1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/vdev.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio.h> 35 #include <sys/zio_checksum.h> 36 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/fm/protocol.h> 39 #include <sys/fm/util.h> 40 #include <sys/sysevent.h> 41 42 /* 43 * This general routine is responsible for generating all the different ZFS 44 * ereports. The payload is dependent on the class, and which arguments are 45 * supplied to the function: 46 * 47 * EREPORT POOL VDEV IO 48 * block X X X 49 * data X X 50 * device X X 51 * pool X 52 * 53 * If we are in a loading state, all errors are chained together by the same 54 * SPA-wide ENA (Error Numeric Association). 55 * 56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation 57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want 58 * to chain together all ereports associated with a logical piece of data. For 59 * read I/Os, there are basically three 'types' of I/O, which form a roughly 60 * layered diagram: 61 * 62 * +---------------+ 63 * | Aggregate I/O | No associated logical data or device 64 * +---------------+ 65 * | 66 * V 67 * +---------------+ Reads associated with a piece of logical data. 68 * | Read I/O | This includes reads on behalf of RAID-Z, 69 * +---------------+ mirrors, gang blocks, retries, etc. 70 * | 71 * V 72 * +---------------+ Reads associated with a particular device, but 73 * | Physical I/O | no logical data. Issued as part of vdev caching 74 * +---------------+ and I/O aggregation. 75 * 76 * Note that 'physical I/O' here is not the same terminology as used in the rest 77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached 78 * blockpointer. But I/O with no associated block pointer can still be related 79 * to a logical piece of data (i.e. RAID-Z requests). 80 * 81 * Purely physical I/O always have unique ENAs. They are not related to a 82 * particular piece of logical data, and therefore cannot be chained together. 83 * We still generate an ereport, but the DE doesn't correlate it with any 84 * logical piece of data. When such an I/O fails, the delegated I/O requests 85 * will issue a retry, which will trigger the 'real' ereport with the correct 86 * ENA. 87 * 88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member. 89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os 90 * then inherit this pointer, so that when it is first set subsequent failures 91 * will use the same ENA. For vdev cache fill and queue aggregation I/O, 92 * this pointer is set to NULL, and no ereport will be generated (since it 93 * doesn't actually correspond to any particular device or piece of data, 94 * and the caller will always retry without caching or queueing anyway). 95 * 96 * For checksum errors, we want to include more information about the actual 97 * error which occurs. Accordingly, we build an ereport when the error is 98 * noticed, but instead of sending it in immediately, we hang it off of the 99 * io_cksum_report field of the logical IO. When the logical IO completes 100 * (successfully or not), zfs_ereport_finish_checksum() is called with the 101 * good and bad versions of the buffer (if available), and we annotate the 102 * ereport with information about the differences. 103 */ 104 #ifdef _KERNEL 105 static void 106 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out, 107 const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 108 zio_t *zio, uint64_t stateoroffset, uint64_t size) 109 { 110 nvlist_t *ereport, *detector; 111 112 uint64_t ena; 113 char class[64]; 114 115 /* 116 * If we are doing a spa_tryimport() or in recovery mode, 117 * ignore errors. 