1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * ZFS control directory (a.k.a. ".zfs") 30 * 31 * This directory provides a common location for all ZFS meta-objects. 32 * Currently, this is only the 'snapshot' directory, but this may expand in the 33 * future. The elements are built using the GFS primitives, as the hierarchy 34 * does not actually exist on disk. 35 * 36 * For 'snapshot', we don't want to have all snapshots always mounted, because 37 * this would take up a huge amount of space in /etc/mnttab. We have three 38 * types of objects: 39 * 40 * ctldir ------> snapshotdir -------> snapshot 41 * | 42 * | 43 * V 44 * mounted fs 45 * 46 * The 'snapshot' node contains just enough information to lookup '..' and act 47 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 48 * perform an automount of the underlying filesystem and return the 49 * corresponding vnode. 50 * 51 * All mounts are handled automatically by the kernel, but unmounts are 52 * (currently) handled from user land. The main reason is that there is no 53 * reliable way to auto-unmount the filesystem when it's "no longer in use". 54 * When the user unmounts a filesystem, we call zfsctl_unmount(), which 55 * unmounts any snapshots within the snapshot directory. 56 * 57 * The '.zfs', '.zfs/snapshot', and all directories created under 58 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and 59 * share the same vfs_t as the head filesystem (what '.zfs' lives under). 60 * 61 * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>' 62 * (ie: snapshots) are ZFS nodes and have their own unique vfs_t. 63 * However, vnodes within these mounted on file systems have their v_vfsp 64 * fields set to the head filesystem to make NFS happy (see 65 * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t 66 * so that it cannot be freed until all snapshots have been unmounted. 67 */ 68 69 #include <fs/fs_subr.h> 70 #include <sys/zfs_ctldir.h> 71 #include <sys/zfs_ioctl.h> 72 #include <sys/zfs_vfsops.h> 73 #include <sys/vfs_opreg.h> 74 #include <sys/gfs.h> 75 #include <sys/stat.h> 76 #include <sys/dmu.h> 77 #include <sys/dsl_deleg.h> 78 #include <sys/mount.h> 79 #include <sys/sunddi.h> 80 81 #include "zfs_namecheck.h" 82 83 typedef struct zfsctl_node { 84 gfs_dir_t zc_gfs_private; 85 uint64_t zc_id; 86 timestruc_t zc_cmtime; /* ctime and mtime, always the same */ 87 } zfsctl_node_t; 88 89 typedef struct zfsctl_snapdir { 90 zfsctl_node_t sd_node; 91 kmutex_t sd_lock; 92 avl_tree_t sd_snaps; 93 } zfsctl_snapdir_t; 94 95 typedef struct { 96 char *se_name; 97 vnode_t *se_root; 98 avl_node_t se_node; 99 } zfs_snapentry_t; 100 101 static int 102 snapentry_compare(const void *a, const void *b) 103 { 104 const zfs_snapentry_t *sa = a; 105 const zfs_snapentry_t *sb = b; 106 int ret = strcmp(sa->se_name, sb->se_name); 107 108 if (ret < 0) 109 return (-1); 110 else if (ret > 0) 111 return (1); 112 else 113 return (0); 114 } 115 116 vnodeops_t *zfsctl_ops_root; 117 vnodeops_t *zfsctl_ops_snapdir; 118 vnodeops_t *zfsctl_ops_snapshot; 119 120 static const fs_operation_def_t zfsctl_tops_root[]; 121 static const fs_operation_def_t zfsctl_tops_snapdir[]; 122 static const fs_operation_def_t zfsctl_tops_snapshot[]; 123 124 static vnode_t *zfsctl_mknode_snapdir(vnode_t *); 125 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); 126 static int zfsctl_unmount_snap(zfs_snapentry_t *, int, cred_t *); 127 128 static gfs_opsvec_t zfsctl_opsvec[] = { 129 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, 130 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, 131 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, 132 { NULL } 133 }; 134 135 /* 136 * Root directory elements. We have only a single static entry, 'snapshot'. 