xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_fm.c (revision 5b6e8d437b064342671e0a40b3146d7f98802a64)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
41 
42 /*
43  * This general routine is responsible for generating all the different ZFS
44  * ereports.  The payload is dependent on the class, and which arguments are
45  * supplied to the function:
46  *
47  * 	EREPORT			POOL	VDEV	IO
48  * 	block			X	X	X
49  * 	data			X		X
50  * 	device			X	X
51  * 	pool			X
52  *
53  * If we are in a loading state, all errors are chained together by the same
54  * SPA-wide ENA (Error Numeric Association).
55  *
56  * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57  * gets very complicated due to RAID-Z, gang blocks, and vdev caching.  We want
58  * to chain together all ereports associated with a logical piece of data.  For
59  * read I/Os, there  are basically three 'types' of I/O, which form a roughly
60  * layered diagram:
61  *
62  *      +---------------+
63  * 	| Aggregate I/O |	No associated logical data or device
64  * 	+---------------+
65  *              |
66  *              V
67  * 	+---------------+	Reads associated with a piece of logical data.
68  * 	|   Read I/O    |	This includes reads on behalf of RAID-Z,
69  * 	+---------------+       mirrors, gang blocks, retries, etc.
70  *              |
71  *              V
72  * 	+---------------+	Reads associated with a particular device, but
73  * 	| Physical I/O  |	no logical data.  Issued as part of vdev caching
74  * 	+---------------+	and I/O aggregation.
75  *
76  * Note that 'physical I/O' here is not the same terminology as used in the rest
77  * of ZIO.  Typically, 'physical I/O' simply means that there is no attached
78  * blockpointer.  But I/O with no associated block pointer can still be related
79  * to a logical piece of data (i.e. RAID-Z requests).
80  *
81  * Purely physical I/O always have unique ENAs.  They are not related to a
82  * particular piece of logical data, and therefore cannot be chained together.
83  * We still generate an ereport, but the DE doesn't correlate it with any
84  * logical piece of data.  When such an I/O fails, the delegated I/O requests
85  * will issue a retry, which will trigger the 'real' ereport with the correct
86  * ENA.
87  *
88  * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89  * When a new logical I/O is issued, we set this to point to itself.  Child I/Os
90  * then inherit this pointer, so that when it is first set subsequent failures
91  * will use the same ENA.  For vdev cache fill and queue aggregation I/O,
92  * this pointer is set to NULL, and no ereport will be generated (since it
93  * doesn't actually correspond to any particular device or piece of data,
94  * and the caller will always retry without caching or queueing anyway).
95  *
96  * For checksum errors, we want to include more information about the actual
97  * error which occurs.  Accordingly, we build an ereport when the error is
98  * noticed, but instead of sending it in immediately, we hang it off of the
99  * io_cksum_report field of the logical IO.  When the logical IO completes
100  * (successfully or not), zfs_ereport_finish_checksum() is called with the
101  * good and bad versions of the buffer (if available), and we annotate the
102  * ereport with information about the differences.
103  */
104 #ifdef _KERNEL
105 static void
106 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
107     const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
108     zio_t *zio, uint64_t stateoroffset, uint64_t size)
109 {
110 	nvlist_t *ereport, *detector;
111 
112 	uint64_t ena;
113 	char class[64];
114 
115 	/*
116 	 * If we are doing a spa_tryimport() or in recovery mode,
117 	 * ignore errors.
118 	 */
119 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
120 	    spa_load_state(spa) == SPA_LOAD_RECOVER)
121 		return;
122 
123 	/*
124 	 * If we are in the middle of opening a pool, and the previous attempt
125 	 * failed, don't bother logging any new ereports - we're just going to
126 	 * get the same diagnosis anyway.
127 	 */
128 	if (spa_load_state(spa) != SPA_LOAD_NONE &&
129 	    spa->spa_last_open_failed)
130 		return;
131 
132 	if (zio != NULL) {
133 		/*
134 		 * If this is not a read or write zio, ignore the error.  This
135 		 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
136 		 */
137 		if (zio->io_type != ZIO_TYPE_READ &&
138 		    zio->io_type != ZIO_TYPE_WRITE)
139 			return;
140 
141 		/*
142 		 * Ignore any errors from speculative I/Os, as failure is an
143 		 * expected result.