118 */ 119 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT || 120 spa_load_state(spa) == SPA_LOAD_RECOVER) 121 return; 122 123 /* 124 * If we are in the middle of opening a pool, and the previous attempt 125 * failed, don't bother logging any new ereports - we're just going to 126 * get the same diagnosis anyway. 127 */ 128 if (spa_load_state(spa) != SPA_LOAD_NONE && 129 spa->spa_last_open_failed) 130 return; 131 132 if (zio != NULL) { 133 /* 134 * If this is not a read or write zio, ignore the error. This 135 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails. 136 */ 137 if (zio->io_type != ZIO_TYPE_READ && 138 zio->io_type != ZIO_TYPE_WRITE) 139 return; 140 141 /* 142 * Ignore any errors from speculative I/Os, as failure is an 143 * expected result. 144 */ 145 if (zio->io_flags & ZIO_FLAG_SPECULATIVE) 146 return; 147 148 /* 149 * If this I/O is not a retry I/O, don't post an ereport. 150 * Otherwise, we risk making bad diagnoses based on B_FAILFAST 151 * I/Os. 152 */ 153 if (zio->io_error == EIO && 154 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 155 return; 156 157 if (vd != NULL) { 158 /* 159 * If the vdev has already been marked as failing due 160 * to a failed probe, then ignore any subsequent I/O 161 * errors, as the DE will automatically fault the vdev 162 * on the first such failure. This also catches cases 163 * where vdev_remove_wanted is set and the device has 164 * not yet been asynchronously placed into the REMOVED 165 * state. 166 */ 167 if (zio->io_vd == vd && !vdev_accessible(vd, zio)) 168 return; 169 170 /* 171 * Ignore checksum errors for reads from DTL regions of 172 * leaf vdevs. 173 */ 174 if (zio->io_type == ZIO_TYPE_READ && 175 zio->io_error == ECKSUM && 176 vd->vdev_ops->vdev_op_leaf && 177 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1)) 178 return; 179 } 180 } 181 182 /* 183 * For probe failure, we want to avoid posting ereports if we've 184 * already removed the device in the meantime. 185 */ 186 if (vd != NULL && 187 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 && 188 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED)) 189 return; 190 191 if ((ereport = fm_nvlist_create(NULL)) == NULL) 192 return; 193 194 if ((detector = fm_nvlist_create(NULL)) == NULL) { 195 fm_nvlist_destroy(ereport, FM_NVA_FREE); 196 return; 197 } 198 199 /* 200 * Serialize ereport generation 201 */ 202 mutex_enter(&spa->spa_errlist_lock); 203 204 /* 205 * Determine the ENA to use for this event. If we are in a loading 206 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use 207 * a root zio-wide ENA. Otherwise, simply use a unique ENA. 208 */ 209 if (spa_load_state(spa) != SPA_LOAD_NONE) { 210 if (spa->spa_ena == 0) 211 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1); 212 ena = spa->spa_ena; 213 } else if (zio != NULL && zio->io_logical != NULL) { 214 if (zio->io_logical->io_ena == 0) 215 zio->io_logical->io_ena = 216 fm_ena_generate(0, FM_ENA_FMT1); 217 ena = zio->io_logical->io_ena; 218 } else { 219 ena = fm_ena_generate(0, FM_ENA_FMT1); 220 } 221 222 /* 223 * Construct the full class, detector, and other standard FMA fields. 224 */ 225 (void) snprintf(class, sizeof (class), "%s.%s", 226 ZFS_ERROR_CLASS, subclass); 227 228 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa), 229 vd != NULL ? vd->vdev_guid : 0); 230 231 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL); 232 233 /* 234 * Construct the per-ereport payload, depending on which parameters are 235 * passed in. 236 */ 237 238 /* 239 * Generic payload members common to all ereports. 240 */ 241 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL, 242 DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, 243 DATA_TYPE_UINT64, spa_guid(spa), 244 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32, 245 spa_load_state(spa), NULL); 246 247 if (spa != NULL) { 248 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, 249 DATA_TYPE_STRING, 250 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ? 