137 */ 138 static gfs_dirent_t zfsctl_root_entries[] = { 139 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, 140 { NULL } 141 }; 142 143 /* include . and .. in the calculation */ 144 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ 145 sizeof (gfs_dirent_t)) + 1) 146 147 148 /* 149 * Initialize the various GFS pieces we'll need to create and manipulate .zfs 150 * directories. This is called from the ZFS init routine, and initializes the 151 * vnode ops vectors that we'll be using. 152 */ 153 void 154 zfsctl_init(void) 155 { 156 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); 157 } 158 159 void 160 zfsctl_fini(void) 161 { 162 /* 163 * Remove vfsctl vnode ops 164 */ 165 if (zfsctl_ops_root) 166 vn_freevnodeops(zfsctl_ops_root); 167 if (zfsctl_ops_snapdir) 168 vn_freevnodeops(zfsctl_ops_snapdir); 169 if (zfsctl_ops_snapshot) 170 vn_freevnodeops(zfsctl_ops_snapshot); 171 172 zfsctl_ops_root = NULL; 173 zfsctl_ops_snapdir = NULL; 174 zfsctl_ops_snapshot = NULL; 175 } 176 177 /* 178 * Return the inode number associated with the 'snapshot' directory. 179 */ 180 /* ARGSUSED */ 181 static ino64_t 182 zfsctl_root_inode_cb(vnode_t *vp, int index) 183 { 184 ASSERT(index == 0); 185 return (ZFSCTL_INO_SNAPDIR); 186 } 187 188 /* 189 * Create the '.zfs' directory. This directory is cached as part of the VFS 190 * structure. This results in a hold on the vfs_t. The code in zfs_umount() 191 * therefore checks against a vfs_count of 2 instead of 1. This reference 192 * is removed when the ctldir is destroyed in the unmount. 193 */ 194 void 195 zfsctl_create(zfsvfs_t *zfsvfs) 196 { 197 vnode_t *vp, *rvp; 198 zfsctl_node_t *zcp; 199 200 ASSERT(zfsvfs->z_ctldir == NULL); 201 202 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, 203 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, 204 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); 205 zcp = vp->v_data; 206 zcp->zc_id = ZFSCTL_INO_ROOT; 207 208 VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0); 209 ZFS_TIME_DECODE(&zcp->zc_cmtime, VTOZ(rvp)->z_phys->zp_crtime); 210 VN_RELE(rvp); 211 212 /* 213 * We're only faking the fact that we have a root of a filesystem for 214 * the sake of the GFS interfaces. Undo the flag manipulation it did 215 * for us. 216 */ 217 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); 218 219 zfsvfs->z_ctldir = vp; 220 } 221 222 /* 223 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted. 224 * There might still be more references if we were force unmounted, but only 225 * new zfs_inactive() calls can occur and they don't reference .zfs 226 */ 227 void 228 zfsctl_destroy(zfsvfs_t *zfsvfs) 229 { 230 VN_RELE(zfsvfs->z_ctldir); 231 zfsvfs->z_ctldir = NULL; 232 } 233 234 /* 235 * Given a root znode, retrieve the associated .zfs directory. 236 * Add a hold to the vnode and return it. 237 */ 238 vnode_t * 239 zfsctl_root(znode_t *zp) 240 { 241 ASSERT(zfs_has_ctldir(zp)); 242 VN_HOLD(zp->z_zfsvfs->z_ctldir); 243 return (zp->z_zfsvfs->z_ctldir); 244 } 245 246 /* 247 * Common open routine. Disallow any write access. 248 */ 249 /* ARGSUSED */ 250 static int 251 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct) 252 { 253 if (flags & FWRITE) 254 return (EACCES); 255 256 return (0); 257 } 258 259 /* 260 * Common close routine. Nothing to do here. 261 */ 262 /* ARGSUSED */ 263 static int 264 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, 265 cred_t *cr, caller_context_t *ct) 266 { 267 return (0); 268 } 269 270 /* 271 * Common access routine. Disallow writes. 272 */ 273 /* ARGSUSED */ 274 static int 275 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr, 276 caller_context_t *ct) 277 { 278 if (mode & VWRITE) 279 return (EACCES); 280 281 return (0); 282 } 283 284 /* 285 * Common getattr function. Fill in basic information. 286 */ 287 static void 288 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) 289 { 290 zfsctl_node_t *zcp = vp->v_data; 291 timestruc_t now; 292 293 vap->va_uid = 0; 294 vap->va_gid = 0; 295 vap->va_rdev = 0; 296 /* 297 * We are a purly virtual object, so we have no 298 * blocksize or allocated blocks. 