1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/unistd.h> 30 #include <sys/sysmacros.h> 31 #include <sys/sunddi.h> 32 #include <sys/zfs_vfsops.h> 33 #include <sys/zfs_znode.h> 34 #include <sys/zfs_fuid.h> 35 #include <sys/dmu.h> 36 #include <sys/refcount.h> 37 #include <sys/avl.h> 38 #include <sys/zap.h> 39 #include <sys/nvpair.h> 40 #include <sys/kidmap.h> 41 #include <sys/sid.h> 42 43 /* 44 * FUID Domain table(s). 45 * 46 * The FUID table is stored as a packed nvlist of an array 47 * of nvlists which contain an index, domain string and offset 48 * 49 * During file system initialization the nvlist(s) are read and 50 * two AVL trees are created. One tree is keyed by the index number 51 * and the other by the domain string. Nodes are never removed from 52 * trees, but new entries may be added. If a new entry is added then the 53 * on-disk packed nvlist will also be updated. 54 */ 55 56 #define FUID_IDX "fuid_idx" 57 #define FUID_DOMAIN "fuid_domain" 58 #define FUID_OFFSET "fuid_offset" 59 #define FUID_NVP_ARRAY "fuid_nvlist" 60 61 typedef struct fuid_domain { 62 avl_node_t f_node; 63 ksiddomain_t *f_ksid; 64 int f_idx; 65 uint32_t f_offset; 66 } fuid_domain_t; 67 68 typedef struct fuid_idx { 69 avl_node_t f_node; 70 int f_idx; 71 fuid_domain_t *f_domain; 72 } fuid_idx_t; 73 74 /* 75 * Compare two indexes. 76 */ 77 static int 78 idx_compare(const void *arg1, const void *arg2) 79 { 80 const fuid_idx_t *node1 = arg1; 81 const fuid_idx_t *node2 = arg2; 82 83 if (node1->f_idx < node2->f_idx) 84 return (-1); 85 else if (node1->f_idx > node2->f_idx) 86 return (1); 87 return (0); 88 } 89 90 /* 91 * Compare two domain strings. 92 */ 93 static int 94 domain_compare(const void *arg1, const void *arg2) 95 { 96 const fuid_domain_t *node1 = arg1; 97 const fuid_domain_t *node2 = arg2; 98 int val; 99 100 val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name); 101 if (val == 0) 102 return (0); 103 return (val > 0 ? 1 : -1); 104 } 105 106 /* 107 * Load the fuid table(s) into memory. 108 */ 109 static void 110 zfs_fuid_init(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 111 { 112 dmu_buf_t *db; 113 char *packed; 114 size_t nvsize = 0; 115 int error = 0; 116 int i; 117 118 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 119 120 if (zfsvfs->z_fuid_loaded) { 121 rw_exit(&zfsvfs->z_fuid_lock); 122 return; 123 } 124 125 if (zfsvfs->z_fuid_obj == 0) { 126 127 /* first make sure we need to allocate object */ 128 129 error = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 130 ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); 131 if (error == ENOENT && tx != NULL) { 132 zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os, 133 DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE, 134 sizeof (uint64_t), tx); 135 VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 136 ZFS_FUID_TABLES, sizeof (uint64_t), 1, 137 &zfsvfs->z_fuid_obj, tx) == 0); 138 } 139 } 140 141 avl_create(&zfsvfs->z_fuid_idx, idx_compare, 142 sizeof (fuid_idx_t), offsetof(fuid_idx_t, f_node)); 143 avl_create(&zfsvfs->z_fuid_domain, domain_compare, 144 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_node)); 145 146 if (zfsvfs->z_fuid_obj) { 