1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/vdev.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio.h> 35 #include <sys/zio_checksum.h> 36 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/fm/protocol.h> 39 #include <sys/fm/util.h> 40 #include <sys/sysevent.h> 41 42 /* 43 * This general routine is responsible for generating all the different ZFS 44 * ereports. The payload is dependent on the class, and which arguments are 45 * supplied to the function: 46 * 47 * EREPORT POOL VDEV IO 48 * block X X X 49 * data X X 50 * device X X 51 * pool X 52 * 53 * If we are in a loading state, all errors are chained together by the same 54 * SPA-wide ENA (Error Numeric Association). 55 * 56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation 57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want 58 * to chain together all ereports associated with a logical piece of data. For 59 * read I/Os, there are basically three 'types' of I/O, which form a roughly 60 * layered diagram: 61 * 62 * +---------------+ 63 * | Aggregate I/O | No associated logical data or device 64 * +---------------+ 65 * | 66 * V 67 * +---------------+ Reads associated with a piece of logical data. 68 * | Read I/O | This includes reads on behalf of RAID-Z, 69 * +---------------+ mirrors, gang blocks, retries, etc. 70 * | 71 * V 72 * +---------------+ Reads associated with a particular device, but 73 * | Physical I/O | no logical data. Issued as part of vdev caching 74 * +---------------+ and I/O aggregation. 75 * 76 * Note that 'physical I/O' here is not the same terminology as used in the rest 77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached 78 * blockpointer. But I/O with no associated block pointer can still be related 79 * to a logical piece of data (i.e. RAID-Z requests). 80 * 81 * Purely physical I/O always have unique ENAs. They are not related to a 82 * particular piece of logical data, and therefore cannot be chained together. 83 * We still generate an ereport, but the DE doesn't correlate it with any 84 * logical piece of data. When such an I/O fails, the delegated I/O requests 85 * will issue a retry, which will trigger the 'real' ereport with the correct 86 * ENA. 87 * 88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member. 89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os 90 * then inherit this pointer, so that when it is first set subsequent failures 91 * will use the same ENA. For vdev cache fill and queue aggregation I/O, 92 * this pointer is set to NULL, and no ereport will be generated (since it 93 * doesn't actually correspond to any particular device or piece of data, 94 * and the caller will always retry without caching or queueing anyway). 95 * 96 * For checksum errors, we want to include more information about the actual 97 * error which occurs. Accordingly, we build an ereport when the error is 98 * noticed, but instead of sending it in immediately, we hang it off of the 99 * io_cksum_report field of the logical IO. When the logical IO completes 100 * (successfully or not), zfs_ereport_finish_checksum() is called with the 101 * good and bad versions of the buffer (if available), and we annotate the 102 * ereport with information about the differences. 103 */ 104 #ifdef _KERNEL 105 static void 106 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out, 107 const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 108 zio_t *zio, uint64_t stateoroffset, uint64_t size) 109 { 110 nvlist_t *ereport, *detector; 111 112 uint64_t ena; 113 char class[64]; 114 115 /* 116 * If we are doing a spa_tryimport() or in recovery mode, 117 * ignore errors. 