xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_acl.c (revision ed093b41a93e8563e6e1e5dae0768dda2a7bcc27)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/time.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/resource.h>
33 #include <sys/vfs.h>
34 #include <sys/vnode.h>
35 #include <sys/sid.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/kmem.h>
39 #include <sys/cmn_err.h>
40 #include <sys/errno.h>
41 #include <sys/unistd.h>
42 #include <sys/sdt.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/mode.h>
45 #include <sys/policy.h>
46 #include <sys/zfs_znode.h>
47 #include <sys/zfs_fuid.h>
48 #include <sys/zfs_acl.h>
49 #include <sys/zfs_dir.h>
50 #include <sys/zfs_vfsops.h>
51 #include <sys/dmu.h>
52 #include <sys/dnode.h>
53 #include <sys/zap.h>
54 #include <sys/sa.h>
55 #include "fs/fs_subr.h"
56 #include <acl/acl_common.h>
57 
58 #define	ALLOW	ACE_ACCESS_ALLOWED_ACE_TYPE
59 #define	DENY	ACE_ACCESS_DENIED_ACE_TYPE
60 #define	MAX_ACE_TYPE	ACE_SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE
61 #define	MIN_ACE_TYPE	ALLOW
62 
63 #define	OWNING_GROUP		(ACE_GROUP|ACE_IDENTIFIER_GROUP)
64 #define	EVERYONE_ALLOW_MASK (ACE_READ_ACL|ACE_READ_ATTRIBUTES | \
65     ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE)
66 #define	EVERYONE_DENY_MASK (ACE_WRITE_ACL|ACE_WRITE_OWNER | \
67     ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
68 #define	OWNER_ALLOW_MASK (ACE_WRITE_ACL | ACE_WRITE_OWNER | \
69     ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
70 
71 #define	ZFS_CHECKED_MASKS (ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_DATA| \
72     ACE_READ_NAMED_ATTRS|ACE_WRITE_DATA|ACE_WRITE_ATTRIBUTES| \
73     ACE_WRITE_NAMED_ATTRS|ACE_APPEND_DATA|ACE_EXECUTE|ACE_WRITE_OWNER| \
74     ACE_WRITE_ACL|ACE_DELETE|ACE_DELETE_CHILD|ACE_SYNCHRONIZE)
75 
76 #define	WRITE_MASK_DATA (ACE_WRITE_DATA|ACE_APPEND_DATA|ACE_WRITE_NAMED_ATTRS)
77 #define	WRITE_MASK_ATTRS (ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES| \
78     ACE_DELETE|ACE_DELETE_CHILD)
79 #define	WRITE_MASK (WRITE_MASK_DATA|WRITE_MASK_ATTRS)
80 
81 #define	OGE_CLEAR	(ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
82     ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
83 
84 #define	OKAY_MASK_BITS (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
85     ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
86 
87 #define	ALL_INHERIT	(ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE | \
88     ACE_NO_PROPAGATE_INHERIT_ACE|ACE_INHERIT_ONLY_ACE|ACE_INHERITED_ACE)
89 
90 #define	RESTRICTED_CLEAR	(ACE_WRITE_ACL|ACE_WRITE_OWNER)
91 
92 #define	V4_ACL_WIDE_FLAGS (ZFS_ACL_AUTO_INHERIT|ZFS_ACL_DEFAULTED|\
93     ZFS_ACL_PROTECTED)
94 
95 #define	ZFS_ACL_WIDE_FLAGS (V4_ACL_WIDE_FLAGS|ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|\
96     ZFS_ACL_OBJ_ACE)
97 
98 #define	ALL_MODE_EXECS (S_IXUSR | S_IXGRP | S_IXOTH)
99 
100 static uint16_t
101 zfs_ace_v0_get_type(void *acep)
102 {
103 	return (((zfs_oldace_t *)acep)->z_type);
104 }
105 
106 static uint16_t
107 zfs_ace_v0_get_flags(void *acep)
108 {
109 	return (((zfs_oldace_t *)acep)->z_flags);
110 }
111 
112 static uint32_t
113 zfs_ace_v0_get_mask(void *acep)
114 {
115 	return (((zfs_oldace_t *)acep)->z_access_mask);
116 }
117 
118 static uint64_t
119 zfs_ace_v0_get_who(void *acep)
120 {
121 	return (((zfs_oldace_t *)acep)->z_fuid);
122 }
123 
124 static void
125 zfs_ace_v0_set_type(void *acep, uint16_t type)
126 {
127 	((zfs_oldace_t *)acep)->z_type = type;
128 }
129 
130 static void
131 zfs_ace_v0_set_flags(void *acep, uint16_t flags)
132 {
133 	((zfs_oldace_t *)acep)->z_flags = flags;
134 }
135 
136 static void
137 zfs_ace_v0_set_mask(void *acep, uint32_t mask)
138 {
139 	((zfs_oldace_t *)acep)->z_access_mask = mask;
140 }
141 
142 static void
143 zfs_ace_v0_set_who(void *acep, uint64_t who)
144 {
145 	((zfs_oldace_t *)acep)->z_fuid = who;
146 }
147 
148 /*ARGSUSED*/
149 static size_t
150 zfs_ace_v0_size(void *acep)
151 {
152 	return (sizeof (zfs_oldace_t));
153 }
154 
155 static size_t
156 zfs_ace_v0_abstract_size(void)
157 {
158 	return (sizeof (zfs_oldace_t));
159 }
160 
161 static int
162 zfs_ace_v0_mask_off(void)
163 {
164 	return (offsetof(zfs_oldace_t, z_access_mask));
165 }
166 
167 /*ARGSUSED*/
168 static int
169 zfs_ace_v0_data(void *acep, void **datap)
170 {
171 	*datap = NULL;
172 	return (0);
173 }
174 
175 static acl_ops_t zfs_acl_v0_ops = {
176 	zfs_ace_v0_get_mask,
177 	zfs_ace_v0_set_mask,
178 	zfs_ace_v0_get_flags,
179 	zfs_ace_v0_set_flags,
180 	zfs_ace_v0_get_type,
181 	zfs_ace_v0_set_type,
182 	zfs_ace_v0_get_who,
183 	zfs_ace_v0_set_who,
184 	zfs_ace_v0_size,
185 	zfs_ace_v0_abstract_size,
186 	zfs_ace_v0_mask_off,
187 	zfs_ace_v0_data
188 };
189 
190 static uint16_t
191 zfs_ace_fuid_get_type(void *acep)
192 {
193 	return (((zfs_ace_hdr_t *)acep)->z_type);
194 }
195 
196 static uint16_t
197 zfs_ace_fuid_get_flags(void *acep)
198 {
199 	return (((zfs_ace_hdr_t *)acep)->z_flags);
200 }
201 
202 static uint32_t
203 zfs_ace_fuid_get_mask(void *acep)
204 {
205 	return (((zfs_ace_hdr_t *)acep)->z_access_mask);
206 }
207 
208 static uint64_t
209 zfs_ace_fuid_get_who(void *args)
210 {
211 	uint16_t entry_type;
212 	zfs_ace_t *acep = args;
213 
214 	entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
215 
216 	if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
217 	    entry_type == ACE_EVERYONE)
218 		return (-1);
219 	return (((zfs_ace_t *)acep)->z_fuid);
220 }
221 
222 static void
223 zfs_ace_fuid_set_type(void *acep, uint16_t type)
224 {
225 	((zfs_ace_hdr_t *)acep)->z_type = type;
226 }
227 
228 static void
229 zfs_ace_fuid_set_flags(void *acep, uint16_t flags)
230 {
231 	((zfs_ace_hdr_t *)acep)->z_flags = flags;
232 }
233 
234 static void
235 zfs_ace_fuid_set_mask(void *acep, uint32_t mask)
236 {
237 	((zfs_ace_hdr_t *)acep)->z_access_mask = mask;
238 }
239 
240 static void
241 zfs_ace_fuid_set_who(void *arg, uint64_t who)
242 {
243 	zfs_ace_t *acep = arg;
244 
245 	uint16_t entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
246 
247 	if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
248 	    entry_type == ACE_EVERYONE)
249 		return;
250 	acep->z_fuid = who;
251 }
252 
253 static size_t
254 zfs_ace_fuid_size(void *acep)
255 {
256 	zfs_ace_hdr_t *zacep = acep;
257 	uint16_t entry_type;
258 
259 	switch (zacep->z_type) {
260 	case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
261 	case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
262 	case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
263 	case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
264 		return (sizeof (zfs_object_ace_t));
265 	case ALLOW:
266 	case DENY:
267 		entry_type =
268 		    (((zfs_ace_hdr_t *)acep)->z_flags & ACE_TYPE_FLAGS);
269 		if (entry_type == ACE_OWNER ||
270 		    entry_type == OWNING_GROUP ||
271 		    entry_type == ACE_EVERYONE)
272 			return (sizeof (zfs_ace_hdr_t));
273 		/*FALLTHROUGH*/
274 	default:
275 		return (sizeof (zfs_ace_t));
276 	}
277 }
278 
279 static size_t
280 zfs_ace_fuid_abstract_size(void)
281 {
282 	return (sizeof (zfs_ace_hdr_t));
283 }
284 
285 static int
286 zfs_ace_fuid_mask_off(void)
287 {
288 	return (offsetof(zfs_ace_hdr_t, z_access_mask));
289 }
290 
291 static int
292 zfs_ace_fuid_data(void *acep, void **datap)
293 {
294 	zfs_ace_t *zacep = acep;
295 	zfs_object_ace_t *zobjp;
296 
297 	switch (zacep->z_hdr.z_type) {
298 	case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
299 	case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
300 	case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
301 	case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
302 		zobjp = acep;
303 		*datap = (caddr_t)zobjp + sizeof (zfs_ace_t);
304 		return (sizeof (zfs_object_ace_t) - sizeof (zfs_ace_t));
305 	default:
306 		*datap = NULL;
307 		return (0);
308 	}
309 }
310 
311 static acl_ops_t zfs_acl_fuid_ops = {
312 	zfs_ace_fuid_get_mask,
313 	zfs_ace_fuid_set_mask,
314 	zfs_ace_fuid_get_flags,
315 	zfs_ace_fuid_set_flags,
316 	zfs_ace_fuid_get_type,
317 	zfs_ace_fuid_set_type,
318 	zfs_ace_fuid_get_who,
319 	zfs_ace_fuid_set_who,
320 	zfs_ace_fuid_size,
321 	zfs_ace_fuid_abstract_size,
322 	zfs_ace_fuid_mask_off,
323 	zfs_ace_fuid_data
324 };
325 
326 /*
327  * The following three functions are provided for compatibility with
328  * older ZPL version in order to determine if the file use to have
329  * an external ACL and what version of ACL previously existed on the
330  * file.  Would really be nice to not need this, sigh.
331  */
332 uint64_t
333 zfs_external_acl(znode_t *zp)
334 {
335 	zfs_acl_phys_t acl_phys;
336 	int error;
337 
338 	if (zp->z_is_sa)
339 		return (0);
340 
341 	/*
342 	 * Need to deal with a potential
343 	 * race where zfs_sa_upgrade could cause
344 	 * z_isa_sa to change.
