xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_ctldir.c (revision 47842382d52f28aa3173aa6b511781c322ccb6a2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * ZFS control directory (a.k.a. ".zfs")
28  *
29  * This directory provides a common location for all ZFS meta-objects.
30  * Currently, this is only the 'snapshot' directory, but this may expand in the
31  * future.  The elements are built using the GFS primitives, as the hierarchy
32  * does not actually exist on disk.
33  *
34  * For 'snapshot', we don't want to have all snapshots always mounted, because
35  * this would take up a huge amount of space in /etc/mnttab.  We have three
36  * types of objects:
37  *
38  * 	ctldir ------> snapshotdir -------> snapshot
39  *                                             |
40  *                                             |
41  *                                             V
42  *                                         mounted fs
43  *
44  * The 'snapshot' node contains just enough information to lookup '..' and act
45  * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
46  * perform an automount of the underlying filesystem and return the
47  * corresponding vnode.
48  *
49  * All mounts are handled automatically by the kernel, but unmounts are
50  * (currently) handled from user land.  The main reason is that there is no
51  * reliable way to auto-unmount the filesystem when it's "no longer in use".
52  * When the user unmounts a filesystem, we call zfsctl_unmount(), which
53  * unmounts any snapshots within the snapshot directory.
54  *
55  * The '.zfs', '.zfs/snapshot', and all directories created under
56  * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and
57  * share the same vfs_t as the head filesystem (what '.zfs' lives under).
58  *
59  * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>'
60  * (ie: snapshots) are ZFS nodes and have their own unique vfs_t.
61  * However, vnodes within these mounted on file systems have their v_vfsp
62  * fields set to the head filesystem to make NFS happy (see
63  * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t
64  * so that it cannot be freed until all snapshots have been unmounted.
65  */
66 
67 #include <fs/fs_subr.h>
68 #include <sys/zfs_ctldir.h>
69 #include <sys/zfs_ioctl.h>
70 #include <sys/zfs_vfsops.h>
71 #include <sys/vfs_opreg.h>
72 #include <sys/gfs.h>
73 #include <sys/stat.h>
74 #include <sys/dmu.h>
75 #include <sys/dsl_deleg.h>
76 #include <sys/mount.h>
77 #include <sys/sunddi.h>
78 
79 #include "zfs_namecheck.h"
80 
81 typedef struct zfsctl_node {
82 	gfs_dir_t	zc_gfs_private;
83 	uint64_t	zc_id;
84 	timestruc_t	zc_cmtime;	/* ctime and mtime, always the same */
85 } zfsctl_node_t;
86 
87 typedef struct zfsctl_snapdir {
88 	zfsctl_node_t	sd_node;
89 	kmutex_t	sd_lock;
90 	avl_tree_t	sd_snaps;
91 } zfsctl_snapdir_t;
92 
93 typedef struct {
94 	char		*se_name;
95 	vnode_t		*se_root;
96 	avl_node_t	se_node;
97 } zfs_snapentry_t;
98 
99 static int
100 snapentry_compare(const void *a, const void *b)
101 {
102 	const zfs_snapentry_t *sa = a;
103 	const zfs_snapentry_t *sb = b;
104 	int ret = strcmp(sa->se_name, sb->se_name);
105 
106 	if (ret < 0)
107 		return (-1);
108 	else if (ret > 0)
109 		return (1);
110 	else
111 		return (0);
112 }
113 
114 vnodeops_t *zfsctl_ops_root;
115 vnodeops_t *zfsctl_ops_snapdir;
116 vnodeops_t *zfsctl_ops_snapshot;
117 
118 static const fs_operation_def_t zfsctl_tops_root[];
119 static const fs_operation_def_t zfsctl_tops_snapdir[];
120 static const fs_operation_def_t zfsctl_tops_snapshot[];
121 
122 static vnode_t *zfsctl_mknode_snapdir(vnode_t *);
123 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset);
124 static int zfsctl_unmount_snap(zfs_snapentry_t *, int, cred_t *);
125 
126 static gfs_opsvec_t zfsctl_opsvec[] = {
127 	{ ".zfs", zfsctl_tops_root, &zfsctl_ops_root },
128 	{ ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir },
129 	{ ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot },
130 	{ NULL }
131 };
132 
133 /*
134  * Root directory elements.  We have only a single static entry, 'snapshot'.
135  */
136 static gfs_dirent_t zfsctl_root_entries[] = {
137 	{ "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE },
138 	{ NULL }
139 };
140 
141 /* include . and .. in the calculation */
142 #define	NROOT_ENTRIES	((sizeof (zfsctl_root_entries) / \
143     sizeof (gfs_dirent_t)) + 1)
144 
145 
146 /*
147  * Initialize the various GFS pieces we'll need to create and manipulate .zfs
148  * directories.  This is called from the ZFS init routine, and initializes the
149  * vnode ops vectors that we'll be using.