299 */ 300 vap->va_blksize = 0; 301 vap->va_nblocks = 0; 302 vap->va_seq = 0; 303 vap->va_fsid = vp->v_vfsp->vfs_dev; 304 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | 305 S_IROTH | S_IXOTH; 306 vap->va_type = VDIR; 307 /* 308 * We live in the now (for atime). 309 */ 310 gethrestime(&now); 311 vap->va_atime = now; 312 vap->va_mtime = vap->va_ctime = zcp->zc_cmtime; 313 } 314 315 /*ARGSUSED*/ 316 static int 317 zfsctl_common_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 318 { 319 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 320 zfsctl_node_t *zcp = vp->v_data; 321 uint64_t object = zcp->zc_id; 322 zfid_short_t *zfid; 323 int i; 324 325 ZFS_ENTER(zfsvfs); 326 327 if (fidp->fid_len < SHORT_FID_LEN) { 328 fidp->fid_len = SHORT_FID_LEN; 329 ZFS_EXIT(zfsvfs); 330 return (ENOSPC); 331 } 332 333 zfid = (zfid_short_t *)fidp; 334 335 zfid->zf_len = SHORT_FID_LEN; 336 337 for (i = 0; i < sizeof (zfid->zf_object); i++) 338 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 339 340 /* .zfs znodes always have a generation number of 0 */ 341 for (i = 0; i < sizeof (zfid->zf_gen); i++) 342 zfid->zf_gen[i] = 0; 343 344 ZFS_EXIT(zfsvfs); 345 return (0); 346 } 347 348 /* 349 * .zfs inode namespace 350 * 351 * We need to generate unique inode numbers for all files and directories 352 * within the .zfs pseudo-filesystem. We use the following scheme: 353 * 354 * ENTRY ZFSCTL_INODE 355 * .zfs 1 356 * .zfs/snapshot 2 357 * .zfs/snapshot/<snap> objectid(snap) 358 */ 359 360 #define ZFSCTL_INO_SNAP(id) (id) 361 362 /* 363 * Get root directory attributes. 364 */ 365 /* ARGSUSED */ 366 static int 367 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 368 caller_context_t *ct) 369 { 370 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 371 372 ZFS_ENTER(zfsvfs); 373 vap->va_nodeid = ZFSCTL_INO_ROOT; 374 vap->va_nlink = vap->va_size = NROOT_ENTRIES; 375 376 zfsctl_common_getattr(vp, vap); 377 ZFS_EXIT(zfsvfs); 378 379 return (0); 380 } 381 382 /* 383 * Special case the handling of "..". 384 */ 385 /* ARGSUSED */ 386 int 387 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 388 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 389 int *direntflags, pathname_t *realpnp) 390 { 391 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 392 int err; 393 394 /* 395 * No extended attributes allowed under .zfs 396 */ 397 if (flags & LOOKUP_XATTR) 398 return (EINVAL); 399 400 ZFS_ENTER(zfsvfs); 401 402 if (strcmp(nm, "..") == 0) { 403 err = VFS_ROOT(dvp->v_vfsp, vpp); 404 } else { 405 err = gfs_vop_lookup(dvp, nm, vpp, pnp, flags, rdir, 406 cr, ct, direntflags, realpnp); 407 } 408 409 ZFS_EXIT(zfsvfs); 410 411 return (err); 412 } 413 414 static const fs_operation_def_t zfsctl_tops_root[] = { 415 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 416 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 417 { VOPNAME_IOCTL, { .error = fs_inval } }, 418 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_root_getattr } }, 419 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 420 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 421 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_root_lookup } }, 422 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 423 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 424 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 425 { NULL } 426 }; 427 428 static int 429 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) 430 { 431 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 432 433 if (snapshot_namecheck(name, NULL, NULL) != 0) 434 return (EILSEQ); 435 dmu_objset_name(os, zname); 436 if (strlen(zname) + 1 + strlen(name) >= len) 437 return (ENAMETOOLONG); 438 (void) strcat(zname, "@"); 