345 	 *
346 	 * If the lookup fails then the state of z_is_sa should have
347 	 * changed.
348 	 */
349 
350 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zp->z_zfsvfs),
351 	    &acl_phys, sizeof (acl_phys))) == 0)
352 		return (acl_phys.z_acl_extern_obj);
353 	else {
354 		/*
355 		 * after upgrade the SA_ZPL_ZNODE_ACL should have been
356 		 * removed
357 		 */
358 		VERIFY(zp->z_is_sa && error == ENOENT);
359 		return (0);
360 	}
361 }
362 
363 /*
364  * Determine size of ACL in bytes
365  *
366  * This is more complicated than it should be since we have to deal
367  * with old external ACLs.
368  */
369 static int
370 zfs_acl_znode_info(znode_t *zp, int *aclsize, int *aclcount,
371     zfs_acl_phys_t *aclphys)
372 {
373 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
374 	uint64_t acl_count;
375 	int size;
376 	int error;
377 
378 	ASSERT(MUTEX_HELD(&zp->z_acl_lock));
379 	if (zp->z_is_sa) {
380 		if ((error = sa_size(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zfsvfs),
381 		    &size)) != 0)
382 			return (error);
383 		*aclsize = size;
384 		if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_COUNT(zfsvfs),
385 		    &acl_count, sizeof (acl_count))) != 0)
386 			return (error);
387 		*aclcount = acl_count;
388 	} else {
389 		if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
390 		    aclphys, sizeof (*aclphys))) != 0)
391 			return (error);
392 
393 		if (aclphys->z_acl_version == ZFS_ACL_VERSION_INITIAL) {
394 			*aclsize = ZFS_ACL_SIZE(aclphys->z_acl_size);
395 			*aclcount = aclphys->z_acl_size;
396 		} else {
397 			*aclsize = aclphys->z_acl_size;
398 			*aclcount = aclphys->z_acl_count;
399 		}
400 	}
401 	return (0);
402 }
403 
404 int
405 zfs_znode_acl_version(znode_t *zp)
406 {
407 	zfs_acl_phys_t acl_phys;
408 
409 	if (zp->z_is_sa)
410 		return (ZFS_ACL_VERSION_FUID);
411 	else {
412 		int error;
413 
414 		/*
415 		 * Need to deal with a potential
416 		 * race where zfs_sa_upgrade could cause
417 		 * z_isa_sa to change.
418 		 *
419 		 * If the lookup fails then the state of z_is_sa should have
420 		 * changed.
421 		 */
422 		if ((error = sa_lookup(zp->z_sa_hdl,
423 		    SA_ZPL_ZNODE_ACL(zp->z_zfsvfs),
424 		    &acl_phys, sizeof (acl_phys))) == 0)
425 			return (acl_phys.z_acl_version);
426 		else {
427 			/*
428 			 * After upgrade SA_ZPL_ZNODE_ACL should have
429 			 * been removed.
430 			 */
431 			VERIFY(zp->z_is_sa && error == ENOENT);
432 			return (ZFS_ACL_VERSION_FUID);
433 		}
434 	}
435 }
436 
437 static int
438 zfs_acl_version(int version)
439 {
440 	if (version < ZPL_VERSION_FUID)
441 		return (ZFS_ACL_VERSION_INITIAL);
442 	else
443 		return (ZFS_ACL_VERSION_FUID);
444 }
445 
446 static int
447 zfs_acl_version_zp(znode_t *zp)
448 {
449 	return (zfs_acl_version(zp->z_zfsvfs->z_version));
450 }
451 
452 zfs_acl_t *
453 zfs_acl_alloc(int vers)
454 {
455 	zfs_acl_t *aclp;
456 
457 	aclp = kmem_zalloc(sizeof (zfs_acl_t), KM_SLEEP);
458 	list_create(&aclp->z_acl, sizeof (zfs_acl_node_t),
459 	    offsetof(zfs_acl_node_t, z_next));
460 	aclp->z_version = vers;
461 	if (vers == ZFS_ACL_VERSION_FUID)
462 		aclp->z_ops = zfs_acl_fuid_ops;
463 	else
464 		aclp->z_ops = zfs_acl_v0_ops;
465 	return (aclp);
466 }
467 
468 zfs_acl_node_t *
469 zfs_acl_node_alloc(size_t bytes)
470 {
471 	zfs_acl_node_t *aclnode;
472 
473 	aclnode = kmem_zalloc(sizeof (zfs_acl_node_t), KM_SLEEP);
474 	if (bytes) {
475 		aclnode->z_acldata = kmem_alloc(bytes, KM_SLEEP);
476 		aclnode->z_allocdata = aclnode->z_acldata;
477 		aclnode->z_allocsize = bytes;
478 		aclnode->z_size = bytes;
479 	}
480 
481 	return (aclnode);
482 }
483 
484 static void
485 zfs_acl_node_free(zfs_acl_node_t *aclnode)
486 {
487 	if (aclnode->z_allocsize)
488 		kmem_free(aclnode->z_allocdata, aclnode->z_allocsize);
489 	kmem_free(aclnode, sizeof (zfs_acl_node_t));
490 }
491 
492 static void
493 zfs_acl_release_nodes(zfs_acl_t *aclp)
494 {
495 	zfs_acl_node_t *aclnode;
496 
497 	while (aclnode = list_head(&aclp->z_acl)) {
498 		list_remove(&aclp->z_acl, aclnode);
499 		zfs_acl_node_free(aclnode);
500 	}
501 	aclp->z_acl_count = 0;
502 	aclp->z_acl_bytes = 0;
503 }
504 
505 void
506 zfs_acl_free(zfs_acl_t *aclp)
507 {
508 	zfs_acl_release_nodes(aclp);
509 	list_destroy(&aclp->z_acl);
510 	kmem_free(aclp, sizeof (zfs_acl_t));
511 }
512 
513 static boolean_t
514 zfs_acl_valid_ace_type(uint_t type, uint_t flags)
515 {
516 	uint16_t entry_type;
517 
518 	switch (type) {
519 	case ALLOW:
520 	case DENY:
521 	case ACE_SYSTEM_AUDIT_ACE_TYPE:
522 	case ACE_SYSTEM_ALARM_ACE_TYPE:
523 		entry_type = flags & ACE_TYPE_FLAGS;
524 		return (entry_type == ACE_OWNER ||
525 		    entry_type == OWNING_GROUP ||
526 		    entry_type == ACE_EVERYONE || entry_type == 0 ||
527 		    entry_type == ACE_IDENTIFIER_GROUP);
528 	default:
529 		if (type >= MIN_ACE_TYPE && type <= MAX_ACE_TYPE)
530 			return (B_TRUE);
531 	}
532 	return (B_FALSE);
533 }
534 
535 static boolean_t
536 zfs_ace_valid(vtype_t obj_type, zfs_acl_t *aclp, uint16_t type, uint16_t iflags)
537 {
538 	/*
539 	 * first check type of entry
540 	 */
541 
542 	if (!zfs_acl_valid_ace_type(type, iflags))
543 		return (B_FALSE);
544 
545 	switch (type) {
546 	case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
547 	case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
548 	case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
549 	case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
550 		if (aclp->z_version < ZFS_ACL_VERSION_FUID)
551 			return (B_FALSE);
552 		aclp->z_hints |= ZFS_ACL_OBJ_ACE;
553 	}
554 
555 	/*
556 	 * next check inheritance level flags
557 	 */
558 
559 	if (obj_type == VDIR &&
560 	    (iflags & (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
561 		aclp->z_hints |= ZFS_INHERIT_ACE;
562 
563 	if (iflags & (ACE_INHERIT_ONLY_ACE|ACE_NO_PROPAGATE_INHERIT_ACE)) {
564 		if ((iflags & (ACE_FILE_INHERIT_ACE|
565 		    ACE_DIRECTORY_INHERIT_ACE)) == 0) {
566 			return (B_FALSE);
567 		}
568 	}
569 
570 	return (B_TRUE);
571 }
572 
573 static void *
574 zfs_acl_next_ace(zfs_acl_t *aclp, void *start, uint64_t *who,
575     uint32_t *access_mask, uint16_t *iflags, uint16_t *type)
576 {
577 	zfs_acl_node_t *aclnode;
578 
579 	ASSERT(aclp);
580 
581 	if (start == NULL) {
582 		aclnode = list_head(&aclp->z_acl);
583 		if (aclnode == NULL)
584 			return (NULL);
585 
586 		aclp->z_next_ace = aclnode->z_acldata;
587 		aclp->z_curr_node = aclnode;
588 		aclnode->z_ace_idx = 0;
589 	}
590 
591 	aclnode = aclp->z_curr_node;
592 
593 	if (aclnode == NULL)
594 		return (NULL);
595 
596 	if (aclnode->z_ace_idx >= aclnode->z_ace_count) {
597 		aclnode = list_next(&aclp->z_acl, aclnode);
598 		if (aclnode == NULL)
599 			return (NULL);
600 		else {
601 			aclp->z_curr_node = aclnode;
602 			aclnode->z_ace_idx = 0;
603 			aclp->z_next_ace = aclnode->z_acldata;
604 		}
605 	}
606 
607 	if (aclnode->z_ace_idx < aclnode->z_ace_count) {
608 		void *acep = aclp->z_next_ace;
609 		size_t ace_size;
610 
611 		/*
612 		 * Make sure we don't overstep our bounds
613 		 */
614 		ace_size = aclp->z_ops.ace_size(acep);
615 
616 		if (((caddr_t)acep + ace_size) >
617 		    ((caddr_t)aclnode->z_acldata + aclnode->z_size)) {
618 			return (NULL);
619 		}
620 
621 		*iflags = aclp->z_ops.ace_flags_get(acep);
622 		*type = aclp->z_ops.ace_type_get(acep);
623 		*access_mask = aclp->z_ops.ace_mask_get(acep);
624 		*who = aclp->z_ops.ace_who_get(acep);
625 		aclp->z_next_ace = (caddr_t)aclp->z_next_ace + ace_size;
626 		aclnode->z_ace_idx++;
627 
628 		return ((void *)acep);
629 	}
630 	return (NULL);
631 }
632 
633 /*ARGSUSED*/
634 static uint64_t
635 zfs_ace_walk(void *datap, uint64_t cookie, int aclcnt,
636     uint16_t *flags, uint16_t *type, uint32_t *mask)
637 {
638 	zfs_acl_t *aclp = datap;
639 	zfs_ace_hdr_t *acep = (zfs_ace_hdr_t *)(uintptr_t)cookie;
640 	uint64_t who;
641 
642 	acep = zfs_acl_next_ace(aclp, acep, &who, mask,
643 	    flags, type);
644 	return ((uint64_t)(uintptr_t)acep);
645 }
646 
647 static zfs_acl_node_t *
648 zfs_acl_curr_node(zfs_acl_t *aclp)
649 {
650 	ASSERT(aclp->z_curr_node);
651 	return (aclp->z_curr_node);
652 }
653 
654 /*
655  * Copy ACE to internal ZFS format.