150  */
151 void
152 zfsctl_init(void)
153 {
154 	VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0);
155 }
156 
157 void
158 zfsctl_fini(void)
159 {
160 	/*
161 	 * Remove vfsctl vnode ops
162 	 */
163 	if (zfsctl_ops_root)
164 		vn_freevnodeops(zfsctl_ops_root);
165 	if (zfsctl_ops_snapdir)
166 		vn_freevnodeops(zfsctl_ops_snapdir);
167 	if (zfsctl_ops_snapshot)
168 		vn_freevnodeops(zfsctl_ops_snapshot);
169 
170 	zfsctl_ops_root = NULL;
171 	zfsctl_ops_snapdir = NULL;
172 	zfsctl_ops_snapshot = NULL;
173 }
174 
175 /*
176  * Return the inode number associated with the 'snapshot' directory.
177  */
178 /* ARGSUSED */
179 static ino64_t
180 zfsctl_root_inode_cb(vnode_t *vp, int index)
181 {
182 	ASSERT(index == 0);
183 	return (ZFSCTL_INO_SNAPDIR);
184 }
185 
186 /*
187  * Create the '.zfs' directory.  This directory is cached as part of the VFS
188  * structure.  This results in a hold on the vfs_t.  The code in zfs_umount()
189  * therefore checks against a vfs_count of 2 instead of 1.  This reference
190  * is removed when the ctldir is destroyed in the unmount.
191  */
192 void
193 zfsctl_create(zfsvfs_t *zfsvfs)
194 {
195 	vnode_t *vp, *rvp;
196 	zfsctl_node_t *zcp;
197 
198 	ASSERT(zfsvfs->z_ctldir == NULL);
199 
200 	vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs,
201 	    zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries,
202 	    zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL);
203 	zcp = vp->v_data;
204 	zcp->zc_id = ZFSCTL_INO_ROOT;
205 
206 	VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0);
207 	ZFS_TIME_DECODE(&zcp->zc_cmtime, VTOZ(rvp)->z_phys->zp_crtime);
208 	VN_RELE(rvp);
209 
210 	/*
211 	 * We're only faking the fact that we have a root of a filesystem for
212 	 * the sake of the GFS interfaces.  Undo the flag manipulation it did
213 	 * for us.
214 	 */
215 	vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT);
216 
217 	zfsvfs->z_ctldir = vp;
218 }
219 
220 /*
221  * Destroy the '.zfs' directory.  Only called when the filesystem is unmounted.
222  * There might still be more references if we were force unmounted, but only
223  * new zfs_inactive() calls can occur and they don't reference .zfs
224  */
225 void
226 zfsctl_destroy(zfsvfs_t *zfsvfs)
227 {
228 	VN_RELE(zfsvfs->z_ctldir);
229 	zfsvfs->z_ctldir = NULL;
230 }
231 
232 /*
233  * Given a root znode, retrieve the associated .zfs directory.
234  * Add a hold to the vnode and return it.
235  */
236 vnode_t *
237 zfsctl_root(znode_t *zp)
238 {
239 	ASSERT(zfs_has_ctldir(zp));
240 	VN_HOLD(zp->z_zfsvfs->z_ctldir);
241 	return (zp->z_zfsvfs->z_ctldir);
242 }
243 
244 /*
245  * Common open routine.  Disallow any write access.
246  */
247 /* ARGSUSED */
248 static int
249 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct)
250 {
251 	if (flags & FWRITE)
252 		return (EACCES);
253 
254 	return (0);
255 }
256 
257 /*
258  * Common close routine.  Nothing to do here.
259  */
260 /* ARGSUSED */
261 static int
262 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off,
263     cred_t *cr, caller_context_t *ct)
264 {
265 	return (0);
266 }
267 
268 /*
269  * Common access routine.  Disallow writes.
270  */
271 /* ARGSUSED */
272 static int
273 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr,
274     caller_context_t *ct)
275 {
276 	if (flags & V_ACE_MASK) {
277 		if (mode & ACE_ALL_WRITE_PERMS)
278 			return (EACCES);
279 	} else {
280 		if (mode & VWRITE)
281 			return (EACCES);
282 	}
283 
284 	return (0);
285 }
286 
287 /*
288  * Common getattr function.  Fill in basic information.
289  */
290 static void
291 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap)
292 {
293 	zfsctl_node_t	*zcp = vp->v_data;
294 	timestruc_t	now;
295 
296 	vap->va_uid = 0;
297 	vap->va_gid = 0;
298 	vap->va_rdev = 0;
299 	/*
300 	 * We are a purly virtual object, so we have no
301 	 * blocksize or allocated blocks.
302 	 */
303 	vap->va_blksize = 0;
304 	vap->va_nblocks = 0;
305 	vap->va_seq = 0;
306 	vap->va_fsid = vp->v_vfsp->vfs_dev;
307 	vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP |
308 	    S_IROTH | S_IXOTH;
309 	vap->va_type = VDIR;
310 	/*
311 	 * We live in the now (for atime).