439 (void) strcat(zname, name); 440 return (0); 441 } 442 443 static int 444 zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr) 445 { 446 vnode_t *svp = sep->se_root; 447 int error; 448 449 ASSERT(vn_ismntpt(svp)); 450 451 /* this will be dropped by dounmount() */ 452 if ((error = vn_vfswlock(svp)) != 0) 453 return (error); 454 455 VN_HOLD(svp); 456 error = dounmount(vn_mountedvfs(svp), fflags, cr); 457 if (error) { 458 VN_RELE(svp); 459 return (error); 460 } 461 VFS_RELE(svp->v_vfsp); 462 /* 463 * We can't use VN_RELE(), as that will try to invoke 464 * zfsctl_snapdir_inactive(), which would cause us to destroy 465 * the sd_lock mutex held by our caller. 466 */ 467 ASSERT(svp->v_count == 1); 468 gfs_vop_inactive(svp, cr, NULL); 469 470 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 471 kmem_free(sep, sizeof (zfs_snapentry_t)); 472 473 return (0); 474 } 475 476 static void 477 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) 478 { 479 avl_index_t where; 480 vfs_t *vfsp; 481 refstr_t *pathref; 482 char newpath[MAXNAMELEN]; 483 char *tail; 484 485 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 486 ASSERT(sep != NULL); 487 488 vfsp = vn_mountedvfs(sep->se_root); 489 ASSERT(vfsp != NULL); 490 491 vfs_lock_wait(vfsp); 492 493 /* 494 * Change the name in the AVL tree. 495 */ 496 avl_remove(&sdp->sd_snaps, sep); 497 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 498 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 499 (void) strcpy(sep->se_name, nm); 500 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); 501 avl_insert(&sdp->sd_snaps, sep, where); 502 503 /* 504 * Change the current mountpoint info: 505 * - update the tail of the mntpoint path 506 * - update the tail of the resource path 507 */ 508 pathref = vfs_getmntpoint(vfsp); 509 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 510 VERIFY((tail = strrchr(newpath, '/')) != NULL); 511 *(tail+1) = '\0'; 512 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 513 (void) strcat(newpath, nm); 514 refstr_rele(pathref); 515 vfs_setmntpoint(vfsp, newpath); 516 517 pathref = vfs_getresource(vfsp); 518 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 519 VERIFY((tail = strrchr(newpath, '@')) != NULL); 520 *(tail+1) = '\0'; 521 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 522 (void) strcat(newpath, nm); 523 refstr_rele(pathref); 524 vfs_setresource(vfsp, newpath); 525 526 vfs_unlock(vfsp); 527 } 528 529 /*ARGSUSED*/ 530 static int 531 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, 532 cred_t *cr, caller_context_t *ct, int flags) 533 { 534 zfsctl_snapdir_t *sdp = sdvp->v_data; 535 zfs_snapentry_t search, *sep; 536 zfsvfs_t *zfsvfs; 537 avl_index_t where; 538 char from[MAXNAMELEN], to[MAXNAMELEN]; 539 char real[MAXNAMELEN]; 540 int err; 541 542 zfsvfs = sdvp->v_vfsp->vfs_data; 543 ZFS_ENTER(zfsvfs); 544 545 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 546 err = dmu_snapshot_realname(zfsvfs->z_os, snm, real, 547 MAXNAMELEN, NULL); 548 if (err == 0) { 549 snm = real; 550 } else if (err != ENOTSUP) { 551 ZFS_EXIT(zfsvfs); 552 return (err); 553 } 554 } 555 556 ZFS_EXIT(zfsvfs); 557 558 err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from); 559 if (!err) 560 err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to); 561 if (!err) 562 err = zfs_secpolicy_rename_perms(from, to, cr); 563 if (err) 564 return (err); 565 566 /* 567 * Cannot move snapshots out of the snapdir. 