1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/vdev.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio.h> 35 #include <sys/zio_checksum.h> 36 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/fm/protocol.h> 39 #include <sys/fm/util.h> 40 #include <sys/sysevent.h> 41 42 /* 43 * This general routine is responsible for generating all the different ZFS 44 * ereports. The payload is dependent on the class, and which arguments are 45 * supplied to the function: 46 * 47 * EREPORT POOL VDEV IO 48 * block X X X 49 * data X X 50 * device X X 51 * pool X 52 * 53 * If we are in a loading state, all errors are chained together by the same 54 * SPA-wide ENA (Error Numeric Association). 55 * 56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation 57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want 58 * to chain together all ereports associated with a logical piece of data. For 59 * read I/Os, there are basically three 'types' of I/O, which form a roughly 60 * layered diagram: 61 * 62 * +---------------+ 63 * | Aggregate I/O | No associated logical data or device 64 * +---------------+ 65 * | 66 * V 67 * +---------------+ Reads associated with a piece of logical data. 68 * | Read I/O | This includes reads on behalf of RAID-Z, 69 * +---------------+ mirrors, gang blocks, retries, etc. 70 * | 71 * V 72 * +---------------+ Reads associated with a particular device, but 73 * | Physical I/O | no logical data. Issued as part of vdev caching 74 * +---------------+ and I/O aggregation. 75 * 76 * Note that 'physical I/O' here is not the same terminology as used in the rest 77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached 78 * blockpointer. But I/O with no associated block pointer can still be related 79 * to a logical piece of data (i.e. RAID-Z requests). 80 * 81 * Purely physical I/O always have unique ENAs. They are not related to a 82 * particular piece of logical data, and therefore cannot be chained together. 83 * We still generate an ereport, but the DE doesn't correlate it with any 84 * logical piece of data. When such an I/O fails, the delegated I/O requests 85 * will issue a retry, which will trigger the 'real' ereport with the correct 86 * ENA. 87 * 88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member. 89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os 90 * then inherit this pointer, so that when it is first set subsequent failures 91 * will use the same ENA. For vdev cache fill and queue aggregation I/O, 92 * this pointer is set to NULL, and no ereport will be generated (since it 93 * doesn't actually correspond to any particular device or piece of data, 94 * and the caller will always retry without caching or queueing anyway). 95 * 96 * For checksum errors, we want to include more information about the actual 97 * error which occurs. Accordingly, we build an ereport when the error is 98 * noticed, but instead of sending it in immediately, we hang it off of the 99 * io_cksum_report field of the logical IO. When the logical IO completes 100 * (successfully or not), zfs_ereport_finish_checksum() is called with the 101 * good and bad versions of the buffer (if available), and we annotate the 102 * ereport with information about the differences. 103 */ 104 #ifdef _KERNEL 105 106 /* 107 * Return B_TRUE if the event actually posted, B_FALSE if not. 108 */ 109 static boolean_t 110 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out, 111 const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 112 zio_t *zio, uint64_t stateoroffset, uint64_t size) 113 { 114 nvlist_t *ereport, *detector; 115 116 uint64_t ena; 117 char class[64]; 118 119 if (!zfs_ereport_is_valid(subclass, spa, vd, zio)) 120 return (B_FALSE); 121 122 if ((ereport = fm_nvlist_create(NULL)) == NULL) 123 return (B_FALSE); 124 125 if ((detector = fm_nvlist_create(NULL)) == NULL) { 126 