312 	 */
313 	gethrestime(&now);
314 	vap->va_atime = now;
315 	vap->va_mtime = vap->va_ctime = zcp->zc_cmtime;
316 }
317 
318 /*ARGSUSED*/
319 static int
320 zfsctl_common_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
321 {
322 	zfsvfs_t	*zfsvfs = vp->v_vfsp->vfs_data;
323 	zfsctl_node_t	*zcp = vp->v_data;
324 	uint64_t	object = zcp->zc_id;
325 	zfid_short_t	*zfid;
326 	int		i;
327 
328 	ZFS_ENTER(zfsvfs);
329 
330 	if (fidp->fid_len < SHORT_FID_LEN) {
331 		fidp->fid_len = SHORT_FID_LEN;
332 		ZFS_EXIT(zfsvfs);
333 		return (ENOSPC);
334 	}
335 
336 	zfid = (zfid_short_t *)fidp;
337 
338 	zfid->zf_len = SHORT_FID_LEN;
339 
340 	for (i = 0; i < sizeof (zfid->zf_object); i++)
341 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
342 
343 	/* .zfs znodes always have a generation number of 0 */
344 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
345 		zfid->zf_gen[i] = 0;
346 
347 	ZFS_EXIT(zfsvfs);
348 	return (0);
349 }
350 
351 /*
352  * .zfs inode namespace
353  *
354  * We need to generate unique inode numbers for all files and directories
355  * within the .zfs pseudo-filesystem.  We use the following scheme:
356  *
357  * 	ENTRY			ZFSCTL_INODE
358  * 	.zfs			1
359  * 	.zfs/snapshot		2
360  * 	.zfs/snapshot/<snap>	objectid(snap)
361  */
362 
363 #define	ZFSCTL_INO_SNAP(id)	(id)
364 
365 /*
366  * Get root directory attributes.
367  */
368 /* ARGSUSED */
369 static int
370 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
371     caller_context_t *ct)
372 {
373 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
374 
375 	ZFS_ENTER(zfsvfs);
376 	vap->va_nodeid = ZFSCTL_INO_ROOT;
377 	vap->va_nlink = vap->va_size = NROOT_ENTRIES;
378 
379 	zfsctl_common_getattr(vp, vap);
380 	ZFS_EXIT(zfsvfs);
381 
382 	return (0);
383 }
384 
385 /*
386  * Special case the handling of "..".
387  */
388 /* ARGSUSED */
389 int
390 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
391     int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
392     int *direntflags, pathname_t *realpnp)
393 {
394 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
395 	int err;
396 
397 	/*
398 	 * No extended attributes allowed under .zfs
399 	 */
400 	if (flags & LOOKUP_XATTR)
401 		return (EINVAL);
402 
403 	ZFS_ENTER(zfsvfs);
404 
405 	if (strcmp(nm, "..") == 0) {
406 		err = VFS_ROOT(dvp->v_vfsp, vpp);
407 	} else {
408 		err = gfs_vop_lookup(dvp, nm, vpp, pnp, flags, rdir,
409 		    cr, ct, direntflags, realpnp);
410 	}
411 
412 	ZFS_EXIT(zfsvfs);
413 
414 	return (err);
415 }
416 
417 static int
418 zfsctl_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
419     caller_context_t *ct)
420 {
421 	/*
422 	 * We only care about ACL_ENABLED so that libsec can
423 	 * display ACL correctly and not default to POSIX draft.
424 	 */
425 	if (cmd == _PC_ACL_ENABLED) {
426 		*valp = _ACL_ACE_ENABLED;
427 		return (0);
428 	}
429 
430 	return (fs_pathconf(vp, cmd, valp, cr, ct));
431 }
432 
433 static const fs_operation_def_t zfsctl_tops_root[] = {
434 	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
435 	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
436 	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
437 	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_root_getattr }	},
438 	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
439 	{ VOPNAME_READDIR,	{ .vop_readdir = gfs_vop_readdir } 	},
440 	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_root_lookup }	},
441 	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
442 	{ VOPNAME_INACTIVE,	{ .vop_inactive = gfs_vop_inactive }	},
443 	{ VOPNAME_PATHCONF,	{ .vop_pathconf = zfsctl_pathconf }	},
444 	{ VOPNAME_FID,		{ .vop_fid = zfsctl_common_fid	}	},
445 	{ NULL }
446 };
447 
448 static int
449 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname)
450 {
451 	objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
452 
453 	if (snapshot_namecheck(name, NULL, NULL) != 0)
454 		return (EILSEQ);
455 	dmu_objset_name(os, zname);
456 	if (strlen(zname) + 1 + strlen(name) >= len)
457 		return (ENAMETOOLONG);
458 	(void) strcat(zname, "@");
459 	(void) strcat(zname, name);
460 	return (0);
461 }
462 
463 static int
464 zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr)
465 {
466 	vnode_t *svp = sep->se_root;
467 	int error;
468 
469 	ASSERT(vn_ismntpt(svp));
470 
471 	/* this will be dropped by dounmount() */
472 	if ((error = vn_vfswlock(svp)) != 0)
473 		return (error);
474 
475 	VN_HOLD(svp);
476 	error = dounmount(vn_mountedvfs(svp), fflags, cr);
477 	if (error) {
478 		VN_RELE(svp);
479 		return (error);
480 	}
481 	VFS_RELE(svp->v_vfsp);
482 	/*
483 	 * We can't use VN_RELE(), as that will try to invoke
484 	 * zfsctl_snapdir_inactive(), which would cause us to destroy
485 	 * the sd_lock mutex held by our caller.