656  * While processing the ACL each ACE will be validated for correctness.
657  * ACE FUIDs will be created later.
658  */
659 int
660 zfs_copy_ace_2_fuid(zfsvfs_t *zfsvfs, vtype_t obj_type, zfs_acl_t *aclp,
661     void *datap, zfs_ace_t *z_acl, uint64_t aclcnt, size_t *size,
662     zfs_fuid_info_t **fuidp, cred_t *cr)
663 {
664 	int i;
665 	uint16_t entry_type;
666 	zfs_ace_t *aceptr = z_acl;
667 	ace_t *acep = datap;
668 	zfs_object_ace_t *zobjacep;
669 	ace_object_t *aceobjp;
670 
671 	for (i = 0; i != aclcnt; i++) {
672 		aceptr->z_hdr.z_access_mask = acep->a_access_mask;
673 		aceptr->z_hdr.z_flags = acep->a_flags;
674 		aceptr->z_hdr.z_type = acep->a_type;
675 		entry_type = aceptr->z_hdr.z_flags & ACE_TYPE_FLAGS;
676 		if (entry_type != ACE_OWNER && entry_type != OWNING_GROUP &&
677 		    entry_type != ACE_EVERYONE) {
678 			aceptr->z_fuid = zfs_fuid_create(zfsvfs, acep->a_who,
679 			    cr, (entry_type == 0) ?
680 			    ZFS_ACE_USER : ZFS_ACE_GROUP, fuidp);
681 		}
682 
683 		/*
684 		 * Make sure ACE is valid
685 		 */
686 		if (zfs_ace_valid(obj_type, aclp, aceptr->z_hdr.z_type,
687 		    aceptr->z_hdr.z_flags) != B_TRUE)
688 			return (SET_ERROR(EINVAL));
689 
690 		switch (acep->a_type) {
691 		case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
692 		case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
693 		case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
694 		case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
695 			zobjacep = (zfs_object_ace_t *)aceptr;
696 			aceobjp = (ace_object_t *)acep;
697 
698 			bcopy(aceobjp->a_obj_type, zobjacep->z_object_type,
699 			    sizeof (aceobjp->a_obj_type));
700 			bcopy(aceobjp->a_inherit_obj_type,
701 			    zobjacep->z_inherit_type,
702 			    sizeof (aceobjp->a_inherit_obj_type));
703 			acep = (ace_t *)((caddr_t)acep + sizeof (ace_object_t));
704 			break;
705 		default:
706 			acep = (ace_t *)((caddr_t)acep + sizeof (ace_t));
707 		}
708 
709 		aceptr = (zfs_ace_t *)((caddr_t)aceptr +
710 		    aclp->z_ops.ace_size(aceptr));
711 	}
712 
713 	*size = (caddr_t)aceptr - (caddr_t)z_acl;
714 
715 	return (0);
716 }
717 
718 /*
719  * Copy ZFS ACEs to fixed size ace_t layout
720  */
721 static void
722 zfs_copy_fuid_2_ace(zfsvfs_t *zfsvfs, zfs_acl_t *aclp, cred_t *cr,
723     void *datap, int filter)
724 {
725 	uint64_t who;
726 	uint32_t access_mask;
727 	uint16_t iflags, type;
728 	zfs_ace_hdr_t *zacep = NULL;
729 	ace_t *acep = datap;
730 	ace_object_t *objacep;
731 	zfs_object_ace_t *zobjacep;
732 	size_t ace_size;
733 	uint16_t entry_type;
734 
735 	while (zacep = zfs_acl_next_ace(aclp, zacep,
736 	    &who, &access_mask, &iflags, &type)) {
737 
738 		switch (type) {
739 		case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
740 		case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
741 		case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
742 		case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
743 			if (filter) {
744 				continue;
745 			}
746 			zobjacep = (zfs_object_ace_t *)zacep;
747 			objacep = (ace_object_t *)acep;
748 			bcopy(zobjacep->z_object_type,
749 			    objacep->a_obj_type,
750 			    sizeof (zobjacep->z_object_type));
751 			bcopy(zobjacep->z_inherit_type,
752 			    objacep->a_inherit_obj_type,
753 			    sizeof (zobjacep->z_inherit_type));
754 			ace_size = sizeof (ace_object_t);
755 			break;
756 		default:
757 			ace_size = sizeof (ace_t);
758 			break;
759 		}
760 
761 		entry_type = (iflags & ACE_TYPE_FLAGS);
762 		if ((entry_type != ACE_OWNER &&
763 		    entry_type != OWNING_GROUP &&
764 		    entry_type != ACE_EVERYONE)) {
765 			acep->a_who = zfs_fuid_map_id(zfsvfs, who,
766 			    cr, (entry_type & ACE_IDENTIFIER_GROUP) ?
767 			    ZFS_ACE_GROUP : ZFS_ACE_USER);
768 		} else {
769 			acep->a_who = (uid_t)(int64_t)who;
770 		}
771 		acep->a_access_mask = access_mask;
772 		acep->a_flags = iflags;
773 		acep->a_type = type;
774 		acep = (ace_t *)((caddr_t)acep + ace_size);
775 	}
776 }
777 
778 static int
779 zfs_copy_ace_2_oldace(vtype_t obj_type, zfs_acl_t *aclp, ace_t *acep,
780     zfs_oldace_t *z_acl, int aclcnt, size_t *size)
781 {
782 	int i;
783 	zfs_oldace_t *aceptr = z_acl;
784 
785 	for (i = 0; i != aclcnt; i++, aceptr++) {
786 		aceptr->z_access_mask = acep[i].a_access_mask;
787 		aceptr->z_type = acep[i].a_type;
788 		aceptr->z_flags = acep[i].a_flags;
789 		aceptr->z_fuid = acep[i].a_who;
790 		/*
791 		 * Make sure ACE is valid
792 		 */
793 		if (zfs_ace_valid(obj_type, aclp, aceptr->z_type,
794 		    aceptr->z_flags) != B_TRUE)
795 			return (SET_ERROR(EINVAL));
796 	}
797 	*size = (caddr_t)aceptr - (caddr_t)z_acl;
798 	return (0);
799 }
800 
801 /*
802  * convert old ACL format to new
803  */
804 void
805 zfs_acl_xform(znode_t *zp, zfs_acl_t *aclp, cred_t *cr)
806 {
807 	zfs_oldace_t *oldaclp;
808 	int i;
809 	uint16_t type, iflags;
810 	uint32_t access_mask;
811 	uint64_t who;
812 	void *cookie = NULL;
813 	zfs_acl_node_t *newaclnode;
814 
815 	ASSERT(aclp->z_version == ZFS_ACL_VERSION_INITIAL);
816 	/*
817 	 * First create the ACE in a contiguous piece of memory
818 	 * for zfs_copy_ace_2_fuid().
819 	 *
820 	 * We only convert an ACL once, so this won't happen
821 	 * everytime.
822 	 */
823 	oldaclp = kmem_alloc(sizeof (zfs_oldace_t) * aclp->z_acl_count,
824 	    KM_SLEEP);
825 	i = 0;
826 	while (cookie = zfs_acl_next_ace(aclp, cookie, &who,
827 	    &access_mask, &iflags, &type)) {
828 		oldaclp[i].z_flags = iflags;
829 		oldaclp[i].z_type = type;
830 		oldaclp[i].z_fuid = who;
831 		oldaclp[i++].z_access_mask = access_mask;
832 	}
833 
834 	newaclnode = zfs_acl_node_alloc(aclp->z_acl_count *
835 	    sizeof (zfs_object_ace_t));
836 	aclp->z_ops = zfs_acl_fuid_ops;
837 	VERIFY(zfs_copy_ace_2_fuid(zp->z_zfsvfs, ZTOV(zp)->v_type, aclp,
838 	    oldaclp, newaclnode->z_acldata, aclp->z_acl_count,
839 	    &newaclnode->z_size, NULL, cr) == 0);
840 	newaclnode->z_ace_count = aclp->z_acl_count;
841 	aclp->z_version = ZFS_ACL_VERSION;
842 	kmem_free(oldaclp, aclp->z_acl_count * sizeof (zfs_oldace_t));
843 
844 	/*
845 	 * Release all previous ACL nodes
846 	 */
847 
848 	zfs_acl_release_nodes(aclp);
849 
850 	list_insert_head(&aclp->z_acl, newaclnode);
851 
852 	aclp->z_acl_bytes = newaclnode->z_size;
853 	aclp->z_acl_count = newaclnode->z_ace_count;
854 
855 }
856 
857 /*
858  * Convert unix access mask to v4 access mask
859  */
860 static uint32_t
861 zfs_unix_to_v4(uint32_t access_mask)
862 {
863 	uint32_t new_mask = 0;
864 
865 	if (access_mask & S_IXOTH)
866 		new_mask |= ACE_EXECUTE;
867 	if (access_mask & S_IWOTH)
868 		new_mask |= ACE_WRITE_DATA;
869 	if (access_mask & S_IROTH)
870 		new_mask |= ACE_READ_DATA;
871 	return (new_mask);
872 }
873 
874 static void
875 zfs_set_ace(zfs_acl_t *aclp, void *acep, uint32_t access_mask,
876     uint16_t access_type, uint64_t fuid, uint16_t entry_type)
877 {
878 	uint16_t type = entry_type & ACE_TYPE_FLAGS;
879 
880 	aclp->z_ops.ace_mask_set(acep, access_mask);
881 	aclp->z_ops.ace_type_set(acep, access_type);
882 	aclp->z_ops.ace_flags_set(acep, entry_type);
883 	if ((type != ACE_OWNER && type != OWNING_GROUP &&
884 	    type != ACE_EVERYONE))
885 		aclp->z_ops.ace_who_set(acep, fuid);
886 }
887 
888 /*
889  * Determine mode of file based on ACL.