251 FM_EREPORT_FAILMODE_WAIT : 252 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ? 253 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC, 254 NULL); 255 } 256 257 if (vd != NULL) { 258 vdev_t *pvd = vd->vdev_parent; 259 260 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 261 DATA_TYPE_UINT64, vd->vdev_guid, 262 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 263 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL); 264 if (vd->vdev_path != NULL) 265 fm_payload_set(ereport, 266 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, 267 DATA_TYPE_STRING, vd->vdev_path, NULL); 268 if (vd->vdev_devid != NULL) 269 fm_payload_set(ereport, 270 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, 271 DATA_TYPE_STRING, vd->vdev_devid, NULL); 272 if (vd->vdev_fru != NULL) 273 fm_payload_set(ereport, 274 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, 275 DATA_TYPE_STRING, vd->vdev_fru, NULL); 276 if (vd->vdev_ashift) 277 fm_payload_set(ereport, 278 FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT, 279 DATA_TYPE_UINT64, vd->vdev_ashift, NULL); 280 281 if (pvd != NULL) { 282 fm_payload_set(ereport, 283 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, 284 DATA_TYPE_UINT64, pvd->vdev_guid, 285 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE, 286 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type, 287 NULL); 288 if (pvd->vdev_path) 289 fm_payload_set(ereport, 290 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH, 291 DATA_TYPE_STRING, pvd->vdev_path, NULL); 292 if (pvd->vdev_devid) 293 fm_payload_set(ereport, 294 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID, 295 DATA_TYPE_STRING, pvd->vdev_devid, NULL); 296 } 297 } 298 299 if (zio != NULL) { 300 /* 301 * Payload common to all I/Os. 302 */ 303 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR, 304 DATA_TYPE_INT32, zio->io_error, NULL); 305 306 /* 307 * If the 'size' parameter is non-zero, it indicates this is a 308 * RAID-Z or other I/O where the physical offset and length are 309 * provided for us, instead of within the zio_t. 310 */ 311 if (vd != NULL) { 312 if (size) 313 fm_payload_set(ereport, 314 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 315 DATA_TYPE_UINT64, stateoroffset, 316 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 317 DATA_TYPE_UINT64, size, NULL); 318 else 319 fm_payload_set(ereport, 320 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 321 DATA_TYPE_UINT64, zio->io_offset, 322 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 323 DATA_TYPE_UINT64, zio->io_size, NULL); 324 } 325 } else if (vd != NULL) { 326 /* 327 * If we have a vdev but no zio, this is a device fault, and the 328 * 'stateoroffset' parameter indicates the previous state of the 329 * vdev. 330 */ 331 fm_payload_set(ereport, 332 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE, 333 DATA_TYPE_UINT64, stateoroffset, NULL); 334 } 335 336 /* 337 * Payload for I/Os with corresponding logical information. 338 */ 339 if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) 340 fm_payload_set(ereport, 341 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET, 342 DATA_TYPE_UINT64, zb->zb_objset, 343 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT, 344 DATA_TYPE_UINT64, zb->zb_object, 345 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL, 346 DATA_TYPE_INT64, zb->zb_level, 347 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID, 348 DATA_TYPE_UINT64, zb->zb_blkid, NULL); 349 350 mutex_exit(&spa->spa_errlist_lock); 351 352 *ereport_out = ereport; 353 *detector_out = detector; 354 } 355 356 /* if it's <= 128 bytes, save the corruption directly */ 357 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t)) 