486 	 */
487 	ASSERT(svp->v_count == 1);
488 	gfs_vop_inactive(svp, cr, NULL);
489 
490 	kmem_free(sep->se_name, strlen(sep->se_name) + 1);
491 	kmem_free(sep, sizeof (zfs_snapentry_t));
492 
493 	return (0);
494 }
495 
496 static void
497 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm)
498 {
499 	avl_index_t where;
500 	vfs_t *vfsp;
501 	refstr_t *pathref;
502 	char newpath[MAXNAMELEN];
503 	char *tail;
504 
505 	ASSERT(MUTEX_HELD(&sdp->sd_lock));
506 	ASSERT(sep != NULL);
507 
508 	vfsp = vn_mountedvfs(sep->se_root);
509 	ASSERT(vfsp != NULL);
510 
511 	vfs_lock_wait(vfsp);
512 
513 	/*
514 	 * Change the name in the AVL tree.
515 	 */
516 	avl_remove(&sdp->sd_snaps, sep);
517 	kmem_free(sep->se_name, strlen(sep->se_name) + 1);
518 	sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
519 	(void) strcpy(sep->se_name, nm);
520 	VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL);
521 	avl_insert(&sdp->sd_snaps, sep, where);
522 
523 	/*
524 	 * Change the current mountpoint info:
525 	 * 	- update the tail of the mntpoint path
526 	 *	- update the tail of the resource path
527 	 */
528 	pathref = vfs_getmntpoint(vfsp);
529 	(void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
530 	VERIFY((tail = strrchr(newpath, '/')) != NULL);
531 	*(tail+1) = '\0';
532 	ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
533 	(void) strcat(newpath, nm);
534 	refstr_rele(pathref);
535 	vfs_setmntpoint(vfsp, newpath);
536 
537 	pathref = vfs_getresource(vfsp);
538 	(void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
539 	VERIFY((tail = strrchr(newpath, '@')) != NULL);
540 	*(tail+1) = '\0';
541 	ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
542 	(void) strcat(newpath, nm);
543 	refstr_rele(pathref);
544 	vfs_setresource(vfsp, newpath);
545 
546 	vfs_unlock(vfsp);
547 }
548 
549 /*ARGSUSED*/
550 static int
551 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm,
552     cred_t *cr, caller_context_t *ct, int flags)
553 {
554 	zfsctl_snapdir_t *sdp = sdvp->v_data;
555 	zfs_snapentry_t search, *sep;
556 	zfsvfs_t *zfsvfs;
557 	avl_index_t where;
558 	char from[MAXNAMELEN], to[MAXNAMELEN];
559 	char real[MAXNAMELEN];
560 	int err;
561 
562 	zfsvfs = sdvp->v_vfsp->vfs_data;
563 	ZFS_ENTER(zfsvfs);
564 
565 	if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
566 		err = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
567 		    MAXNAMELEN, NULL);
568 		if (err == 0) {
569 			snm = real;
570 		} else if (err != ENOTSUP) {
571 			ZFS_EXIT(zfsvfs);
572 			return (err);
573 		}
574 	}
575 
576 	ZFS_EXIT(zfsvfs);
577 
578 	err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from);
579 	if (!err)
580 		err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to);
581 	if (!err)
582 		err = zfs_secpolicy_rename_perms(from, to, cr);
583 	if (err)
584 		return (err);
585 
586 	/*
587 	 * Cannot move snapshots out of the snapdir.