147 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj, 148 FTAG, &db)); 149 nvsize = *(uint64_t *)db->db_data; 150 dmu_buf_rele(db, FTAG); 151 } 152 153 if (nvsize == 0) 154 goto initialized; 155 156 packed = kmem_alloc(nvsize, KM_SLEEP); 157 error = dmu_read(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0, nvsize, packed); 158 if (error == 0) { 159 nvlist_t **fuidnvp; 160 nvlist_t *nvp = NULL; 161 uint_t count; 162 163 VERIFY(nvlist_unpack(packed, nvsize, &nvp, 0) == 0); 164 VERIFY((error = nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY, 165 &fuidnvp, &count)) == 0); 166 167 for (i = 0; i != count; i++) { 168 fuid_idx_t *idxnode; 169 fuid_domain_t *domnode; 170 char *domain; 171 avl_index_t loc; 172 uint64_t idx, offset; 173 174 VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN, 175 &domain) == 0); 176 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX, 177 &idx) == 0); 178 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_OFFSET, 179 &offset) == 0); 180 181 idxnode = kmem_alloc(sizeof (fuid_idx_t), KM_SLEEP); 182 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 183 184 domnode->f_idx = idxnode->f_idx = idx; 185 domnode->f_ksid = ksid_lookupdomain(domain); 186 idxnode->f_domain = domnode; 187 domnode->f_offset = offset; 188 if (avl_find(&zfsvfs->z_fuid_idx, 189 idxnode, &loc) == NULL) { 190 avl_insert(&zfsvfs->z_fuid_idx, idxnode, loc); 191 } 192 if (avl_find(&zfsvfs->z_fuid_domain, 193 domnode, &loc) == NULL) { 194 avl_insert(&zfsvfs->z_fuid_domain, 195 domnode, loc); 196 } 197 } 198 nvlist_free(nvp); 199 } 200 kmem_free(packed, nvsize); 201 202 initialized: 203 zfsvfs->z_fuid_loaded = B_TRUE; 204 rw_exit(&zfsvfs->z_fuid_lock); 205 } 206 207 /* 208 * Query domain table for a given domain. 209 * 210 * If domain isn't found it is added to AVL trees and 211 * the results are pushed out to disk. 212 */ 213 int 214 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, char **retdomain, 215 dmu_tx_t *tx) 216 { 217 fuid_domain_t searchnode, *findnode; 218 avl_index_t loc; 219 220 searchnode.f_ksid = ksid_lookupdomain(domain); 221 if (retdomain) { 222 *retdomain = searchnode.f_ksid->kd_name; 223 } 224 if (zfsvfs->z_fuid_loaded == B_FALSE) 225 zfs_fuid_init(zfsvfs, tx); 226 227 rw_enter(&zfsvfs->z_fuid_lock, RW_READER); 228 findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc); 229 rw_exit(&zfsvfs->z_fuid_lock); 230 231 if (findnode) { 232 ksiddomain_rele(searchnode.f_ksid); 233 return (findnode->f_idx); 234 } else { 235 fuid_domain_t *domnode; 236 fuid_idx_t *newidxnode; 237 nvlist_t *nvp; 238 nvlist_t **fuids; 239 uint64_t retidx; 240 size_t nvsize = 0; 241 char *packed; 242 dmu_buf_t *db; 243 int i = 0; 244 245 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 246 domnode->f_ksid = searchnode.f_ksid; 247 domnode->f_offset = 0; 248 249 newidxnode = kmem_alloc(sizeof (fuid_idx_t), KM_SLEEP); 250 newidxnode->f_domain = domnode; 251 252 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 253 retidx = domnode->f_idx = newidxnode->f_idx = 254 avl_numnodes(&zfsvfs->z_fuid_idx) + 1; 255 256 avl_add(&zfsvfs->z_fuid_domain, domnode); 257 avl_add(&zfsvfs->z_fuid_idx, newidxnode); 258 /* 259 * Now resync the on-disk nvlist. 