1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 24 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved. 25 */ 26 27 /* 28 * ZFS control directory (a.k.a. ".zfs") 29 * 30 * This directory provides a common location for all ZFS meta-objects. 31 * Currently, this is only the 'snapshot' directory, but this may expand in the 32 * future. The elements are built using the GFS primitives, as the hierarchy 33 * does not actually exist on disk. 34 * 35 * For 'snapshot', we don't want to have all snapshots always mounted, because 36 * this would take up a huge amount of space in /etc/mnttab. We have three 37 * types of objects: 38 * 39 * ctldir ------> snapshotdir -------> snapshot 40 * | 41 * | 42 * V 43 * mounted fs 44 * 45 * The 'snapshot' node contains just enough information to lookup '..' and act 46 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 47 * perform an automount of the underlying filesystem and return the 48 * corresponding vnode. 49 * 50 * All mounts are handled automatically by the kernel, but unmounts are 51 * (currently) handled from user land. The main reason is that there is no 52 * reliable way to auto-unmount the filesystem when it's "no longer in use". 53 * When the user unmounts a filesystem, we call zfsctl_unmount(), which 54 * unmounts any snapshots within the snapshot directory. 55 * 56 * The '.zfs', '.zfs/snapshot', and all directories created under 57 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and 58 * share the same vfs_t as the head filesystem (what '.zfs' lives under). 59 * 60 * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>' 61 * (ie: snapshots) are ZFS nodes and have their own unique vfs_t. 62 * However, vnodes within these mounted on file systems have their v_vfsp 63 * fields set to the head filesystem to make NFS happy (see 64 * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t 65 * so that it cannot be freed until all snapshots have been unmounted. 66 */ 67 68 #include <fs/fs_subr.h> 69 #include <sys/zfs_ctldir.h> 70 #include <sys/zfs_ioctl.h> 71 #include <sys/zfs_vfsops.h> 72 #include <sys/vfs_opreg.h> 73 #include <sys/gfs.h> 74 #include <sys/stat.h> 75 #include <sys/dmu.h> 76 #include <sys/dsl_destroy.h> 77 #include <sys/dsl_deleg.h> 78 #include <sys/mount.h> 79 #include <sys/sunddi.h> 80 81 #include "zfs_namecheck.h" 82 83 typedef struct zfsctl_node { 84 gfs_dir_t zc_gfs_private; 85 uint64_t zc_id; 86 timestruc_t zc_cmtime; /* ctime and mtime, always the same */ 87 } zfsctl_node_t; 88 89 typedef struct zfsctl_snapdir { 90 zfsctl_node_t sd_node; 91 kmutex_t sd_lock; 92 avl_tree_t sd_snaps; 93 } zfsctl_snapdir_t; 94 95 typedef struct { 96 char *se_name; 97 vnode_t *se_root; 98 avl_node_t se_node; 99 } zfs_snapentry_t; 100 101 static int 102 snapentry_compare(const void *a, const void *b) 103 { 104 const zfs_snapentry_t *sa = a; 105 const zfs_snapentry_t *sb = b; 106 int ret = strcmp(sa->se_name, sb->se_name); 107 108 if (ret < 0) 109 return (-1); 110 else if (ret > 0) 111 return (1); 112 else 113 return (0); 114 } 115 116 vnodeops_t *zfsctl_ops_root; 117 vnodeops_t *zfsctl_ops_snapdir; 118 vnodeops_t *zfsctl_ops_snapshot; 119 vnodeops_t *zfsctl_ops_shares; 120 121 static const fs_operation_def_t zfsctl_tops_root[]; 122 static const fs_operation_def_t zfsctl_tops_snapdir[]; 123 static const fs_operation_def_t zfsctl_tops_snapshot[]; 124 static const fs_operation_def_t zfsctl_tops_shares[]; 125 126 static vnode_t *zfsctl_mknode_snapdir(vnode_t *); 127 static vnode_t *zfsctl_mknode_shares(vnode_t *); 128 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); 129 static int zfsctl_unmount_snap(zfs_snapentry_t *, int, cred_t *); 130 131 static gfs_opsvec_t zfsctl_opsvec[] = { 132 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, 133 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, 134 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, 135 { ".zfs/shares", zfsctl_tops_shares, &zfsctl_ops_shares }, 136 { NULL } 137 }; 138 139 /* 140 * Root directory elements. We only have two entries 141 * snapshot and shares. 142 */ 143 static gfs_dirent_t zfsctl_root_entries[] = { 144 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, 145 { "shares", zfsctl_mknode_shares, GFS_CACHE_VNODE }, 146 { NULL } 147 }; 148 149 /* include . and .. in the calculation */ 150 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ 151 sizeof (gfs_dirent_t)) + 1) 152 153 154 /* 155 * Initialize the various GFS pieces we'll need to create and manipulate .zfs 156 * directories. This is called from the ZFS init routine, and initializes the 157 * vnode ops vectors that we'll be using. 