fm_nvlist_destroy(ereport, FM_NVA_FREE); 127 return (B_FALSE); 128 } 129 130 /* 131 * Serialize ereport generation 132 */ 133 mutex_enter(&spa->spa_errlist_lock); 134 135 /* 136 * Determine the ENA to use for this event. If we are in a loading 137 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use 138 * a root zio-wide ENA. Otherwise, simply use a unique ENA. 139 */ 140 if (spa_load_state(spa) != SPA_LOAD_NONE) { 141 if (spa->spa_ena == 0) 142 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1); 143 ena = spa->spa_ena; 144 } else if (zio != NULL && zio->io_logical != NULL) { 145 if (zio->io_logical->io_ena == 0) 146 zio->io_logical->io_ena = 147 fm_ena_generate(0, FM_ENA_FMT1); 148 ena = zio->io_logical->io_ena; 149 } else { 150 ena = fm_ena_generate(0, FM_ENA_FMT1); 151 } 152 153 /* 154 * Construct the full class, detector, and other standard FMA fields. 155 */ 156 (void) snprintf(class, sizeof (class), "%s.%s", 157 ZFS_ERROR_CLASS, subclass); 158 159 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa), 160 vd != NULL ? vd->vdev_guid : 0); 161 162 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL); 163 164 /* 165 * Construct the per-ereport payload, depending on which parameters are 166 * passed in. 167 */ 168 169 /* 170 * Generic payload members common to all ereports. 171 */ 172 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL, 173 DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, 174 DATA_TYPE_UINT64, spa_guid(spa), 175 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32, 176 spa_load_state(spa), NULL); 177 178 if (spa != NULL) { 179 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, 180 DATA_TYPE_STRING, 181 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ? 182 FM_EREPORT_FAILMODE_WAIT : 183 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ? 184 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC, 185 NULL); 186 } 187 188 if (vd != NULL) { 189 vdev_t *pvd = vd->vdev_parent; 190 191 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 192 DATA_TYPE_UINT64, vd->vdev_guid, 193 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 194 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL); 195 if (vd->vdev_path != NULL) 196 fm_payload_set(ereport, 197 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, 198 DATA_TYPE_STRING, vd->vdev_path, NULL); 199 if (vd->vdev_devid != NULL) 200 fm_payload_set(ereport, 201 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, 202 DATA_TYPE_STRING, vd->vdev_devid, NULL); 203 if (vd->vdev_fru != NULL) 204 fm_payload_set(ereport, 205 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, 206 DATA_TYPE_STRING, vd->vdev_fru, NULL); 207 if (vd->vdev_ashift) 208 fm_payload_set(ereport, 209 FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT, 210 DATA_TYPE_UINT64, vd->vdev_ashift, NULL); 211 212 if (pvd != NULL) { 213 fm_payload_set(ereport, 214 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, 215 DATA_TYPE_UINT64, pvd->vdev_guid, 216 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE, 217 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type, 218 NULL); 219 if (pvd->vdev_path) 220 fm_payload_set(ereport, 221 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH, 222 DATA_TYPE_STRING, pvd->vdev_path, NULL); 223 if (pvd->vdev_devid) 224 fm_payload_set(ereport, 225 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID, 226 DATA_TYPE_STRING, pvd->vdev_devid, NULL); 227 } 228 } 229 230 if (zio != NULL) { 231 /* 232 * Payload common to all I/Os. 233 */ 234 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR, 235 DATA_TYPE_INT32, zio->io_error, NULL); 236 237 /* 238 * If the 'size' parameter is non-zero, it indicates this is a 239 * RAID-Z or other I/O where the physical offset and length are 240 * provided for us, instead of within the zio_t. 241 */ 242 if (vd != NULL) { 243 if (size) 244 fm_payload_set(ereport, 