144 		 */
145 		if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
146 			return;
147 
148 		/*
149 		 * If this I/O is not a retry I/O, don't post an ereport.
150 		 * Otherwise, we risk making bad diagnoses based on B_FAILFAST
151 		 * I/Os.
152 		 */
153 		if (zio->io_error == EIO &&
154 		    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
155 			return;
156 
157 		if (vd != NULL) {
158 			/*
159 			 * If the vdev has already been marked as failing due
160 			 * to a failed probe, then ignore any subsequent I/O
161 			 * errors, as the DE will automatically fault the vdev
162 			 * on the first such failure.  This also catches cases
163 			 * where vdev_remove_wanted is set and the device has
164 			 * not yet been asynchronously placed into the REMOVED
165 			 * state.
166 			 */
167 			if (zio->io_vd == vd && !vdev_accessible(vd, zio))
168 				return;
169 
170 			/*
171 			 * Ignore checksum errors for reads from DTL regions of
172 			 * leaf vdevs.
173 			 */
174 			if (zio->io_type == ZIO_TYPE_READ &&
175 			    zio->io_error == ECKSUM &&
176 			    vd->vdev_ops->vdev_op_leaf &&
177 			    vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
178 				return;
179 		}
180 	}
181 
182 	/*
183 	 * For probe failure, we want to avoid posting ereports if we've
184 	 * already removed the device in the meantime.
185 	 */
186 	if (vd != NULL &&
187 	    strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
188 	    (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
189 		return;
190 
191 	if ((ereport = fm_nvlist_create(NULL)) == NULL)
192 		return;
193 
194 	if ((detector = fm_nvlist_create(NULL)) == NULL) {
195 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
196 		return;
197 	}
198 
199 	/*
200 	 * Serialize ereport generation
201 	 */
202 	mutex_enter(&spa->spa_errlist_lock);
203 
204 	/*
205 	 * Determine the ENA to use for this event.  If we are in a loading
206 	 * state, use a SPA-wide ENA.  Otherwise, if we are in an I/O state, use
207 	 * a root zio-wide ENA.  Otherwise, simply use a unique ENA.
208 	 */
209 	if (spa_load_state(spa) != SPA_LOAD_NONE) {
210 		if (spa->spa_ena == 0)
211 			spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
212 		ena = spa->spa_ena;
213 	} else if (zio != NULL && zio->io_logical != NULL) {
214 		if (zio->io_logical->io_ena == 0)
215 			zio->io_logical->io_ena =
216 			    fm_ena_generate(0, FM_ENA_FMT1);
217 		ena = zio->io_logical->io_ena;
218 	} else {
219 		ena = fm_ena_generate(0, FM_ENA_FMT1);
220 	}
221 
222 	/*
223 	 * Construct the full class, detector, and other standard FMA fields.
224 	 */
225 	(void) snprintf(class, sizeof (class), "%s.%s",
226 	    ZFS_ERROR_CLASS, subclass);
227 
228 	fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
229 	    vd != NULL ? vd->vdev_guid : 0);
230 
231 	fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
232 
233 	/*
234 	 * Construct the per-ereport payload, depending on which parameters are
235 	 * passed in.
236 	 */
237 
238 	/*
239 	 * Generic payload members common to all ereports.