890  */
891 uint64_t
892 zfs_mode_compute(uint64_t fmode, zfs_acl_t *aclp,
893     uint64_t *pflags, uint64_t fuid, uint64_t fgid)
894 {
895 	int		entry_type;
896 	mode_t		mode;
897 	mode_t		seen = 0;
898 	zfs_ace_hdr_t	*acep = NULL;
899 	uint64_t	who;
900 	uint16_t	iflags, type;
901 	uint32_t	access_mask;
902 	boolean_t	an_exec_denied = B_FALSE;
903 
904 	mode = (fmode & (S_IFMT | S_ISUID | S_ISGID | S_ISVTX));
905 
906 	while (acep = zfs_acl_next_ace(aclp, acep, &who,
907 	    &access_mask, &iflags, &type)) {
908 
909 		if (!zfs_acl_valid_ace_type(type, iflags))
910 			continue;
911 
912 		entry_type = (iflags & ACE_TYPE_FLAGS);
913 
914 		/*
915 		 * Skip over any inherit_only ACEs
916 		 */
917 		if (iflags & ACE_INHERIT_ONLY_ACE)
918 			continue;
919 
920 		if (entry_type == ACE_OWNER || (entry_type == 0 &&
921 		    who == fuid)) {
922 			if ((access_mask & ACE_READ_DATA) &&
923 			    (!(seen & S_IRUSR))) {
924 				seen |= S_IRUSR;
925 				if (type == ALLOW) {
926 					mode |= S_IRUSR;
927 				}
928 			}
929 			if ((access_mask & ACE_WRITE_DATA) &&
930 			    (!(seen & S_IWUSR))) {
931 				seen |= S_IWUSR;
932 				if (type == ALLOW) {
933 					mode |= S_IWUSR;
934 				}
935 			}
936 			if ((access_mask & ACE_EXECUTE) &&
937 			    (!(seen & S_IXUSR))) {
938 				seen |= S_IXUSR;
939 				if (type == ALLOW) {
940 					mode |= S_IXUSR;
941 				}
942 			}
943 		} else if (entry_type == OWNING_GROUP ||
944 		    (entry_type == ACE_IDENTIFIER_GROUP && who == fgid)) {
945 			if ((access_mask & ACE_READ_DATA) &&
946 			    (!(seen & S_IRGRP))) {
947 				seen |= S_IRGRP;
948 				if (type == ALLOW) {
949 					mode |= S_IRGRP;
950 				}
951 			}
952 			if ((access_mask & ACE_WRITE_DATA) &&
953 			    (!(seen & S_IWGRP))) {
954 				seen |= S_IWGRP;
955 				if (type == ALLOW) {
956 					mode |= S_IWGRP;
957 				}
958 			}
959 			if ((access_mask & ACE_EXECUTE) &&
960 			    (!(seen & S_IXGRP))) {
961 				seen |= S_IXGRP;
962 				if (type == ALLOW) {
963 					mode |= S_IXGRP;
964 				}
965 			}
966 		} else if (entry_type == ACE_EVERYONE) {
967 			if ((access_mask & ACE_READ_DATA)) {
968 				if (!(seen & S_IRUSR)) {
969 					seen |= S_IRUSR;
970 					if (type == ALLOW) {
971 						mode |= S_IRUSR;
972 					}
973 				}
974 				if (!(seen & S_IRGRP)) {
975 					seen |= S_IRGRP;
976 					if (type == ALLOW) {
977 						mode |= S_IRGRP;
978 					}
979 				}
980 				if (!(seen & S_IROTH)) {
981 					seen |= S_IROTH;
982 					if (type == ALLOW) {
983 						mode |= S_IROTH;
984 					}
985 				}
986 			}
987 			if ((access_mask & ACE_WRITE_DATA)) {
988 				if (!(seen & S_IWUSR)) {
989 					seen |= S_IWUSR;
990 					if (type == ALLOW) {
991 						mode |= S_IWUSR;
992 					}
993 				}
994 				if (!(seen & S_IWGRP)) {
995 					seen |= S_IWGRP;
996 					if (type == ALLOW) {
997 						mode |= S_IWGRP;
998 					}
999 				}
1000 				if (!(seen & S_IWOTH)) {
1001 					seen |= S_IWOTH;
1002 					if (type == ALLOW) {
1003 						mode |= S_IWOTH;
1004 					}
1005 				}
1006 			}
1007 			if ((access_mask & ACE_EXECUTE)) {
1008 				if (!(seen & S_IXUSR)) {
1009 					seen |= S_IXUSR;
1010 					if (type == ALLOW) {
1011 						mode |= S_IXUSR;
1012 					}
1013 				}
1014 				if (!(seen & S_IXGRP)) {
1015 					seen |= S_IXGRP;
1016 					if (type == ALLOW) {
1017 						mode |= S_IXGRP;
1018 					}
1019 				}
1020 				if (!(seen & S_IXOTH)) {
1021 					seen |= S_IXOTH;
1022 					if (type == ALLOW) {
1023 						mode |= S_IXOTH;
1024 					}
1025 				}
1026 			}
1027 		} else {
1028 			/*
1029 			 * Only care if this IDENTIFIER_GROUP or
1030 			 * USER ACE denies execute access to someone,
1031 			 * mode is not affected
1032 			 */
1033 			if ((access_mask & ACE_EXECUTE) && type == DENY)
1034 				an_exec_denied = B_TRUE;
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * Failure to allow is effectively a deny, so execute permission
1040 	 * is denied if it was never mentioned or if we explicitly
1041 	 * weren't allowed it.
1042 	 */
1043 	if (!an_exec_denied &&
1044 	    ((seen & ALL_MODE_EXECS) != ALL_MODE_EXECS ||
1045 	    (mode & ALL_MODE_EXECS) != ALL_MODE_EXECS))
1046 		an_exec_denied = B_TRUE;
1047 
1048 	if (an_exec_denied)
1049 		*pflags &= ~ZFS_NO_EXECS_DENIED;
1050 	else
1051 		*pflags |= ZFS_NO_EXECS_DENIED;
1052 
1053 	return (mode);
1054 }
1055 
1056 /*
1057  * Read an external acl object.  If the intent is to modify, always
1058  * create a new acl and leave any cached acl in place.
1059  */
1060 int
1061 zfs_acl_node_read(struct znode *zp, boolean_t have_lock, zfs_acl_t **aclpp,
1062     boolean_t will_modify)
1063 {
1064 	zfs_acl_t	*aclp;
1065 	int		aclsize;
1066 	int		acl_count;
1067 	zfs_acl_node_t	*aclnode;
1068 	zfs_acl_phys_t	znode_acl;
1069 	int		version;
1070 	int		error;
1071 	boolean_t	drop_lock = B_FALSE;
1072 
1073 	ASSERT(MUTEX_HELD(&zp->z_acl_lock));
1074 
1075 	if (zp->z_acl_cached && !will_modify) {
1076 		*aclpp = zp->z_acl_cached;
1077 		return (0);
1078 	}
1079 
1080 	/*
1081 	 * close race where znode could be upgrade while trying to
1082 	 * read the znode attributes.
1083 	 *
1084 	 * But this could only happen if the file isn't already an SA
1085 	 * znode
1086 	 */
1087 	if (!zp->z_is_sa && !have_lock) {
1088 		mutex_enter(&zp->z_lock);
1089 		drop_lock = B_TRUE;
1090 	}
1091 	version = zfs_znode_acl_version(zp);
1092 
1093 	if ((error = zfs_acl_znode_info(zp, &aclsize,
1094 	    &acl_count, &znode_acl)) != 0) {
1095 		goto done;
1096 	}
1097 
1098 	aclp = zfs_acl_alloc(version);
1099 
1100 	aclp->z_acl_count = acl_count;
1101 	aclp->z_acl_bytes = aclsize;
1102 
1103 	aclnode = zfs_acl_node_alloc(aclsize);
1104 	aclnode->z_ace_count = aclp->z_acl_count;
1105 	aclnode->z_size = aclsize;
1106 
1107 	if (!zp->z_is_sa) {
1108 		if (znode_acl.z_acl_extern_obj) {
1109 			error = dmu_read(zp->z_zfsvfs->z_os,
1110 			    znode_acl.z_acl_extern_obj, 0, aclnode->z_size,
1111 			    aclnode->z_acldata, DMU_READ_PREFETCH);
1112 		} else {
1113 			bcopy(znode_acl.z_ace_data, aclnode->z_acldata,
1114 			    aclnode->z_size);
1115 		}
1116 	} else {
1117 		error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zp->z_zfsvfs),
1118 		    aclnode->z_acldata, aclnode->z_size);
1119 	}
1120 
1121 	if (error != 0) {
1122 		zfs_acl_free(aclp);
1123 		zfs_acl_node_free(aclnode);
1124 		/* convert checksum errors into IO errors */
1125 		if (error == ECKSUM)
1126 			error = SET_ERROR(EIO);
1127 		goto done;
1128 	}
1129 
1130 	list_insert_head(&aclp->z_acl, aclnode);
1131 
1132 	*aclpp = aclp;
1133 	if (!will_modify)
1134 		zp->z_acl_cached = aclp;
1135 done:
1136 	if (drop_lock)
1137 		mutex_exit(&zp->z_lock);
1138 	return (error);
1139 }
1140 
1141 /*ARGSUSED*/
1142 void
1143 zfs_acl_data_locator(void **dataptr, uint32_t *length, uint32_t buflen,
1144     boolean_t start, void *userdata)
1145 {
1146 	zfs_acl_locator_cb_t *cb = (zfs_acl_locator_cb_t *)userdata;
1147 
1148 	if (start) {
1149 		cb->cb_acl_node = list_head(&cb->cb_aclp->z_acl);
1150 	} else {
1151 		cb->cb_acl_node = list_next(&cb->cb_aclp->z_acl,
1152 		    cb->cb_acl_node);
1153 	}
1154 	*dataptr = cb->cb_acl_node->z_acldata;
1155 	*length = cb->cb_acl_node->z_size;
1156 }
1157 
1158 int
1159 zfs_acl_chown_setattr(znode_t *zp)
1160 {
1161 	int error;
1162 	zfs_acl_t *aclp;
1163 
1164 	ASSERT(MUTEX_HELD(&zp->z_lock));
1165 	ASSERT(MUTEX_HELD(&zp->z_acl_lock));
1166 
1167 	if ((error = zfs_acl_node_read(zp, B_TRUE, &aclp, B_FALSE)) == 0)
1168 		zp->z_mode = zfs_mode_compute(zp->z_mode, aclp,
1169 		    &zp->z_pflags, zp->z_uid, zp->z_gid);
1170 	return (error);
1171 }
1172 
1173 /*
1174  * common code for setting ACLs.
1175  *
1176  * This function is called from zfs_mode_update, zfs_perm_init, and zfs_setacl.
1177  * zfs_setacl passes a non-NULL inherit pointer (ihp) to indicate that it's
1178  * already checked the acl and knows whether to inherit.
1179  */
1180 int
1181 zfs_aclset_common(znode_t *zp, zfs_acl_t *aclp, cred_t *cr, dmu_tx_t *tx)
1182 {
1183 	int			error;
1184 	zfsvfs_t		*zfsvfs = zp->z_zfsvfs;
1185 	dmu_object_type_t	otype;
1186 	zfs_acl_locator_cb_t	locate = { 0 };
1187 	uint64_t		mode;
1188 	sa_bulk_attr_t		bulk[5];
1189 	uint64_t		ctime[2];
1190 	int			count = 0;
1191 	zfs_acl_phys_t		acl_phys;
1192 
1193 	mode = zp->z_mode;
1194 
1195 	mode = zfs_mode_compute(mode, aclp, &zp->z_pflags,
1196 	    zp->z_uid, zp->z_gid);
1197 
1198 	zp->z_mode = mode;
1199 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1200 	    &mode, sizeof (mode));
1201 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1202 	    &zp->z_pflags, sizeof (zp->z_pflags));
1203 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
1204 	    &ctime, sizeof (ctime));
1205 
1206 	if (zp->z_acl_cached) {
1207 		zfs_acl_free(zp->z_acl_cached);
1208 		zp->z_acl_cached = NULL;
1209 	}
1210 
1211 	/*
1212 	 * Upgrade needed?