260 */ 261 VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 262 263 domnode = avl_first(&zfsvfs->z_fuid_domain); 264 fuids = kmem_alloc(retidx * sizeof (void *), KM_SLEEP); 265 while (domnode) { 266 VERIFY(nvlist_alloc(&fuids[i], 267 NV_UNIQUE_NAME, KM_SLEEP) == 0); 268 VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX, 269 domnode->f_idx) == 0); 270 VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 271 domnode->f_offset) == 0); 272 VERIFY(nvlist_add_string(fuids[i++], FUID_DOMAIN, 273 domnode->f_ksid->kd_name) == 0); 274 domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode); 275 } 276 VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY, 277 fuids, retidx) == 0); 278 for (i = 0; i != retidx; i++) 279 nvlist_free(fuids[i]); 280 kmem_free(fuids, retidx * sizeof (void *)); 281 VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0); 282 packed = kmem_alloc(nvsize, KM_SLEEP); 283 VERIFY(nvlist_pack(nvp, &packed, &nvsize, 284 NV_ENCODE_XDR, KM_SLEEP) == 0); 285 nvlist_free(nvp); 286 dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0, nvsize, 287 packed, tx); 288 kmem_free(packed, nvsize); 289 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj, 290 FTAG, &db)); 291 dmu_buf_will_dirty(db, tx); 292 *(uint64_t *)db->db_data = nvsize; 293 dmu_buf_rele(db, FTAG); 294 295 rw_exit(&zfsvfs->z_fuid_lock); 296 return (retidx); 297 } 298 } 299 300 /* 301 * Query domain table by index, returning domain string 302 * 303 * Returns a pointer from an avl node of the domain string. 304 * 305 */ 306 char * 307 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint64_t idx) 308 { 309 fuid_idx_t searchnode, *findnode; 310 avl_index_t loc; 311 312 if (idx == 0 || zfsvfs->z_use_fuids == B_FALSE) 313 return (NULL); 314 315 if (zfsvfs->z_fuid_loaded == B_FALSE) 316 zfs_fuid_init(zfsvfs, NULL); 317 318 searchnode.f_idx = idx; 319 320 rw_enter(&zfsvfs->z_fuid_lock, RW_READER); 321 findnode = avl_find(&zfsvfs->z_fuid_idx, &searchnode, &loc); 322 rw_exit(&zfsvfs->z_fuid_lock); 323 324 ASSERT(findnode); 325 return (findnode->f_domain->f_ksid->kd_name); 326 } 327 328 void 329 zfs_fuid_get_mappings(zfs_fuid_hdl_t *hdl) 330 { 331 VERIFY(hdl != NULL); 332 if (hdl->z_map_needed == B_FALSE) 333 return; 334 335 (void) kidmap_get_mappings(hdl->z_hdl); 336 337 kidmap_get_destroy(hdl->z_hdl); 338 hdl->z_hdl = NULL; 339 hdl->z_map_needed = B_FALSE; 340 } 341 342 void 343 zfs_fuid_queue_map_id(zfsvfs_t *zfsvfs, zfs_fuid_hdl_t *hdl, 344 uint64_t fuid, zfs_fuid_type_t type, uid_t *id) 345 { 346 uint32_t index = FUID_INDEX(fuid); 347 char *domain; 348 int status; 349 350 VERIFY(hdl); 351 352 if (index == 0 || zfsvfs->z_use_fuids == B_FALSE) { 353 *id = (uid_t)fuid; 354 return; 355 } 356 357 if (hdl->z_hdl == NULL) { 358 hdl->z_hdl = kidmap_get_create(); 359 hdl->z_map_needed = B_TRUE; 360 } 361 362 domain = zfs_fuid_find_by_idx(zfsvfs, index); 363 ASSERT(domain != NULL); 364 365 if (type == ZFS_OWNER || type == ZFS_ACE_USER) 366 status = kidmap_batch_getuidbysid(hdl->z_hdl, domain, 367 FUID_RID(fuid), id, &hdl->z_status); 368 else 369 status = kidmap_batch_getgidbysid(hdl->z_hdl, domain, 