158 */ 159 void 160 zfsctl_init(void) 161 { 162 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); 163 } 164 165 void 166 zfsctl_fini(void) 167 { 168 /* 169 * Remove vfsctl vnode ops 170 */ 171 if (zfsctl_ops_root) 172 vn_freevnodeops(zfsctl_ops_root); 173 if (zfsctl_ops_snapdir) 174 vn_freevnodeops(zfsctl_ops_snapdir); 175 if (zfsctl_ops_snapshot) 176 vn_freevnodeops(zfsctl_ops_snapshot); 177 if (zfsctl_ops_shares) 178 vn_freevnodeops(zfsctl_ops_shares); 179 180 zfsctl_ops_root = NULL; 181 zfsctl_ops_snapdir = NULL; 182 zfsctl_ops_snapshot = NULL; 183 zfsctl_ops_shares = NULL; 184 } 185 186 boolean_t 187 zfsctl_is_node(vnode_t *vp) 188 { 189 return (vn_matchops(vp, zfsctl_ops_root) || 190 vn_matchops(vp, zfsctl_ops_snapdir) || 191 vn_matchops(vp, zfsctl_ops_snapshot) || 192 vn_matchops(vp, zfsctl_ops_shares)); 193 194 } 195 196 /* 197 * Return the inode number associated with the 'snapshot' or 198 * 'shares' directory. 199 */ 200 /* ARGSUSED */ 201 static ino64_t 202 zfsctl_root_inode_cb(vnode_t *vp, int index) 203 { 204 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 205 206 ASSERT(index < 2); 207 208 if (index == 0) 209 return (ZFSCTL_INO_SNAPDIR); 210 211 return (zfsvfs->z_shares_dir); 212 } 213 214 /* 215 * Create the '.zfs' directory. This directory is cached as part of the VFS 216 * structure. This results in a hold on the vfs_t. The code in zfs_umount() 217 * therefore checks against a vfs_count of 2 instead of 1. This reference 218 * is removed when the ctldir is destroyed in the unmount. 219 */ 220 void 221 zfsctl_create(zfsvfs_t *zfsvfs) 222 { 223 vnode_t *vp, *rvp; 224 zfsctl_node_t *zcp; 225 uint64_t crtime[2]; 226 227 ASSERT(zfsvfs->z_ctldir == NULL); 228 229 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, 230 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, 231 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); 232 zcp = vp->v_data; 233 zcp->zc_id = ZFSCTL_INO_ROOT; 234 235 VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0); 236 VERIFY(0 == sa_lookup(VTOZ(rvp)->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 237 &crtime, sizeof (crtime))); 238 ZFS_TIME_DECODE(&zcp->zc_cmtime, crtime); 239 VN_RELE(rvp); 240 241 /* 242 * We're only faking the fact that we have a root of a filesystem for 243 * the sake of the GFS interfaces. Undo the flag manipulation it did 244 * for us. 245 */ 246 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); 247 248 zfsvfs->z_ctldir = vp; 249 } 250 251 /* 252 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted. 253 * There might still be more references if we were force unmounted, but only 254 * new zfs_inactive() calls can occur and they don't reference .zfs 255 */ 256 void 257 zfsctl_destroy(zfsvfs_t *zfsvfs) 258 { 259 VN_RELE(zfsvfs->z_ctldir); 260 zfsvfs->z_ctldir = NULL; 261 } 262 263 /* 264 * Given a root znode, retrieve the associated .zfs directory. 265 * Add a hold to the vnode and return it. 266 */ 267 vnode_t * 268 zfsctl_root(znode_t *zp) 269 { 270 ASSERT(zfs_has_ctldir(zp)); 271 VN_HOLD(zp->z_zfsvfs->z_ctldir); 272 return (zp->z_zfsvfs->z_ctldir); 273 } 274 275 /* 276 * Common open routine. Disallow any write access. 277 */ 278 /* ARGSUSED */ 279 static int 280 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct) 281 { 282 if (flags & FWRITE) 283 return (SET_ERROR(EACCES)); 284 285 return (0); 286 } 287 288 /* 289 * Common close routine. Nothing to do here. 290 */ 291 /* ARGSUSED */ 292 static int 293 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, 294 cred_t *cr, caller_context_t *ct) 295 { 296 return (0); 297 } 298 299 /* 300 * Common access routine. Disallow writes. 301 */ 302 /* ARGSUSED */ 303 static int 304 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr, 305 caller_context_t *ct) 306 { 307 if (flags & V_ACE_MASK) { 308 if (mode & ACE_ALL_WRITE_PERMS) 309 return (SET_ERROR(EACCES)); 310 } else { 311 if (mode & VWRITE) 312 return (SET_ERROR(EACCES)); 313 } 314 315 return (0); 316 } 317 318 /* 319 * Common getattr function. Fill in basic information. 320 */ 321 static void 322 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) 323 { 324 timestruc_t now; 325 326 vap->va_uid = 0; 327 vap->va_gid = 0; 328 vap->va_rdev = 0; 329 /* 330 * We are a purely virtual object, so we have no 331 * blocksize or allocated blocks. 332 */ 333 vap->va_blksize = 0; 334 vap->va_nblocks = 0; 335 vap->va_seq = 0; 336 vap->va_fsid = vp->v_vfsp->vfs_dev; 337 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | 338 S_IROTH | S_IXOTH; 339 vap->va_type = VDIR; 340 /* 341 * We live in the now (for atime). 