245 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 246 DATA_TYPE_UINT64, stateoroffset, 247 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 248 DATA_TYPE_UINT64, size, NULL); 249 else 250 fm_payload_set(ereport, 251 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 252 DATA_TYPE_UINT64, zio->io_offset, 253 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 254 DATA_TYPE_UINT64, zio->io_size, NULL); 255 } 256 } else if (vd != NULL) { 257 /* 258 * If we have a vdev but no zio, this is a device fault, and the 259 * 'stateoroffset' parameter indicates the previous state of the 260 * vdev. 261 */ 262 fm_payload_set(ereport, 263 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE, 264 DATA_TYPE_UINT64, stateoroffset, NULL); 265 } 266 267 /* 268 * Payload for I/Os with corresponding logical information. 269 */ 270 if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) { 271 fm_payload_set(ereport, 272 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET, 273 DATA_TYPE_UINT64, zb->zb_objset, 274 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT, 275 DATA_TYPE_UINT64, zb->zb_object, 276 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL, 277 DATA_TYPE_INT64, zb->zb_level, 278 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID, 279 DATA_TYPE_UINT64, zb->zb_blkid, NULL); 280 } 281 282 mutex_exit(&spa->spa_errlist_lock); 283 284 *ereport_out = ereport; 285 *detector_out = detector; 286 return (B_TRUE); 287 } 288 289 /* if it's <= 128 bytes, save the corruption directly */ 290 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t)) 291 292 #define MAX_RANGES 16 293 294 typedef struct zfs_ecksum_info { 295 /* histograms of set and cleared bits by bit number in a 64-bit word */ 296 uint32_t zei_histogram_set[sizeof (uint64_t) * NBBY]; 297 uint32_t zei_histogram_cleared[sizeof (uint64_t) * NBBY]; 298 299 /* inline arrays of bits set and cleared. */ 300 uint64_t zei_bits_set[ZFM_MAX_INLINE]; 301 uint64_t zei_bits_cleared[ZFM_MAX_INLINE]; 302 303 /* 304 * for each range, the number of bits set and cleared. The Hamming 305 * distance between the good and bad buffers is the sum of them all. 306 */ 307 uint32_t zei_range_sets[MAX_RANGES]; 308 uint32_t zei_range_clears[MAX_RANGES]; 309 310 struct zei_ranges { 311 uint32_t zr_start; 312 uint32_t zr_end; 313 } zei_ranges[MAX_RANGES]; 314 315 size_t zei_range_count; 316 uint32_t zei_mingap; 317 uint32_t zei_allowed_mingap; 318 319 } zfs_ecksum_info_t; 320 321 static void 322 update_histogram(uint64_t value_arg, uint32_t *hist, uint32_t *count) 323 { 324 size_t i; 325 size_t bits = 0; 326 uint64_t value = BE_64(value_arg); 327 328 /* We store the bits in big-endian (largest-first) order */ 329 for (i = 0; i < 64; i++) { 330 if (value & (1ull << i)) { 331 hist[63 - i]++; 332 ++bits; 333 } 334 } 335 /* update the count of bits changed */ 336 *count += bits; 337 } 338 339 /* 340 * We've now filled up the range array, and need to increase "mingap" and 341 * shrink the range list accordingly. zei_mingap is always the smallest 342 * distance between array entries, so we set the new_allowed_gap to be 343 * one greater than that. We then go through the list, joining together 344 * any ranges which are closer than the new_allowed_gap. 345 * 346 * By construction, there will be at least one. We also update zei_mingap 347 * to the new smallest gap, to prepare for our next invocation. 