588 	 */
589 	if (sdvp != tdvp)
590 		return (EINVAL);
591 
592 	if (strcmp(snm, tnm) == 0)
593 		return (0);
594 
595 	mutex_enter(&sdp->sd_lock);
596 
597 	search.se_name = (char *)snm;
598 	if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) {
599 		mutex_exit(&sdp->sd_lock);
600 		return (ENOENT);
601 	}
602 
603 	err = dmu_objset_rename(from, to, B_FALSE);
604 	if (err == 0)
605 		zfsctl_rename_snap(sdp, sep, tnm);
606 
607 	mutex_exit(&sdp->sd_lock);
608 
609 	return (err);
610 }
611 
612 /* ARGSUSED */
613 static int
614 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
615     caller_context_t *ct, int flags)
616 {
617 	zfsctl_snapdir_t *sdp = dvp->v_data;
618 	zfs_snapentry_t *sep;
619 	zfs_snapentry_t search;
620 	zfsvfs_t *zfsvfs;
621 	char snapname[MAXNAMELEN];
622 	char real[MAXNAMELEN];
623 	int err;
624 
625 	zfsvfs = dvp->v_vfsp->vfs_data;
626 	ZFS_ENTER(zfsvfs);
627 
628 	if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
629 
630 		err = dmu_snapshot_realname(zfsvfs->z_os, name, real,
631 		    MAXNAMELEN, NULL);
632 		if (err == 0) {
633 			name = real;
634 		} else if (err != ENOTSUP) {
635 			ZFS_EXIT(zfsvfs);
636 			return (err);
637 		}
638 	}
639 
640 	ZFS_EXIT(zfsvfs);
641 
642 	err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname);
643 	if (!err)
644 		err = zfs_secpolicy_destroy_perms(snapname, cr);
645 	if (err)
646 		return (err);
647 
648 	mutex_enter(&sdp->sd_lock);
649 
650 	search.se_name = name;
651 	sep = avl_find(&sdp->sd_snaps, &search, NULL);
652 	if (sep) {
653 		avl_remove(&sdp->sd_snaps, sep);
654 		err = zfsctl_unmount_snap(sep, MS_FORCE, cr);
655 		if (err)
656 			avl_add(&sdp->sd_snaps, sep);
657 		else
658 			err = dmu_objset_destroy(snapname);
659 	} else {
660 		err = ENOENT;
661 	}
662 
663 	mutex_exit(&sdp->sd_lock);
664 
665 	return (err);
666 }
667 
668 /*
669  * This creates a snapshot under '.zfs/snapshot'.
670  */
671 /* ARGSUSED */
672 static int
673 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t  **vpp,
674     cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp)
675 {
676 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
677 	char name[MAXNAMELEN];
678 	int err;
679 	static enum symfollow follow = NO_FOLLOW;
680 	static enum uio_seg seg = UIO_SYSSPACE;
681 
682 	if (snapshot_namecheck(dirname, NULL, NULL) != 0)
683 		return (EILSEQ);
684 
685 	dmu_objset_name(zfsvfs->z_os, name);
686 
687 	*vpp = NULL;
688 
689 	err = zfs_secpolicy_snapshot_perms(name, cr);
690 	if (err)
691 		return (err);
692 
693 	if (err == 0) {
694 		err = dmu_objset_snapshot(name, dirname, B_FALSE);
695 		if (err)
696 			return (err);
697 		err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp);
698 	}
699 
700 	return (err);
701 }
702 
703 /*
704  * Lookup entry point for the 'snapshot' directory.  Try to open the
705  * snapshot if it exist, creating the pseudo filesystem vnode as necessary.
706  * Perform a mount of the associated dataset on top of the vnode.
707  */
708 /* ARGSUSED */
709 static int
710 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
711     int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
712     int *direntflags, pathname_t *realpnp)
713 {
714 	zfsctl_snapdir_t *sdp = dvp->v_data;
715 	objset_t *snap;
716 	char snapname[MAXNAMELEN];
717 	char real[MAXNAMELEN];
718 	char *mountpoint;
719 	zfs_snapentry_t *sep, search;
720 	struct mounta margs;
721 	vfs_t *vfsp;
722 	size_t mountpoint_len;
723 	avl_index_t where;
724 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
725 	int err;
726 
727 	/*
728 	 * No extended attributes allowed under .zfs
729 	 */
730 	if (flags & LOOKUP_XATTR)
731 		return (EINVAL);
732 
733 	ASSERT(dvp->v_type == VDIR);
734 
735 	if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0)
736 		return (0);
737 
738 	/*
739 	 * If we get a recursive call, that means we got called
740 	 * from the domount() code while it was trying to look up the
741 	 * spec (which looks like a local path for zfs).  We need to
742 	 * add some flag to domount() to tell it not to do this lookup.
743 	 */
744 	if (MUTEX_HELD(&sdp->sd_lock))
745 		return (ENOENT);
746 
747 	ZFS_ENTER(zfsvfs);
748 
749 	if (flags & FIGNORECASE) {
750 		boolean_t conflict = B_FALSE;
751 
752 		err = dmu_snapshot_realname(zfsvfs->z_os, nm, real,
753 		    MAXNAMELEN, &conflict);
754 		if (err == 0) {
755 			nm = real;
756 		} else if (err != ENOTSUP) {
757 			ZFS_EXIT(zfsvfs);
758 			return (err);
759 		}
760 		if (realpnp)
761 			(void) strlcpy(realpnp->pn_buf, nm,
762 			    realpnp->pn_bufsize);
763 		if (conflict && direntflags)
764 			*direntflags = ED_CASE_CONFLICT;
765 	}
766 
767 	mutex_enter(&sdp->sd_lock);
768 	search.se_name = (char *)nm;
769 	if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) {
770 		*vpp = sep->se_root;
771 		VN_HOLD(*vpp);
772 		err = traverse(vpp);
773 		if (err) {
774 			VN_RELE(*vpp);
775 			*vpp = NULL;
776 		} else if (*vpp == sep->se_root) {
777 			/*
778 			 * The snapshot was unmounted behind our backs,
779 			 * try to remount it.