240 	 */
241 	fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL,
242 	    DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
243 	    DATA_TYPE_UINT64, spa_guid(spa),
244 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
245 	    spa_load_state(spa), NULL);
246 
247 	if (spa != NULL) {
248 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
249 		    DATA_TYPE_STRING,
250 		    spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
251 		    FM_EREPORT_FAILMODE_WAIT :
252 		    spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
253 		    FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
254 		    NULL);
255 	}
256 
257 	if (vd != NULL) {
258 		vdev_t *pvd = vd->vdev_parent;
259 
260 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
261 		    DATA_TYPE_UINT64, vd->vdev_guid,
262 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
263 		    DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
264 		if (vd->vdev_path != NULL)
265 			fm_payload_set(ereport,
266 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
267 			    DATA_TYPE_STRING, vd->vdev_path, NULL);
268 		if (vd->vdev_devid != NULL)
269 			fm_payload_set(ereport,
270 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
271 			    DATA_TYPE_STRING, vd->vdev_devid, NULL);
272 		if (vd->vdev_fru != NULL)
273 			fm_payload_set(ereport,
274 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
275 			    DATA_TYPE_STRING, vd->vdev_fru, NULL);
276 
277 		if (pvd != NULL) {
278 			fm_payload_set(ereport,
279 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
280 			    DATA_TYPE_UINT64, pvd->vdev_guid,
281 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
282 			    DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
283 			    NULL);
284 			if (pvd->vdev_path)
285 				fm_payload_set(ereport,
286 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
287 				    DATA_TYPE_STRING, pvd->vdev_path, NULL);
288 			if (pvd->vdev_devid)
289 				fm_payload_set(ereport,
290 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
291 				    DATA_TYPE_STRING, pvd->vdev_devid, NULL);
292 		}
293 	}
294 
295 	if (zio != NULL) {
296 		/*
297 		 * Payload common to all I/Os.
298 		 */
299 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
300 		    DATA_TYPE_INT32, zio->io_error, NULL);
301 
302 		/*
303 		 * If the 'size' parameter is non-zero, it indicates this is a
304 		 * RAID-Z or other I/O where the physical offset and length are
305 		 * provided for us, instead of within the zio_t.
306 		 */
307 		if (vd != NULL) {
308 			if (size)
309 				fm_payload_set(ereport,
310 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
311 				    DATA_TYPE_UINT64, stateoroffset,
312 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
313 				    DATA_TYPE_UINT64, size, NULL);
314 			else
315 				fm_payload_set(ereport,
316 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
317 				    DATA_TYPE_UINT64, zio->io_offset,
318 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
319 				    DATA_TYPE_UINT64, zio->io_size, NULL);
320 		}
321 	} else if (vd != NULL) {
322 		/*
323 		 * If we have a vdev but no zio, this is a device fault, and the
324 		 * 'stateoroffset' parameter indicates the previous state of the
325 		 * vdev.
326 		 */
327 		fm_payload_set(ereport,
328 		    FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
329 		    DATA_TYPE_UINT64, stateoroffset, NULL);
330 	}
331 
332 	/*
333 	 * Payload for I/Os with corresponding logical information.
334 	 */
335 	if (zb != NULL && (zio == NULL || zio->io_logical != NULL))
336 		fm_payload_set(ereport,
337 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
338 		    DATA_TYPE_UINT64, zb->zb_objset,
339 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
340 		    DATA_TYPE_UINT64, zb->zb_object,
341 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
342 		    DATA_TYPE_INT64, zb->zb_level,
343 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
344 		    DATA_TYPE_UINT64, zb->zb_blkid, NULL);
345 
346 	mutex_exit(&spa->spa_errlist_lock);
347 
348 	*ereport_out = ereport;
349 	*detector_out = detector;
350 }
351 
352 /* if it's <= 128 bytes, save the corruption directly */
353 #define	ZFM_MAX_INLINE		(128 / sizeof (uint64_t))
354 
355 #define	MAX_RANGES		16
356 
357 typedef struct zfs_ecksum_info {
358 	/* histograms of set and cleared bits by bit number in a 64-bit word */
359 	uint32_t zei_histogram_set[sizeof (uint64_t) * NBBY];
360 	uint32_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
361 
362 	/* inline arrays of bits set and cleared. */
363 	uint64_t zei_bits_set[ZFM_MAX_INLINE];
364 	uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
365 
366 	/*
367 	 * for each range, the number of bits set and cleared.  The Hamming
368 	 * distance between the good and bad buffers is the sum of them all.