1213 	 */
1214 	if (!zfsvfs->z_use_fuids) {
1215 		otype = DMU_OT_OLDACL;
1216 	} else {
1217 		if ((aclp->z_version == ZFS_ACL_VERSION_INITIAL) &&
1218 		    (zfsvfs->z_version >= ZPL_VERSION_FUID))
1219 			zfs_acl_xform(zp, aclp, cr);
1220 		ASSERT(aclp->z_version >= ZFS_ACL_VERSION_FUID);
1221 		otype = DMU_OT_ACL;
1222 	}
1223 
1224 	/*
1225 	 * Arrgh, we have to handle old on disk format
1226 	 * as well as newer (preferred) SA format.
1227 	 */
1228 
1229 	if (zp->z_is_sa) { /* the easy case, just update the ACL attribute */
1230 		locate.cb_aclp = aclp;
1231 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_ACES(zfsvfs),
1232 		    zfs_acl_data_locator, &locate, aclp->z_acl_bytes);
1233 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_COUNT(zfsvfs),
1234 		    NULL, &aclp->z_acl_count, sizeof (uint64_t));
1235 	} else { /* Painful legacy way */
1236 		zfs_acl_node_t *aclnode;
1237 		uint64_t off = 0;
1238 		uint64_t aoid;
1239 
1240 		if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
1241 		    &acl_phys, sizeof (acl_phys))) != 0)
1242 			return (error);
1243 
1244 		aoid = acl_phys.z_acl_extern_obj;
1245 
1246 		if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1247 			/*
1248 			 * If ACL was previously external and we are now
1249 			 * converting to new ACL format then release old
1250 			 * ACL object and create a new one.
1251 			 */
1252 			if (aoid &&
1253 			    aclp->z_version != acl_phys.z_acl_version) {
1254 				error = dmu_object_free(zfsvfs->z_os, aoid, tx);
1255 				if (error)
1256 					return (error);
1257 				aoid = 0;
1258 			}
1259 			if (aoid == 0) {
1260 				aoid = dmu_object_alloc(zfsvfs->z_os,
1261 				    otype, aclp->z_acl_bytes,
1262 				    otype == DMU_OT_ACL ?
1263 				    DMU_OT_SYSACL : DMU_OT_NONE,
1264 				    otype == DMU_OT_ACL ?
1265 				    DN_OLD_MAX_BONUSLEN : 0, tx);
1266 			} else {
1267 				(void) dmu_object_set_blocksize(zfsvfs->z_os,
1268 				    aoid, aclp->z_acl_bytes, 0, tx);
1269 			}
1270 			acl_phys.z_acl_extern_obj = aoid;
1271 			for (aclnode = list_head(&aclp->z_acl); aclnode;
1272 			    aclnode = list_next(&aclp->z_acl, aclnode)) {
1273 				if (aclnode->z_ace_count == 0)
1274 					continue;
1275 				dmu_write(zfsvfs->z_os, aoid, off,
1276 				    aclnode->z_size, aclnode->z_acldata, tx);
1277 				off += aclnode->z_size;
1278 			}
1279 		} else {
1280 			void *start = acl_phys.z_ace_data;
1281 			/*
1282 			 * Migrating back embedded?
1283 			 */
1284 			if (acl_phys.z_acl_extern_obj) {
1285 				error = dmu_object_free(zfsvfs->z_os,
1286 				    acl_phys.z_acl_extern_obj, tx);
1287 				if (error)
1288 					return (error);
1289 				acl_phys.z_acl_extern_obj = 0;
1290 			}
1291 
1292 			for (aclnode = list_head(&aclp->z_acl); aclnode;
1293 			    aclnode = list_next(&aclp->z_acl, aclnode)) {
1294 				if (aclnode->z_ace_count == 0)
1295 					continue;
1296 				bcopy(aclnode->z_acldata, start,
1297 				    aclnode->z_size);
1298 				start = (caddr_t)start + aclnode->z_size;
1299 			}
1300 		}
1301 		/*
1302 		 * If Old version then swap count/bytes to match old
1303 		 * layout of znode_acl_phys_t.
1304 		 */
1305 		if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
1306 			acl_phys.z_acl_size = aclp->z_acl_count;
1307 			acl_phys.z_acl_count = aclp->z_acl_bytes;
1308 		} else {
1309 			acl_phys.z_acl_size = aclp->z_acl_bytes;
1310 			acl_phys.z_acl_count = aclp->z_acl_count;
1311 		}
1312 		acl_phys.z_acl_version = aclp->z_version;
1313 
1314 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
1315 		    &acl_phys, sizeof (acl_phys));
1316 	}
1317 
1318 	/*
1319 	 * Replace ACL wide bits, but first clear them.
1320 	 */
1321 	zp->z_pflags &= ~ZFS_ACL_WIDE_FLAGS;
1322 
1323 	zp->z_pflags |= aclp->z_hints;
1324 
1325 	if (ace_trivial_common(aclp, 0, zfs_ace_walk) == 0)
1326 		zp->z_pflags |= ZFS_ACL_TRIVIAL;
1327 
1328 	zfs_tstamp_update_setup(zp, STATE_CHANGED, NULL, ctime, B_TRUE);
1329 	return (sa_bulk_update(zp->z_sa_hdl, bulk, count, tx));
1330 }
1331 
1332 static void
1333 zfs_acl_chmod(vtype_t vtype, uint64_t mode, boolean_t split, boolean_t trim,
1334     zfs_acl_t *aclp)
1335 {
1336 	void		*acep = NULL;
1337 	uint64_t	who;
1338 	int		new_count, new_bytes;
1339 	int		ace_size;
1340 	int		entry_type;
1341 	uint16_t	iflags, type;
1342 	uint32_t	access_mask;
1343 	zfs_acl_node_t	*newnode;
1344 	size_t		abstract_size = aclp->z_ops.ace_abstract_size();
1345 	void		*zacep;
1346 	boolean_t	isdir;
1347 	trivial_acl_t	masks;
1348 
1349 	new_count = new_bytes = 0;
1350 
1351 	isdir = (vtype == VDIR);
1352 
1353 	acl_trivial_access_masks((mode_t)mode, isdir, &masks);
1354 
1355 	newnode = zfs_acl_node_alloc((abstract_size * 6) + aclp->z_acl_bytes);
1356 
1357 	zacep = newnode->z_acldata;
1358 	if (masks.allow0) {
1359 		zfs_set_ace(aclp, zacep, masks.allow0, ALLOW, -1, ACE_OWNER);
1360 		zacep = (void *)((uintptr_t)zacep + abstract_size);
1361 		new_count++;
1362 		new_bytes += abstract_size;
1363 	}
1364 	if (masks.deny1) {
1365 		zfs_set_ace(aclp, zacep, masks.deny1, DENY, -1, ACE_OWNER);
1366 		zacep = (void *)((uintptr_t)zacep + abstract_size);
1367 		new_count++;
1368 		new_bytes += abstract_size;
1369 	}
1370 	if (masks.deny2) {
1371 		zfs_set_ace(aclp, zacep, masks.deny2, DENY, -1, OWNING_GROUP);
1372 		zacep = (void *)((uintptr_t)zacep + abstract_size);
1373 		new_count++;
1374 		new_bytes += abstract_size;
1375 	}
1376 
1377 	while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
1378 	    &iflags, &type)) {
1379 		entry_type = (iflags & ACE_TYPE_FLAGS);
1380 		/*
1381 		 * ACEs used to represent the file mode may be divided
1382 		 * into an equivalent pair of inherit-only and regular
1383 		 * ACEs, if they are inheritable.
1384 		 * Skip regular ACEs, which are replaced by the new mode.
1385 		 */
1386 		if (split && (entry_type == ACE_OWNER ||
1387 		    entry_type == OWNING_GROUP ||
1388 		    entry_type == ACE_EVERYONE)) {
1389 			if (!isdir || !(iflags &
1390 			    (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
1391 				continue;
1392 			/*
1393 			 * We preserve owner@, group@, or @everyone
1394 			 * permissions, if they are inheritable, by
1395 			 * copying them to inherit_only ACEs. This
1396 			 * prevents inheritable permissions from being
1397 			 * altered along with the file mode.
1398 			 */
1399 			iflags |= ACE_INHERIT_ONLY_ACE;
1400 		}
1401 
1402 		/*
1403 		 * If this ACL has any inheritable ACEs, mark that in
1404 		 * the hints (which are later masked into the pflags)
1405 		 * so create knows to do inheritance.
1406 		 */
1407 		if (isdir && (iflags &
1408 		    (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
1409 			aclp->z_hints |= ZFS_INHERIT_ACE;
1410 
1411 		if ((type != ALLOW && type != DENY) ||
1412 		    (iflags & ACE_INHERIT_ONLY_ACE)) {
1413 			switch (type) {
1414 			case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
1415 			case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
1416 			case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
1417 			case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
1418 				aclp->z_hints |= ZFS_ACL_OBJ_ACE;
1419 				break;
1420 			}
1421 		} else {
1422 			/*
1423 			 * Limit permissions granted by ACEs to be no greater
1424 			 * than permissions of the requested group mode.
1425 			 * Applies when the "aclmode" property is set to
1426 			 * "groupmask".
1427 			 */
1428 			if ((type == ALLOW) && trim)
1429 				access_mask &= masks.group;
1430 		}
1431 		zfs_set_ace(aclp, zacep, access_mask, type, who, iflags);
1432 		ace_size = aclp->z_ops.ace_size(acep);
1433 		zacep = (void *)((uintptr_t)zacep + ace_size);
1434 		new_count++;
1435 		new_bytes += ace_size;
1436 	}
1437 	zfs_set_ace(aclp, zacep, masks.owner, ALLOW, -1, ACE_OWNER);
1438 	zacep = (void *)((uintptr_t)zacep + abstract_size);
1439 	zfs_set_ace(aclp, zacep, masks.group, ALLOW, -1, OWNING_GROUP);
1440 	zacep = (void *)((uintptr_t)zacep + abstract_size);
1441 	zfs_set_ace(aclp, zacep, masks.everyone, ALLOW, -1, ACE_EVERYONE);
1442 
1443 	new_count += 3;
1444 	new_bytes += abstract_size * 3;
1445 	zfs_acl_release_nodes(aclp);
1446 	aclp->z_acl_count = new_count;
1447 	aclp->z_acl_bytes = new_bytes;
1448 	newnode->z_ace_count = new_count;
1449 	newnode->z_size = new_bytes;
1450 	list_insert_tail(&aclp->z_acl, newnode);
1451 }
1452 
1453 int
1454 zfs_acl_chmod_setattr(znode_t *zp, zfs_acl_t **aclp, uint64_t mode)
1455 {
1456 	int error = 0;
1457 
1458 	mutex_enter(&zp->z_acl_lock);
1459 	mutex_enter(&zp->z_lock);
1460 	if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_DISCARD)
1461 		*aclp = zfs_acl_alloc(zfs_acl_version_zp(zp));
1462 	else
1463 		error = zfs_acl_node_read(zp, B_TRUE, aclp, B_TRUE);
1464 
1465 	if (error == 0) {
1466 		(*aclp)->z_hints = zp->z_pflags & V4_ACL_WIDE_FLAGS;
1467 		zfs_acl_chmod(ZTOV(zp)->v_type, mode, B_TRUE,
1468 		    (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK), *aclp);
1469 	}
1470 	mutex_exit(&zp->z_lock);
1471 	mutex_exit(&zp->z_acl_lock);
1472 
1473 	return (error);
1474 }
1475 
1476 /*
1477  * Should ACE be inherited?
