1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/spa.h> 27 #include <sys/spa_impl.h> 28 #include <sys/vdev.h> 29 #include <sys/vdev_impl.h> 30 #include <sys/zio.h> 31 32 #include <sys/fm/fs/zfs.h> 33 #include <sys/fm/protocol.h> 34 #include <sys/fm/util.h> 35 #include <sys/sysevent.h> 36 37 /* 38 * This general routine is responsible for generating all the different ZFS 39 * ereports. The payload is dependent on the class, and which arguments are 40 * supplied to the function: 41 * 42 * EREPORT POOL VDEV IO 43 * block X X X 44 * data X X 45 * device X X 46 * pool X 47 * 48 * If we are in a loading state, all errors are chained together by the same 49 * SPA-wide ENA (Error Numeric Association). 50 * 51 * For isolated I/O requests, we get the ENA from the zio_t. The propagation 52 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want 53 * to chain together all ereports associated with a logical piece of data. For 54 * read I/Os, there are basically three 'types' of I/O, which form a roughly 55 * layered diagram: 56 * 57 * +---------------+ 58 * | Aggregate I/O | No associated logical data or device 59 * +---------------+ 60 * | 61 * V 62 * +---------------+ Reads associated with a piece of logical data. 63 * | Read I/O | This includes reads on behalf of RAID-Z, 64 * +---------------+ mirrors, gang blocks, retries, etc. 65 * | 66 * V 67 * +---------------+ Reads associated with a particular device, but 68 * | Physical I/O | no logical data. Issued as part of vdev caching 69 * +---------------+ and I/O aggregation. 70 * 71 * Note that 'physical I/O' here is not the same terminology as used in the rest 72 * of ZIO. Typically, 'physical I/O' simply means that there is no attached 73 * blockpointer. But I/O with no associated block pointer can still be related 74 * to a logical piece of data (i.e. RAID-Z requests). 75 * 76 * Purely physical I/O always have unique ENAs. They are not related to a 77 * particular piece of logical data, and therefore cannot be chained together. 78 * We still generate an ereport, but the DE doesn't correlate it with any 79 * logical piece of data. When such an I/O fails, the delegated I/O requests 80 * will issue a retry, which will trigger the 'real' ereport with the correct 81 * ENA. 82 * 83 * We keep track of the ENA for a ZIO chain through the 'io_logical' member. 84 * When a new logical I/O is issued, we set this to point to itself. Child I/Os 85 * then inherit this pointer, so that when it is first set subsequent failures 86 * will use the same ENA. For vdev cache fill and queue aggregation I/O, 87 * this pointer is set to NULL, and no ereport will be generated (since it 88 * doesn't actually correspond to any particular device or piece of data, 89 * and the caller will always retry without caching or queueing anyway). 90 */ 91 void 92 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio, 93 uint64_t stateoroffset, uint64_t size) 94 { 95 #ifdef _KERNEL 96 nvlist_t *ereport, *detector; 97 uint64_t ena; 98 char class[64]; 99 int state; 100 101 /* 102 * If we are doing a spa_tryimport(), ignore errors. 103 */ 104 if (spa->spa_load_state == SPA_LOAD_TRYIMPORT) 105 return; 106 107 /* 108 * If we are in the middle of opening a pool, and the previous attempt 109 * failed, don't bother logging any new ereports - we're just going to 110 * get the same diagnosis anyway. 111 */ 112 if (spa->spa_load_state != SPA_LOAD_NONE && 113 spa->spa_last_open_failed) 114 return; 115 116 if (zio != NULL) { 117 /* 118 * If this is not a read or write zio, ignore the error. This 119 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails. 120 */ 121 if (zio->io_type != ZIO_TYPE_READ && 122 zio->io_type != ZIO_TYPE_WRITE) 123 return; 124 125 /* 126 * Ignore any errors from speculative I/Os, as failure is an 127 * expected result. 128 */ 129 if (zio->io_flags & ZIO_FLAG_SPECULATIVE) 130 return; 131 132 /* 133 * If the vdev has already been marked as failing due to a 134 * failed probe, then ignore any subsequent I/O errors, as the 135 * DE will automatically fault the vdev on the first such 136 * failure. 137 */ 138 if (vd != NULL && 139 (!vdev_readable(vd) || !vdev_writeable(vd)) && 140 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) != 0) 141 return; 142 } 143 144 if ((ereport = fm_nvlist_create(NULL)) == NULL) 145 return; 146 147 if ((detector = fm_nvlist_create(NULL)) == NULL) { 148 fm_nvlist_destroy(ereport, FM_NVA_FREE); 149 return; 150 } 151 152 /* 153 * Serialize ereport generation 154 */ 155 mutex_enter(&spa->spa_errlist_lock); 156 157 /* 158 * Determine the ENA to use for this event. If we are in a loading 159 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use 160 * a root zio-wide ENA. Otherwise, simply use a unique ENA. 161 */ 162 if (spa->spa_load_state != SPA_LOAD_NONE) { 163 if (spa->spa_ena == 0) 164 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1); 165 ena = spa->spa_ena; 166 } else if (zio != NULL && zio->io_logical != NULL) { 167 if (zio->io_logical->io_ena == 0) 168 zio->io_logical->io_ena = 169 fm_ena_generate(0, FM_ENA_FMT1); 170 ena = zio->io_logical->io_ena; 171 } else { 172 ena = fm_ena_generate(0, FM_ENA_FMT1); 173 } 174 175 /* 176 * Construct the full class, detector, and other standard FMA fields. 177 */ 178 (void) snprintf(class, sizeof (class), "%s.%s", 179 ZFS_ERROR_CLASS, subclass); 180 181 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa), 182 vd != NULL ? vd->vdev_guid : 0); 183 184 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL); 185 186 /* 187 * Construct the per-ereport payload, depending on which parameters are 188 * passed in. 189 */ 190 191 /* 192 * If we are importing a faulted pool, then we treat it like an open, 193 * not an import. Otherwise, the DE will ignore all faults during 194 * import, since the default behavior is to mark the devices as 195 * persistently unavailable, not leave them in the faulted state. 