348 */ 349 static void 350 shrink_ranges(zfs_ecksum_info_t *eip) 351 { 352 uint32_t mingap = UINT32_MAX; 353 uint32_t new_allowed_gap = eip->zei_mingap + 1; 354 355 size_t idx, output; 356 size_t max = eip->zei_range_count; 357 358 struct zei_ranges *r = eip->zei_ranges; 359 360 ASSERT3U(eip->zei_range_count, >, 0); 361 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES); 362 363 output = idx = 0; 364 while (idx < max - 1) { 365 uint32_t start = r[idx].zr_start; 366 uint32_t end = r[idx].zr_end; 367 368 while (idx < max - 1) { 369 idx++; 370 371 uint32_t nstart = r[idx].zr_start; 372 uint32_t nend = r[idx].zr_end; 373 374 uint32_t gap = nstart - end; 375 if (gap < new_allowed_gap) { 376 end = nend; 377 continue; 378 } 379 if (gap < mingap) 380 mingap = gap; 381 break; 382 } 383 r[output].zr_start = start; 384 r[output].zr_end = end; 385 output++; 386 } 387 ASSERT3U(output, <, eip->zei_range_count); 388 eip->zei_range_count = output; 389 eip->zei_mingap = mingap; 390 eip->zei_allowed_mingap = new_allowed_gap; 391 } 392 393 static void 394 add_range(zfs_ecksum_info_t *eip, int start, int end) 395 { 396 struct zei_ranges *r = eip->zei_ranges; 397 size_t count = eip->zei_range_count; 398 399 if (count >= MAX_RANGES) { 400 shrink_ranges(eip); 401 count = eip->zei_range_count; 402 } 403 if (count == 0) { 404 eip->zei_mingap = UINT32_MAX; 405 eip->zei_allowed_mingap = 1; 406 } else { 407 int gap = start - r[count - 1].zr_end; 408 409 if (gap < eip->zei_allowed_mingap) { 410 r[count - 1].zr_end = end; 411 return; 412 } 413 if (gap < eip->zei_mingap) 414 eip->zei_mingap = gap; 415 } 416 r[count].zr_start = start; 417 r[count].zr_end = end; 418 eip->zei_range_count++; 419 } 420 421 static size_t 422 range_total_size(zfs_ecksum_info_t *eip) 423 { 424 struct zei_ranges *r = eip->zei_ranges; 425 size_t count = eip->zei_range_count; 426 size_t result = 0; 427 size_t idx; 428 429 for (idx = 0; idx < count; idx++) 430 result += (r[idx].zr_end - r[idx].zr_start); 431 432 return (result); 433 } 434 435 static zfs_ecksum_info_t * 436 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info, 437 const abd_t *goodabd, const abd_t *badabd, size_t size, 438 boolean_t drop_if_identical) 439 { 440 const uint64_t *good; 441 const uint64_t *bad; 442 443 uint64_t allset = 0; 444 uint64_t allcleared = 0; 445 446 size_t nui64s = size / sizeof (uint64_t); 447 448 size_t inline_size; 449 int no_inline = 0; 450 size_t idx; 451 size_t range; 452 453 size_t offset = 0; 454 ssize_t start = -1; 455 456 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP); 457 458 /* don't do any annotation for injected checksum errors */ 459 if (info != NULL && info->zbc_injected) 460 return (eip); 461 462 if (info != NULL && info->zbc_has_cksum) { 463 fm_payload_set(ereport, 464 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED, 465 DATA_TYPE_UINT64_ARRAY, 466 sizeof (info->zbc_expected) / sizeof (uint64_t), 467 (uint64_t *)&info->zbc_expected, 468 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL, 469 DATA_TYPE_UINT64_ARRAY, 470 sizeof (info->zbc_actual) / sizeof (uint64_t), 471 (uint64_t *)&info->zbc_actual, 472 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO, 473 DATA_TYPE_STRING, 474 info->zbc_checksum_name, 475 NULL); 476 477 if (info->zbc_byteswapped) { 478 fm_payload_set(ereport, 479 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP, 480 DATA_TYPE_BOOLEAN, 1, 481 NULL); 482 } 483 } 484 485 if (badabd == NULL || goodabd == NULL) 486 return (eip); 487 488 ASSERT3U(nui64s, <=, UINT32_MAX); 489 ASSERT3U(size, ==, nui64s * sizeof (uint64_t)); 490 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 491 ASSERT3U(size, <=, UINT32_MAX); 492 493 good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size); 494 bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size); 495 496 /* build up the range list by comparing the two buffers. */ 497 for (idx = 0; idx < nui64s; idx++) { 498 if (good[idx] == bad[idx]) { 499 if (start == -1) 500 continue; 501 502 add_range(eip, start, idx); 503 start = -1; 504 } else { 505 if (start != -1) 506 continue; 507 508 start = idx; 509 } 510 } 511 if (start != -1) 512 add_range(eip, start, idx); 513 514 /* See if it will fit in our inline buffers */ 515 inline_size = range_total_size(eip); 516 if (inline_size > ZFM_MAX_INLINE) 517 no_inline = 1; 518 519 /* 520 * If there is no change and we want to drop if the buffers are 521 * identical, do so. 522 */ 523 if (inline_size == 0 && drop_if_identical) { 524 kmem_free(eip, sizeof (*eip)); 525 abd_return_buf((abd_t *)goodabd, (void *)good, size); 526 abd_return_buf((abd_t *)badabd, (void *)bad, size); 527 return (NULL); 528 } 529 530 /* 531 * Now walk through the ranges, filling in the details of the 532 * differences. Also convert our uint64_t-array offsets to byte 533 * offsets. 