358 359 #define MAX_RANGES 16 360 361 typedef struct zfs_ecksum_info { 362 /* histograms of set and cleared bits by bit number in a 64-bit word */ 363 uint32_t zei_histogram_set[sizeof (uint64_t) * NBBY]; 364 uint32_t zei_histogram_cleared[sizeof (uint64_t) * NBBY]; 365 366 /* inline arrays of bits set and cleared. */ 367 uint64_t zei_bits_set[ZFM_MAX_INLINE]; 368 uint64_t zei_bits_cleared[ZFM_MAX_INLINE]; 369 370 /* 371 * for each range, the number of bits set and cleared. The Hamming 372 * distance between the good and bad buffers is the sum of them all. 373 */ 374 uint32_t zei_range_sets[MAX_RANGES]; 375 uint32_t zei_range_clears[MAX_RANGES]; 376 377 struct zei_ranges { 378 uint32_t zr_start; 379 uint32_t zr_end; 380 } zei_ranges[MAX_RANGES]; 381 382 size_t zei_range_count; 383 uint32_t zei_mingap; 384 uint32_t zei_allowed_mingap; 385 386 } zfs_ecksum_info_t; 387 388 static void 389 update_histogram(uint64_t value_arg, uint32_t *hist, uint32_t *count) 390 { 391 size_t i; 392 size_t bits = 0; 393 uint64_t value = BE_64(value_arg); 394 395 /* We store the bits in big-endian (largest-first) order */ 396 for (i = 0; i < 64; i++) { 397 if (value & (1ull << i)) { 398 hist[63 - i]++; 399 ++bits; 400 } 401 } 402 /* update the count of bits changed */ 403 *count += bits; 404 } 405 406 /* 407 * We've now filled up the range array, and need to increase "mingap" and 408 * shrink the range list accordingly. zei_mingap is always the smallest 409 * distance between array entries, so we set the new_allowed_gap to be 410 * one greater than that. We then go through the list, joining together 411 * any ranges which are closer than the new_allowed_gap. 412 * 413 * By construction, there will be at least one. We also update zei_mingap 414 * to the new smallest gap, to prepare for our next invocation. 415 */ 416 static void 417 shrink_ranges(zfs_ecksum_info_t *eip) 418 { 419 uint32_t mingap = UINT32_MAX; 420 uint32_t new_allowed_gap = eip->zei_mingap + 1; 421 422 size_t idx, output; 423 size_t max = eip->zei_range_count; 424 425 struct zei_ranges *r = eip->zei_ranges; 426 427 ASSERT3U(eip->zei_range_count, >, 0); 428 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES); 429 430 output = idx = 0; 431 while (idx < max - 1) { 432 uint32_t start = r[idx].zr_start; 433 uint32_t end = r[idx].zr_end; 434 435 while (idx < max - 1) { 436 idx++; 437 438 uint32_t nstart = r[idx].zr_start; 439 uint32_t nend = r[idx].zr_end; 440 441 uint32_t gap = nstart - end; 442 if (gap < new_allowed_gap) { 443 end = nend; 444 continue; 445 } 446 if (gap < mingap) 447 mingap = gap; 448 break; 449 } 450 r[output].zr_start = start; 451 r[output].zr_end = end; 452 output++; 453 } 454 ASSERT3U(output, <, eip->zei_range_count); 455 eip->zei_range_count = output; 456 eip->zei_mingap = mingap; 457 eip->zei_allowed_mingap = new_allowed_gap; 458 } 459 460 static void 461 add_range(zfs_ecksum_info_t *eip, int start, int end) 462 { 463 struct zei_ranges *r = eip->zei_ranges; 464 size_t count = eip->zei_range_count; 465 466 if (count >= MAX_RANGES) { 467 shrink_ranges(eip); 468 count = eip->zei_range_count; 469 } 470 if (count == 0) { 471 eip->zei_mingap = UINT32_MAX; 472 eip->zei_allowed_mingap = 1; 473 } else { 474 int gap = start - r[count - 1].zr_end; 475 476 if (gap < eip->zei_allowed_mingap) { 477 r[count - 1].zr_end = end; 478 return; 479 } 480 if (gap < eip->zei_mingap) 481 eip->zei_mingap = gap; 482 } 483 r[count].zr_start = start; 484 r[count].zr_end = end; 485 eip->zei_range_count++; 486 } 487 488 static size_t 489 range_total_size(zfs_ecksum_info_t *eip) 490 { 491 struct zei_ranges *r = eip->zei_ranges; 492 size_t count = eip->zei_range_count; 493 size_t result = 0; 494 size_t idx; 495 496 for (idx = 0; idx < count; idx++) 497 