342 */ 343 gethrestime(&now); 344 vap->va_atime = now; 345 } 346 347 /*ARGSUSED*/ 348 static int 349 zfsctl_common_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 350 { 351 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 352 zfsctl_node_t *zcp = vp->v_data; 353 uint64_t object = zcp->zc_id; 354 zfid_short_t *zfid; 355 int i; 356 357 ZFS_ENTER(zfsvfs); 358 359 if (fidp->fid_len < SHORT_FID_LEN) { 360 fidp->fid_len = SHORT_FID_LEN; 361 ZFS_EXIT(zfsvfs); 362 return (SET_ERROR(ENOSPC)); 363 } 364 365 zfid = (zfid_short_t *)fidp; 366 367 zfid->zf_len = SHORT_FID_LEN; 368 369 for (i = 0; i < sizeof (zfid->zf_object); i++) 370 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 371 372 /* .zfs znodes always have a generation number of 0 */ 373 for (i = 0; i < sizeof (zfid->zf_gen); i++) 374 zfid->zf_gen[i] = 0; 375 376 ZFS_EXIT(zfsvfs); 377 return (0); 378 } 379 380 381 /*ARGSUSED*/ 382 static int 383 zfsctl_shares_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 384 { 385 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 386 znode_t *dzp; 387 int error; 388 389 ZFS_ENTER(zfsvfs); 390 391 if (zfsvfs->z_shares_dir == 0) { 392 ZFS_EXIT(zfsvfs); 393 return (SET_ERROR(ENOTSUP)); 394 } 395 396 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 397 error = VOP_FID(ZTOV(dzp), fidp, ct); 398 VN_RELE(ZTOV(dzp)); 399 } 400 401 ZFS_EXIT(zfsvfs); 402 return (error); 403 } 404 /* 405 * .zfs inode namespace 406 * 407 * We need to generate unique inode numbers for all files and directories 408 * within the .zfs pseudo-filesystem. We use the following scheme: 409 * 410 * ENTRY ZFSCTL_INODE 411 * .zfs 1 412 * .zfs/snapshot 2 413 * .zfs/snapshot/<snap> objectid(snap) 414 */ 415 416 #define ZFSCTL_INO_SNAP(id) (id) 417 418 /* 419 * Get root directory attributes. 420 */ 421 /* ARGSUSED */ 422 static int 423 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 424 caller_context_t *ct) 425 { 426 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 427 zfsctl_node_t *zcp = vp->v_data; 428 429 ZFS_ENTER(zfsvfs); 430 vap->va_nodeid = ZFSCTL_INO_ROOT; 431 vap->va_nlink = vap->va_size = NROOT_ENTRIES; 432 vap->va_mtime = vap->va_ctime = zcp->zc_cmtime; 433 434 zfsctl_common_getattr(vp, vap); 435 ZFS_EXIT(zfsvfs); 436 437 return (0); 438 } 439 440 /* 441 * Special case the handling of "..". 442 */ 443 /* ARGSUSED */ 444 int 445 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 446 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 447 int *direntflags, pathname_t *realpnp) 448 { 449 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 450 int err; 451 452 /* 453 * No extended attributes allowed under .zfs 454 */ 455 if (flags & LOOKUP_XATTR) 456 return (SET_ERROR(EINVAL)); 457 458 ZFS_ENTER(zfsvfs); 459 460 if (strcmp(nm, "..") == 0) { 461 err = VFS_ROOT(dvp->v_vfsp, vpp); 462 } else { 463 err = gfs_vop_lookup(dvp, nm, vpp, pnp, flags, rdir, 464 cr, ct, direntflags, realpnp); 465 } 466 467 ZFS_EXIT(zfsvfs); 468 469 return (err); 470 } 471 472 static int 473 zfsctl_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 474 caller_context_t *ct) 475 { 476 /* 477 * We only care about ACL_ENABLED so that libsec can 478 * display ACL correctly and not default to POSIX draft. 479 */ 480 if (cmd == _PC_ACL_ENABLED) { 481 *valp = _ACL_ACE_ENABLED; 482 return (0); 483 } 484 485 return (fs_pathconf(vp, cmd, valp, cr, ct)); 486 } 487 488 static const fs_operation_def_t zfsctl_tops_root[] = { 489 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 490 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 491 { VOPNAME_IOCTL, { .error = fs_inval } }, 492 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_root_getattr } }, 493 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 494 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 495 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_root_lookup } }, 496 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 497 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 498 { VOPNAME_PATHCONF, { .vop_pathconf = zfsctl_pathconf } }, 499 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 500 { NULL } 501 }; 502 503 /* 504 * Gets the full dataset name that corresponds to the given snapshot name 505 * Example: 506 * zfsctl_snapshot_zname("snap1") -> "mypool/myfs@snap1" 507 */ 508 static int 509 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) 510 { 511 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 512 513 if (zfs_component_namecheck(name, NULL, NULL) != 0) 514 return (SET_ERROR(EILSEQ)); 515 dmu_objset_name(os, zname); 516 if (strlen(zname) + 1 + strlen(name) >= len) 517 return (SET_ERROR(ENAMETOOLONG)); 518 (void) strcat(zname, "@"); 519 (void) strcat(zname, name); 520 return (0); 521 } 522 523 static int 524 zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr) 525 { 526 vnode_t *svp = sep->se_root; 527 int error; 528 529 ASSERT(vn_ismntpt(svp)); 530 531 /* this will be dropped by dounmount() */ 532 if ((error = vn_vfswlock(svp)) != 0) 533 return (error); 534 535 VN_HOLD(svp); 536 error = dounmount(vn_mountedvfs(svp), fflags, cr); 537 if (error) { 538 VN_RELE(svp); 539 return (error); 540 } 541 542 /* 543 * We can't use VN_RELE(), as that will try to invoke 544 * zfsctl_snapdir_inactive(), which would cause us to destroy 545 * the sd_lock mutex held by our caller. 