534 */ 535 for (range = 0; range < eip->zei_range_count; range++) { 536 size_t start = eip->zei_ranges[range].zr_start; 537 size_t end = eip->zei_ranges[range].zr_end; 538 539 for (idx = start; idx < end; idx++) { 540 uint64_t set, cleared; 541 542 // bits set in bad, but not in good 543 set = ((~good[idx]) & bad[idx]); 544 // bits set in good, but not in bad 545 cleared = (good[idx] & (~bad[idx])); 546 547 allset |= set; 548 allcleared |= cleared; 549 550 if (!no_inline) { 551 ASSERT3U(offset, <, inline_size); 552 eip->zei_bits_set[offset] = set; 553 eip->zei_bits_cleared[offset] = cleared; 554 offset++; 555 } 556 557 update_histogram(set, eip->zei_histogram_set, 558 &eip->zei_range_sets[range]); 559 update_histogram(cleared, eip->zei_histogram_cleared, 560 &eip->zei_range_clears[range]); 561 } 562 563 /* convert to byte offsets */ 564 eip->zei_ranges[range].zr_start *= sizeof (uint64_t); 565 eip->zei_ranges[range].zr_end *= sizeof (uint64_t); 566 } 567 568 abd_return_buf((abd_t *)goodabd, (void *)good, size); 569 abd_return_buf((abd_t *)badabd, (void *)bad, size); 570 571 eip->zei_allowed_mingap *= sizeof (uint64_t); 572 inline_size *= sizeof (uint64_t); 573 574 /* fill in ereport */ 575 fm_payload_set(ereport, 576 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES, 577 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count, 578 (uint32_t *)eip->zei_ranges, 579 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP, 580 DATA_TYPE_UINT32, eip->zei_allowed_mingap, 581 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS, 582 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets, 583 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS, 584 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears, 585 NULL); 586 587 if (!no_inline) { 588 fm_payload_set(ereport, 589 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS, 590 DATA_TYPE_UINT8_ARRAY, 591 inline_size, (uint8_t *)eip->zei_bits_set, 592 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS, 593 DATA_TYPE_UINT8_ARRAY, 594 inline_size, (uint8_t *)eip->zei_bits_cleared, 595 NULL); 596 } else { 597 fm_payload_set(ereport, 598 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM, 599 DATA_TYPE_UINT32_ARRAY, 600 NBBY * sizeof (uint64_t), eip->zei_histogram_set, 601 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM, 602 DATA_TYPE_UINT32_ARRAY, 603 NBBY * sizeof (uint64_t), eip->zei_histogram_cleared, 604 NULL); 605 } 606 return (eip); 607 } 608 #endif 609 610 /* 611 * Make sure our event is still valid for the given zio/vdev/pool. For example, 612 * we don't want to keep logging events for a faulted or missing vdev. 613 */ 614 boolean_t 615 zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio) 616 { 617 #ifdef _KERNEL 618 /* 619 * If we are doing a spa_tryimport() or in recovery mode, 620 * ignore errors. 621 */ 622 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT || 623 spa_load_state(spa) == SPA_LOAD_RECOVER) 624 return (B_FALSE); 625 626 /* 627 * If we are in the middle of opening a pool, and the previous attempt 628 * failed, don't bother logging any new ereports - we're just going to 629 * get the same diagnosis anyway. 