1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/spa.h> 27 #include <sys/spa_impl.h> 28 #include <sys/vdev.h> 29 #include <sys/vdev_impl.h> 30 #include <sys/zio.h> 31 32 #include <sys/fm/fs/zfs.h> 33 #include <sys/fm/protocol.h> 34 #include <sys/fm/util.h> 35 #include <sys/sysevent.h> 36 37 /* 38 * This general routine is responsible for generating all the different ZFS 39 * ereports. The payload is dependent on the class, and which arguments are 40 * supplied to the function: 41 * 42 * EREPORT POOL VDEV IO 43 * block X X X 44 * data X X 45 * device X X 46 * pool X 47 * 48 * If we are in a loading state, all errors are chained together by the same 49 * SPA-wide ENA (Error Numeric Association). 50 * 51 * For isolated I/O requests, we get the ENA from the zio_t. The propagation 52 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want 53 * to chain together all ereports associated with a logical piece of data. For 54 * read I/Os, there are basically three 'types' of I/O, which form a roughly 55 * layered diagram: 56 * 57 * +---------------+ 58 * | Aggregate I/O | No associated logical data or device 59 * +---------------+ 60 * | 61 * V 62 * +---------------+ Reads associated with a piece of logical data. 63 * | Read I/O | This includes reads on behalf of RAID-Z, 64 * +---------------+ mirrors, gang blocks, retries, etc. 65 * | 66 * V 67 * +---------------+ Reads associated with a particular device, but 68 * | Physical I/O | no logical data. Issued as part of vdev caching 69 * +---------------+ and I/O aggregation. 70 * 71 * Note that 'physical I/O' here is not the same terminology as used in the rest 72 * of ZIO. Typically, 'physical I/O' simply means that there is no attached 73 * blockpointer. But I/O with no associated block pointer can still be related 74 * to a logical piece of data (i.e. RAID-Z requests). 75 * 76 * Purely physical I/O always have unique ENAs. They are not related to a 77 * particular piece of logical data, and therefore cannot be chained together. 78 * We still generate an ereport, but the DE doesn't correlate it with any 79 * logical piece of data. When such an I/O fails, the delegated I/O requests 80 * will issue a retry, which will trigger the 'real' ereport with the correct 81 * ENA. 82 * 83 * We keep track of the ENA for a ZIO chain through the 'io_logical' member. 84 * When a new logical I/O is issued, we set this to point to itself. Child I/Os 85 * then inherit this pointer, so that when it is first set subsequent failures 86 * will use the same ENA. For vdev cache fill and queue aggregation I/O, 87 * this pointer is set to NULL, and no ereport will be generated (since it 88 * doesn't actually correspond to any particular device or piece of data, 89 * and the caller will always retry without caching or queueing anyway). 90 */ 91 void 92 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio, 93 uint64_t stateoroffset, uint64_t size) 94 { 95 #ifdef _KERNEL 96 nvlist_t *ereport, *detector; 97 uint64_t ena; 98 char class[64]; 99 100 /* 101 * If we are doing a spa_tryimport(), ignore errors. 102 */ 103 if (spa->spa_load_state == SPA_LOAD_TRYIMPORT) 104 return; 105 106 /* 107 * If we are in the middle of opening a pool, and the previous attempt 108 * failed, don't bother logging any new ereports - we're just going to 109 * get the same diagnosis anyway. 110 */ 111 if (spa->spa_load_state != SPA_LOAD_NONE && 112 spa->spa_last_open_failed) 113 return; 114 115 if (zio != NULL) { 116 /* 117 * If this is not a read or write zio, ignore the error. This 118 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails. 119 */ 120 if (zio->io_type != ZIO_TYPE_READ && 121 zio->io_type != ZIO_TYPE_WRITE) 122 return; 123 124 /* 125 * Ignore any errors from speculative I/Os, as failure is an 126 * expected result. 127 */ 128 if (zio->io_flags & ZIO_FLAG_SPECULATIVE) 129 return; 130 131 /* 132 * If this I/O is not a retry I/O, don't post an ereport. 