196 */ 197 state = spa->spa_import_faulted ? SPA_LOAD_OPEN : spa->spa_load_state; 198 199 /* 200 * Generic payload members common to all ereports. 201 */ 202 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL, 203 DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, 204 DATA_TYPE_UINT64, spa_guid(spa), 205 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32, 206 state, NULL); 207 208 if (spa != NULL) { 209 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, 210 DATA_TYPE_STRING, 211 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ? 212 FM_EREPORT_FAILMODE_WAIT : 213 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ? 214 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC, 215 NULL); 216 } 217 218 if (vd != NULL) { 219 vdev_t *pvd = vd->vdev_parent; 220 221 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 222 DATA_TYPE_UINT64, vd->vdev_guid, 223 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 224 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL); 225 if (vd->vdev_path) 226 fm_payload_set(ereport, 227 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, 228 DATA_TYPE_STRING, vd->vdev_path, NULL); 229 if (vd->vdev_devid) 230 fm_payload_set(ereport, 231 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, 232 DATA_TYPE_STRING, vd->vdev_devid, NULL); 233 234 if (pvd != NULL) { 235 fm_payload_set(ereport, 236 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, 237 DATA_TYPE_UINT64, pvd->vdev_guid, 238 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE, 239 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type, 240 NULL); 241 if (pvd->vdev_path) 242 fm_payload_set(ereport, 243 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH, 244 DATA_TYPE_STRING, pvd->vdev_path, NULL); 245 if (pvd->vdev_devid) 246 fm_payload_set(ereport, 247 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID, 248 DATA_TYPE_STRING, pvd->vdev_devid, NULL); 249 } 250 } 251 252 if (zio != NULL) { 253 /* 254 * Payload common to all I/Os. 255 */ 256 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR, 257 DATA_TYPE_INT32, zio->io_error, NULL); 258 259 /* 260 * If the 'size' parameter is non-zero, it indicates this is a 261 * RAID-Z or other I/O where the physical offset and length are 262 * provided for us, instead of within the zio_t. 263 */ 264 if (vd != NULL) { 265 if (size) 266 fm_payload_set(ereport, 267 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 268 DATA_TYPE_UINT64, stateoroffset, 269 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 270 DATA_TYPE_UINT64, size, NULL); 271 else 272 fm_payload_set(ereport, 273 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 274 DATA_TYPE_UINT64, zio->io_offset, 275 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 276 DATA_TYPE_UINT64, zio->io_size, NULL); 277 } 278 279 /* 280 * Payload for I/Os with corresponding logical information. 281 */ 282 if (zio->io_logical != NULL) 283 fm_payload_set(ereport, 284 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET, 285 DATA_TYPE_UINT64, 286 zio->io_logical->io_bookmark.zb_objset, 287 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT, 288 DATA_TYPE_UINT64, 289 zio->io_logical->io_bookmark.zb_object, 290 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL, 291 DATA_TYPE_INT64, 292 zio->io_logical->io_bookmark.zb_level, 293 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID, 294 DATA_TYPE_UINT64, 295 zio->io_logical->io_bookmark.zb_blkid, NULL); 296 } else if (vd != NULL) { 297 /* 298 * If we have a vdev but no zio, this is a device fault, and the 299 * 'stateoroffset' parameter indicates the previous state of the 300 * vdev. 301 */ 302 fm_payload_set(ereport, 303 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE, 304 DATA_TYPE_UINT64, stateoroffset, NULL); 305 } 306 mutex_exit(&spa->spa_errlist_lock); 307 308 fm_ereport_post(ereport, EVCH_SLEEP); 309 310 fm_nvlist_destroy(ereport, FM_NVA_FREE); 311 fm_nvlist_destroy(detector, FM_NVA_FREE); 312 #endif 313 } 314 315 static void 316 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name) 317 { 318 #ifdef _KERNEL 319 nvlist_t *resource; 320 char class[64]; 321 322 if ((resource = fm_nvlist_create(NULL)) == NULL) 323 return; 324 325 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE, 326 ZFS_ERROR_CLASS, name); 327 VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0); 328 VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0); 329 VERIFY(nvlist_add_uint64(resource, 330 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0); 331 if (vd) 332 VERIFY(nvlist_add_uint64(resource, 333 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0); 334 335 fm_ereport_post(resource, EVCH_SLEEP); 336 337 fm_nvlist_destroy(resource, FM_NVA_FREE); 338 #endif 339 } 340 341 /* 342 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev 343 * has been removed from the system. This will cause the DE to ignore any 344 * recent I/O errors, inferring that they are due to the asynchronous device 345 * removal. 346 */ 347 void 348 zfs_post_remove(spa_t *spa, vdev_t *vd) 349 { 350 zfs_post_common(spa, vd, FM_RESOURCE_REMOVED); 351 } 352 353 /* 354 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool 355 * has the 'autoreplace' property set, and therefore any broken vdevs will be 356 * handled by higher level logic, and no vdev fault should be generated. 357 */ 358 void 359 zfs_post_autoreplace(spa_t *spa, vdev_t *vd) 360 { 361 zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE); 362 } 363