546 */ 547 ASSERT(svp->v_count == 1); 548 gfs_vop_inactive(svp, cr, NULL); 549 550 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 551 kmem_free(sep, sizeof (zfs_snapentry_t)); 552 553 return (0); 554 } 555 556 static void 557 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) 558 { 559 avl_index_t where; 560 vfs_t *vfsp; 561 refstr_t *pathref; 562 char newpath[MAXNAMELEN]; 563 char *tail; 564 565 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 566 ASSERT(sep != NULL); 567 568 vfsp = vn_mountedvfs(sep->se_root); 569 ASSERT(vfsp != NULL); 570 571 vfs_lock_wait(vfsp); 572 573 /* 574 * Change the name in the AVL tree. 575 */ 576 avl_remove(&sdp->sd_snaps, sep); 577 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 578 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 579 (void) strcpy(sep->se_name, nm); 580 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); 581 avl_insert(&sdp->sd_snaps, sep, where); 582 583 /* 584 * Change the current mountpoint info: 585 * - update the tail of the mntpoint path 586 * - update the tail of the resource path 587 */ 588 pathref = vfs_getmntpoint(vfsp); 589 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 590 VERIFY((tail = strrchr(newpath, '/')) != NULL); 591 *(tail+1) = '\0'; 592 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 593 (void) strcat(newpath, nm); 594 refstr_rele(pathref); 595 vfs_setmntpoint(vfsp, newpath, 0); 596 597 pathref = vfs_getresource(vfsp); 598 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 599 VERIFY((tail = strrchr(newpath, '@')) != NULL); 600 *(tail+1) = '\0'; 601 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 602 (void) strcat(newpath, nm); 603 refstr_rele(pathref); 604 vfs_setresource(vfsp, newpath, 0); 605 606 vfs_unlock(vfsp); 607 } 608 609 /*ARGSUSED*/ 610 static int 611 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, 612 cred_t *cr, caller_context_t *ct, int flags) 613 { 614 zfsctl_snapdir_t *sdp = sdvp->v_data; 615 zfs_snapentry_t search, *sep; 616 zfsvfs_t *zfsvfs; 617 avl_index_t where; 618 char from[ZFS_MAX_DATASET_NAME_LEN], to[ZFS_MAX_DATASET_NAME_LEN]; 619 char real[ZFS_MAX_DATASET_NAME_LEN], fsname[ZFS_MAX_DATASET_NAME_LEN]; 620 int err; 621 622 zfsvfs = sdvp->v_vfsp->vfs_data; 623 ZFS_ENTER(zfsvfs); 624 625 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 626 err = dmu_snapshot_realname(zfsvfs->z_os, snm, real, 627 sizeof (real), NULL); 628 if (err == 0) { 629 snm = real; 630 } else if (err != ENOTSUP) { 631 ZFS_EXIT(zfsvfs); 632 return (err); 633 } 634 } 635 636 ZFS_EXIT(zfsvfs); 637 638 dmu_objset_name(zfsvfs->z_os, fsname); 639 640 err = zfsctl_snapshot_zname(sdvp, snm, sizeof (from), from); 641 if (err == 0) 642 err = zfsctl_snapshot_zname(tdvp, tnm, sizeof (to), to); 643 if (err == 0) 644 err = zfs_secpolicy_rename_perms(from, to, cr); 645 if (err != 0) 646 return (err); 647 648 /* 649 * Cannot move snapshots out of the snapdir. 650 */ 651 if (sdvp != tdvp) 652 return (SET_ERROR(EINVAL)); 653 654 if (strcmp(snm, tnm) == 0) 655 return (0); 656 657 mutex_enter(&sdp->sd_lock); 658 659 search.se_name = (char *)snm; 660 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) { 661 mutex_exit(&sdp->sd_lock); 662 return (SET_ERROR(ENOENT)); 663 } 664 665 err = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE); 666 if (err == 0) 667 zfsctl_rename_snap(sdp, sep, tnm); 668 669 mutex_exit(&sdp->sd_lock); 670 671 return (err); 672 } 673 674 /* ARGSUSED */ 675 static int 676 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 677 caller_context_t *ct, int flags) 678 { 679 zfsctl_snapdir_t *sdp = dvp->v_data; 680 zfs_snapentry_t *sep; 681 zfs_snapentry_t search; 682 zfsvfs_t *zfsvfs; 683 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 684 char real[ZFS_MAX_DATASET_NAME_LEN]; 685 int err; 686 687 zfsvfs = dvp->v_vfsp->vfs_data; 688 ZFS_ENTER(zfsvfs); 689 690 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 691 692 err = dmu_snapshot_realname(zfsvfs->z_os, name, real, 693 sizeof (real), NULL); 694 if (err == 0) { 695 name = real; 696 } else if (err != ENOTSUP) { 697 ZFS_EXIT(zfsvfs); 