1478  */
1479 static int
1480 zfs_ace_can_use(vtype_t vtype, uint16_t acep_flags)
1481 {
1482 	int	iflags = (acep_flags & 0xf);
1483 
1484 	if ((vtype == VDIR) && (iflags & ACE_DIRECTORY_INHERIT_ACE))
1485 		return (1);
1486 	else if (iflags & ACE_FILE_INHERIT_ACE)
1487 		return (!((vtype == VDIR) &&
1488 		    (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)));
1489 	return (0);
1490 }
1491 
1492 /*
1493  * inherit inheritable ACEs from parent
1494  */
1495 static zfs_acl_t *
1496 zfs_acl_inherit(zfsvfs_t *zfsvfs, vtype_t vtype, zfs_acl_t *paclp,
1497     uint64_t mode, boolean_t *need_chmod)
1498 {
1499 	void		*pacep = NULL;
1500 	void		*acep;
1501 	zfs_acl_node_t  *aclnode;
1502 	zfs_acl_t	*aclp = NULL;
1503 	uint64_t	who;
1504 	uint32_t	access_mask;
1505 	uint16_t	iflags, newflags, type;
1506 	size_t		ace_size;
1507 	void		*data1, *data2;
1508 	size_t		data1sz, data2sz;
1509 	uint_t		aclinherit;
1510 	boolean_t	isdir = (vtype == VDIR);
1511 	boolean_t	isreg = (vtype == VREG);
1512 
1513 	*need_chmod = B_TRUE;
1514 
1515 	aclp = zfs_acl_alloc(paclp->z_version);
1516 	aclinherit = zfsvfs->z_acl_inherit;
1517 	if (aclinherit == ZFS_ACL_DISCARD || vtype == VLNK)
1518 		return (aclp);
1519 
1520 	while (pacep = zfs_acl_next_ace(paclp, pacep, &who,
1521 	    &access_mask, &iflags, &type)) {
1522 
1523 		/*
1524 		 * don't inherit bogus ACEs
1525 		 */
1526 		if (!zfs_acl_valid_ace_type(type, iflags))
1527 			continue;
1528 
1529 		/*
1530 		 * Check if ACE is inheritable by this vnode
1531 		 */
1532 		if ((aclinherit == ZFS_ACL_NOALLOW && type == ALLOW) ||
1533 		    !zfs_ace_can_use(vtype, iflags))
1534 			continue;
1535 
1536 		/*
1537 		 * If owner@, group@, or everyone@ inheritable
1538 		 * then zfs_acl_chmod() isn't needed.
1539 		 */
1540 		if ((aclinherit == ZFS_ACL_PASSTHROUGH ||
1541 		    aclinherit == ZFS_ACL_PASSTHROUGH_X) &&
1542 		    ((iflags & (ACE_OWNER|ACE_EVERYONE)) ||
1543 		    ((iflags & OWNING_GROUP) == OWNING_GROUP)) &&
1544 		    (isreg || (isdir && (iflags & ACE_DIRECTORY_INHERIT_ACE))))
1545 			*need_chmod = B_FALSE;
1546 
1547 		/*
1548 		 * Strip inherited execute permission from file if
1549 		 * not in mode
1550 		 */
1551 		if (aclinherit == ZFS_ACL_PASSTHROUGH_X && type == ALLOW &&
1552 		    !isdir && ((mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)) {
1553 			access_mask &= ~ACE_EXECUTE;
1554 		}
1555 
1556 		/*
1557 		 * Strip write_acl and write_owner from permissions
1558 		 * when inheriting an ACE
1559 		 */
1560 		if (aclinherit == ZFS_ACL_RESTRICTED && type == ALLOW) {
1561 			access_mask &= ~RESTRICTED_CLEAR;
1562 		}
1563 
1564 		ace_size = aclp->z_ops.ace_size(pacep);
1565 		aclnode = zfs_acl_node_alloc(ace_size);
1566 		list_insert_tail(&aclp->z_acl, aclnode);
1567 		acep = aclnode->z_acldata;
1568 
1569 		zfs_set_ace(aclp, acep, access_mask, type,
1570 		    who, iflags|ACE_INHERITED_ACE);
1571 
1572 		/*
1573 		 * Copy special opaque data if any
1574 		 */
1575 		if ((data1sz = paclp->z_ops.ace_data(pacep, &data1)) != 0) {
1576 			VERIFY((data2sz = aclp->z_ops.ace_data(acep,
1577 			    &data2)) == data1sz);
1578 			bcopy(data1, data2, data2sz);
1579 		}
1580 
1581 		aclp->z_acl_count++;
1582 		aclnode->z_ace_count++;
1583 		aclp->z_acl_bytes += aclnode->z_size;
1584 		newflags = aclp->z_ops.ace_flags_get(acep);
1585 
1586 		/*
1587 		 * If ACE is not to be inherited further, or if the vnode is
1588 		 * not a directory, remove all inheritance flags
1589 		 */
1590 		if (!isdir || (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)) {
1591 			newflags &= ~ALL_INHERIT;
1592 			aclp->z_ops.ace_flags_set(acep,
1593 			    newflags|ACE_INHERITED_ACE);
1594 			continue;
1595 		}
1596 
1597 		/*
1598 		 * This directory has an inheritable ACE
1599 		 */
1600 		aclp->z_hints |= ZFS_INHERIT_ACE;
1601 
1602 		/*
1603 		 * If only FILE_INHERIT is set then turn on
1604 		 * inherit_only
1605 		 */
1606 		if ((iflags & (ACE_FILE_INHERIT_ACE |
1607 		    ACE_DIRECTORY_INHERIT_ACE)) == ACE_FILE_INHERIT_ACE) {
1608 			newflags |= ACE_INHERIT_ONLY_ACE;
1609 			aclp->z_ops.ace_flags_set(acep,
1610 			    newflags|ACE_INHERITED_ACE);
1611 		} else {
1612 			newflags &= ~ACE_INHERIT_ONLY_ACE;
1613 			aclp->z_ops.ace_flags_set(acep,
1614 			    newflags|ACE_INHERITED_ACE);
1615 		}
1616 	}
1617 
1618 	return (aclp);
1619 }
1620 
1621 /*
1622  * Create file system object initial permissions
1623  * including inheritable ACEs.
1624  * Also, create FUIDs for owner and group.
1625  */
1626 int
1627 zfs_acl_ids_create(znode_t *dzp, int flag, vattr_t *vap, cred_t *cr,
1628     vsecattr_t *vsecp, zfs_acl_ids_t *acl_ids)
1629 {
1630 	int		error;
1631 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1632 	zfs_acl_t	*paclp;
1633 	gid_t		gid;
1634 	boolean_t	need_chmod = B_TRUE;
1635 	boolean_t	trim = B_FALSE;
1636 	boolean_t	inherited = B_FALSE;
1637 
1638 	bzero(acl_ids, sizeof (zfs_acl_ids_t));
1639 	acl_ids->z_mode = MAKEIMODE(vap->va_type, vap->va_mode);
1640 
1641 	if (vsecp)
1642 		if ((error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, cr,
1643 		    &acl_ids->z_fuidp, &acl_ids->z_aclp)) != 0)
1644 			return (error);
1645 	/*
1646 	 * Determine uid and gid.
1647 	 */
1648 	if ((flag & IS_ROOT_NODE) || zfsvfs->z_replay ||
1649 	    ((flag & IS_XATTR) && (vap->va_type == VDIR))) {
1650 		acl_ids->z_fuid = zfs_fuid_create(zfsvfs,
1651 		    (uint64_t)vap->va_uid, cr,
1652 		    ZFS_OWNER, &acl_ids->z_fuidp);
1653 		acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
1654 		    (uint64_t)vap->va_gid, cr,
1655 		    ZFS_GROUP, &acl_ids->z_fuidp);
1656 		gid = vap->va_gid;
1657 	} else {
1658 		acl_ids->z_fuid = zfs_fuid_create_cred(zfsvfs, ZFS_OWNER,
1659 		    cr, &acl_ids->z_fuidp);
1660 		acl_ids->z_fgid = 0;
1661 		if (vap->va_mask & AT_GID)  {
1662 			acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
1663 			    (uint64_t)vap->va_gid,
1664 			    cr, ZFS_GROUP, &acl_ids->z_fuidp);
1665 			gid = vap->va_gid;
1666 			if (acl_ids->z_fgid != dzp->z_gid &&
1667 			    !groupmember(vap->va_gid, cr) &&
1668 			    secpolicy_vnode_create_gid(cr) != 0)
1669 				acl_ids->z_fgid = 0;
1670 		}
1671 		if (acl_ids->z_fgid == 0) {
1672 			if (dzp->z_mode & S_ISGID) {
1673 				char		*domain;
1674 				uint32_t	rid;
1675 
1676 				acl_ids->z_fgid = dzp->z_gid;
1677 				gid = zfs_fuid_map_id(zfsvfs, acl_ids->z_fgid,
1678 				    cr, ZFS_GROUP);
1679 
1680 				if (zfsvfs->z_use_fuids &&
1681 				    IS_EPHEMERAL(acl_ids->z_fgid)) {
1682 					domain = zfs_fuid_idx_domain(
1683 					    &zfsvfs->z_fuid_idx,
1684 					    FUID_INDEX(acl_ids->z_fgid));
1685 					rid = FUID_RID(acl_ids->z_fgid);
1686 					zfs_fuid_node_add(&acl_ids->z_fuidp,
1687 					    domain, rid,
1688 					    FUID_INDEX(acl_ids->z_fgid),
1689 					    acl_ids->z_fgid, ZFS_GROUP);
1690 				}
1691 			} else {
1692 				acl_ids->z_fgid = zfs_fuid_create_cred(zfsvfs,
1693 				    ZFS_GROUP, cr, &acl_ids->z_fuidp);
1694 				gid = crgetgid(cr);
1695 			}
1696 		}
1697 	}
1698 
1699 	/*
1700 	 * If we're creating a directory, and the parent directory has the
1701 	 * set-GID bit set, set in on the new directory.