369 	 */
370 	uint32_t zei_range_sets[MAX_RANGES];
371 	uint32_t zei_range_clears[MAX_RANGES];
372 
373 	struct zei_ranges {
374 		uint32_t	zr_start;
375 		uint32_t	zr_end;
376 	} zei_ranges[MAX_RANGES];
377 
378 	size_t	zei_range_count;
379 	uint32_t zei_mingap;
380 	uint32_t zei_allowed_mingap;
381 
382 } zfs_ecksum_info_t;
383 
384 static void
385 update_histogram(uint64_t value_arg, uint32_t *hist, uint32_t *count)
386 {
387 	size_t i;
388 	size_t bits = 0;
389 	uint64_t value = BE_64(value_arg);
390 
391 	/* We store the bits in big-endian (largest-first) order */
392 	for (i = 0; i < 64; i++) {
393 		if (value & (1ull << i)) {
394 			hist[63 - i]++;
395 			++bits;
396 		}
397 	}
398 	/* update the count of bits changed */
399 	*count += bits;
400 }
401 
402 /*
403  * We've now filled up the range array, and need to increase "mingap" and
404  * shrink the range list accordingly.  zei_mingap is always the smallest
405  * distance between array entries, so we set the new_allowed_gap to be
406  * one greater than that.  We then go through the list, joining together
407  * any ranges which are closer than the new_allowed_gap.
408  *
409  * By construction, there will be at least one.  We also update zei_mingap
410  * to the new smallest gap, to prepare for our next invocation.
411  */
412 static void
413 shrink_ranges(zfs_ecksum_info_t *eip)
414 {
415 	uint32_t mingap = UINT32_MAX;
416 	uint32_t new_allowed_gap = eip->zei_mingap + 1;
417 
418 	size_t idx, output;
419 	size_t max = eip->zei_range_count;
420 
421 	struct zei_ranges *r = eip->zei_ranges;
422 
423 	ASSERT3U(eip->zei_range_count, >, 0);
424 	ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
425 
426 	output = idx = 0;
427 	while (idx < max - 1) {
428 		uint32_t start = r[idx].zr_start;
429 		uint32_t end = r[idx].zr_end;
430 
431 		while (idx < max - 1) {
432 			idx++;
433 
434 			uint32_t nstart = r[idx].zr_start;
435 			uint32_t nend = r[idx].zr_end;
436 
437 			uint32_t gap = nstart - end;
438 			if (gap < new_allowed_gap) {
439 				end = nend;
440 				continue;
441 			}
442 			if (gap < mingap)
443 				mingap = gap;
444 			break;
445 		}
446 		r[output].zr_start = start;
447 		r[output].zr_end = end;
448 		output++;
449 	}
450 	ASSERT3U(output, <, eip->zei_range_count);
451 	eip->zei_range_count = output;
452 	eip->zei_mingap = mingap;
453 	eip->zei_allowed_mingap = new_allowed_gap;
454 }
455 
456 static void
457 add_range(zfs_ecksum_info_t *eip, int start, int end)
458 {
459 	struct zei_ranges *r = eip->zei_ranges;
460 	size_t count = eip->zei_range_count;
461 
462 	if (count >= MAX_RANGES) {
463 		shrink_ranges(eip);
464 		count = eip->zei_range_count;
465 	}
466 	if (count == 0) {
467 		eip->zei_mingap = UINT32_MAX;
468 		eip->zei_allowed_mingap = 1;
469 	} else {
470 		int gap = start - r[count - 1].zr_end;
471 
472 		if (gap < eip->zei_allowed_mingap) {
473 			r[count - 1].zr_end = end;
474 			return;
475 		}
476 		if (gap < eip->zei_mingap)
477 			eip->zei_mingap = gap;
478 	}
479 	r[count].zr_start = start;
480 	r[count].zr_end = end;
481 	eip->zei_range_count++;
482 }
483 
484 static size_t
485 range_total_size(zfs_ecksum_info_t *eip)
486 {
487 	struct zei_ranges *r = eip->zei_ranges;