698 return (err); 699 } 700 } 701 702 ZFS_EXIT(zfsvfs); 703 704 err = zfsctl_snapshot_zname(dvp, name, sizeof (snapname), snapname); 705 if (err == 0) 706 err = zfs_secpolicy_destroy_perms(snapname, cr); 707 if (err != 0) 708 return (err); 709 710 mutex_enter(&sdp->sd_lock); 711 712 search.se_name = name; 713 sep = avl_find(&sdp->sd_snaps, &search, NULL); 714 if (sep) { 715 avl_remove(&sdp->sd_snaps, sep); 716 err = zfsctl_unmount_snap(sep, MS_FORCE, cr); 717 if (err != 0) 718 avl_add(&sdp->sd_snaps, sep); 719 else 720 err = dsl_destroy_snapshot(snapname, B_FALSE); 721 } else { 722 err = SET_ERROR(ENOENT); 723 } 724 725 mutex_exit(&sdp->sd_lock); 726 727 return (err); 728 } 729 730 /* 731 * This creates a snapshot under '.zfs/snapshot'. 732 */ 733 /* ARGSUSED */ 734 static int 735 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, 736 cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp) 737 { 738 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 739 char name[ZFS_MAX_DATASET_NAME_LEN]; 740 int err; 741 static enum symfollow follow = NO_FOLLOW; 742 static enum uio_seg seg = UIO_SYSSPACE; 743 744 if (zfs_component_namecheck(dirname, NULL, NULL) != 0) 745 return (SET_ERROR(EILSEQ)); 746 747 dmu_objset_name(zfsvfs->z_os, name); 748 749 *vpp = NULL; 750 751 err = zfs_secpolicy_snapshot_perms(name, cr); 752 if (err != 0) 753 return (err); 754 755 if (err == 0) { 756 err = dmu_objset_snapshot_one(name, dirname); 757 if (err != 0) 758 return (err); 759 err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp); 760 } 761 762 return (err); 763 } 764 765 /* 766 * Lookup entry point for the 'snapshot' directory. Try to open the 767 * snapshot if it exist, creating the pseudo filesystem vnode as necessary. 768 * Perform a mount of the associated dataset on top of the vnode. 769 */ 770 /* ARGSUSED */ 771 static int 772 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 773 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 774 int *direntflags, pathname_t *realpnp) 775 { 776 zfsctl_snapdir_t *sdp = dvp->v_data; 777 objset_t *snap; 778 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 779 char real[ZFS_MAX_DATASET_NAME_LEN]; 780 char *mountpoint; 781 zfs_snapentry_t *sep, search; 782 struct mounta margs; 783 vfs_t *vfsp; 784 size_t mountpoint_len; 785 avl_index_t where; 786 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 787 int err; 788 789 /* 790 * No extended attributes allowed under .zfs 791 */ 792 if (flags & LOOKUP_XATTR) 793 return (SET_ERROR(EINVAL)); 794 795 ASSERT(dvp->v_type == VDIR); 796 797 /* 798 * If we get a recursive call, that means we got called 799 * from the domount() code while it was trying to look up the 800 * spec (which looks like a local path for zfs). We need to 801 * add some flag to domount() to tell it not to do this lookup. 802 */ 803 if (MUTEX_HELD(&sdp->sd_lock)) 804 return (SET_ERROR(ENOENT)); 805 806 ZFS_ENTER(zfsvfs); 807 808 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) { 809 ZFS_EXIT(zfsvfs); 810 return (0); 811 } 812 813 if (flags & FIGNORECASE) { 814 boolean_t conflict = B_FALSE; 815 816 err = dmu_snapshot_realname(zfsvfs->z_os, nm, real, 817 sizeof (real), &conflict); 818 if (err == 0) { 819 nm = real; 820 } else if (err != ENOTSUP) { 821 ZFS_EXIT(zfsvfs); 822 return (err); 823 } 824 if (realpnp) 825 (void) strlcpy(realpnp->pn_buf, nm, 826 realpnp->pn_bufsize); 827 if (conflict && direntflags) 828 *direntflags = ED_CASE_CONFLICT; 829 } 830 831 mutex_enter(&sdp->sd_lock); 832 search.se_name = (char *)nm; 833 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 834 *vpp = sep->se_root; 835 VN_HOLD(*vpp); 836 err = traverse(vpp); 837 if (err != 0) { 838 VN_RELE(*vpp); 839 *vpp = NULL; 840 } else if (*vpp == sep->se_root) { 841 /* 842 * The snapshot was unmounted behind our backs, 843 * try to remount it. 844 */ 845 goto domount; 846 } else { 847 /* 848 * VROOT was set during the traverse call. We need 849 * to clear it since we're pretending to be part 850 * of our parent's vfs. 851 */ 852 (*vpp)->v_flag &= ~VROOT; 853 } 854 mutex_exit(&sdp->sd_lock); 855 ZFS_EXIT(zfsvfs); 856 return (err); 857 } 858 859 /* 860 * The requested snapshot is not currently mounted, look it up. 861 */ 862 err = zfsctl_snapshot_zname(dvp, nm, sizeof (snapname), snapname); 863 if (err != 0) { 864 mutex_exit(&sdp->sd_lock); 865 ZFS_EXIT(zfsvfs); 866 /* 867 * handle "ls *" or "?" in a graceful manner, 868 * forcing EILSEQ to ENOENT. 