118 */ 119 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT || 120 spa_load_state(spa) == SPA_LOAD_RECOVER) 121 return; 122 123 /* 124 * If we are in the middle of opening a pool, and the previous attempt 125 * failed, don't bother logging any new ereports - we're just going to 126 * get the same diagnosis anyway. 127 */ 128 if (spa_load_state(spa) != SPA_LOAD_NONE && 129 spa->spa_last_open_failed) 130 return; 131 132 if (zio != NULL) { 133 /* 134 * If this is not a read or write zio, ignore the error. This 135 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails. 136 */ 137 if (zio->io_type != ZIO_TYPE_READ && 138 zio->io_type != ZIO_TYPE_WRITE) 139 return; 140 141 /* 142 * Ignore any errors from speculative I/Os, as failure is an 143 * expected result. 144 */ 145 if (zio->io_flags & ZIO_FLAG_SPECULATIVE) 146 return; 147 148 /* 149 * If this I/O is not a retry I/O, don't post an ereport. 150 * Otherwise, we risk making bad diagnoses based on B_FAILFAST 151 * I/Os. 152 */ 153 if (zio->io_error == EIO && 154 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 155 return; 156 157 if (vd != NULL) { 158 /* 159 * If the vdev has already been marked as failing due 160 * to a failed probe, then ignore any subsequent I/O 161 * errors, as the DE will automatically fault the vdev 162 * on the first such failure. This also catches cases 163 * where vdev_remove_wanted is set and the device has 164 * not yet been asynchronously placed into the REMOVED 165 * state. 166 */ 167 if (zio->io_vd == vd && !vdev_accessible(vd, zio)) 168 return; 169 170 /* 171 * Ignore checksum errors for reads from DTL regions of 172 * leaf vdevs. 173 */ 174 if (zio->io_type == ZIO_TYPE_READ && 175 zio->io_error == ECKSUM && 176 vd->vdev_ops->vdev_op_leaf && 177 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1)) 178 return; 179 } 180 } 181 182 /* 183 * For probe failure, we want to avoid posting ereports if we've 184 * already removed the device in the meantime. 185 */ 186 if (vd != NULL && 187 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 && 188 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED)) 189 return; 190 191 if ((ereport = fm_nvlist_create(NULL)) == NULL) 192 return; 193 194 if ((detector = fm_nvlist_create(NULL)) == NULL) { 195 fm_nvlist_destroy(ereport, FM_NVA_FREE); 196 return; 197 } 198 199 /* 200 * Serialize ereport generation 201 */ 202 mutex_enter(&spa->spa_errlist_lock); 203 204 /* 205 * Determine the ENA to use for this event. If we are in a loading 206 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use 207 * a root zio-wide ENA. Otherwise, simply use a unique ENA. 208 */ 209 if (spa_load_state(spa) != SPA_LOAD_NONE) { 210 if (spa->spa_ena == 0) 211 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1); 212 ena = spa->spa_ena; 213 } else if (zio != NULL && zio->io_logical != NULL) { 214 if (zio->io_logical->io_ena == 0) 215 zio->io_logical->io_ena = 216 fm_ena_generate(0, FM_ENA_FMT1); 217 ena = zio->io_logical->io_ena; 218 } else { 219 ena = fm_ena_generate(0, FM_ENA_FMT1); 220 } 221 222 /* 223 * Construct the full class, detector, and other standard FMA fields. 224 */ 225 (void) snprintf(class, sizeof (class), "%s.%s", 226 ZFS_ERROR_CLASS, subclass); 227 228 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa), 229 vd != NULL ? vd->vdev_guid : 0); 230 231 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL); 232 233 /* 234 * Construct the per-ereport payload, depending on which parameters are 235 * passed in. 236 */ 237 238 /* 239 * Generic payload members common to all ereports. 240 */ 241 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL, 242 DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, 243 DATA_TYPE_UINT64, spa_guid(spa), 244 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32, 245 spa_load_state(spa), NULL); 246 247 if (spa != NULL) { 248 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, 249 DATA_TYPE_STRING, 250 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ? 