630 */ 631 if (spa_load_state(spa) != SPA_LOAD_NONE && 632 spa->spa_last_open_failed) 633 return (B_FALSE); 634 635 if (zio != NULL) { 636 /* 637 * If this is not a read or write zio, ignore the error. This 638 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails. 639 */ 640 if (zio->io_type != ZIO_TYPE_READ && 641 zio->io_type != ZIO_TYPE_WRITE) 642 return (B_FALSE); 643 644 if (vd != NULL) { 645 /* 646 * If the vdev has already been marked as failing due 647 * to a failed probe, then ignore any subsequent I/O 648 * errors, as the DE will automatically fault the vdev 649 * on the first such failure. This also catches cases 650 * where vdev_remove_wanted is set and the device has 651 * not yet been asynchronously placed into the REMOVED 652 * state. 653 */ 654 if (zio->io_vd == vd && !vdev_accessible(vd, zio)) 655 return (B_FALSE); 656 657 /* 658 * Ignore checksum errors for reads from DTL regions of 659 * leaf vdevs. 660 */ 661 if (zio->io_type == ZIO_TYPE_READ && 662 zio->io_error == ECKSUM && 663 vd->vdev_ops->vdev_op_leaf && 664 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1)) 665 return (B_FALSE); 666 } 667 } 668 669 /* 670 * For probe failure, we want to avoid posting ereports if we've 671 * already removed the device in the meantime. 672 */ 673 if (vd != NULL && 674 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 && 675 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED)) 676 return (B_FALSE); 677 678 /* Ignore bogus delay events (like from ioctls or unqueued IOs) */ 679 if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) && 680 (zio != NULL) && (!zio->io_timestamp)) { 681 return (B_FALSE); 682 } 683 #endif 684 return (B_TRUE); 685 } 686 687 /* 688 * Return 0 if event was posted, EINVAL if there was a problem posting it or 689 * EBUSY if the event was rate limited. 690 */ 691 int 692 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, 693 const struct zbookmark_phys *zb, zio_t *zio, uint64_t stateoroffset, 694 uint64_t size) 695 { 696 int rc = 0; 697 #ifdef _KERNEL 698 nvlist_t *ereport = NULL; 699 nvlist_t *detector = NULL; 700 701 if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd, 702 zb, zio, stateoroffset, size)) 703 return (SET_ERROR(EINVAL)); /* couldn't post event */ 704 705 if (ereport == NULL) 706 return (SET_ERROR(EINVAL)); 707 708 fm_ereport_post(ereport, EVCH_SLEEP); 709 710 fm_nvlist_destroy(ereport, FM_NVA_FREE); 711 fm_nvlist_destroy(detector, FM_NVA_FREE); 712 #endif 713 return (rc); 714 } 715 716 void 717 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 718 struct zio *zio, uint64_t offset, uint64_t length, void *arg, 719 zio_bad_cksum_t *info) 720 { 721 zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_SLEEP); 722 723 if (zio->io_vsd != NULL) 724 zio->io_vsd_ops->vsd_cksum_report(zio, report, arg); 725 else 726 zio_vsd_default_cksum_report(zio, report, arg); 727 728 /* copy the checksum failure information if it was provided */ 729 if (info != NULL) { 730 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP); 731 bcopy(info, report->zcr_ckinfo, sizeof (*info)); 732 } 733 734 report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift; 735 report->zcr_length = length; 736 737 #ifdef _KERNEL 738 (void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector, 739 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length); 740 741 if (report->zcr_ereport == NULL) { 742 report->zcr_free(report->zcr_cbdata, report->zcr_cbinfo); 743 if (report->zcr_ckinfo != NULL) { 744 kmem_free(report->zcr_ckinfo, 745 sizeof (*report->zcr_ckinfo)); 746 } 747 kmem_free(report, sizeof (*report)); 748 return; 749 } 750 #endif 751 752 mutex_enter(&spa->spa_errlist_lock); 753 report->zcr_next = zio->io_logical->io_cksum_report; 754 zio->io_logical->io_cksum_report = report; 755 mutex_exit(&spa->spa_errlist_lock); 756 } 757 758 void 759 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data, 760 const abd_t *bad_data, boolean_t drop_if_identical) 761 { 762 #ifdef _KERNEL 763 zfs_ecksum_info_t *info = NULL; 764 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo, 765 