370 FUID_RID(fuid), id, &hdl->z_status); 371 ASSERT(status == 0); 372 } 373 374 void 375 zfs_fuid_map_ids(znode_t *zp, uid_t *uid, uid_t *gid) 376 { 377 uint32_t uid_index = FUID_INDEX(zp->z_phys->zp_uid); 378 uint32_t gid_index = FUID_INDEX(zp->z_phys->zp_gid); 379 380 /* Favor the common case, neither will be ephemeral */ 381 if (uid_index == 0 && gid_index == 0) { 382 *uid = zp->z_phys->zp_uid; 383 *gid = zp->z_phys->zp_gid; 384 return; 385 } else { 386 zfs_fuid_hdl_t hdl = { 0 }; 387 388 zfs_fuid_queue_map_id(zp->z_zfsvfs, &hdl, 389 zp->z_phys->zp_uid, ZFS_OWNER, uid); 390 391 zfs_fuid_queue_map_id(zp->z_zfsvfs, &hdl, 392 zp->z_phys->zp_gid, ZFS_GROUP, gid); 393 394 zfs_fuid_get_mappings(&hdl); 395 } 396 } 397 398 void 399 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid, 400 zfs_fuid_type_t type, uid_t *id) 401 { 402 uint32_t index = FUID_INDEX(fuid); 403 char *domain; 404 405 if (index == 0) { 406 *id = (uid_t)fuid; 407 return; 408 } 409 410 domain = zfs_fuid_find_by_idx(zfsvfs, index); 411 ASSERT(domain != NULL); 412 413 if (type == ZFS_OWNER || type == ZFS_ACE_USER) 414 (void) kidmap_getuidbysid(domain, FUID_RID(fuid), id); 415 else 416 (void) kidmap_getgidbysid(domain, FUID_RID(fuid), id); 417 } 418 419 /* 420 * Add a FUID node to the list of fuid's being created for this 421 * ACL 422 * 423 * If ACL has multiple domains, then keep only one copy of each unique 424 * domain. 425 */ 426 static void 427 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid, 428 uint64_t idx, uint64_t id, zfs_fuid_type_t type) 429 { 430 zfs_fuid_t *fuid; 431 zfs_fuid_domain_t *fuid_domain; 432 zfs_fuid_info_t *fuidp; 433 uint64_t fuididx; 434 boolean_t found = B_FALSE; 435 436 if (*fuidpp == NULL) 437 *fuidpp = zfs_fuid_info_alloc(); 438 439 fuidp = *fuidpp; 440 /* 441 * First find fuid domain index in linked list 442 * 443 * If one isn't found then create an entry. 444 */ 445 446 for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains); 447 fuid_domain; fuid_domain = list_next(&fuidp->z_domains, 448 fuid_domain), fuididx++) { 449 if (idx == fuid_domain->z_domidx) { 450 found = B_TRUE; 451 break; 452 } 453 } 454 455 if (found == B_FALSE) { 456 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP); 457 fuid_domain->z_domain = domain; 458 fuid_domain->z_domidx = idx; 459 list_insert_tail(&fuidp->z_domains, fuid_domain); 460 fuidp->z_domain_str_sz += strlen(domain) + 1; 461 fuidp->z_domain_cnt++; 462 } 463 464 if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) { 465 /* 466 * Now allocate fuid entry and add it on the end of the list 467 */ 468 469 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP); 470 fuid->z_id = id; 471 fuid->z_domidx = idx; 472 fuid->z_logfuid = FUID_ENCODE(fuididx, rid); 473 474 list_insert_tail(&fuidp->z_fuids, fuid); 475 fuidp->z_fuid_cnt++; 476 } else { 477 if (type == ZFS_OWNER) 478 fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid); 479 else 480 fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid); 481 } 482 } 483 484 /* 485 * Create a file system FUID 486 * 487 * During a replay operation the id will be incorrect and 488 * will be ignored. In this case replay must be true