568 */ 569 if (sdvp != tdvp) 570 return (EINVAL); 571 572 if (strcmp(snm, tnm) == 0) 573 return (0); 574 575 mutex_enter(&sdp->sd_lock); 576 577 search.se_name = (char *)snm; 578 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) { 579 mutex_exit(&sdp->sd_lock); 580 return (ENOENT); 581 } 582 583 err = dmu_objset_rename(from, to, B_FALSE); 584 if (err == 0) 585 zfsctl_rename_snap(sdp, sep, tnm); 586 587 mutex_exit(&sdp->sd_lock); 588 589 return (err); 590 } 591 592 /* ARGSUSED */ 593 static int 594 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 595 caller_context_t *ct, int flags) 596 { 597 zfsctl_snapdir_t *sdp = dvp->v_data; 598 zfs_snapentry_t *sep; 599 zfs_snapentry_t search; 600 zfsvfs_t *zfsvfs; 601 char snapname[MAXNAMELEN]; 602 char real[MAXNAMELEN]; 603 int err; 604 605 zfsvfs = dvp->v_vfsp->vfs_data; 606 ZFS_ENTER(zfsvfs); 607 608 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 609 610 err = dmu_snapshot_realname(zfsvfs->z_os, name, real, 611 MAXNAMELEN, NULL); 612 if (err == 0) { 613 name = real; 614 } else if (err != ENOTSUP) { 615 ZFS_EXIT(zfsvfs); 616 return (err); 617 } 618 } 619 620 ZFS_EXIT(zfsvfs); 621 622 err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname); 623 if (!err) 624 err = zfs_secpolicy_destroy_perms(snapname, cr); 625 if (err) 626 return (err); 627 628 mutex_enter(&sdp->sd_lock); 629 630 search.se_name = name; 631 sep = avl_find(&sdp->sd_snaps, &search, NULL); 632 if (sep) { 633 avl_remove(&sdp->sd_snaps, sep); 634 err = zfsctl_unmount_snap(sep, MS_FORCE, cr); 635 if (err) 636 avl_add(&sdp->sd_snaps, sep); 637 else 638 err = dmu_objset_destroy(snapname); 639 } else { 640 err = ENOENT; 641 } 642 643 mutex_exit(&sdp->sd_lock); 644 645 return (err); 646 } 647 648 /* 649 * This creates a snapshot under '.zfs/snapshot'. 650 */ 651 /* ARGSUSED */ 652 static int 653 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, 654 cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp) 655 { 656 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 657 char name[MAXNAMELEN]; 658 int err; 659 static enum symfollow follow = NO_FOLLOW; 660 static enum uio_seg seg = UIO_SYSSPACE; 661 662 if (snapshot_namecheck(dirname, NULL, NULL) != 0) 663 return (EILSEQ); 664 665 dmu_objset_name(zfsvfs->z_os, name); 666 667 *vpp = NULL; 668 669 err = zfs_secpolicy_snapshot_perms(name, cr); 670 if (err) 671 return (err); 672 673 if (err == 0) { 674 err = dmu_objset_snapshot(name, dirname, B_FALSE); 675 if (err) 676 return (err); 677 err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp); 678 } 679 680 return (err); 681 } 682 683 /* 684 * Lookup entry point for the 'snapshot' directory. Try to open the 685 * snapshot if it exist, creating the pseudo filesystem vnode as necessary. 686 * Perform a mount of the associated dataset on top of the vnode. 687 */ 688 /* ARGSUSED */ 689 static int 690 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 691 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 692 int *direntflags, pathname_t *realpnp) 693 { 694 zfsctl_snapdir_t *sdp = dvp->v_data; 695 objset_t *snap; 696 char snapname[MAXNAMELEN]; 697 char real[MAXNAMELEN]; 698 char *mountpoint; 699 zfs_snapentry_t *sep, search; 700 struct mounta margs; 701 vfs_t *vfsp; 702 size_t mountpoint_len; 703 avl_index_t where; 704 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 705 int err; 706 707 /* 708 * No extended attributes allowed under .zfs 709 */ 710 if (flags & LOOKUP_XATTR) 711 return (EINVAL); 712 713 ASSERT(dvp->v_type == VDIR); 714 715 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) 716 return (0); 717 718 /* 719 * If we get a recursive call, that means we got called 720 * from the domount() code while it was trying to look up the 721 * spec (which looks like a local path for zfs). We need to 722 * add some flag to domount() to tell it not to do this lookup. 