1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/dmu.h> 28 #include <sys/avl.h> 29 #include <sys/zap.h> 30 #include <sys/refcount.h> 31 #include <sys/nvpair.h> 32 #ifdef _KERNEL 33 #include <sys/kidmap.h> 34 #include <sys/sid.h> 35 #include <sys/zfs_vfsops.h> 36 #include <sys/zfs_znode.h> 37 #endif 38 #include <sys/zfs_fuid.h> 39 40 /* 41 * FUID Domain table(s). 42 * 43 * The FUID table is stored as a packed nvlist of an array 44 * of nvlists which contain an index, domain string and offset 45 * 46 * During file system initialization the nvlist(s) are read and 47 * two AVL trees are created. One tree is keyed by the index number 48 * and the other by the domain string. Nodes are never removed from 49 * trees, but new entries may be added. If a new entry is added then 50 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then 51 * be responsible for calling zfs_fuid_sync() to sync the changes to disk. 52 * 53 */ 54 55 #define FUID_IDX "fuid_idx" 56 #define FUID_DOMAIN "fuid_domain" 57 #define FUID_OFFSET "fuid_offset" 58 #define FUID_NVP_ARRAY "fuid_nvlist" 59 60 typedef struct fuid_domain { 61 avl_node_t f_domnode; 62 avl_node_t f_idxnode; 63 ksiddomain_t *f_ksid; 64 uint64_t f_idx; 65 } fuid_domain_t; 66 67 static char *nulldomain = ""; 68 69 /* 70 * Compare two indexes. 71 */ 72 static int 73 idx_compare(const void *arg1, const void *arg2) 74 { 75 const fuid_domain_t *node1 = arg1; 76 const fuid_domain_t *node2 = arg2; 77 78 if (node1->f_idx < node2->f_idx) 79 return (-1); 80 else if (node1->f_idx > node2->f_idx) 81 return (1); 82 return (0); 83 } 84 85 /* 86 * Compare two domain strings. 87 */ 88 static int 89 domain_compare(const void *arg1, const void *arg2) 90 { 91 const fuid_domain_t *node1 = arg1; 92 const fuid_domain_t *node2 = arg2; 93 int val; 94 95 val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name); 96 if (val == 0) 97 return (0); 98 return (val > 0 ? 1 : -1); 99 } 100 101 void 102 zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree) 103 { 104 avl_create(idx_tree, idx_compare, 105 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode)); 106 avl_create(domain_tree, domain_compare, 107 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode)); 108 } 109 110 /* 111 * load initial fuid domain and idx trees. This function is used by 112 * both the kernel and zdb. 113 */ 114 uint64_t 115 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree, 116 avl_tree_t *domain_tree) 117 { 118 dmu_buf_t *db; 119 uint64_t fuid_size; 120 121 ASSERT(fuid_obj != 0); 122 VERIFY(0 == dmu_bonus_hold(os, fuid_obj, 123 FTAG, &db)); 124 fuid_size = *(uint64_t *)db->db_data; 125 dmu_buf_rele(db, FTAG); 126 127 if (fuid_size) { 128 nvlist_t **fuidnvp; 129 nvlist_t *nvp = NULL; 130 uint_t count; 131 char *packed; 132 int i; 133 134 packed = kmem_alloc(fuid_size, KM_SLEEP); 135 VERIFY(dmu_read(os, fuid_obj, 0, 136 fuid_size, packed, DMU_READ_PREFETCH) == 0); 137 VERIFY(nvlist_unpack(packed, fuid_size, 138 &nvp, 0) == 0); 139 VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY, 140 &fuidnvp, &count) == 0); 141 142 for (i = 0; i != count; i++) { 143 fuid_domain_t *domnode; 144 char *domain; 145 uint64_t idx; 146 147 VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN, 148 &domain) == 0); 149 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX, 150 &idx) == 0); 151 152 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 153 154 domnode->f_idx = idx; 155 domnode->f_ksid = ksid_lookupdomain(domain); 156 avl_add(idx_tree, domnode); 157 avl_add(domain_tree, domnode); 158 } 159 nvlist_free(nvp); 160 kmem_free(packed, fuid_size); 161 } 162 return (fuid_size); 163 } 164 165 void 166 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree) 167 { 168 fuid_domain_t *domnode; 169 void *cookie; 170 171 cookie = NULL; 172 while (domnode = avl_destroy_nodes(domain_tree, &cookie)) 173 ksiddomain_rele(domnode->f_ksid); 174 175 avl_destroy(domain_tree); 176 cookie = NULL; 177 while (domnode = avl_destroy_nodes(idx_tree, &cookie)) 178 kmem_free(domnode, sizeof (fuid_domain_t)); 179 avl_destroy(idx_tree); 180 } 181 182 char * 183 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx) 184 { 185 fuid_domain_t searchnode, *findnode; 186 avl_index_t loc; 187 188 searchnode.f_idx = idx; 189 190 findnode = avl_find(idx_tree, &searchnode, &loc); 191 192 return (findnode ? findnode->f_ksid->kd_name : nulldomain); 193 } 194 195 #ifdef _KERNEL 196 /* 197 * Load the fuid table(s) into memory. 