869 * Since shell ultimately passes "*" or "?" as name to lookup 870 */ 871 return (err == EILSEQ ? ENOENT : err); 872 } 873 if (dmu_objset_hold(snapname, FTAG, &snap) != 0) { 874 mutex_exit(&sdp->sd_lock); 875 ZFS_EXIT(zfsvfs); 876 return (SET_ERROR(ENOENT)); 877 } 878 879 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); 880 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 881 (void) strcpy(sep->se_name, nm); 882 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); 883 avl_insert(&sdp->sd_snaps, sep, where); 884 885 dmu_objset_rele(snap, FTAG); 886 domount: 887 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + 888 strlen("/.zfs/snapshot/") + strlen(nm) + 1; 889 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); 890 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", 891 refstr_value(dvp->v_vfsp->vfs_mntpt), nm); 892 893 margs.spec = snapname; 894 margs.dir = mountpoint; 895 margs.flags = MS_SYSSPACE | MS_NOMNTTAB; 896 margs.fstype = "zfs"; 897 margs.dataptr = NULL; 898 margs.datalen = 0; 899 margs.optptr = NULL; 900 margs.optlen = 0; 901 902 err = domount("zfs", &margs, *vpp, kcred, &vfsp); 903 kmem_free(mountpoint, mountpoint_len); 904 905 if (err == 0) { 906 /* 907 * Return the mounted root rather than the covered mount point. 908 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns 909 * the ZFS vnode mounted on top of the GFS node. This ZFS 910 * vnode is the root of the newly created vfsp. 911 */ 912 VFS_RELE(vfsp); 913 err = traverse(vpp); 914 } 915 916 if (err == 0) { 917 /* 918 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>. 919 * 920 * This is where we lie about our v_vfsp in order to 921 * make .zfs/snapshot/<snapname> accessible over NFS 922 * without requiring manual mounts of <snapname>. 923 */ 924 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); 925 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; 926 (*vpp)->v_vfsp = zfsvfs->z_vfs; 927 (*vpp)->v_flag &= ~VROOT; 928 } 929 mutex_exit(&sdp->sd_lock); 930 ZFS_EXIT(zfsvfs); 931 932 /* 933 * If we had an error, drop our hold on the vnode and 934 * zfsctl_snapshot_inactive() will clean up. 935 */ 936 if (err != 0) { 937 VN_RELE(*vpp); 938 *vpp = NULL; 939 } 940 return (err); 941 } 942 943 /* ARGSUSED */ 944 static int 945 zfsctl_shares_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 946 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 947 int *direntflags, pathname_t *realpnp) 948 { 949 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 950 znode_t *dzp; 951 int error; 952 953 ZFS_ENTER(zfsvfs); 954 955 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) { 956 ZFS_EXIT(zfsvfs); 957 return (0); 958 } 959 960 if (zfsvfs->z_shares_dir == 0) { 961 ZFS_EXIT(zfsvfs); 962 return (SET_ERROR(ENOTSUP)); 963 } 964 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 965 error = VOP_LOOKUP(ZTOV(dzp), nm, vpp, pnp, 966 flags, rdir, cr, ct, direntflags, realpnp); 967 VN_RELE(ZTOV(dzp)); 968 } 969 970 ZFS_EXIT(zfsvfs); 971 972 return (error); 973 } 974 975 /* ARGSUSED */ 976 static int 977 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp, 978 offset_t *offp, offset_t *nextp, void *data, int flags) 979 { 980 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 981 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 982 uint64_t id, cookie; 983 boolean_t case_conflict; 984 int error; 985 986 ZFS_ENTER(zfsvfs); 987 988 cookie = *offp; 989 dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG); 990 error = dmu_snapshot_list_next(zfsvfs->z_os, 991 sizeof (snapname), snapname, &id, &cookie, &case_conflict); 992 dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG); 993 if (error) { 994 ZFS_EXIT(zfsvfs); 995 if (error == ENOENT) { 996 *eofp = 1; 997 return (0); 998 } 999 return (error); 1000 } 1001 1002 if (flags & V_RDDIR_ENTFLAGS) { 1003 edirent_t *eodp = dp; 1004 1005 (void) strcpy(eodp->ed_name, snapname); 1006 eodp->ed_ino = ZFSCTL_INO_SNAP(id); 1007 eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0; 1008 } else { 1009 struct dirent64 *odp = dp; 1010 1011 (void) strcpy(odp->d_name, snapname); 1012 odp->d_ino = ZFSCTL_INO_SNAP(id); 1013 } 1014 *nextp = cookie; 1015 1016 ZFS_EXIT(zfsvfs); 1017 1018 return (0); 1019 } 1020 1021 /* ARGSUSED */ 1022 static int 1023 zfsctl_shares_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp, 1024 caller_context_t *ct, int flags) 1025 { 1026 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1027 znode_t *dzp; 1028 int error; 1029 1030 ZFS_ENTER(zfsvfs); 1031 1032 if (zfsvfs->z_shares_dir == 0) { 1033 ZFS_EXIT(zfsvfs); 1034 return (SET_ERROR(ENOTSUP)); 1035 } 1036 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 1037 error = VOP_READDIR(ZTOV(dzp), uiop, cr, eofp, ct, flags); 1038 VN_RELE(ZTOV(dzp)); 1039 } else { 1040 *eofp = 1; 1041 error = SET_ERROR(ENOENT); 1042 } 1043 1044 ZFS_EXIT(zfsvfs); 1045 return (error); 1046 } 1047 1048 /* 1049 * pvp is the '.zfs' directory (zfsctl_node_t). 