488 	size_t count = eip->zei_range_count;
489 	size_t result = 0;
490 	size_t idx;
491 
492 	for (idx = 0; idx < count; idx++)
493 		result += (r[idx].zr_end - r[idx].zr_start);
494 
495 	return (result);
496 }
497 
498 static zfs_ecksum_info_t *
499 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
500     const abd_t *goodabd, const abd_t *badabd, size_t size,
501     boolean_t drop_if_identical)
502 {
503 	const uint64_t *good;
504 	const uint64_t *bad;
505 
506 	uint64_t allset = 0;
507 	uint64_t allcleared = 0;
508 
509 	size_t nui64s = size / sizeof (uint64_t);
510 
511 	size_t inline_size;
512 	int no_inline = 0;
513 	size_t idx;
514 	size_t range;
515 
516 	size_t offset = 0;
517 	ssize_t start = -1;
518 
519 	zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
520 
521 	/* don't do any annotation for injected checksum errors */
522 	if (info != NULL && info->zbc_injected)
523 		return (eip);
524 
525 	if (info != NULL && info->zbc_has_cksum) {
526 		fm_payload_set(ereport,
527 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
528 		    DATA_TYPE_UINT64_ARRAY,
529 		    sizeof (info->zbc_expected) / sizeof (uint64_t),
530 		    (uint64_t *)&info->zbc_expected,
531 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
532 		    DATA_TYPE_UINT64_ARRAY,
533 		    sizeof (info->zbc_actual) / sizeof (uint64_t),
534 		    (uint64_t *)&info->zbc_actual,
535 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
536 		    DATA_TYPE_STRING,
537 		    info->zbc_checksum_name,
538 		    NULL);
539 
540 		if (info->zbc_byteswapped) {
541 			fm_payload_set(ereport,
542 			    FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
543 			    DATA_TYPE_BOOLEAN, 1,
544 			    NULL);
545 		}
546 	}
547 
548 	if (badabd == NULL || goodabd == NULL)
549 		return (eip);
550 
551 	ASSERT3U(nui64s, <=, UINT32_MAX);
552 	ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
553 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
554 	ASSERT3U(size, <=, UINT32_MAX);
555 
556 	good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
557 	bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
558 
559 	/* build up the range list by comparing the two buffers. */
560 	for (idx = 0; idx < nui64s; idx++) {
561 		if (good[idx] == bad[idx]) {
562 			if (start == -1)
563 				continue;
564 
565 			add_range(eip, start, idx);
566 			start = -1;
567 		} else {
568 			if (start != -1)
569 				continue;
570 
571 			start = idx;
572 		}
573 	}
574 	if (start != -1)
575 		add_range(eip, start, idx);
576 
577 	/* See if it will fit in our inline buffers */
578 	inline_size = range_total_size(eip);
579 	if (inline_size > ZFM_MAX_INLINE)
580 		no_inline = 1;
581 
582 	/*
583 	 * If there is no change and we want to drop if the buffers are
584 	 * identical, do so.
585 	 */
586 	if (inline_size == 0 && drop_if_identical) {
587 		kmem_free(eip, sizeof (*eip));
588 		abd_return_buf((abd_t *)goodabd, (void *)good, size);
589 		abd_return_buf((abd_t *)badabd, (void *)bad, size);
590 		return (NULL);
591 	}
592 
593 	/*
594 	 * Now walk through the ranges, filling in the details of the
595 	 * differences.  Also convert our uint64_t-array offsets to byte
596 	 * offsets.