and the 489 * cred will have a ksid_t attached to it. 490 * 491 * A mapped uid/gid would have a ksid_t attached to the cred. 492 */ 493 uint64_t 494 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, uint64_t id, 495 zfs_fuid_type_t type, dmu_tx_t *tx, cred_t *cr, zfs_fuid_info_t **fuidp) 496 { 497 uint64_t idx; 498 ksid_t *ksid; 499 uint32_t rid; 500 char *kdomain; 501 const char *domain; 502 503 VERIFY(type == ZFS_OWNER || type == ZFS_GROUP); 504 505 if (zfsvfs->z_use_fuids == B_FALSE || !IS_EPHEMERAL(id)) 506 return ((uint64_t)id); 507 508 ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP); 509 510 VERIFY(ksid != NULL); 511 rid = ksid_getrid(ksid); 512 domain = ksid_getdomain(ksid); 513 514 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx); 515 516 zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type); 517 518 return (FUID_ENCODE(idx, rid)); 519 } 520 521 /* 522 * Create a file system FUID for an ACL ace 523 * or a chown/chgrp of the file. 524 * This is similar to zfs_fuid_create_cred, except that 525 * we can't find the domain + rid information in the 526 * cred. Instead we have to query Winchester for the 527 * domain and rid. 528 */ 529 uint64_t 530 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, 531 zfs_fuid_type_t type, dmu_tx_t *tx, zfs_fuid_info_t **fuidpp) 532 { 533 const char *domain; 534 char *kdomain; 535 uint32_t fuid_idx = FUID_INDEX(id); 536 uint32_t rid; 537 idmap_stat status; 538 uint64_t idx; 539 boolean_t is_replay = (zfsvfs->z_assign >= TXG_INITIAL); 540 zfs_fuid_t *zfuid = NULL; 541 zfs_fuid_info_t *fuidp; 542 543 /* 544 * If POSIX ID, or entry is already a FUID then 545 * just return the id 546 */ 547 if (!IS_EPHEMERAL(id) || fuid_idx != 0) 548 return (id); 549 550 if (is_replay) { 551 fuidp = zfsvfs->z_fuid_replay; 552 553 /* 554 * If we are passed an ephemeral id, but no 555 * fuid_info was logged then return NOBODY. 556 * This is most likely a result of idmap service 557 * not being available. 558 */ 559 if (fuidp == NULL) 560 return (UID_NOBODY); 561 562 switch (type) { 563 case ZFS_ACE_USER: 564 case ZFS_ACE_GROUP: 565 zfuid = list_head(&fuidp->z_fuids); 566 rid = FUID_RID(zfuid->z_logfuid); 567 idx = FUID_INDEX(zfuid->z_logfuid); 568 break; 569 case ZFS_OWNER: 570 rid = FUID_RID(fuidp->z_fuid_owner); 571 idx = FUID_INDEX(fuidp->z_fuid_owner); 572 break; 573 case ZFS_GROUP: 574 rid = FUID_RID(fuidp->z_fuid_group); 575 idx = FUID_INDEX(fuidp->z_fuid_group); 576 break; 577 }; 578 domain = fuidp->z_domain_table[idx -1]; 579 } else { 580 if (type == ZFS_OWNER || type == ZFS_ACE_USER) 581 status = kidmap_getsidbyuid(id, &domain, &rid); 582 else 583 status = kidmap_getsidbygid(id, &domain, &rid); 584 585 if (status != 0) 586 return (UID_NOBODY); 587 588 } 589 590 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx); 591 592 if (is_replay == B_FALSE) 593 zfs_fuid_node_add(fuidpp, kdomain, rid, idx, id, type); 594 else if (zfuid != NULL) { 595 list_remove(&fuidp->z_fuids, zfuid); 596 kmem_free(zfuid, sizeof (zfs_fuid_t)); 597 } 598 return (FUID_ENCODE(idx, rid)); 599 } 600 601 void 602 zfs_fuid_destroy(zfsvfs_t *zfsvfs) 603 { 604 fuid_domain_t *domnode; 605 fuid_idx_t *idxnode; 606 void *cookie; 607 608 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 609 if (zfsvfs->z_fuid_loaded == B_FALSE) { 610 rw_exit(&zfsvfs->z_fuid_lock); 611 return; 612 } 613 cookie = NULL; 614 while (domnode = avl_destroy_nodes(&zfsvfs->z_fuid_domain, &cookie)) { 615 ksiddomain_rele(domnode->f_ksid); 616 kmem_free(domnode, sizeof (fuid_domain_t)); 617 } 618 avl_destroy(&zfsvfs->z_fuid_domain); 619 cookie = NULL; 620 while (idxnode = avl_destroy_nodes(&zfsvfs->z_fuid_idx, &cookie)) 621 kmem_free(idxnode, sizeof (fuid_idx_t)); 622 avl_destroy(&zfsvfs->z_fuid_idx); 623 rw_exit(&zfsvfs->z_fuid_lock); 624 } 625 626 /* 627 * Allocate zfs_fuid_info for tracking FUIDs created during 628 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR() 629 */ 630 zfs_fuid_info_t * 631 zfs_fuid_info_alloc(void) 632 { 633 zfs_fuid_info_t *fuidp; 634 635 fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP); 636 list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t), 637 offsetof(zfs_fuid_domain_t, z_next)); 638 list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t), 639 offsetof(zfs_fuid_t, z_next)); 640 return (fuidp); 641 } 642 643 /* 644 * Release all memory associated with zfs_fuid_info_t 645 */ 646 void 647 zfs_fuid_info_free(zfs_fuid_info_t *fuidp) 648 { 649 zfs_fuid_t *zfuid; 650 zfs_fuid_domain_t *zdomain; 651 652 while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) { 653 list_remove(&fuidp->z_fuids, zfuid); 654 kmem_free(zfuid, sizeof (zfs_fuid_t)); 655 } 656 657 if (fuidp->z_domain_table != NULL) 658 kmem_free(fuidp->z_domain_table, 659 (sizeof (char **)) * fuidp->z_domain_cnt); 660 661 while ((zdomain = list_head(&fuidp->z_domains)) != NULL) { 662 list_remove(&fuidp->z_domains, zdomain); 663 kmem_free(zdomain, sizeof (zfs_fuid_domain_t)); 664 } 665 666 kmem_free(fuidp, sizeof (zfs_fuid_info_t)); 667 } 668 669 /* 670 * Check to see if id is a groupmember. If cred 671 * has ksid info then sidlist is checked first 672 * and if still not found then POSIX groups are checked 673 * 674 * Will use a straight FUID compare when possible. 675 */ 676 boolean_t 677 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr) 678 { 679 ksid_t *ksid = crgetsid(cr, KSID_GROUP); 680 uid_t gid; 681 682 if (ksid) { 683 int i; 684 ksid_t *ksid_groups; 685 ksidlist_t *ksidlist = crgetsidlist(cr); 686 uint32_t idx = FUID_INDEX(id); 687 uint32_t rid = FUID_RID(id); 688 689 ASSERT(ksidlist); 690 ksid_groups = ksidlist->ksl_sids; 691 692 for (i = 0; i != ksidlist->ksl_nsid; i++) { 693 if (idx == 0) { 694 if (id != IDMAP_WK_CREATOR_GROUP_GID && 695 id == ksid_groups[i].ks_id) { 696 return (B_TRUE); 697 } 698 } else { 699 char *domain; 700 701 domain = zfs_fuid_find_by_idx(zfsvfs, idx); 702 ASSERT(domain != NULL); 703 704 if (strcmp(domain, 705 IDMAP_WK_CREATOR_SID_AUTHORITY) == 0) { 706 return (B_FALSE); 707 } 708 709 if ((strcmp(domain, 710 ksid_groups[i].ks_domain->kd_name) == 0) && 711 rid == ksid_groups[i].ks_rid) { 712 return (B_TRUE); 713 } 714 } 715 } 716 } 717 718 /* 719 * Not found in ksidlist, check posix groups 720 */ 721 zfs_fuid_map_id(zfsvfs, id, ZFS_GROUP, &gid); 722 723 return (groupmember(gid, cr)); 724 } 725