198 */ 199 static void 200 zfs_fuid_init(zfsvfs_t *zfsvfs) 201 { 202 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 203 204 if (zfsvfs->z_fuid_loaded) { 205 rw_exit(&zfsvfs->z_fuid_lock); 206 return; 207 } 208 209 zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); 210 211 (void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 212 ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); 213 if (zfsvfs->z_fuid_obj != 0) { 214 zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os, 215 zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx, 216 &zfsvfs->z_fuid_domain); 217 } 218 219 zfsvfs->z_fuid_loaded = B_TRUE; 220 rw_exit(&zfsvfs->z_fuid_lock); 221 } 222 223 /* 224 * sync out AVL trees to persistent storage. 225 */ 226 void 227 zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 228 { 229 nvlist_t *nvp; 230 nvlist_t **fuids; 231 size_t nvsize = 0; 232 char *packed; 233 dmu_buf_t *db; 234 fuid_domain_t *domnode; 235 int numnodes; 236 int i; 237 238 if (!zfsvfs->z_fuid_dirty) { 239 return; 240 } 241 242 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 243 244 /* 245 * First see if table needs to be created? 246 */ 247 if (zfsvfs->z_fuid_obj == 0) { 248 zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os, 249 DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE, 250 sizeof (uint64_t), tx); 251 VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 252 ZFS_FUID_TABLES, sizeof (uint64_t), 1, 253 &zfsvfs->z_fuid_obj, tx) == 0); 254 } 255 256 VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 257 258 numnodes = avl_numnodes(&zfsvfs->z_fuid_idx); 259 fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP); 260 for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++, 261 domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) { 262 VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0); 263 VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX, 264 domnode->f_idx) == 0); 265 VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0); 266 VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN, 267 domnode->f_ksid->kd_name) == 0); 268 } 269 VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY, 270 fuids, numnodes) == 0); 271 for (i = 0; i != numnodes; i++) 272 nvlist_free(fuids[i]); 273 kmem_free(fuids, numnodes * sizeof (void *)); 274 VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0); 275 packed = kmem_alloc(nvsize, KM_SLEEP); 276 VERIFY(nvlist_pack(nvp, &packed, &nvsize, 277 NV_ENCODE_XDR, KM_SLEEP) == 0); 278 nvlist_free(nvp); 279 zfsvfs->z_fuid_size = nvsize; 280 dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0, 281 zfsvfs->z_fuid_size, packed, tx); 282 kmem_free(packed, zfsvfs->z_fuid_size); 283 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj, 284 FTAG, &db)); 285 dmu_buf_will_dirty(db, tx); 286 *(uint64_t *)db->db_data = zfsvfs->z_fuid_size; 287 dmu_buf_rele(db, FTAG); 288 289 zfsvfs->z_fuid_dirty = B_FALSE; 290 rw_exit(&zfsvfs->z_fuid_lock); 291 } 292 293 /* 294 * Query domain table for a given domain. 295 * 296 * If domain isn't found and addok is set, it is added to AVL trees and 297 * the zfsvfs->z_fuid_dirty flag will be set to TRUE. It will then be 298 * necessary for the caller or another thread to detect the dirty table 299 * and sync out the changes. 300 */ 301 int 302 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, 303 char **retdomain, boolean_t addok) 304 { 305 fuid_domain_t searchnode, *findnode; 306 avl_index_t loc; 307 krw_t rw = RW_READER; 308 309 /* 310 * If the dummy "nobody" domain then return an index of 0 311 * to cause the created FUID to be a standard POSIX id 312 * for the user nobody. 