597 	 */
598 	for (range = 0; range < eip->zei_range_count; range++) {
599 		size_t start = eip->zei_ranges[range].zr_start;
600 		size_t end = eip->zei_ranges[range].zr_end;
601 
602 		for (idx = start; idx < end; idx++) {
603 			uint64_t set, cleared;
604 
605 			// bits set in bad, but not in good
606 			set = ((~good[idx]) & bad[idx]);
607 			// bits set in good, but not in bad
608 			cleared = (good[idx] & (~bad[idx]));
609 
610 			allset |= set;
611 			allcleared |= cleared;
612 
613 			if (!no_inline) {
614 				ASSERT3U(offset, <, inline_size);
615 				eip->zei_bits_set[offset] = set;
616 				eip->zei_bits_cleared[offset] = cleared;
617 				offset++;
618 			}
619 
620 			update_histogram(set, eip->zei_histogram_set,
621 			    &eip->zei_range_sets[range]);
622 			update_histogram(cleared, eip->zei_histogram_cleared,
623 			    &eip->zei_range_clears[range]);
624 		}
625 
626 		/* convert to byte offsets */
627 		eip->zei_ranges[range].zr_start	*= sizeof (uint64_t);
628 		eip->zei_ranges[range].zr_end	*= sizeof (uint64_t);
629 	}
630 
631 	abd_return_buf((abd_t *)goodabd, (void *)good, size);
632 	abd_return_buf((abd_t *)badabd, (void *)bad, size);
633 
634 	eip->zei_allowed_mingap	*= sizeof (uint64_t);
635 	inline_size		*= sizeof (uint64_t);
636 
637 	/* fill in ereport */
638 	fm_payload_set(ereport,
639 	    FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
640 	    DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
641 	    (uint32_t *)eip->zei_ranges,
642 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
643 	    DATA_TYPE_UINT32, eip->zei_allowed_mingap,
644 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
645 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
646 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
647 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
648 	    NULL);
649 
650 	if (!no_inline) {
651 		fm_payload_set(ereport,
652 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
653 		    DATA_TYPE_UINT8_ARRAY,
654 		    inline_size, (uint8_t *)eip->zei_bits_set,
655 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
656 		    DATA_TYPE_UINT8_ARRAY,
657 		    inline_size, (uint8_t *)eip->zei_bits_cleared,
658 		    NULL);
659 	} else {
660 		fm_payload_set(ereport,
661 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
662 		    DATA_TYPE_UINT32_ARRAY,
663 		    NBBY * sizeof (uint64_t), eip->zei_histogram_set,
664 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
665 		    DATA_TYPE_UINT32_ARRAY,
666 		    NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
667 		    NULL);
668 	}
669 	return (eip);
670 }
671 #endif
672 
673 void
674 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
675     const struct zbookmark_phys *zb, zio_t *zio, uint64_t stateoroffset,
676     uint64_t size)
677 {
678 #ifdef _KERNEL
679 	nvlist_t *ereport = NULL;
680 	nvlist_t *detector = NULL;
681 
682 	zfs_ereport_start(&ereport, &detector, subclass, spa, vd,
683 	    zb, zio, stateoroffset, size);
684 
685 	if (ereport == NULL)
686 		return;
687 
688 	fm_ereport_post(ereport, EVCH_SLEEP);
689 
690 	fm_nvlist_destroy(ereport, FM_NVA_FREE);
691 	fm_nvlist_destroy(detector, FM_NVA_FREE);
692 #endif
693 }
694 
695 void
696 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
697     struct zio *zio, uint64_t offset, uint64_t length, void *arg,
698     zio_bad_cksum_t *info)
699 {
700 	zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_SLEEP);
701 
702 	if (zio->io_vsd != NULL)
703 		zio->io_vsd_ops->vsd_cksum_report(zio, report, arg);
704 	else
705 		zio_vsd_default_cksum_report(zio, report, arg);
706 
707 	/* copy the checksum failure information if it was provided */
708 	if (info != NULL) {
709 		report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
710 		bcopy(info, report->zcr_ckinfo, sizeof (*info));
711 	}
712 
713 	report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift;
714 	report->zcr_length = length;
715 
716 #ifdef _KERNEL
717 	zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
718 	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length);
719 
720 	if (report->zcr_ereport == NULL) {
721 		report->zcr_free(report->zcr_cbdata, report->zcr_cbinfo);
722 		if (report->zcr_ckinfo != NULL) {
723 			kmem_free(report->zcr_ckinfo,
724 			    sizeof (*report->zcr_ckinfo));
725 		}
726 		kmem_free(report, sizeof (*report));
727 		return;
728 	}
729 #endif
730 