780 			 */
781 			goto domount;
782 		} else {
783 			/*
784 			 * VROOT was set during the traverse call.  We need
785 			 * to clear it since we're pretending to be part
786 			 * of our parent's vfs.
787 			 */
788 			(*vpp)->v_flag &= ~VROOT;
789 		}
790 		mutex_exit(&sdp->sd_lock);
791 		ZFS_EXIT(zfsvfs);
792 		return (err);
793 	}
794 
795 	/*
796 	 * The requested snapshot is not currently mounted, look it up.
797 	 */
798 	err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname);
799 	if (err) {
800 		mutex_exit(&sdp->sd_lock);
801 		ZFS_EXIT(zfsvfs);
802 		/*
803 		 * handle "ls *" or "?" in a graceful manner,
804 		 * forcing EILSEQ to ENOENT.
805 		 * Since shell ultimately passes "*" or "?" as name to lookup
806 		 */
807 		return (err == EILSEQ ? ENOENT : err);
808 	}
809 	if (dmu_objset_open(snapname, DMU_OST_ZFS,
810 	    DS_MODE_USER | DS_MODE_READONLY, &snap) != 0) {
811 		mutex_exit(&sdp->sd_lock);
812 		ZFS_EXIT(zfsvfs);
813 		return (ENOENT);
814 	}
815 
816 	sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP);
817 	sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
818 	(void) strcpy(sep->se_name, nm);
819 	*vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap));
820 	avl_insert(&sdp->sd_snaps, sep, where);
821 
822 	dmu_objset_close(snap);
823 domount:
824 	mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) +
825 	    strlen("/.zfs/snapshot/") + strlen(nm) + 1;
826 	mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP);
827 	(void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s",
828 	    refstr_value(dvp->v_vfsp->vfs_mntpt), nm);
829 
830 	margs.spec = snapname;
831 	margs.dir = mountpoint;
832 	margs.flags = MS_SYSSPACE | MS_NOMNTTAB;
833 	margs.fstype = "zfs";
834 	margs.dataptr = NULL;
835 	margs.datalen = 0;
836 	margs.optptr = NULL;
837 	margs.optlen = 0;
838 
839 	err = domount("zfs", &margs, *vpp, kcred, &vfsp);
840 	kmem_free(mountpoint, mountpoint_len);
841 
842 	if (err == 0) {
843 		/*
844 		 * Return the mounted root rather than the covered mount point.
845 		 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns
846 		 * the ZFS vnode mounted on top of the GFS node.  This ZFS
847 		 * vnode is the root the newly created vfsp.
848 		 */
849 		VFS_RELE(vfsp);
850 		err = traverse(vpp);
851 	}
852 
853 	if (err == 0) {
854 		/*
855 		 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>.
856 		 *
857 		 * This is where we lie about our v_vfsp in order to
858 		 * make .zfs/snapshot/<snapname> accessible over NFS
859 		 * without requiring manual mounts of <snapname>.
860 		 */
861 		ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs);
862 		VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs;
863 		(*vpp)->v_vfsp = zfsvfs->z_vfs;
864 		(*vpp)->v_flag &= ~VROOT;
865 	}
866 	mutex_exit(&sdp->sd_lock);
867 	ZFS_EXIT(zfsvfs);
868 
869 	/*
870 	 * If we had an error, drop our hold on the vnode and
871 	 * zfsctl_snapshot_inactive() will clean up.
872 	 */
873 	if (err) {
874 		VN_RELE(*vpp);
875 		*vpp = NULL;
876 	}
877 	return (err);
878 }
879 
880 /* ARGSUSED */
881 static int
882 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp,
883     offset_t *offp, offset_t *nextp, void *data, int flags)
884 {
885 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
886 	char snapname[MAXNAMELEN];
887 	uint64_t id, cookie;
888 	boolean_t case_conflict;
889 	int error;
890 
891 	ZFS_ENTER(zfsvfs);
892 
893 	cookie = *offp;
894 	error = dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id,
895 	    &cookie, &case_conflict);
896 	if (error) {
897 		ZFS_EXIT(zfsvfs);
898 		if (error == ENOENT) {
899 			*eofp = 1;
900 			return (0);
901 		}
902 		return (error);
903 	}
904 
905 	if (flags & V_RDDIR_ENTFLAGS) {
906 		edirent_t *eodp = dp;
907 
908 		(void) strcpy(eodp->ed_name, snapname);
909 		eodp->ed_ino = ZFSCTL_INO_SNAP(id);
910 		eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0;
911 	} else {
912 		struct dirent64 *odp = dp;
913 
914 		(void) strcpy(odp->d_name, snapname);
915 		odp->d_ino = ZFSCTL_INO_SNAP(id);
916 	}
917 	*nextp = cookie;
918 
919 	ZFS_EXIT(zfsvfs);
920 
921 	return (0);
922 }
923 
924 /*
925  * pvp is the '.zfs' directory (zfsctl_node_t).