result += (r[idx].zr_end - r[idx].zr_start); 498 499 return (result); 500 } 501 502 static zfs_ecksum_info_t * 503 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info, 504 const abd_t *goodabd, const abd_t *badabd, size_t size, 505 boolean_t drop_if_identical) 506 { 507 const uint64_t *good; 508 const uint64_t *bad; 509 510 uint64_t allset = 0; 511 uint64_t allcleared = 0; 512 513 size_t nui64s = size / sizeof (uint64_t); 514 515 size_t inline_size; 516 int no_inline = 0; 517 size_t idx; 518 size_t range; 519 520 size_t offset = 0; 521 ssize_t start = -1; 522 523 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP); 524 525 /* don't do any annotation for injected checksum errors */ 526 if (info != NULL && info->zbc_injected) 527 return (eip); 528 529 if (info != NULL && info->zbc_has_cksum) { 530 fm_payload_set(ereport, 531 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED, 532 DATA_TYPE_UINT64_ARRAY, 533 sizeof (info->zbc_expected) / sizeof (uint64_t), 534 (uint64_t *)&info->zbc_expected, 535 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL, 536 DATA_TYPE_UINT64_ARRAY, 537 sizeof (info->zbc_actual) / sizeof (uint64_t), 538 (uint64_t *)&info->zbc_actual, 539 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO, 540 DATA_TYPE_STRING, 541 info->zbc_checksum_name, 542 NULL); 543 544 if (info->zbc_byteswapped) { 545 fm_payload_set(ereport, 546 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP, 547 DATA_TYPE_BOOLEAN, 1, 548 NULL); 549 } 550 } 551 552 if (badabd == NULL || goodabd == NULL) 553 return (eip); 554 555 ASSERT3U(nui64s, <=, UINT32_MAX); 556 ASSERT3U(size, ==, nui64s * sizeof (uint64_t)); 557 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 558 ASSERT3U(size, <=, UINT32_MAX); 559 560 good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size); 561 bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size); 562 563 /* build up the range list by comparing the two buffers. */ 564 for (idx = 0; idx < nui64s; idx++) { 565 if (good[idx] == bad[idx]) { 566 if (start == -1) 567 continue; 568 569 add_range(eip, start, idx); 570 start = -1; 571 } else { 572 if (start != -1) 573 continue; 574 575 start = idx; 576 } 577 } 578 if (start != -1) 579 add_range(eip, start, idx); 580 581 /* See if it will fit in our inline buffers */ 582 inline_size = range_total_size(eip); 583 if (inline_size > ZFM_MAX_INLINE) 584 no_inline = 1; 585 586 /* 587 * If there is no change and we want to drop if the buffers are 588 * identical, do so. 589 */ 590 if (inline_size == 0 && drop_if_identical) { 591 kmem_free(eip, sizeof (*eip)); 592 abd_return_buf((abd_t *)goodabd, (void *)good, size); 593 abd_return_buf((abd_t *)badabd, (void *)bad, size); 594 return (NULL); 595 } 596 597 /* 598 * Now walk through the ranges, filling in the details of the 599 * differences. Also convert our uint64_t-array offsets to byte 600 * offsets. 601 */ 602 for (range = 0; range < eip->zei_range_count; range++) { 603 size_t start = eip->zei_ranges[range].zr_start; 604 size_t end = eip->zei_ranges[range].zr_end; 605 606 for (idx = start; idx < end; idx++) { 607 uint64_t set, cleared; 608 609 // bits set in bad, but not in good 610 set = ((~good[idx]) & bad[idx]); 611 // bits set in good, but not in bad 612 cleared = (good[idx] & (~bad[idx])); 613 614 allset |= set; 615 allcleared |= cleared; 616 617 if (!no_inline) { 618 ASSERT3U(offset, <, inline_size); 619 eip->zei_bits_set[offset] = set; 620 eip->zei_bits_cleared[offset] = cleared; 621 offset++; 622 } 623 624 update_histogram(set, eip->zei_histogram_set, 625 &eip->zei_range_sets[range]); 626 update_histogram(cleared, eip->zei_histogram_cleared, 627 &eip->zei_range_clears[range]); 628 } 629 630 /* convert to byte offsets */ 631 eip->zei_ranges[range].zr_start *= sizeof (uint64_t); 632 eip->zei_ranges[range].zr_end *= sizeof (uint64_t); 633 } 634 635 abd_return_buf((abd_t *)goodabd, (void *)good, size); 636 abd_return_buf((abd_t *)badabd, (void *)bad, size); 637 638 eip->zei_allowed_mingap *= sizeof (uint64_t); 639 inline_size *= sizeof (uint64_t); 640 641 /* fill in ereport */ 642 fm_payload_set(ereport, 643 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES, 644 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count, 645 (uint32_t *)eip->zei_ranges, 646 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP, 647 DATA_TYPE_UINT32, eip->zei_allowed_mingap, 648 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS, 649 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets, 650 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS, 651 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears, 652 NULL); 653 654 if (!no_inline) { 655 fm_payload_set(ereport, 656 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS, 657 DATA_TYPE_UINT8_ARRAY, 658 inline_size, (uint8_t *)eip->zei_bits_set, 659 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS, 660 DATA_TYPE_UINT8_ARRAY, 661 inline_size, (uint8_t *)eip->zei_bits_cleared, 662 NULL); 663 } else { 664 fm_payload_set(ereport, 665 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM, 666 DATA_TYPE_UINT32_ARRAY, 667 NBBY * sizeof (uint64_t), eip->zei_histogram_set, 668 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM, 669 DATA_TYPE_UINT32_ARRAY, 670 NBBY * sizeof (uint64_t), eip->zei_histogram_cleared, 671 NULL); 672 } 673 return (eip); 674 } 675 #endif 676 677 void 678 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, 679 const struct zbookmark_phys *zb, zio_t *zio, uint64_t stateoroffset, 680 uint64_t size) 681 { 682 #ifdef _KERNEL 683 nvlist_t *ereport = NULL; 684 nvlist_t *detector = NULL; 685 686 zfs_ereport_start(&ereport, &detector, subclass, spa, vd, 687 zb, zio, stateoroffset, size); 688 689 if (ereport == NULL) 690 return; 691 692 fm_ereport_post(ereport, EVCH_SLEEP); 693 694 fm_nvlist_destroy(ereport, FM_NVA_FREE); 695 fm_nvlist_destroy(detector, FM_NVA_FREE); 696 #endif 697 } 698 699 void 700 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 701 struct zio *zio, uint64_t offset, uint64_t length, void *arg, 702 zio_bad_cksum_t *info) 703 { 704 zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_SLEEP); 705 706 if (zio->io_vsd != NULL) 707 zio->io_vsd_ops->vsd_cksum_report(zio, report, arg); 708 else 709 zio_vsd_default_cksum_report(zio, report, arg); 710 711 /* copy the checksum failure information if it was provided */ 712 if (info != NULL) { 713 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP); 714 bcopy(info, report->zcr_ckinfo, sizeof (*info)); 715 } 716 717 report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift; 718 report->zcr_length = length; 719 720 #ifdef _KERNEL 721 zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector, 722 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length); 723 724 if (report->zcr_ereport == NULL) { 725 report->zcr_free(report->zcr_cbdata, report->zcr_cbinfo); 726 if (report->zcr_ckinfo != NULL) { 727 kmem_free(report->zcr_ckinfo, 728 sizeof (*report->zcr_ckinfo)); 729 } 730 kmem_free(report, sizeof (*report)); 731 return; 732 } 733 #endif 734 735 mutex_enter(&spa->spa_errlist_lock); 736 report->zcr_next = zio->io_logical->io_cksum_report; 737 zio->io_logical->io_cksum_report = report; 738 mutex_exit(&spa->spa_errlist_lock); 739 } 740 741 void 742 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data, 743 const abd_t *bad_data, boolean_t drop_if_identical) 744 { 745 #ifdef _KERNEL 746 zfs_ecksum_info_t *info = NULL; 747 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo, 748 good_data, bad_data, report->zcr_length, drop_if_identical); 