251 FM_EREPORT_FAILMODE_WAIT : 252 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ? 253 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC, 254 NULL); 255 } 256 257 if (vd != NULL) { 258 vdev_t *pvd = vd->vdev_parent; 259 260 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 261 DATA_TYPE_UINT64, vd->vdev_guid, 262 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 263 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL); 264 if (vd->vdev_path != NULL) 265 fm_payload_set(ereport, 266 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, 267 DATA_TYPE_STRING, vd->vdev_path, NULL); 268 if (vd->vdev_devid != NULL) 269 fm_payload_set(ereport, 270 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, 271 DATA_TYPE_STRING, vd->vdev_devid, NULL); 272 if (vd->vdev_fru != NULL) 273 fm_payload_set(ereport, 274 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, 275 DATA_TYPE_STRING, vd->vdev_fru, NULL); 276 277 if (pvd != NULL) { 278 fm_payload_set(ereport, 279 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, 280 DATA_TYPE_UINT64, pvd->vdev_guid, 281 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE, 282 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type, 283 NULL); 284 if (pvd->vdev_path) 285 fm_payload_set(ereport, 286 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH, 287 DATA_TYPE_STRING, pvd->vdev_path, NULL); 288 if (pvd->vdev_devid) 289 fm_payload_set(ereport, 290 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID, 291 DATA_TYPE_STRING, pvd->vdev_devid, NULL); 292 } 293 } 294 295 if (zio != NULL) { 296 /* 297 * Payload common to all I/Os. 298 */ 299 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR, 300 DATA_TYPE_INT32, zio->io_error, NULL); 301 302 /* 303 * If the 'size' parameter is non-zero, it indicates this is a 304 * RAID-Z or other I/O where the physical offset and length are 305 * provided for us, instead of within the zio_t. 306 */ 307 if (vd != NULL) { 308 if (size) 309 fm_payload_set(ereport, 310 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 311 DATA_TYPE_UINT64, stateoroffset, 312 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 313 DATA_TYPE_UINT64, size, NULL); 314 else 315 fm_payload_set(ereport, 316 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 317 DATA_TYPE_UINT64, zio->io_offset, 318 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 319 DATA_TYPE_UINT64, zio->io_size, NULL); 320 } 321 } else if (vd != NULL) { 322 /* 323 * If we have a vdev but no zio, this is a device fault, and the 324 * 'stateoroffset' parameter indicates the previous state of the 325 * vdev. 326 */ 327 fm_payload_set(ereport, 328 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE, 329 DATA_TYPE_UINT64, stateoroffset, NULL); 330 } 331 332 /* 333 * Payload for I/Os with corresponding logical information. 334 */ 335 if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) 336 fm_payload_set(ereport, 337 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET, 338 DATA_TYPE_UINT64, zb->zb_objset, 339 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT, 340 DATA_TYPE_UINT64, zb->zb_object, 341 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL, 342 DATA_TYPE_INT64, zb->zb_level, 343 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID, 344 DATA_TYPE_UINT64, zb->zb_blkid, NULL); 345 346 mutex_exit(&spa->spa_errlist_lock); 347 348 *ereport_out = ereport; 349 *detector_out = detector; 350 } 351 352 /* if it's <= 128 bytes, save the corruption directly */ 353 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t)) 354 355 #define MAX_RANGES 16 356 357 typedef struct zfs_ecksum_info { 