926  * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t).
927  *
928  * This function is the callback to create a GFS vnode for '.zfs/snapshot'
929  * when a lookup is performed on .zfs for "snapshot".
930  */
931 vnode_t *
932 zfsctl_mknode_snapdir(vnode_t *pvp)
933 {
934 	vnode_t *vp;
935 	zfsctl_snapdir_t *sdp;
936 
937 	vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp,
938 	    zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN,
939 	    zfsctl_snapdir_readdir_cb, NULL);
940 	sdp = vp->v_data;
941 	sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR;
942 	sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime;
943 	mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
944 	avl_create(&sdp->sd_snaps, snapentry_compare,
945 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node));
946 	return (vp);
947 }
948 
949 /* ARGSUSED */
950 static int
951 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
952     caller_context_t *ct)
953 {
954 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
955 	zfsctl_snapdir_t *sdp = vp->v_data;
956 
957 	ZFS_ENTER(zfsvfs);
958 	zfsctl_common_getattr(vp, vap);
959 	vap->va_nodeid = gfs_file_inode(vp);
960 	vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2;
961 	ZFS_EXIT(zfsvfs);
962 
963 	return (0);
964 }
965 
966 /* ARGSUSED */
967 static void
968 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
969 {
970 	zfsctl_snapdir_t *sdp = vp->v_data;
971 	void *private;
972 
973 	private = gfs_dir_inactive(vp);
974 	if (private != NULL) {
975 		ASSERT(avl_numnodes(&sdp->sd_snaps) == 0);
976 		mutex_destroy(&sdp->sd_lock);
977 		avl_destroy(&sdp->sd_snaps);
978 		kmem_free(private, sizeof (zfsctl_snapdir_t));
979 	}
980 }
981 
982 static const fs_operation_def_t zfsctl_tops_snapdir[] = {
983 	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
984 	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
985 	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
986 	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_snapdir_getattr } },
987 	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
988 	{ VOPNAME_RENAME,	{ .vop_rename = zfsctl_snapdir_rename }	},
989 	{ VOPNAME_RMDIR,	{ .vop_rmdir = zfsctl_snapdir_remove }	},
990 	{ VOPNAME_MKDIR,	{ .vop_mkdir = zfsctl_snapdir_mkdir }	},
991 	{ VOPNAME_READDIR,	{ .vop_readdir = gfs_vop_readdir }	},
992 	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_snapdir_lookup }	},
993 	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
994 	{ VOPNAME_INACTIVE,	{ .vop_inactive = zfsctl_snapdir_inactive } },
995 	{ VOPNAME_FID,		{ .vop_fid = zfsctl_common_fid }	},
996 	{ NULL }
997 };
998 
999 /*
1000  * pvp is the GFS vnode '.zfs/snapshot'.
1001  *
1002  * This creates a GFS node under '.zfs/snapshot' representing each
1003  * snapshot.  This newly created GFS node is what we mount snapshot
1004  * vfs_t's ontop of.
1005  */
1006 static vnode_t *
1007 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset)
1008 {
1009 	vnode_t *vp;
1010 	zfsctl_node_t *zcp;
1011 
1012 	vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,
1013 	    zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL);
1014 	zcp = vp->v_data;
1015 	zcp->zc_id = objset;
1016 	VFS_HOLD(vp->v_vfsp);
1017 
1018 	return (vp);
1019 }
1020 
1021 static void
1022 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1023 {
1024 	zfsctl_snapdir_t *sdp;
1025 	zfs_snapentry_t *sep, *next;
1026 	vnode_t *dvp;
1027 
1028 	VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0);
1029 	sdp = dvp->v_data;
1030 
1031 	mutex_enter(&sdp->sd_lock);
1032 
1033 	if (vp->v_count > 1) {
1034 		mutex_exit(&sdp->sd_lock);
1035 		return;
1036 	}
1037 	ASSERT(!vn_ismntpt(vp));
1038 
1039 	sep = avl_first(&sdp->sd_snaps);
1040 	while (sep != NULL) {
1041 		next = AVL_NEXT(&sdp->sd_snaps, sep);
1042 
1043 		if (sep->se_root == vp) {
1044 			avl_remove(&sdp->sd_snaps, sep);
1045 			kmem_free(sep->se_name, strlen(sep->se_name) + 1);
1046 			kmem_free(sep, sizeof (zfs_snapentry_t));
1047 			break;
1048 		}
1049 		sep = next;
1050 	}
1051 	ASSERT(sep != NULL);
1052 
1053 	mutex_exit(&sdp->sd_lock);
1054 	VN_RELE(dvp);
1055 	VFS_RELE(vp->v_vfsp);
1056 
1057 	/*
1058 	 * Dispose of the vnode for the snapshot mount point.