723 */ 724 if (MUTEX_HELD(&sdp->sd_lock)) 725 return (ENOENT); 726 727 ZFS_ENTER(zfsvfs); 728 729 if (flags & FIGNORECASE) { 730 boolean_t conflict = B_FALSE; 731 732 err = dmu_snapshot_realname(zfsvfs->z_os, nm, real, 733 MAXNAMELEN, &conflict); 734 if (err == 0) { 735 nm = real; 736 } else if (err != ENOTSUP) { 737 ZFS_EXIT(zfsvfs); 738 return (err); 739 } 740 if (realpnp) 741 (void) strlcpy(realpnp->pn_buf, nm, 742 realpnp->pn_bufsize); 743 if (conflict && direntflags) 744 *direntflags = ED_CASE_CONFLICT; 745 } 746 747 mutex_enter(&sdp->sd_lock); 748 search.se_name = (char *)nm; 749 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 750 *vpp = sep->se_root; 751 VN_HOLD(*vpp); 752 err = traverse(vpp); 753 if (err) { 754 VN_RELE(*vpp); 755 *vpp = NULL; 756 } else if (*vpp == sep->se_root) { 757 /* 758 * The snapshot was unmounted behind our backs, 759 * try to remount it. 760 */ 761 goto domount; 762 } else { 763 /* 764 * VROOT was set during the traverse call. We need 765 * to clear it since we're pretending to be part 766 * of our parent's vfs. 767 */ 768 (*vpp)->v_flag &= ~VROOT; 769 } 770 mutex_exit(&sdp->sd_lock); 771 ZFS_EXIT(zfsvfs); 772 return (err); 773 } 774 775 /* 776 * The requested snapshot is not currently mounted, look it up. 777 */ 778 err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname); 779 if (err) { 780 mutex_exit(&sdp->sd_lock); 781 ZFS_EXIT(zfsvfs); 782 return (err); 783 } 784 if (dmu_objset_open(snapname, DMU_OST_ZFS, 785 DS_MODE_USER | DS_MODE_READONLY, &snap) != 0) { 786 mutex_exit(&sdp->sd_lock); 787 ZFS_EXIT(zfsvfs); 788 return (ENOENT); 789 } 790 791 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); 792 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 793 (void) strcpy(sep->se_name, nm); 794 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); 795 avl_insert(&sdp->sd_snaps, sep, where); 796 797 dmu_objset_close(snap); 798 domount: 799 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + 800 strlen("/.zfs/snapshot/") + strlen(nm) + 1; 801 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); 802 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", 803 refstr_value(dvp->v_vfsp->vfs_mntpt), nm); 804 805 margs.spec = snapname; 806 margs.dir = mountpoint; 807 margs.flags = MS_SYSSPACE | MS_NOMNTTAB; 808 margs.fstype = "zfs"; 809 margs.dataptr = NULL; 810 margs.datalen = 0; 811 margs.optptr = NULL; 812 margs.optlen = 0; 813 814 err = domount("zfs", &margs, *vpp, kcred, &vfsp); 815 kmem_free(mountpoint, mountpoint_len); 816 817 if (err == 0) { 818 /* 819 * Return the mounted root rather than the covered mount point. 820 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns 821 * the ZFS vnode mounted on top of the GFS node. This ZFS 822 * vnode is the root the newly created vfsp. 823 */ 824 VFS_RELE(vfsp); 825 err = traverse(vpp); 826 } 827 828 if (err == 0) { 829 /* 830 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>. 831 * 832 * This is where we lie about our v_vfsp in order to 833 * make .zfs/snapshot/<snapname> accessible over NFS 834 * without requiring manual mounts of <snapname>. 835 */ 836 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); 837 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; 838 (*vpp)->v_vfsp = zfsvfs->z_vfs; 839 (*vpp)->v_flag &= ~VROOT; 840 } 841 mutex_exit(&sdp->sd_lock); 842 ZFS_EXIT(zfsvfs); 843 844 /* 845 * If we had an error, drop our hold on the vnode and 846 * zfsctl_snapshot_inactive() will clean up. 847 */ 848 if (err) { 849 VN_RELE(*vpp); 850 *vpp = NULL; 851 } 852 return (err); 853 } 854 855 /* ARGSUSED */ 856 static int 857 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp, 858 offset_t *offp, offset_t *nextp, void *data, int flags) 859 { 860 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 861 char snapname[MAXNAMELEN]; 862 uint64_t id, cookie; 863 boolean_t case_conflict; 864 int error; 865 866 ZFS_ENTER(zfsvfs); 867 868 cookie = *offp; 869 error = dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id, 870 &cookie, &case_conflict); 871 if (error) { 872 ZFS_EXIT(zfsvfs); 873 if (error == ENOENT) { 874 *eofp = 1; 875 return (0); 876 } 877 return (error); 878 } 879 880 if (flags & V_RDDIR_ENTFLAGS) { 881 edirent_t *eodp = dp; 882 883 (void) strcpy(eodp->ed_name, snapname); 884 eodp->ed_ino = ZFSCTL_INO_SNAP(id); 885 eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0; 886 } else { 887 struct dirent64 *odp = dp; 888 889 (void) strcpy(odp->d_name, snapname); 890 odp->d_ino = ZFSCTL_INO_SNAP(id); 891 } 892 *nextp = cookie; 893 894 ZFS_EXIT(zfsvfs); 895 896 return (0); 897 } 898 899 /* 900 * pvp is the '.zfs' directory (zfsctl_node_t). 