358 /* histograms of set and cleared bits by bit number in a 64-bit word */ 359 uint32_t zei_histogram_set[sizeof (uint64_t) * NBBY]; 360 uint32_t zei_histogram_cleared[sizeof (uint64_t) * NBBY]; 361 362 /* inline arrays of bits set and cleared. */ 363 uint64_t zei_bits_set[ZFM_MAX_INLINE]; 364 uint64_t zei_bits_cleared[ZFM_MAX_INLINE]; 365 366 /* 367 * for each range, the number of bits set and cleared. The Hamming 368 * distance between the good and bad buffers is the sum of them all. 369 */ 370 uint32_t zei_range_sets[MAX_RANGES]; 371 uint32_t zei_range_clears[MAX_RANGES]; 372 373 struct zei_ranges { 374 uint32_t zr_start; 375 uint32_t zr_end; 376 } zei_ranges[MAX_RANGES]; 377 378 size_t zei_range_count; 379 uint32_t zei_mingap; 380 uint32_t zei_allowed_mingap; 381 382 } zfs_ecksum_info_t; 383 384 static void 385 update_histogram(uint64_t value_arg, uint32_t *hist, uint32_t *count) 386 { 387 size_t i; 388 size_t bits = 0; 389 uint64_t value = BE_64(value_arg); 390 391 /* We store the bits in big-endian (largest-first) order */ 392 for (i = 0; i < 64; i++) { 393 if (value & (1ull << i)) { 394 hist[63 - i]++; 395 ++bits; 396 } 397 } 398 /* update the count of bits changed */ 399 *count += bits; 400 } 401 402 /* 403 * We've now filled up the range array, and need to increase "mingap" and 404 * shrink the range list accordingly. zei_mingap is always the smallest 405 * distance between array entries, so we set the new_allowed_gap to be 406 * one greater than that. We then go through the list, joining together 407 * any ranges which are closer than the new_allowed_gap. 408 * 409 * By construction, there will be at least one. We also update zei_mingap 410 * to the new smallest gap, to prepare for our next invocation. 411 */ 412 static void 413 shrink_ranges(zfs_ecksum_info_t *eip) 414 { 415 uint32_t mingap = UINT32_MAX; 416 uint32_t new_allowed_gap = eip->zei_mingap + 1; 417 418 size_t idx, output; 419 size_t max = eip->zei_range_count; 420 421 struct zei_ranges *r = eip->zei_ranges; 422 423 ASSERT3U(eip->zei_range_count, >, 0); 424 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES); 425 426 output = idx = 0; 427 while (idx < max - 1) { 428 uint32_t start = r[idx].zr_start; 429 uint32_t end = r[idx].zr_end; 430 431 while (idx < max - 1) { 432 idx++; 433 434 uint32_t nstart = r[idx].zr_start; 435 uint32_t nend = r[idx].zr_end; 436 437 uint32_t gap = nstart - end; 438 if (gap < new_allowed_gap) { 439 end = nend; 440 continue; 441 } 442 if (gap < mingap) 443 mingap = gap; 444 break; 445 } 446 r[output].zr_start = start; 447 r[output].zr_end = end; 448 output++; 449 } 450 ASSERT3U(output, <, eip->zei_range_count); 451 eip->zei_range_count = output; 452 eip->zei_mingap = mingap; 453 eip->zei_allowed_mingap = new_allowed_gap; 454 } 455 456 static void 457 add_range(zfs_ecksum_info_t *eip, int start, int end) 458 { 459 struct zei_ranges *r = eip->zei_ranges; 460 size_t count = eip->zei_range_count; 461 462 if (count >= MAX_RANGES) { 463 shrink_ranges(eip); 464 count = eip->zei_range_count; 465 } 466 if (count == 0) { 467 eip->zei_mingap = UINT32_MAX; 468 eip->zei_allowed_mingap = 1; 469 } else { 470 int gap = start - r[count - 1].zr_end; 471 472 if (gap < eip->zei_allowed_mingap) { 473 r[count - 1].zr_end = end; 474 return; 475 } 476 if (gap < eip->zei_mingap) 477 eip->zei_mingap = gap; 478 } 479 r[count].zr_start = start; 480 r[count].zr_end = end; 481 eip->zei_range_count++; 482 } 483 484 static size_t 485 range_total_size(zfs_ecksum_info_t *eip) 486 { 487 struct zei_ranges *r = eip->zei_ranges; 488 size_t count = eip->zei_range_count; 489 size_t result = 0; 490 size_t idx; 491 492 for (idx = 0; idx < count; idx++) 493 result += (r[idx].zr_end - r[idx].zr_start); 494 495 return (result); 