731 	mutex_enter(&spa->spa_errlist_lock);
732 	report->zcr_next = zio->io_logical->io_cksum_report;
733 	zio->io_logical->io_cksum_report = report;
734 	mutex_exit(&spa->spa_errlist_lock);
735 }
736 
737 void
738 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
739     const abd_t *bad_data, boolean_t drop_if_identical)
740 {
741 #ifdef _KERNEL
742 	zfs_ecksum_info_t *info = NULL;
743 	info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
744 	    good_data, bad_data, report->zcr_length, drop_if_identical);
745 
746 	if (info != NULL)
747 		fm_ereport_post(report->zcr_ereport, EVCH_SLEEP);
748 
749 	fm_nvlist_destroy(report->zcr_ereport, FM_NVA_FREE);
750 	fm_nvlist_destroy(report->zcr_detector, FM_NVA_FREE);
751 	report->zcr_ereport = report->zcr_detector = NULL;
752 
753 	if (info != NULL)
754 		kmem_free(info, sizeof (*info));
755 #endif
756 }
757 
758 void
759 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
760 {
761 #ifdef _KERNEL
762 	if (rpt->zcr_ereport != NULL) {
763 		fm_nvlist_destroy(rpt->zcr_ereport,
764 		    FM_NVA_FREE);
765 		fm_nvlist_destroy(rpt->zcr_detector,
766 		    FM_NVA_FREE);
767 	}
768 #endif
769 	rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
770 
771 	if (rpt->zcr_ckinfo != NULL)
772 		kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
773 
774 	kmem_free(rpt, sizeof (*rpt));
775 }
776 
777 void
778 zfs_ereport_send_interim_checksum(zio_cksum_report_t *report)
779 {
780 #ifdef _KERNEL
781 	fm_ereport_post(report->zcr_ereport, EVCH_SLEEP);
782 #endif
783 }
784 
785 void
786 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
787     struct zio *zio, uint64_t offset, uint64_t length,
788     const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
789 {
790 #ifdef _KERNEL
791 	nvlist_t *ereport = NULL;
792 	nvlist_t *detector = NULL;
793 	zfs_ecksum_info_t *info;
794 
795 	zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM,
796 	    spa, vd, zb, zio, offset, length);
797 
798 	if (ereport == NULL)
799 		return;
800 
801 	info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
802 	    B_FALSE);
803 
804 	if (info != NULL)
805 		fm_ereport_post(ereport, EVCH_SLEEP);
806 
807 	fm_nvlist_destroy(ereport, FM_NVA_FREE);
808 	fm_nvlist_destroy(detector, FM_NVA_FREE);
809 
810 	if (info != NULL)
811 		kmem_free(info, sizeof (*info));
812 #endif
813 }
814 
815 static void
816 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name)
817 {
818 #ifdef _KERNEL
819 	nvlist_t *resource;
820 	char class[64];
821 
822 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
823 		return;
824 
825 	if ((resource = fm_nvlist_create(NULL)) == NULL)
826 		return;
827 
828 	(void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE,
829 	    ZFS_ERROR_CLASS, name);
830 	VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0);
831 	VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0);
832 	VERIFY(nvlist_add_uint64(resource,
833 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0);
834 	if (vd)
835 		VERIFY(nvlist_add_uint64(resource,
836 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0);
837 
838 	fm_ereport_post(resource, EVCH_SLEEP);
839 
840 	fm_nvlist_destroy(resource, FM_NVA_FREE);
841 #endif
842 }
843 
844 /*
845  * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
846  * has been removed from the system.  This will cause the DE to ignore any
847  * recent I/O errors, inferring that they are due to the asynchronous device
848  * removal.
849  */
850 void
851 zfs_post_remove(spa_t *spa, vdev_t *vd)
852 {
853 	zfs_post_common(spa, vd, FM_RESOURCE_REMOVED);
854 }
855 
856 /*
857  * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
858  * has the 'autoreplace' property set, and therefore any broken vdevs will be
859  * handled by higher level logic, and no vdev fault should be generated.
860  */
861 void
862 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
863 {
864 	zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE);
865 }
866 
867 /*
868  * The 'resource.fs.zfs.statechange' event is an internal signal that the
869  * given vdev has transitioned its state to DEGRADED or HEALTHY.  This will
870  * cause the retire agent to repair any outstanding fault management cases
871  * open because the device was not found (fault.fs.zfs.device).
872  */
873 void
874 zfs_post_state_change(spa_t *spa, vdev_t *vd)
875 {
876 	zfs_post_common(spa, vd, FM_RESOURCE_STATECHANGE);
877 }
878