1702 	 * Otherwise, if the user is neither privileged nor a member of the
1703 	 * file's new group, clear the file's set-GID bit.
1704 	 */
1705 
1706 	if (!(flag & IS_ROOT_NODE) && (dzp->z_mode & S_ISGID) &&
1707 	    (vap->va_type == VDIR)) {
1708 		acl_ids->z_mode |= S_ISGID;
1709 	} else {
1710 		if ((acl_ids->z_mode & S_ISGID) &&
1711 		    secpolicy_vnode_setids_setgids(cr, gid) != 0)
1712 			acl_ids->z_mode &= ~S_ISGID;
1713 	}
1714 
1715 	if (acl_ids->z_aclp == NULL) {
1716 		mutex_enter(&dzp->z_acl_lock);
1717 		mutex_enter(&dzp->z_lock);
1718 		if (!(flag & IS_ROOT_NODE) &&
1719 		    (dzp->z_pflags & ZFS_INHERIT_ACE) &&
1720 		    !(dzp->z_pflags & ZFS_XATTR)) {
1721 			VERIFY(0 == zfs_acl_node_read(dzp, B_TRUE,
1722 			    &paclp, B_FALSE));
1723 			acl_ids->z_aclp = zfs_acl_inherit(zfsvfs,
1724 			    vap->va_type, paclp, acl_ids->z_mode, &need_chmod);
1725 			inherited = B_TRUE;
1726 		} else {
1727 			acl_ids->z_aclp =
1728 			    zfs_acl_alloc(zfs_acl_version_zp(dzp));
1729 			acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
1730 		}
1731 		mutex_exit(&dzp->z_lock);
1732 		mutex_exit(&dzp->z_acl_lock);
1733 
1734 		if (need_chmod) {
1735 			if (vap->va_type == VDIR)
1736 				acl_ids->z_aclp->z_hints |=
1737 				    ZFS_ACL_AUTO_INHERIT;
1738 
1739 			if (zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK &&
1740 			    zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH &&
1741 			    zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH_X)
1742 				trim = B_TRUE;
1743 			zfs_acl_chmod(vap->va_type, acl_ids->z_mode, B_FALSE,
1744 			    trim, acl_ids->z_aclp);
1745 		}
1746 	}
1747 
1748 	if (inherited || vsecp) {
1749 		acl_ids->z_mode = zfs_mode_compute(acl_ids->z_mode,
1750 		    acl_ids->z_aclp, &acl_ids->z_aclp->z_hints,
1751 		    acl_ids->z_fuid, acl_ids->z_fgid);
1752 		if (ace_trivial_common(acl_ids->z_aclp, 0, zfs_ace_walk) == 0)
1753 			acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
1754 	}
1755 
1756 	return (0);
1757 }
1758 
1759 /*
1760  * Free ACL and fuid_infop, but not the acl_ids structure
1761  */
1762 void
1763 zfs_acl_ids_free(zfs_acl_ids_t *acl_ids)
1764 {
1765 	if (acl_ids->z_aclp)
1766 		zfs_acl_free(acl_ids->z_aclp);
1767 	if (acl_ids->z_fuidp)
1768 		zfs_fuid_info_free(acl_ids->z_fuidp);
1769 	acl_ids->z_aclp = NULL;
1770 	acl_ids->z_fuidp = NULL;
1771 }
1772 
1773 boolean_t
1774 zfs_acl_ids_overquota(zfsvfs_t *zv, zfs_acl_ids_t *acl_ids, uint64_t projid)
1775 {
1776 	return (zfs_id_overquota(zv, DMU_USERUSED_OBJECT, acl_ids->z_fuid) ||
1777 	    zfs_id_overquota(zv, DMU_GROUPUSED_OBJECT, acl_ids->z_fgid) ||
1778 	    (projid != ZFS_DEFAULT_PROJID && projid != ZFS_INVALID_PROJID &&
1779 	    zfs_id_overquota(zv, DMU_PROJECTUSED_OBJECT, projid)));
1780 }
1781 
1782 /*
1783  * Retrieve a file's ACL
1784  */
1785 int
1786 zfs_getacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
1787 {
1788 	zfs_acl_t	*aclp;
1789 	ulong_t		mask;
1790 	int		error;
1791 	int		count = 0;
1792 	int		largeace = 0;
1793 
1794 	mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT |
1795 	    VSA_ACE_ACLFLAGS | VSA_ACE_ALLTYPES);
1796 
1797 	if (mask == 0)
1798 		return (SET_ERROR(ENOSYS));
1799 
1800 	if (error = zfs_zaccess(zp, ACE_READ_ACL, 0, skipaclchk, cr))
1801 		return (error);
1802 
1803 	mutex_enter(&zp->z_acl_lock);
1804 
1805 	error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE);
1806 	if (error != 0) {
1807 		mutex_exit(&zp->z_acl_lock);
1808 		return (error);
1809 	}
1810 
1811 	/*
1812 	 * Scan ACL to determine number of ACEs
1813 	 */
1814 	if ((zp->z_pflags & ZFS_ACL_OBJ_ACE) && !(mask & VSA_ACE_ALLTYPES)) {
1815 		void *zacep = NULL;
1816 		uint64_t who;
1817 		uint32_t access_mask;
1818 		uint16_t type, iflags;
1819 
1820 		while (zacep = zfs_acl_next_ace(aclp, zacep,
1821 		    &who, &access_mask, &iflags, &type)) {
1822 			switch (type) {
1823 			case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
1824 			case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
1825 			case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
1826 			case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
1827 				largeace++;
1828 				continue;
1829 			default:
1830 				count++;
1831 			}
1832 		}
1833 		vsecp->vsa_aclcnt = count;
1834 	} else
1835 		count = (int)aclp->z_acl_count;
1836 
1837 	if (mask & VSA_ACECNT) {
1838 		vsecp->vsa_aclcnt = count;
1839 	}
1840 
1841 	if (mask & VSA_ACE) {
1842 		size_t aclsz;
1843 
1844 		aclsz = count * sizeof (ace_t) +
1845 		    sizeof (ace_object_t) * largeace;
1846 
1847 		vsecp->vsa_aclentp = kmem_alloc(aclsz, KM_SLEEP);
1848 		vsecp->vsa_aclentsz = aclsz;
1849 
1850 		if (aclp->z_version == ZFS_ACL_VERSION_FUID)
1851 			zfs_copy_fuid_2_ace(zp->z_zfsvfs, aclp, cr,
1852 			    vsecp->vsa_aclentp, !(mask & VSA_ACE_ALLTYPES));
1853 		else {
1854 			zfs_acl_node_t *aclnode;
1855 			void *start = vsecp->vsa_aclentp;
1856 
1857 			for (aclnode = list_head(&aclp->z_acl); aclnode;
1858 			    aclnode = list_next(&aclp->z_acl, aclnode)) {
1859 				bcopy(aclnode->z_acldata, start,
1860 				    aclnode->z_size);
1861 				start = (caddr_t)start + aclnode->z_size;
1862 			}
1863 			ASSERT((caddr_t)start - (caddr_t)vsecp->vsa_aclentp ==
1864 			    aclp->z_acl_bytes);
1865 		}
1866 	}
1867 	if (mask & VSA_ACE_ACLFLAGS) {
1868 		vsecp->vsa_aclflags = 0;
1869 		if (zp->z_pflags & ZFS_ACL_DEFAULTED)
1870 			vsecp->vsa_aclflags |= ACL_DEFAULTED;
1871 		if (zp->z_pflags & ZFS_ACL_PROTECTED)
1872 			vsecp->vsa_aclflags |= ACL_PROTECTED;
1873 		if (zp->z_pflags & ZFS_ACL_AUTO_INHERIT)
1874 			vsecp->vsa_aclflags |= ACL_AUTO_INHERIT;
1875 	}
1876 
1877 	mutex_exit(&zp->z_acl_lock);
1878 
1879 	return (0);
1880 }
1881 
1882 int
1883 zfs_vsec_2_aclp(zfsvfs_t *zfsvfs, vtype_t obj_type,
1884     vsecattr_t *vsecp, cred_t *cr, zfs_fuid_info_t **fuidp, zfs_acl_t **zaclp)
1885 {
1886 	zfs_acl_t *aclp;
1887 	zfs_acl_node_t *aclnode;
1888 	int aclcnt = vsecp->vsa_aclcnt;
1889 	int error;
1890 
1891 	if (vsecp->vsa_aclcnt > MAX_ACL_ENTRIES || vsecp->vsa_aclcnt <= 0)
1892 		return (SET_ERROR(EINVAL));
1893 
1894 	aclp = zfs_acl_alloc(zfs_acl_version(zfsvfs->z_version));
1895 
1896 	aclp->z_hints = 0;
1897 	aclnode = zfs_acl_node_alloc(aclcnt * sizeof (zfs_object_ace_t));
1898 	if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
1899 		if ((error = zfs_copy_ace_2_oldace(obj_type, aclp,
1900 		    (ace_t *)vsecp->vsa_aclentp, aclnode->z_acldata,
1901 		    aclcnt, &aclnode->z_size)) != 0) {
1902 			zfs_acl_free(aclp);
1903 			zfs_acl_node_free(aclnode);
1904 			return (error);
1905 		}
1906 	} else {
1907 		if ((error = zfs_copy_ace_2_fuid(zfsvfs, obj_type, aclp,
1908 		    vsecp->vsa_aclentp, aclnode->z_acldata, aclcnt,
1909 		    &aclnode->z_size, fuidp, cr)) != 0) {
1910 			zfs_acl_free(aclp);
1911 			zfs_acl_node_free(aclnode);
1912 			return (error);
1913 		}
1914 	}
1915 	aclp->z_acl_bytes = aclnode->z_size;
1916 	aclnode->z_ace_count = aclcnt;
1917 	aclp->z_acl_count = aclcnt;
1918 	list_insert_head(&aclp->z_acl, aclnode);
1919 
1920 	/*
1921 	 * If flags are being set then add them to z_hints
1922 	 */
1923 	if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) {
1924 		if (vsecp->vsa_aclflags & ACL_PROTECTED)
1925 			aclp->z_hints |= ZFS_ACL_PROTECTED;
1926 		if (vsecp->vsa_aclflags & ACL_DEFAULTED)
1927 			aclp->z_hints |= ZFS_ACL_DEFAULTED;
1928 		if (vsecp->vsa_aclflags & ACL_AUTO_INHERIT)
1929 			aclp->z_hints |= ZFS_ACL_AUTO_INHERIT;
1930 	}
1931 
1932 	*zaclp = aclp;
1933 
1934 	return (0);
1935 }
1936 
1937 /*
1938  * Set a file's ACL
1939  */
1940 int
1941 zfs_setacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
1942 {
1943 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
1944 	zilog_t		*zilog = zfsvfs->z_log;
1945 	ulong_t		mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT);
1946 	dmu_tx_t	*tx;
1947 	int		error;
1948 	zfs_acl_t	*aclp;
1949 	zfs_fuid_info_t	*fuidp = NULL;
1950 	boolean_t	fuid_dirtied;
1951 	uint64_t	acl_obj;
1952 
1953 	if (mask == 0)
1954 		return (SET_ERROR(ENOSYS));
1955 
1956 	if (zp->z_pflags & ZFS_IMMUTABLE)
1957 		return (SET_ERROR(EPERM));
1958 
1959 	if (error = zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr))
1960 		return (error);
1961 
1962 	error = zfs_vsec_2_aclp(zfsvfs, ZTOV(zp)->v_type, vsecp, cr, &fuidp,
1963 	    &aclp);
1964 	if (error)
1965 		return (error);
1966 
1967 	/*
1968 	 * If ACL wide flags aren't being set then preserve any
1969 	 * existing flags.