1050 * 1051 * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t). 1052 * 1053 * This function is the callback to create a GFS vnode for '.zfs/snapshot' 1054 * when a lookup is performed on .zfs for "snapshot". 1055 */ 1056 vnode_t * 1057 zfsctl_mknode_snapdir(vnode_t *pvp) 1058 { 1059 vnode_t *vp; 1060 zfsctl_snapdir_t *sdp; 1061 1062 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 1063 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, 1064 zfsctl_snapdir_readdir_cb, NULL); 1065 sdp = vp->v_data; 1066 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; 1067 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 1068 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 1069 avl_create(&sdp->sd_snaps, snapentry_compare, 1070 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 1071 return (vp); 1072 } 1073 1074 vnode_t * 1075 zfsctl_mknode_shares(vnode_t *pvp) 1076 { 1077 vnode_t *vp; 1078 zfsctl_node_t *sdp; 1079 1080 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 1081 zfsctl_ops_shares, NULL, NULL, MAXNAMELEN, 1082 NULL, NULL); 1083 sdp = vp->v_data; 1084 sdp->zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 1085 return (vp); 1086 1087 } 1088 1089 /* ARGSUSED */ 1090 static int 1091 zfsctl_shares_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1092 caller_context_t *ct) 1093 { 1094 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1095 znode_t *dzp; 1096 int error; 1097 1098 ZFS_ENTER(zfsvfs); 1099 if (zfsvfs->z_shares_dir == 0) { 1100 ZFS_EXIT(zfsvfs); 1101 return (SET_ERROR(ENOTSUP)); 1102 } 1103 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 1104 error = VOP_GETATTR(ZTOV(dzp), vap, flags, cr, ct); 1105 VN_RELE(ZTOV(dzp)); 1106 } 1107 ZFS_EXIT(zfsvfs); 1108 return (error); 1109 1110 1111 } 1112 1113 /* ARGSUSED */ 1114 static int 1115 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1116 caller_context_t *ct) 1117 { 1118 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1119 zfsctl_snapdir_t *sdp = vp->v_data; 1120 1121 ZFS_ENTER(zfsvfs); 1122 zfsctl_common_getattr(vp, vap); 1123 vap->va_nodeid = gfs_file_inode(vp); 1124 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; 1125 vap->va_ctime = vap->va_mtime = dmu_objset_snap_cmtime(zfsvfs->z_os); 1126 ZFS_EXIT(zfsvfs); 1127 1128 return (0); 1129 } 1130 1131 /* ARGSUSED */ 1132 static void 1133 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1134 { 1135 zfsctl_snapdir_t *sdp = vp->v_data; 1136 void *private; 1137 1138 private = gfs_dir_inactive(vp); 1139 if (private != NULL) { 1140 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); 1141 mutex_destroy(&sdp->sd_lock); 1142 avl_destroy(&sdp->sd_snaps); 1143 kmem_free(private, sizeof (zfsctl_snapdir_t)); 1144 } 1145 } 1146 1147 static const fs_operation_def_t zfsctl_tops_snapdir[] = { 1148 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 1149 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 1150 { VOPNAME_IOCTL, { .error = fs_inval } }, 1151 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } }, 1152 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 1153 { VOPNAME_RENAME, { .vop_rename = zfsctl_snapdir_rename } }, 1154 { VOPNAME_RMDIR, { .vop_rmdir = zfsctl_snapdir_remove } }, 1155 { VOPNAME_MKDIR, { .vop_mkdir = zfsctl_snapdir_mkdir } }, 1156 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 1157 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_snapdir_lookup } }, 1158 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 1159 { VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapdir_inactive } }, 1160 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 1161 { NULL } 1162 }; 1163 1164 static const fs_operation_def_t zfsctl_tops_shares[] = { 1165 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 1166 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 1167 { VOPNAME_IOCTL, { .error = fs_inval } }, 1168 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_shares_getattr } }, 1169 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 1170 { VOPNAME_READDIR, { .vop_readdir = zfsctl_shares_readdir } }, 1171 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_shares_lookup } }, 1172 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 1173 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 1174 { VOPNAME_FID, { .vop_fid = zfsctl_shares_fid } }, 1175 { NULL } 1176 }; 1177 1178 /* 1179 * pvp is the GFS vnode '.zfs/snapshot'. 