133 * Otherwise, we risk making bad diagnoses based on B_FAILFAST 134 * I/Os. 135 */ 136 if (zio->io_error == EIO && 137 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 138 return; 139 140 if (vd != NULL) { 141 /* 142 * If the vdev has already been marked as failing due 143 * to a failed probe, then ignore any subsequent I/O 144 * errors, as the DE will automatically fault the vdev 145 * on the first such failure. This also catches cases 146 * where vdev_remove_wanted is set and the device has 147 * not yet been asynchronously placed into the REMOVED 148 * state. 149 */ 150 if (zio->io_vd == vd && !vdev_accessible(vd, zio)) 151 return; 152 153 /* 154 * Ignore checksum errors for reads from DTL regions of 155 * leaf vdevs. 156 */ 157 if (zio->io_type == ZIO_TYPE_READ && 158 zio->io_error == ECKSUM && 159 vd->vdev_ops->vdev_op_leaf && 160 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1)) 161 return; 162 } 163 } 164 165 /* 166 * For probe failure, we want to avoid posting ereports if we've 167 * already removed the device in the meantime. 168 */ 169 if (vd != NULL && 170 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 && 171 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED)) 172 return; 173 174 if ((ereport = fm_nvlist_create(NULL)) == NULL) 175 return; 176 177 if ((detector = fm_nvlist_create(NULL)) == NULL) { 178 fm_nvlist_destroy(ereport, FM_NVA_FREE); 179 return; 180 } 181 182 /* 183 * Serialize ereport generation 184 */ 185 mutex_enter(&spa->spa_errlist_lock); 186 187 /* 188 * Determine the ENA to use for this event. If we are in a loading 189 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use 190 * a root zio-wide ENA. Otherwise, simply use a unique ENA. 191 */ 192 if (spa->spa_load_state != SPA_LOAD_NONE) { 193 if (spa->spa_ena == 0) 194 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1); 195 ena = spa->spa_ena; 196 } else if (zio != NULL && zio->io_logical != NULL) { 197 if (zio->io_logical->io_ena == 0) 198 zio->io_logical->io_ena = 199 fm_ena_generate(0, FM_ENA_FMT1); 200 ena = zio->io_logical->io_ena; 201 } else { 202 ena = fm_ena_generate(0, FM_ENA_FMT1); 203 } 204 205 /* 206 * Construct the full class, detector, and other standard FMA fields. 207 */ 208 (void) snprintf(class, sizeof (class), "%s.%s", 209 ZFS_ERROR_CLASS, subclass); 210 211 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa), 212 vd != NULL ? vd->vdev_guid : 0); 213 214 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL); 215 216 /* 217 * Construct the per-ereport payload, depending on which parameters are 218 * passed in. 219 */ 220 221 /* 222 * Generic payload members common to all ereports. 223 */ 224 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL, 225 DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, 226 DATA_TYPE_UINT64, spa_guid(spa), 227 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32, 228 spa->spa_load_state, NULL); 229 230 if (spa != NULL) { 231 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, 232 DATA_TYPE_STRING, 233 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ? 234 FM_EREPORT_FAILMODE_WAIT : 235 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ? 236 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC, 237 NULL); 238 } 239 240 if (vd != NULL) { 241 vdev_t *pvd = vd->vdev_parent; 242 243 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 244 DATA_TYPE_UINT64, vd->vdev_guid, 245 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 246 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL); 247 if (vd->vdev_path != NULL) 248 fm_payload_set(ereport, 249 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, 250 DATA_TYPE_STRING, vd->vdev_path, NULL); 251 if (vd->vdev_devid != NULL) 252 fm_payload_set(ereport, 253 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, 254 DATA_TYPE_STRING, vd->vdev_devid, NULL); 255 if (vd->vdev_fru != NULL) 256 fm_payload_set(ereport, 257 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, 258 DATA_TYPE_STRING, vd->vdev_fru, NULL); 259 260 if (pvd != NULL) { 261 fm_payload_set(ereport, 262 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, 263 DATA_TYPE_UINT64, pvd->vdev_guid, 264 