313 */ 314 if (domain[0] == '\0') { 315 if (retdomain) 316 *retdomain = nulldomain; 317 return (0); 318 } 319 320 searchnode.f_ksid = ksid_lookupdomain(domain); 321 if (retdomain) 322 *retdomain = searchnode.f_ksid->kd_name; 323 if (!zfsvfs->z_fuid_loaded) 324 zfs_fuid_init(zfsvfs); 325 326 retry: 327 rw_enter(&zfsvfs->z_fuid_lock, rw); 328 findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc); 329 330 if (findnode) { 331 rw_exit(&zfsvfs->z_fuid_lock); 332 ksiddomain_rele(searchnode.f_ksid); 333 return (findnode->f_idx); 334 } else if (addok) { 335 fuid_domain_t *domnode; 336 uint64_t retidx; 337 338 if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) { 339 rw_exit(&zfsvfs->z_fuid_lock); 340 rw = RW_WRITER; 341 goto retry; 342 } 343 344 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 345 domnode->f_ksid = searchnode.f_ksid; 346 347 retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1; 348 349 avl_add(&zfsvfs->z_fuid_domain, domnode); 350 avl_add(&zfsvfs->z_fuid_idx, domnode); 351 zfsvfs->z_fuid_dirty = B_TRUE; 352 rw_exit(&zfsvfs->z_fuid_lock); 353 return (retidx); 354 } else { 355 rw_exit(&zfsvfs->z_fuid_lock); 356 return (-1); 357 } 358 } 359 360 /* 361 * Query domain table by index, returning domain string 362 * 363 * Returns a pointer from an avl node of the domain string. 364 * 365 */ 366 const char * 367 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx) 368 { 369 char *domain; 370 371 if (idx == 0 || !zfsvfs->z_use_fuids) 372 return (NULL); 373 374 if (!zfsvfs->z_fuid_loaded) 375 zfs_fuid_init(zfsvfs); 376 377 rw_enter(&zfsvfs->z_fuid_lock, RW_READER); 378 379 if (zfsvfs->z_fuid_obj) 380 domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx); 381 else 382 domain = nulldomain; 383 rw_exit(&zfsvfs->z_fuid_lock); 384 385 ASSERT(domain); 386 return (domain); 387 } 388 389 void 390 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp) 391 { 392 uint64_t fuid, fgid; 393 sa_bulk_attr_t bulk[2]; 394 int count = 0; 395 396 if (IS_EPHEMERAL(zp->z_uid) || IS_EPHEMERAL(zp->z_gid)) { 397 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zp->z_zfsvfs), 398 NULL, &fuid, 8); 399 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zp->z_zfsvfs), 400 NULL, &fgid, 8); 401 VERIFY(0 == sa_bulk_lookup(zp->z_sa_hdl, bulk, count)); 402 } 403 if (IS_EPHEMERAL(zp->z_uid)) 404 *uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER); 405 else 406 *uidp = zp->z_uid; 407 if (IS_EPHEMERAL(zp->z_gid)) 408 *gidp = zfs_fuid_map_id(zp->z_zfsvfs, 409 zp->z_gid, cr, ZFS_GROUP); 410 else 411 *gidp = zp->z_gid; 412 } 413 414 uid_t 415 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid, 416 cred_t *cr, zfs_fuid_type_t type) 417 { 418 uint32_t index = FUID_INDEX(fuid); 419 const char *domain; 420 uid_t id; 421 422 if (index == 0) 423 return (fuid); 424 425 domain = zfs_fuid_find_by_idx(zfsvfs, index); 426 ASSERT(domain != NULL); 427 428 if (type == ZFS_OWNER || type == ZFS_ACE_USER) { 429 (void) kidmap_getuidbysid(crgetzone(cr), domain, 430 FUID_RID(fuid), &id); 431 } else { 432 (void) kidmap_getgidbysid(crgetzone(cr), domain, 433 FUID_RID(fuid), &id); 434 } 435 return (id); 436 } 437 438 /* 439 * Add a FUID node to the list of fuid's being created for this 440 * ACL 441 * 442 * If ACL has multiple domains, then keep only one copy of each unique 443 * domain. 444 */ 445 void 446 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid, 447 uint64_t idx, uint64_t id, zfs_fuid_type_t type) 448 { 449 zfs_fuid_t *fuid; 450 zfs_fuid_domain_t *fuid_domain; 451 zfs_fuid_info_t *fuidp; 452 uint64_t fuididx; 453 boolean_t found = B_FALSE; 454 455 if (*fuidpp == NULL) 456 *fuidpp = zfs_fuid_info_alloc(); 457 458 fuidp = *fuidpp; 459 /* 460 * First find fuid domain index in linked list 461 * 462 * If one isn't found then create an entry. 