1180 * 1181 * This creates a GFS node under '.zfs/snapshot' representing each 1182 * snapshot. This newly created GFS node is what we mount snapshot 1183 * vfs_t's ontop of. 1184 */ 1185 static vnode_t * 1186 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) 1187 { 1188 vnode_t *vp; 1189 zfsctl_node_t *zcp; 1190 1191 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 1192 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 1193 zcp = vp->v_data; 1194 zcp->zc_id = objset; 1195 1196 return (vp); 1197 } 1198 1199 static void 1200 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1201 { 1202 zfsctl_snapdir_t *sdp; 1203 zfs_snapentry_t *sep, *next; 1204 vnode_t *dvp; 1205 1206 VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0); 1207 sdp = dvp->v_data; 1208 1209 mutex_enter(&sdp->sd_lock); 1210 1211 mutex_enter(&vp->v_lock); 1212 if (vp->v_count > 1) { 1213 VN_RELE_LOCKED(vp); 1214 mutex_exit(&vp->v_lock); 1215 mutex_exit(&sdp->sd_lock); 1216 VN_RELE(dvp); 1217 return; 1218 } 1219 mutex_exit(&vp->v_lock); 1220 ASSERT(!vn_ismntpt(vp)); 1221 1222 sep = avl_first(&sdp->sd_snaps); 1223 while (sep != NULL) { 1224 next = AVL_NEXT(&sdp->sd_snaps, sep); 1225 1226 if (sep->se_root == vp) { 1227 avl_remove(&sdp->sd_snaps, sep); 1228 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 1229 kmem_free(sep, sizeof (zfs_snapentry_t)); 1230 break; 1231 } 1232 sep = next; 1233 } 1234 ASSERT(sep != NULL); 1235 1236 mutex_exit(&sdp->sd_lock); 1237 VN_RELE(dvp); 1238 1239 /* 1240 * Dispose of the vnode for the snapshot mount point. 1241 * This is safe to do because once this entry has been removed 1242 * from the AVL tree, it can't be found again, so cannot become 1243 * "active". If we lookup the same name again we will end up 1244 * creating a new vnode. 1245 */ 1246 gfs_vop_inactive(vp, cr, ct); 1247 } 1248 1249 1250 /* 1251 * These VP's should never see the light of day. They should always 1252 * be covered. 1253 */ 1254 static const fs_operation_def_t zfsctl_tops_snapshot[] = { 1255 VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapshot_inactive }, 1256 NULL, NULL 1257 }; 1258 1259 int 1260 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) 1261 { 1262 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1263 vnode_t *dvp, *vp; 1264 zfsctl_snapdir_t *sdp; 1265 zfsctl_node_t *zcp; 1266 zfs_snapentry_t *sep; 1267 int error; 1268 1269 ASSERT(zfsvfs->z_ctldir != NULL); 1270 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1271 NULL, 0, NULL, kcred, NULL, NULL, NULL); 1272 if (error != 0) 1273 return (error); 1274 sdp = dvp->v_data; 1275 1276 mutex_enter(&sdp->sd_lock); 1277 sep = avl_first(&sdp->sd_snaps); 1278 while (sep != NULL) { 1279 vp = sep->se_root; 1280 zcp = vp->v_data; 1281 if (zcp->zc_id == objsetid) 1282 break; 1283 1284 sep = AVL_NEXT(&sdp->sd_snaps, sep); 1285 } 1286 1287 if (sep != NULL) { 1288 VN_HOLD(vp); 1289 /* 1290 * Return the mounted root rather than the covered mount point. 1291 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid> 1292 * and returns the ZFS vnode mounted on top of the GFS node. 1293 * This ZFS vnode is the root of the vfs for objset 'objsetid'. 1294 */ 1295 error = traverse(&vp); 1296 if (error == 0) { 1297 if (vp == sep->se_root) 1298 error = SET_ERROR(EINVAL); 1299 else 1300 *zfsvfsp = VTOZ(vp)->z_zfsvfs; 1301 } 1302 mutex_exit(&sdp->sd_lock); 1303 VN_RELE(vp); 1304 } else { 1305 error = SET_ERROR(EINVAL); 1306 mutex_exit(&sdp->sd_lock); 1307 } 1308 1309 VN_RELE(dvp); 1310 1311 return (error); 1312 } 1313 1314 /* 1315 * Unmount any snapshots for the given filesystem. This is called from 1316 * zfs_umount() - if we have a ctldir, then go through and unmount all the 1317 * snapshots. 1318 */ 1319 int 1320 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) 1321 { 1322 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1323 vnode_t *dvp; 1324 zfsctl_snapdir_t *sdp; 1325 zfs_snapentry_t *sep, *next; 1326 int error; 1327 1328 ASSERT(zfsvfs->z_ctldir != NULL); 1329 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1330 NULL, 0, NULL, cr, NULL, NULL, NULL); 1331 if (error != 0) 1332 return (error); 1333 sdp = dvp->v_data; 1334 1335 mutex_enter(&sdp->sd_lock); 1336 1337 sep = avl_first(&sdp->sd_snaps); 1338 while (sep != NULL) { 1339 next = AVL_NEXT(&sdp->sd_snaps, sep); 1340 1341 /* 1342 * If this snapshot is not mounted, then it must 1343 * have just been unmounted by somebody else, and 1344 * will be cleaned up by zfsctl_snapdir_inactive(). 1345 */ 1346 if (vn_ismntpt(sep->se_root)) { 1347 avl_remove(&sdp->sd_snaps, sep); 1348 error = zfsctl_unmount_snap(sep, fflags, cr); 1349 if (error) { 1350 avl_add(&sdp->sd_snaps, sep); 1351 break; 1352 } 1353 } 1354 sep = next; 1355 } 1356 1357 mutex_exit(&sdp->sd_lock); 1358 VN_RELE(dvp); 1359 1360 return (error); 1361 } 1362