496 } 497 498 static zfs_ecksum_info_t * 499 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info, 500 const abd_t *goodabd, const abd_t *badabd, size_t size, 501 boolean_t drop_if_identical) 502 { 503 const uint64_t *good; 504 const uint64_t *bad; 505 506 uint64_t allset = 0; 507 uint64_t allcleared = 0; 508 509 size_t nui64s = size / sizeof (uint64_t); 510 511 size_t inline_size; 512 int no_inline = 0; 513 size_t idx; 514 size_t range; 515 516 size_t offset = 0; 517 ssize_t start = -1; 518 519 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP); 520 521 /* don't do any annotation for injected checksum errors */ 522 if (info != NULL && info->zbc_injected) 523 return (eip); 524 525 if (info != NULL && info->zbc_has_cksum) { 526 fm_payload_set(ereport, 527 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED, 528 DATA_TYPE_UINT64_ARRAY, 529 sizeof (info->zbc_expected) / sizeof (uint64_t), 530 (uint64_t *)&info->zbc_expected, 531 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL, 532 DATA_TYPE_UINT64_ARRAY, 533 sizeof (info->zbc_actual) / sizeof (uint64_t), 534 (uint64_t *)&info->zbc_actual, 535 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO, 536 DATA_TYPE_STRING, 537 info->zbc_checksum_name, 538 NULL); 539 540 if (info->zbc_byteswapped) { 541 fm_payload_set(ereport, 542 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP, 543 DATA_TYPE_BOOLEAN, 1, 544 NULL); 545 } 546 } 547 548 if (badabd == NULL || goodabd == NULL) 549 return (eip); 550 551 ASSERT3U(nui64s, <=, UINT32_MAX); 552 ASSERT3U(size, ==, nui64s * sizeof (uint64_t)); 553 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 554 ASSERT3U(size, <=, UINT32_MAX); 555 556 good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size); 557 bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size); 558 559 /* build up the range list by comparing the two buffers. */ 560 for (idx = 0; idx < nui64s; idx++) { 561 if (good[idx] == bad[idx]) { 562 if (start == -1) 563 continue; 564 565 add_range(eip, start, idx); 566 start = -1; 567 } else { 568 if (start != -1) 569 continue; 570 571 start = idx; 572 } 573 } 574 if (start != -1) 575 add_range(eip, start, idx); 576 577 /* See if it will fit in our inline buffers */ 578 inline_size = range_total_size(eip); 579 if (inline_size > ZFM_MAX_INLINE) 580 no_inline = 1; 581 582 /* 583 * If there is no change and we want to drop if the buffers are 584 * identical, do so. 585 */ 586 if (inline_size == 0 && drop_if_identical) { 587 kmem_free(eip, sizeof (*eip)); 588 abd_return_buf((abd_t *)goodabd, (void *)good, size); 589 abd_return_buf((abd_t *)badabd, (void *)bad, size); 590 return (NULL); 591 } 592 593 /* 594 * Now walk through the ranges, filling in the details of the 595 * differences. Also convert our uint64_t-array offsets to byte 596 * offsets. 597 */ 598 for (range = 0; range < eip->zei_range_count; range++) { 599 size_t start = eip->zei_ranges[range].zr_start; 600 size_t end = eip->zei_ranges[range].zr_end; 601 602 for (idx = start; idx < end; idx++) { 603 uint64_t set, cleared; 604 605 // bits set in bad, but not in good 606 set = ((~good[idx]) & bad[idx]); 607 // bits set in good, but not in bad 608 cleared = (good[idx] & (~bad[idx])); 609 610 allset |= set; 611 allcleared |= cleared; 612 613 if (!no_inline) { 614 ASSERT3U(offset, <, inline_size); 615 eip->zei_bits_set[offset] = set; 616 eip->zei_bits_cleared[offset] = cleared; 617 offset++; 618 } 619 620 update_histogram(set, eip->zei_histogram_set, 621 &eip->zei_range_sets[range]); 622 update_histogram(cleared, eip->zei_histogram_cleared, 623 &eip->zei_range_clears[range]); 624 } 625 626 /* convert to byte offsets */ 627 eip->zei_ranges[range].zr_start *= sizeof (uint64_t); 628 eip->zei_ranges[range].zr_end *= sizeof (uint64_t); 629 } 630 631 abd_return_buf((abd_t *)goodabd, (void *)good, size); 632 abd_return_buf((abd_t *)badabd, (void *)bad, size); 633 634 eip->zei_allowed_mingap *= sizeof (uint64_t); 635 inline_size *= sizeof (uint64_t); 636 637 /* fill in ereport */ 638 fm_payload_set(ereport, 639 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES, 640 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count, 641 (uint32_t *)eip->zei_ranges, 642 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP, 643 DATA_TYPE_UINT32, eip->zei_allowed_mingap, 644 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS, 645 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets, 646 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS, 647 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears, 648 NULL); 649 650 if (!no_inline) { 651 fm_payload_set(ereport, 652 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS, 653 DATA_TYPE_UINT8_ARRAY, 654 inline_size, (uint8_t *)eip->zei_bits_set, 655 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS, 656 DATA_TYPE_UINT8_ARRAY, 657 inline_size, (uint8_t *)eip->zei_bits_cleared, 658 NULL); 659 } else { 660 fm_payload_set(ereport, 661 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM, 662 DATA_TYPE_UINT32_ARRAY, 663 NBBY * sizeof (uint64_t), eip->zei_histogram_set, 664 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM, 665 DATA_TYPE_UINT32_ARRAY, 666 NBBY * sizeof (uint64_t), eip->zei_histogram_cleared, 667 NULL); 668 } 669 return (eip); 670 } 671 #endif 672 673 void 674 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, 675 const struct zbookmark_phys *zb, zio_t *zio, uint64_t stateoroffset, 676 uint64_t size) 677 { 678 #ifdef _KERNEL 679 nvlist_t *ereport = NULL; 680 nvlist_t *detector = NULL; 681 682 zfs_ereport_start(&ereport, &detector, subclass, spa, vd, 683 zb, zio, stateoroffset, size); 684 685 if (ereport == NULL) 686 return; 687 688 fm_ereport_post(ereport, EVCH_SLEEP); 689 690 fm_nvlist_destroy(ereport, FM_NVA_FREE); 691 fm_nvlist_destroy(detector, FM_NVA_FREE); 692 #endif 693 } 694 695 void 696 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 697 struct zio *zio, uint64_t offset, uint64_t length, void *arg, 698 zio_bad_cksum_t *info) 699 { 700 zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_SLEEP); 701 702 if (zio->io_vsd != NULL) 703 zio->io_vsd_ops->vsd_cksum_report(zio, report, arg); 704 else 705 zio_vsd_default_cksum_report(zio, report, arg); 706 707 /* copy the checksum failure information if it was provided */ 708 if (info != NULL) { 709 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP); 710 bcopy(info, report->zcr_ckinfo, sizeof (*info)); 711 } 712 713 report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift; 714 report->zcr_length = length; 715 716 #ifdef _KERNEL 717 zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector, 718 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length); 719 720 if (report->zcr_ereport == NULL) { 721 report->zcr_free(report->zcr_cbdata, report->zcr_cbinfo); 722 if (report->zcr_ckinfo != NULL) { 723 kmem_free(report->zcr_ckinfo, 724 sizeof (*report->zcr_ckinfo)); 725 } 726 kmem_free(report, sizeof (*report)); 727 return; 728 } 729 #endif 730 731 mutex_enter(&spa->spa_errlist_lock); 732 report->zcr_next = zio->io_logical->io_cksum_report; 733 zio->io_logical->io_cksum_report = report; 734 mutex_exit(&spa->spa_errlist_lock); 735 } 736 737 void 738 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data, 739 const abd_t *bad_data, boolean_t drop_if_identical) 740 { 741 #ifdef _KERNEL 742 zfs_ecksum_info_t *info = NULL; 743 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo, 744 good_data, bad_data, report->zcr_length, drop_if_identical); 745 