463 */ 464 465 for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains); 466 fuid_domain; fuid_domain = list_next(&fuidp->z_domains, 467 fuid_domain), fuididx++) { 468 if (idx == fuid_domain->z_domidx) { 469 found = B_TRUE; 470 break; 471 } 472 } 473 474 if (!found) { 475 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP); 476 fuid_domain->z_domain = domain; 477 fuid_domain->z_domidx = idx; 478 list_insert_tail(&fuidp->z_domains, fuid_domain); 479 fuidp->z_domain_str_sz += strlen(domain) + 1; 480 fuidp->z_domain_cnt++; 481 } 482 483 if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) { 484 485 /* 486 * Now allocate fuid entry and add it on the end of the list 487 */ 488 489 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP); 490 fuid->z_id = id; 491 fuid->z_domidx = idx; 492 fuid->z_logfuid = FUID_ENCODE(fuididx, rid); 493 494 list_insert_tail(&fuidp->z_fuids, fuid); 495 fuidp->z_fuid_cnt++; 496 } else { 497 if (type == ZFS_OWNER) 498 fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid); 499 else 500 fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid); 501 } 502 } 503 504 /* 505 * Create a file system FUID, based on information in the users cred 506 */ 507 uint64_t 508 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type, 509 cred_t *cr, zfs_fuid_info_t **fuidp) 510 { 511 uint64_t idx; 512 ksid_t *ksid; 513 uint32_t rid; 514 char *kdomain; 515 const char *domain; 516 uid_t id; 517 518 VERIFY(type == ZFS_OWNER || type == ZFS_GROUP); 519 520 ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP); 521 if (ksid) { 522 id = ksid_getid(ksid); 523 } else { 524 if (type == ZFS_OWNER) 525 id = crgetuid(cr); 526 else 527 id = crgetgid(cr); 528 529 if (IS_EPHEMERAL(id)) { 530 return ((uint64_t)(type == ZFS_OWNER ? 531 UID_NOBODY : GID_NOBODY)); 532 } 533 } 534 535 if (!zfsvfs->z_use_fuids || (!IS_EPHEMERAL(id))) 536 return ((uint64_t)id); 537 538 rid = ksid_getrid(ksid); 539 domain = ksid_getdomain(ksid); 540 541 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE); 542 543 zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type); 544 545 return (FUID_ENCODE(idx, rid)); 546 } 547 548 /* 549 * Create a file system FUID for an ACL ace 550 * or a chown/chgrp of the file. 551 * This is similar to zfs_fuid_create_cred, except that 552 * we can't find the domain + rid information in the 553 * cred. Instead we have to query Winchester for the 554 * domain and rid. 555 * 556 * During replay operations the domain+rid information is 557 * found in the zfs_fuid_info_t that the replay code has 558 * attached to the zfsvfs of the file system. 559 */ 560 uint64_t 561 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr, 562 zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp) 563 { 564 const char *domain; 565 char *kdomain; 566 uint32_t fuid_idx = FUID_INDEX(id); 567 uint32_t rid; 568 idmap_stat status; 569 uint64_t idx; 570 zfs_fuid_t *zfuid = NULL; 571 zfs_fuid_info_t *fuidp; 572 573 /* 574 * If POSIX ID, or entry is already a FUID then 575 * just return the id 576 * 577 * We may also be handed an already FUID'ized id via 578 * chmod. 579 */ 580 581 if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0) 582 return (id); 583 584 if (zfsvfs->z_replay) { 585 fuidp = zfsvfs->z_fuid_replay; 586 587 /* 588 * If we are passed an ephemeral id, but no 589 * fuid_info was logged then return NOBODY. 590 * This is most likely a result of idmap service 591 * not being available. 592 */ 593 if (fuidp == NULL) 594 return (UID_NOBODY); 595 596 switch (type) { 597 case ZFS_ACE_USER: 598 case ZFS_ACE_GROUP: 599 zfuid = list_head(&fuidp->z_fuids); 600 rid = FUID_RID(zfuid->z_logfuid); 601 idx = FUID_INDEX(zfuid->z_logfuid); 602 break; 603 case ZFS_OWNER: 604 rid = FUID_RID(fuidp->z_fuid_owner); 605 idx = FUID_INDEX(fuidp->z_fuid_owner); 606 break; 607 case ZFS_GROUP: 608 rid = FUID_RID(fuidp->z_fuid_group); 609 idx = FUID_INDEX(fuidp->z_fuid_group); 610 break; 611 }; 612 domain = fuidp->z_domain_table[idx -1]; 613 } else { 614 if (type == ZFS_OWNER || type == ZFS_ACE_USER) 615 status = kidmap_getsidbyuid(crgetzone(cr), id, 616 &domain, &rid); 617 else 618 status = kidmap_getsidbygid(crgetzone(cr), id, 619 &domain, &rid); 620 621 if (status != 0) { 622 /* 623 * When returning nobody we will need to 624 * make a dummy fuid table entry for logging 625 * purposes. 