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE, 265 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type, 266 NULL); 267 if (pvd->vdev_path) 268 fm_payload_set(ereport, 269 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH, 270 DATA_TYPE_STRING, pvd->vdev_path, NULL); 271 if (pvd->vdev_devid) 272 fm_payload_set(ereport, 273 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID, 274 DATA_TYPE_STRING, pvd->vdev_devid, NULL); 275 } 276 } 277 278 if (zio != NULL) { 279 /* 280 * Payload common to all I/Os. 281 */ 282 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR, 283 DATA_TYPE_INT32, zio->io_error, NULL); 284 285 /* 286 * If the 'size' parameter is non-zero, it indicates this is a 287 * RAID-Z or other I/O where the physical offset and length are 288 * provided for us, instead of within the zio_t. 289 */ 290 if (vd != NULL) { 291 if (size) 292 fm_payload_set(ereport, 293 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 294 DATA_TYPE_UINT64, stateoroffset, 295 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 296 DATA_TYPE_UINT64, size, NULL); 297 else 298 fm_payload_set(ereport, 299 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 300 DATA_TYPE_UINT64, zio->io_offset, 301 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 302 DATA_TYPE_UINT64, zio->io_size, NULL); 303 } 304 305 /* 306 * Payload for I/Os with corresponding logical information. 307 */ 308 if (zio->io_logical != NULL) 309 fm_payload_set(ereport, 310 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET, 311 DATA_TYPE_UINT64, 312 zio->io_logical->io_bookmark.zb_objset, 313 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT, 314 DATA_TYPE_UINT64, 315 zio->io_logical->io_bookmark.zb_object, 316 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL, 317 DATA_TYPE_INT64, 318 zio->io_logical->io_bookmark.zb_level, 319 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID, 320 DATA_TYPE_UINT64, 321 zio->io_logical->io_bookmark.zb_blkid, NULL); 322 } else if (vd != NULL) { 323 /* 324 * If we have a vdev but no zio, this is a device fault, and the 325 * 'stateoroffset' parameter indicates the previous state of the 326 * vdev. 327 */ 328 fm_payload_set(ereport, 329 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE, 330 DATA_TYPE_UINT64, stateoroffset, NULL); 331 } 332 mutex_exit(&spa->spa_errlist_lock); 333 334 fm_ereport_post(ereport, EVCH_SLEEP); 335 336 fm_nvlist_destroy(ereport, FM_NVA_FREE); 337 fm_nvlist_destroy(detector, FM_NVA_FREE); 338 #endif 339 } 340 341 static void 342 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name) 343 { 344 #ifdef _KERNEL 345 nvlist_t *resource; 346 char class[64]; 347 348 if (spa->spa_load_state == SPA_LOAD_TRYIMPORT) 349 return; 350 351 if ((resource = fm_nvlist_create(NULL)) == NULL) 352 return; 353 354 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE, 355 ZFS_ERROR_CLASS, name); 356 VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0); 357 VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0); 358 VERIFY(nvlist_add_uint64(resource, 359 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0); 360 if (vd) 361 VERIFY(nvlist_add_uint64(resource, 362 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0); 363 364 fm_ereport_post(resource, EVCH_SLEEP); 365 366 fm_nvlist_destroy(resource, FM_NVA_FREE); 367 #endif 368 } 369 370 /* 371 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev 372 * has been removed from the system. This will cause the DE to ignore any 373 * recent I/O errors, inferring that they are due to the asynchronous device 374 * removal. 375 */ 376 void 377 zfs_post_remove(spa_t *spa, vdev_t *vd) 378 { 379 zfs_post_common(spa, vd, FM_RESOURCE_REMOVED); 380 } 381 382 /* 383 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool 384 * has the 'autoreplace' property set, and therefore any broken vdevs will be 385 * handled by higher level logic, and no vdev fault should be generated. 386 */ 387 void 388 zfs_post_autoreplace(spa_t *spa, vdev_t *vd) 389 { 390 zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE); 391 } 392