749 750 if (info != NULL) 751 fm_ereport_post(report->zcr_ereport, EVCH_SLEEP); 752 753 fm_nvlist_destroy(report->zcr_ereport, FM_NVA_FREE); 754 fm_nvlist_destroy(report->zcr_detector, FM_NVA_FREE); 755 report->zcr_ereport = report->zcr_detector = NULL; 756 757 if (info != NULL) 758 kmem_free(info, sizeof (*info)); 759 #endif 760 } 761 762 void 763 zfs_ereport_free_checksum(zio_cksum_report_t *rpt) 764 { 765 #ifdef _KERNEL 766 if (rpt->zcr_ereport != NULL) { 767 fm_nvlist_destroy(rpt->zcr_ereport, 768 FM_NVA_FREE); 769 fm_nvlist_destroy(rpt->zcr_detector, 770 FM_NVA_FREE); 771 } 772 #endif 773 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo); 774 775 if (rpt->zcr_ckinfo != NULL) 776 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo)); 777 778 kmem_free(rpt, sizeof (*rpt)); 779 } 780 781 void 782 zfs_ereport_send_interim_checksum(zio_cksum_report_t *report) 783 { 784 #ifdef _KERNEL 785 fm_ereport_post(report->zcr_ereport, EVCH_SLEEP); 786 #endif 787 } 788 789 void 790 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 791 struct zio *zio, uint64_t offset, uint64_t length, 792 const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc) 793 { 794 #ifdef _KERNEL 795 nvlist_t *ereport = NULL; 796 nvlist_t *detector = NULL; 797 zfs_ecksum_info_t *info; 798 799 zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM, 800 spa, vd, zb, zio, offset, length); 801 802 if (ereport == NULL) 803 return; 804 805 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length, 806 B_FALSE); 807 808 if (info != NULL) 809 fm_ereport_post(ereport, EVCH_SLEEP); 810 811 fm_nvlist_destroy(ereport, FM_NVA_FREE); 812 fm_nvlist_destroy(detector, FM_NVA_FREE); 813 814 if (info != NULL) 815 kmem_free(info, sizeof (*info)); 816 #endif 817 } 818 819 static void 820 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name) 821 { 822 #ifdef _KERNEL 823 nvlist_t *resource; 824 char class[64]; 825 826 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT) 827 return; 828 829 if ((resource = fm_nvlist_create(NULL)) == NULL) 830 return; 831 832 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE, 833 ZFS_ERROR_CLASS, name); 834 VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0); 835 VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0); 836 VERIFY(nvlist_add_uint64(resource, 837 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0); 838 if (vd) 839 VERIFY(nvlist_add_uint64(resource, 840 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0); 841 842 fm_ereport_post(resource, EVCH_SLEEP); 843 844 fm_nvlist_destroy(resource, FM_NVA_FREE); 845 #endif 846 } 847 848 /* 849 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev 850 * has been removed from the system. This will cause the DE to ignore any 851 * recent I/O errors, inferring that they are due to the asynchronous device 852 * removal. 853 */ 854 void 855 zfs_post_remove(spa_t *spa, vdev_t *vd) 856 { 857 zfs_post_common(spa, vd, FM_RESOURCE_REMOVED); 858 } 859 860 /* 861 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool 862 * has the 'autoreplace' property set, and therefore any broken vdevs will be 863 * handled by higher level logic, and no vdev fault should be generated. 864 */ 865 void 866 zfs_post_autoreplace(spa_t *spa, vdev_t *vd) 867 { 868 zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE); 869 } 870 871 /* 872 * The 'resource.fs.zfs.statechange' event is an internal signal that the 873 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will 874 * cause the retire agent to repair any outstanding fault management cases 875 * open because the device was not found (fault.fs.zfs.device). 876 */ 877 void 878 zfs_post_state_change(spa_t *spa, vdev_t *vd) 879 { 880 zfs_post_common(spa, vd, FM_RESOURCE_STATECHANGE); 881 } 882