1059 	 * This is safe to do because once this entry has been removed
1060 	 * from the AVL tree, it can't be found again, so cannot become
1061 	 * "active".  If we lookup the same name again we will end up
1062 	 * creating a new vnode.
1063 	 */
1064 	gfs_vop_inactive(vp, cr, ct);
1065 }
1066 
1067 
1068 /*
1069  * These VP's should never see the light of day.  They should always
1070  * be covered.
1071  */
1072 static const fs_operation_def_t zfsctl_tops_snapshot[] = {
1073 	VOPNAME_INACTIVE, { .vop_inactive =  zfsctl_snapshot_inactive },
1074 	NULL, NULL
1075 };
1076 
1077 int
1078 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
1079 {
1080 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1081 	vnode_t *dvp, *vp;
1082 	zfsctl_snapdir_t *sdp;
1083 	zfsctl_node_t *zcp;
1084 	zfs_snapentry_t *sep;
1085 	int error;
1086 
1087 	ASSERT(zfsvfs->z_ctldir != NULL);
1088 	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1089 	    NULL, 0, NULL, kcred, NULL, NULL, NULL);
1090 	if (error != 0)
1091 		return (error);
1092 	sdp = dvp->v_data;
1093 
1094 	mutex_enter(&sdp->sd_lock);
1095 	sep = avl_first(&sdp->sd_snaps);
1096 	while (sep != NULL) {
1097 		vp = sep->se_root;
1098 		zcp = vp->v_data;
1099 		if (zcp->zc_id == objsetid)
1100 			break;
1101 
1102 		sep = AVL_NEXT(&sdp->sd_snaps, sep);
1103 	}
1104 
1105 	if (sep != NULL) {
1106 		VN_HOLD(vp);
1107 		/*
1108 		 * Return the mounted root rather than the covered mount point.
1109 		 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid>
1110 		 * and returns the ZFS vnode mounted on top of the GFS node.
1111 		 * This ZFS vnode is the root of the vfs for objset 'objsetid'.
1112 		 */
1113 		error = traverse(&vp);
1114 		if (error == 0) {
1115 			if (vp == sep->se_root)
1116 				error = EINVAL;
1117 			else
1118 				*zfsvfsp = VTOZ(vp)->z_zfsvfs;
1119 		}
1120 		mutex_exit(&sdp->sd_lock);
1121 		VN_RELE(vp);
1122 	} else {
1123 		error = EINVAL;
1124 		mutex_exit(&sdp->sd_lock);
1125 	}
1126 
1127 	VN_RELE(dvp);
1128 
1129 	return (error);
1130 }
1131 
1132 /*
1133  * Unmount any snapshots for the given filesystem.  This is called from
1134  * zfs_umount() - if we have a ctldir, then go through and unmount all the
1135  * snapshots.
1136  */
1137 int
1138 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
1139 {
1140 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1141 	vnode_t *dvp;
1142 	zfsctl_snapdir_t *sdp;
1143 	zfs_snapentry_t *sep, *next;
1144 	int error;
1145 
1146 	ASSERT(zfsvfs->z_ctldir != NULL);
1147 	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1148 	    NULL, 0, NULL, cr, NULL, NULL, NULL);
1149 	if (error != 0)
1150 		return (error);
1151 	sdp = dvp->v_data;
1152 
1153 	mutex_enter(&sdp->sd_lock);
1154 
1155 	sep = avl_first(&sdp->sd_snaps);
1156 	while (sep != NULL) {
1157 		next = AVL_NEXT(&sdp->sd_snaps, sep);
1158 
1159 		/*
1160 		 * If this snapshot is not mounted, then it must
1161 		 * have just been unmounted by somebody else, and
1162 		 * will be cleaned up by zfsctl_snapdir_inactive().
1163 		 */
1164 		if (vn_ismntpt(sep->se_root)) {
1165 			avl_remove(&sdp->sd_snaps, sep);
1166 			error = zfsctl_unmount_snap(sep, fflags, cr);
1167 			if (error) {
1168 				avl_add(&sdp->sd_snaps, sep);
1169 				break;
1170 			}
1171 		}
1172 		sep = next;
1173 	}
1174 
1175 	mutex_exit(&sdp->sd_lock);
1176 	VN_RELE(dvp);
1177 
1178 	return (error);
1179 }
1180