901 * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t). 902 * 903 * This function is the callback to create a GFS vnode for '.zfs/snapshot' 904 * when a lookup is performed on .zfs for "snapshot". 905 */ 906 vnode_t * 907 zfsctl_mknode_snapdir(vnode_t *pvp) 908 { 909 vnode_t *vp; 910 zfsctl_snapdir_t *sdp; 911 912 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 913 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, 914 zfsctl_snapdir_readdir_cb, NULL); 915 sdp = vp->v_data; 916 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; 917 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 918 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 919 avl_create(&sdp->sd_snaps, snapentry_compare, 920 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 921 return (vp); 922 } 923 924 /* ARGSUSED */ 925 static int 926 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 927 caller_context_t *ct) 928 { 929 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 930 zfsctl_snapdir_t *sdp = vp->v_data; 931 932 ZFS_ENTER(zfsvfs); 933 zfsctl_common_getattr(vp, vap); 934 vap->va_nodeid = gfs_file_inode(vp); 935 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; 936 ZFS_EXIT(zfsvfs); 937 938 return (0); 939 } 940 941 /* ARGSUSED */ 942 static void 943 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 944 { 945 zfsctl_snapdir_t *sdp = vp->v_data; 946 void *private; 947 948 private = gfs_dir_inactive(vp); 949 if (private != NULL) { 950 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); 951 mutex_destroy(&sdp->sd_lock); 952 avl_destroy(&sdp->sd_snaps); 953 kmem_free(private, sizeof (zfsctl_snapdir_t)); 954 } 955 } 956 957 static const fs_operation_def_t zfsctl_tops_snapdir[] = { 958 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 959 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 960 { VOPNAME_IOCTL, { .error = fs_inval } }, 961 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } }, 962 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 963 { VOPNAME_RENAME, { .vop_rename = zfsctl_snapdir_rename } }, 964 { VOPNAME_RMDIR, { .vop_rmdir = zfsctl_snapdir_remove } }, 965 { VOPNAME_MKDIR, { .vop_mkdir = zfsctl_snapdir_mkdir } }, 966 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 967 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_snapdir_lookup } }, 968 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 969 { VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapdir_inactive } }, 970 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 971 { NULL } 972 }; 973 974 /* 975 * pvp is the GFS vnode '.zfs/snapshot'. 976 * 977 * This creates a GFS node under '.zfs/snapshot' representing each 978 * snapshot. This newly created GFS node is what we mount snapshot 979 * vfs_t's ontop of. 980 */ 981 static vnode_t * 982 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) 983 { 984 vnode_t *vp; 985 zfsctl_node_t *zcp; 986 987 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 988 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 989 zcp = vp->v_data; 990 zcp->zc_id = objset; 991 VFS_HOLD(vp->v_vfsp); 992 993 return (vp); 994 } 995 996 static void 997 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 998 { 999 zfsctl_snapdir_t *sdp; 1000 zfs_snapentry_t *sep, *next; 1001 vnode_t *dvp; 1002 1003 VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0); 1004 sdp = dvp->v_data; 1005 1006 mutex_enter(&sdp->sd_lock); 1007 1008 if (vp->v_count > 1) { 1009 mutex_exit(&sdp->sd_lock); 1010 return; 1011 } 1012 ASSERT(!vn_ismntpt(vp)); 1013 1014 sep = avl_first(&sdp->sd_snaps); 1015 while (sep != NULL) { 1016 next = AVL_NEXT(&sdp->sd_snaps, sep); 1017 1018 if (sep->se_root == vp) { 1019 avl_remove(&sdp->sd_snaps, sep); 1020 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 1021 kmem_free(sep, sizeof (zfs_snapentry_t)); 1022 break; 1023 } 1024 sep = next; 1025 } 1026 ASSERT(sep != NULL); 1027 1028 mutex_exit(&sdp->sd_lock); 1029 VN_RELE(dvp); 1030 VFS_RELE(vp->v_vfsp); 1031 1032 /* 1033 * Dispose of the vnode for the snapshot mount point. 1034 * This is safe to do because once this entry has been removed 1035 * from the AVL tree, it can't be found again, so cannot become 1036 * "active". If we lookup the same name again we will end up 1037 * creating a new vnode. 1038 */ 1039 gfs_vop_inactive(vp, cr, ct); 1040 } 1041 1042 1043 /* 1044 * These VP's should never see the light of day. They should always 1045 * be covered. 1046 */ 1047 static const fs_operation_def_t zfsctl_tops_snapshot[] = { 1048 VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapshot_inactive }, 1049 NULL, NULL 1050 }; 1051 1052 int 1053 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) 1054 { 1055 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1056 vnode_t *dvp, *vp; 1057 zfsctl_snapdir_t *sdp; 1058 zfsctl_node_t *zcp; 1059 zfs_snapentry_t *sep; 1060 int error; 1061 1062 ASSERT(zfsvfs->z_ctldir != NULL); 1063 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1064 NULL, 0, NULL, kcred, NULL, NULL, NULL); 1065 if (error != 0) 1066 return (error); 1067 sdp = dvp->v_data; 1068 1069 mutex_enter(&sdp->sd_lock); 1070 sep = avl_first(&sdp->sd_snaps); 1071 while (sep != NULL) { 1072 vp = sep->se_root; 1073 zcp = vp->v_data; 1074 if (zcp->zc_id == objsetid) 1075 break; 1076 1077 sep = AVL_NEXT(&sdp->sd_snaps, sep); 1078 } 1079 1080 if (sep != NULL) { 1081 VN_HOLD(vp); 1082 /* 1083 * Return the mounted root rather than the covered mount point. 1084 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid> 1085 * and returns the ZFS vnode mounted on top of the GFS node. 1086 * This ZFS vnode is the root of the vfs for objset 'objsetid'. 1087 */ 1088 error = traverse(&vp); 1089 if (error == 0) { 1090 if (vp == sep->se_root) 1091 error = EINVAL; 1092 else 1093 *zfsvfsp = VTOZ(vp)->z_zfsvfs; 1094 } 1095 mutex_exit(&sdp->sd_lock); 1096 VN_RELE(vp); 1097 } else { 1098 error = EINVAL; 1099 mutex_exit(&sdp->sd_lock); 1100 } 1101 1102 VN_RELE(dvp); 1103 1104 return (error); 1105 } 1106 1107 /* 1108 * Unmount any snapshots for the given filesystem. This is called from 1109 * zfs_umount() - if we have a ctldir, then go through and unmount all the 1110 * snapshots. 1111 */ 1112 int 1113 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) 1114 { 1115 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1116 vnode_t *dvp; 1117 zfsctl_snapdir_t *sdp; 1118 zfs_snapentry_t *sep, *next; 1119 int error; 1120 1121 ASSERT(zfsvfs->z_ctldir != NULL); 1122 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1123 NULL, 0, NULL, cr, NULL, NULL, NULL); 1124 if (error != 0) 1125 return (error); 1126 sdp = dvp->v_data; 1127 1128 mutex_enter(&sdp->sd_lock); 1129 1130 sep = avl_first(&sdp->sd_snaps); 1131 while (sep != NULL) { 1132 next = AVL_NEXT(&sdp->sd_snaps, sep); 1133 1134 /* 1135 * If this snapshot is not mounted, then it must 1136 * have just been unmounted by somebody else, and 1137 * will be cleaned up by zfsctl_snapdir_inactive(). 1138 */ 1139 if (vn_ismntpt(sep->se_root)) { 1140 avl_remove(&sdp->sd_snaps, sep); 1141 error = zfsctl_unmount_snap(sep, fflags, cr); 1142 if (error) { 1143 avl_add(&sdp->sd_snaps, sep); 1144 break; 1145 } 1146 } 1147 sep = next; 1148 } 1149 1150 mutex_exit(&sdp->sd_lock); 1151 VN_RELE(dvp); 1152 1153 return (error); 1154 } 1155