good_data, bad_data, report->zcr_length, drop_if_identical); 766 767 if (info != NULL) 768 fm_ereport_post(report->zcr_ereport, EVCH_SLEEP); 769 770 fm_nvlist_destroy(report->zcr_ereport, FM_NVA_FREE); 771 fm_nvlist_destroy(report->zcr_detector, FM_NVA_FREE); 772 report->zcr_ereport = report->zcr_detector = NULL; 773 774 if (info != NULL) 775 kmem_free(info, sizeof (*info)); 776 #endif 777 } 778 779 void 780 zfs_ereport_free_checksum(zio_cksum_report_t *rpt) 781 { 782 #ifdef _KERNEL 783 if (rpt->zcr_ereport != NULL) { 784 fm_nvlist_destroy(rpt->zcr_ereport, 785 FM_NVA_FREE); 786 fm_nvlist_destroy(rpt->zcr_detector, 787 FM_NVA_FREE); 788 } 789 #endif 790 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo); 791 792 if (rpt->zcr_ckinfo != NULL) 793 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo)); 794 795 kmem_free(rpt, sizeof (*rpt)); 796 } 797 798 void 799 zfs_ereport_send_interim_checksum(zio_cksum_report_t *report) 800 { 801 #ifdef _KERNEL 802 fm_ereport_post(report->zcr_ereport, EVCH_SLEEP); 803 #endif 804 } 805 806 int 807 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 808 struct zio *zio, uint64_t offset, uint64_t length, 809 const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc) 810 { 811 int rc = 0; 812 #ifdef _KERNEL 813 nvlist_t *ereport = NULL; 814 nvlist_t *detector = NULL; 815 zfs_ecksum_info_t *info; 816 817 if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM, 818 spa, vd, zb, zio, offset, length) || (ereport == NULL)) { 819 return (SET_ERROR(EINVAL)); 820 } 821 822 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length, 823 B_FALSE); 824 825 if (info != NULL) 826 fm_ereport_post(ereport, EVCH_SLEEP); 827 828 fm_nvlist_destroy(ereport, FM_NVA_FREE); 829 fm_nvlist_destroy(detector, FM_NVA_FREE); 830 831 if (info != NULL) 832 kmem_free(info, sizeof (*info)); 833 #endif 834 return (rc); 835 } 836 837 static void 838 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name) 839 { 840 #ifdef _KERNEL 841 nvlist_t *resource; 842 char class[64]; 843 844 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT) 845 return; 846 847 if ((resource = fm_nvlist_create(NULL)) == NULL) 848 return; 849 850 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE, 851 ZFS_ERROR_CLASS, name); 852 VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0); 853 VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0); 854 VERIFY(nvlist_add_uint64(resource, 855 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0); 856 if (vd) 857 VERIFY(nvlist_add_uint64(resource, 858 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0); 859 860 fm_ereport_post(resource, EVCH_SLEEP); 861 862 fm_nvlist_destroy(resource, FM_NVA_FREE); 863 #endif 864 } 865 866 /* 867 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev 868 * has been removed from the system. This will cause the DE to ignore any 869 * recent I/O errors, inferring that they are due to the asynchronous device 870 * removal. 871 */ 872 void 873 zfs_post_remove(spa_t *spa, vdev_t *vd) 874 { 875 zfs_post_common(spa, vd, FM_RESOURCE_REMOVED); 876 } 877 878 /* 879 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool 880 * has the 'autoreplace' property set, and therefore any broken vdevs will be 881 * handled by higher level logic, and no vdev fault should be generated. 882 */ 883 void 884 zfs_post_autoreplace(spa_t *spa, vdev_t *vd) 885 { 886 zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE); 887 } 888 889 /* 890 * The 'resource.fs.zfs.statechange' event is an internal signal that the 891 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will 892 * cause the retire agent to repair any outstanding fault management cases 893 * open because the device was not found (fault.fs.zfs.device). 894 */ 895 void 896 zfs_post_state_change(spa_t *spa, vdev_t *vd) 897 { 898 zfs_post_common(spa, vd, FM_RESOURCE_STATECHANGE); 899 } 900