746 if (info != NULL) 747 fm_ereport_post(report->zcr_ereport, EVCH_SLEEP); 748 749 fm_nvlist_destroy(report->zcr_ereport, FM_NVA_FREE); 750 fm_nvlist_destroy(report->zcr_detector, FM_NVA_FREE); 751 report->zcr_ereport = report->zcr_detector = NULL; 752 753 if (info != NULL) 754 kmem_free(info, sizeof (*info)); 755 #endif 756 } 757 758 void 759 zfs_ereport_free_checksum(zio_cksum_report_t *rpt) 760 { 761 #ifdef _KERNEL 762 if (rpt->zcr_ereport != NULL) { 763 fm_nvlist_destroy(rpt->zcr_ereport, 764 FM_NVA_FREE); 765 fm_nvlist_destroy(rpt->zcr_detector, 766 FM_NVA_FREE); 767 } 768 #endif 769 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo); 770 771 if (rpt->zcr_ckinfo != NULL) 772 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo)); 773 774 kmem_free(rpt, sizeof (*rpt)); 775 } 776 777 void 778 zfs_ereport_send_interim_checksum(zio_cksum_report_t *report) 779 { 780 #ifdef _KERNEL 781 fm_ereport_post(report->zcr_ereport, EVCH_SLEEP); 782 #endif 783 } 784 785 void 786 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 787 struct zio *zio, uint64_t offset, uint64_t length, 788 const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc) 789 { 790 #ifdef _KERNEL 791 nvlist_t *ereport = NULL; 792 nvlist_t *detector = NULL; 793 zfs_ecksum_info_t *info; 794 795 zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM, 796 spa, vd, zb, zio, offset, length); 797 798 if (ereport == NULL) 799 return; 800 801 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length, 802 B_FALSE); 803 804 if (info != NULL) 805 fm_ereport_post(ereport, EVCH_SLEEP); 806 807 fm_nvlist_destroy(ereport, FM_NVA_FREE); 808 fm_nvlist_destroy(detector, FM_NVA_FREE); 809 810 if (info != NULL) 811 kmem_free(info, sizeof (*info)); 812 #endif 813 } 814 815 static void 816 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name) 817 { 818 #ifdef _KERNEL 819 nvlist_t *resource; 820 char class[64]; 821 822 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT) 823 return; 824 825 if ((resource = fm_nvlist_create(NULL)) == NULL) 826 return; 827 828 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE, 829 ZFS_ERROR_CLASS, name); 830 VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0); 831 VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0); 832 VERIFY(nvlist_add_uint64(resource, 833 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0); 834 if (vd) 835 VERIFY(nvlist_add_uint64(resource, 836 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0); 837 838 fm_ereport_post(resource, EVCH_SLEEP); 839 840 fm_nvlist_destroy(resource, FM_NVA_FREE); 841 #endif 842 } 843 844 /* 845 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev 846 * has been removed from the system. This will cause the DE to ignore any 847 * recent I/O errors, inferring that they are due to the asynchronous device 848 * removal. 849 */ 850 void 851 zfs_post_remove(spa_t *spa, vdev_t *vd) 852 { 853 zfs_post_common(spa, vd, FM_RESOURCE_REMOVED); 854 } 855 856 /* 857 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool 858 * has the 'autoreplace' property set, and therefore any broken vdevs will be 859 * handled by higher level logic, and no vdev fault should be generated. 860 */ 861 void 862 zfs_post_autoreplace(spa_t *spa, vdev_t *vd) 863 { 864 zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE); 865 } 866 867 /* 868 * The 'resource.fs.zfs.statechange' event is an internal signal that the 869 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will 870 * cause the retire agent to repair any outstanding fault management cases 871 * open because the device was not found (fault.fs.zfs.device). 872 */ 873 void 874 zfs_post_state_change(spa_t *spa, vdev_t *vd) 875 { 876 zfs_post_common(spa, vd, FM_RESOURCE_STATECHANGE); 877 } 878