomain, sizeof (zfs_fuid_domain_t)); 683 } 684 685 kmem_free(fuidp, sizeof (zfs_fuid_info_t)); 686 } 687 688 /* 689 * Check to see if user ID is in the list of SIDs in CR. 690 */ 691 boolean_t 692 zfs_user_in_cred(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr) 693 { 694 ksid_t *ksid = crgetsid(cr, KSID_USER); 695 ksidlist_t *ksidlist = crgetsidlist(cr); 696 uid_t uid; 697 698 /* Check for match with cred->cr_uid */ 699 uid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_ACE_USER); 700 if (uid != IDMAP_WK_CREATOR_OWNER_UID && 701 uid == crgetuid(cr)) 702 return (B_TRUE); 703 704 /* Check for any match in the ksidlist */ 705 if (ksid && ksidlist) { 706 int i; 707 ksid_t *ksid_vec; 708 uint32_t idx = FUID_INDEX(id); 709 uint32_t rid = FUID_RID(id); 710 const char *domain; 711 712 if (idx == 0) { 713 /* 714 * The ID passed in has idx zero, which means 715 * it's just a Unix UID. That can never match 716 * anything in ksid_vec[] because those all 717 * have ksid->ks_id set to a Group ID. 718 */ 719 return (B_FALSE); 720 } 721 722 domain = zfs_fuid_find_by_idx(zfsvfs, idx); 723 ASSERT(domain != NULL); 724 725 if (strcmp(domain, IDMAP_WK_CREATOR_SID_AUTHORITY) == 0) 726 return (B_FALSE); 727 728 ksid_vec = ksidlist->ksl_sids; 729 for (i = 0; i != ksidlist->ksl_nsid; i++) { 730 if ((strcmp(domain, 731 ksid_vec[i].ks_domain->kd_name) == 0) && 732 rid == ksid_vec[i].ks_rid) 733 return (B_TRUE); 734 } 735 } 736 return (B_FALSE); 737 } 738 739 /* 740 * Check to see if id is a groupmember. If cred 741 * has ksid info then sidlist is checked first 742 * and if still not found then POSIX groups are checked 743 * 744 * Will use a straight FUID compare when possible. 745 */ 746 boolean_t 747 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr) 748 { 749 ksid_t *ksid = crgetsid(cr, KSID_GROUP); 750 ksidlist_t *ksidlist = crgetsidlist(cr); 751 uid_t gid; 752 753 if (ksid && ksidlist) { 754 int i; 755 ksid_t *ksid_groups; 756 uint32_t idx = FUID_INDEX(id); 757 uint32_t rid = FUID_RID(id); 758 759 ksid_groups = ksidlist->ksl_sids; 760 761 for (i = 0; i != ksidlist->ksl_nsid; i++) { 762 if (idx == 0) { 763 if (id != IDMAP_WK_CREATOR_GROUP_GID && 764 id == ksid_groups[i].ks_id) { 765 return (B_TRUE); 766 } 767 } else { 768 const char *domain; 769 770 domain = zfs_fuid_find_by_idx(zfsvfs, idx); 771 ASSERT(domain != NULL); 772 773 if (strcmp(domain, 774 IDMAP_WK_CREATOR_SID_AUTHORITY) == 0) 775 return (B_FALSE); 776 777 if ((strcmp(domain, 778 ksid_groups[i].ks_domain->kd_name) == 0) && 779 rid == ksid_groups[i].ks_rid) 780 return (B_TRUE); 781 } 782 } 783 } 784 785 /* 786 * Not found in ksidlist, check posix groups 787 */ 788 gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP); 789 return (groupmember(gid, cr)); 790 } 791 792 void 793 zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 794 { 795 if (zfsvfs->z_fuid_obj == 0) { 796 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 797 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 798 FUID_SIZE_ESTIMATE(zfsvfs)); 799 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 800 } else { 801 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 802 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 803 FUID_SIZE_ESTIMATE(zfsvfs)); 804 } 805 } 806 #endif 807