626 */ 627 rid = UID_NOBODY; 628 domain = nulldomain; 629 } 630 } 631 632 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE); 633 634 if (!zfsvfs->z_replay) 635 zfs_fuid_node_add(fuidpp, kdomain, 636 rid, idx, id, type); 637 else if (zfuid != NULL) { 638 list_remove(&fuidp->z_fuids, zfuid); 639 kmem_free(zfuid, sizeof (zfs_fuid_t)); 640 } 641 return (FUID_ENCODE(idx, rid)); 642 } 643 644 void 645 zfs_fuid_destroy(zfsvfs_t *zfsvfs) 646 { 647 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 648 if (!zfsvfs->z_fuid_loaded) { 649 rw_exit(&zfsvfs->z_fuid_lock); 650 return; 651 } 652 zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); 653 rw_exit(&zfsvfs->z_fuid_lock); 654 } 655 656 /* 657 * Allocate zfs_fuid_info for tracking FUIDs created during 658 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR() 659 */ 660 zfs_fuid_info_t * 661 zfs_fuid_info_alloc(void) 662 { 663 zfs_fuid_info_t *fuidp; 664 665 fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP); 666 list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t), 667 offsetof(zfs_fuid_domain_t, z_next)); 668 list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t), 669 offsetof(zfs_fuid_t, z_next)); 670 return (fuidp); 671 } 672 673 /* 674 * Release all memory associated with zfs_fuid_info_t 675 */ 676 void 677 zfs_fuid_info_free(zfs_fuid_info_t *fuidp) 678 { 679 zfs_fuid_t *zfuid; 680 zfs_fuid_domain_t *zdomain; 681 682 while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) { 683 list_remove(&fuidp->z_fuids, zfuid); 684 kmem_free(zfuid, sizeof (zfs_fuid_t)); 685 } 686 687 if (fuidp->z_domain_table != NULL) 688 kmem_free(fuidp->z_domain_table, 689 (sizeof (char **)) * fuidp->z_domain_cnt); 690 691 while ((zdomain = list_head(&fuidp->z_domains)) != NULL) { 692 list_remove(&fuidp->z_domains, zdomain); 693 kmem_free(zdomain, sizeof (zfs_fuid_domain_t)); 694 } 695 696 kmem_free(fuidp, sizeof (zfs_fuid_info_t)); 697 } 698 699 /* 700 * Check to see if id is a groupmember. If cred 701 * has ksid info then sidlist is checked first 702 * and if still not found then POSIX groups are checked 703 * 704 * Will use a straight FUID compare when possible. 705 */ 706 boolean_t 707 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr) 708 { 709 ksid_t *ksid = crgetsid(cr, KSID_GROUP); 710 ksidlist_t *ksidlist = crgetsidlist(cr); 711 uid_t gid; 712 713 if (ksid && ksidlist) { 714 int i; 715 ksid_t *ksid_groups; 716 uint32_t idx = FUID_INDEX(id); 717 uint32_t rid = FUID_RID(id); 718 719 ksid_groups = ksidlist->ksl_sids; 720 721 for (i = 0; i != ksidlist->ksl_nsid; i++) { 722 if (idx == 0) { 723 if (id != IDMAP_WK_CREATOR_GROUP_GID && 724 id == ksid_groups[i].ks_id) { 725 return (B_TRUE); 726 } 727 } else { 728 const char *domain; 729 730 domain = zfs_fuid_find_by_idx(zfsvfs, idx); 731 ASSERT(domain != NULL); 732 733 if (strcmp(domain, 734 IDMAP_WK_CREATOR_SID_AUTHORITY) == 0) 735 return (B_FALSE); 736 737 if ((strcmp(domain, 738 ksid_groups[i].ks_domain->kd_name) == 0) && 739 rid == ksid_groups[i].ks_rid) 740 return (B_TRUE); 741 } 742 } 743 } 744 745 /* 746 * Not found in ksidlist, check posix groups 747 */ 748 gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP); 749 return (groupmember(gid, cr)); 750 } 751 752 void 753 zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 754 { 755 if (zfsvfs->z_fuid_obj == 0) { 756 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 757 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 758 FUID_SIZE_ESTIMATE(zfsvfs)); 759 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 760 } else { 761 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 762 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 763 FUID_SIZE_ESTIMATE(zfsvfs)); 764 } 765 } 766 #endif 767