1970 	 */
1971 	if (!(vsecp->vsa_mask & VSA_ACE_ACLFLAGS)) {
1972 		aclp->z_hints |=
1973 		    (zp->z_pflags & V4_ACL_WIDE_FLAGS);
1974 	}
1975 top:
1976 	mutex_enter(&zp->z_acl_lock);
1977 	mutex_enter(&zp->z_lock);
1978 
1979 	tx = dmu_tx_create(zfsvfs->z_os);
1980 
1981 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1982 
1983 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1984 	if (fuid_dirtied)
1985 		zfs_fuid_txhold(zfsvfs, tx);
1986 
1987 	/*
1988 	 * If old version and ACL won't fit in bonus and we aren't
1989 	 * upgrading then take out necessary DMU holds
1990 	 */
1991 
1992 	if ((acl_obj = zfs_external_acl(zp)) != 0) {
1993 		if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
1994 		    zfs_znode_acl_version(zp) <= ZFS_ACL_VERSION_INITIAL) {
1995 			dmu_tx_hold_free(tx, acl_obj, 0,
1996 			    DMU_OBJECT_END);
1997 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1998 			    aclp->z_acl_bytes);
1999 		} else {
2000 			dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes);
2001 		}
2002 	} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2003 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes);
2004 	}
2005 
2006 	zfs_sa_upgrade_txholds(tx, zp);
2007 	error = dmu_tx_assign(tx, TXG_NOWAIT);
2008 	if (error) {
2009 		mutex_exit(&zp->z_acl_lock);
2010 		mutex_exit(&zp->z_lock);
2011 
2012 		if (error == ERESTART) {
2013 			dmu_tx_wait(tx);
2014 			dmu_tx_abort(tx);
2015 			goto top;
2016 		}
2017 		dmu_tx_abort(tx);
2018 		zfs_acl_free(aclp);
2019 		return (error);
2020 	}
2021 
2022 	error = zfs_aclset_common(zp, aclp, cr, tx);
2023 	ASSERT(error == 0);
2024 	ASSERT(zp->z_acl_cached == NULL);
2025 	zp->z_acl_cached = aclp;
2026 
2027 	if (fuid_dirtied)
2028 		zfs_fuid_sync(zfsvfs, tx);
2029 
2030 	zfs_log_acl(zilog, tx, zp, vsecp, fuidp);
2031 
2032 	if (fuidp)
2033 		zfs_fuid_info_free(fuidp);
2034 	dmu_tx_commit(tx);
2035 done:
2036 	mutex_exit(&zp->z_lock);
2037 	mutex_exit(&zp->z_acl_lock);
2038 
2039 	return (error);
2040 }
2041 
2042 /*
2043  * Check accesses of interest (AoI) against attributes of the dataset
2044  * such as read-only.  Returns zero if no AoI conflict with dataset
2045  * attributes, otherwise an appropriate errno is returned.
2046  */
2047 static int
2048 zfs_zaccess_dataset_check(znode_t *zp, uint32_t v4_mode)
2049 {
2050 	if ((v4_mode & WRITE_MASK) &&
2051 	    (zp->z_zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) &&
2052 	    (!IS_DEVVP(ZTOV(zp)) ||
2053 	    (IS_DEVVP(ZTOV(zp)) && (v4_mode & WRITE_MASK_ATTRS)))) {
2054 		return (SET_ERROR(EROFS));
2055 	}
2056 
2057 	/*
2058 	 * Intentionally allow ZFS_READONLY through here.
2059 	 * See zfs_zaccess_common().
2060 	 */
2061 	if ((v4_mode & WRITE_MASK_DATA) &&
2062 	    (zp->z_pflags & ZFS_IMMUTABLE)) {
2063 		return (SET_ERROR(EPERM));
2064 	}
2065 
2066 	if ((v4_mode & (ACE_DELETE | ACE_DELETE_CHILD)) &&
2067 	    (zp->z_pflags & ZFS_NOUNLINK)) {
2068 		return (SET_ERROR(EPERM));
2069 	}
2070 
2071 	if (((v4_mode & (ACE_READ_DATA|ACE_EXECUTE)) &&
2072 	    (zp->z_pflags & ZFS_AV_QUARANTINED))) {
2073 		return (SET_ERROR(EACCES));
2074 	}
2075 
2076 	return (0);
2077 }
2078 
2079 /*
2080  * The primary usage of this function is to loop through all of the
2081  * ACEs in the znode, determining what accesses of interest (AoI) to
2082  * the caller are allowed or denied.  The AoI are expressed as bits in
2083  * the working_mode parameter.  As each ACE is processed, bits covered
2084  * by that ACE are removed from the working_mode.  This removal
2085  * facilitates two things.  The first is that when the working mode is
2086  * empty (= 0), we know we've looked at all the AoI. The second is
2087  * that the ACE interpretation rules don't allow a later ACE to undo
2088  * something granted or denied by an earlier ACE.  Removing the
2089  * discovered access or denial enforces this rule.  At the end of
2090  * processing the ACEs, all AoI that were found to be denied are
2091  * placed into the working_mode, giving the caller a mask of denied
2092  * accesses.  Returns:
2093  *	0		if all AoI granted
2094  *	EACCES		if the denied mask is non-zero
2095  *	other error	if abnormal failure (e.g., IO error)
2096  *
2097  * A secondary usage of the function is to determine if any of the
2098  * AoI are granted.  If an ACE grants any access in
2099  * the working_mode, we immediately short circuit out of the function.
2100  * This mode is chosen by setting anyaccess to B_TRUE.  The
2101  * working_mode is not a denied access mask upon exit if the function
2102  * is used in this manner.
2103  */
2104 static int
2105 zfs_zaccess_aces_check(znode_t *zp, uint32_t *working_mode,
2106     boolean_t anyaccess, cred_t *cr)
2107 {
2108 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2109 	zfs_acl_t	*aclp;
2110 	int		error;
2111 	uint64_t	who;		/* FUID from the ACE */
2112 	uint16_t	type, iflags;
2113 	uint16_t	entry_type;
2114 	uint32_t	access_mask;
2115 	uint32_t	deny_mask = 0;
2116 	zfs_ace_hdr_t	*acep = NULL;
2117 	boolean_t	checkit;	/* ACE ID matches */
2118 
2119 	mutex_enter(&zp->z_acl_lock);
2120 
2121 	error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE);
2122 	if (error != 0) {
2123 		mutex_exit(&zp->z_acl_lock);
2124 		return (error);
2125 	}
2126 
2127 	ASSERT(zp->z_acl_cached);
2128 
2129 	while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
2130 	    &iflags, &type)) {
2131 		uint32_t mask_matched;
2132 
2133 		if (!zfs_acl_valid_ace_type(type, iflags))
2134 			continue;
2135 
2136 		if (ZTOV(zp)->v_type == VDIR && (iflags & ACE_INHERIT_ONLY_ACE))
2137 			continue;
2138 
2139 		/* Skip ACE if it does not affect any AoI */
2140 		mask_matched = (access_mask & *working_mode);
2141 		if (!mask_matched)
2142 			continue;
2143 
2144 		entry_type = (iflags & ACE_TYPE_FLAGS);
2145 
2146 		checkit = B_FALSE;
2147 
2148 		switch (entry_type) {
2149 		case ACE_OWNER:
2150 			who = zp->z_uid;
2151 			/*FALLTHROUGH*/
2152 		case 0:	/* USER Entry */
2153 			checkit = zfs_user_in_cred(zfsvfs, who, cr);
2154 			break;
2155 		case OWNING_GROUP:
2156 			who = zp->z_gid;
2157 			/*FALLTHROUGH*/
2158 		case ACE_IDENTIFIER_GROUP:
2159 			checkit = zfs_groupmember(zfsvfs, who, cr);
2160 			break;
2161 		case ACE_EVERYONE:
2162 			checkit = B_TRUE;
2163 			break;
2164 
2165 		default:
2166 			/*
2167 			 * The zfs_acl_valid_ace_type check above
2168 			 * should make this case impossible.
2169 			 */
2170 			mutex_exit(&zp->z_acl_lock);
2171 			return (SET_ERROR(EIO));
2172 		}
2173 
2174 		if (checkit) {
2175 			if (type == DENY) {
2176 				DTRACE_PROBE3(zfs__ace__denies,
2177 				    znode_t *, zp,
2178 				    zfs_ace_hdr_t *, acep,
2179 				    uint32_t, mask_matched);
2180 				deny_mask |= mask_matched;
2181 			} else {
2182 				DTRACE_PROBE3(zfs__ace__allows,
2183 				    znode_t *, zp,
2184 				    zfs_ace_hdr_t *, acep,
2185 				    uint32_t, mask_matched);
2186 				if (anyaccess) {
2187 					mutex_exit(&zp->z_acl_lock);
2188 					return (0);
2189 				}
2190 			}
2191 			*working_mode &= ~mask_matched;
2192 		}
2193 
2194 		/* Are we done? */
2195 		if (*working_mode == 0)
2196 			break;
2197 	}
2198 
2199 	mutex_exit(&zp->z_acl_lock);
2200 
2201 	/* Put the found 'denies' back on the working mode */
2202 	if (deny_mask) {
2203 		*working_mode |= deny_mask;
2204 		return (SET_ERROR(EACCES));
2205 	} else if (*working_mode) {
2206 		return (-1);
2207 	}
2208 
2209 	return (0);
2210 }
2211 
2212 /*
2213  * Return true if any access whatsoever granted, we don't actually
2214  * care what access is granted.
2215  */
2216 boolean_t
2217 zfs_has_access(znode_t *zp, cred_t *cr)
2218 {
2219 	uint32_t have = ACE_ALL_PERMS;
2220 
2221 	if (zfs_zaccess_aces_check(zp, &have, B_TRUE, cr) != 0) {
2222 		uid_t owner;
2223 
2224 		owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
2225 		return (secpolicy_vnode_any_access(cr, ZTOV(zp), owner) == 0);
2226 	}
2227 	return (B_TRUE);
2228 }
2229 
2230 static int
2231 zfs_zaccess_common(znode_t *zp, uint32_t v4_mode, uint32_t *working_mode,
2232     boolean_t *check_privs, boolean_t skipaclchk, cred_t *cr)
2233 {
2234 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2235 	int err;
2236 
2237 	*working_mode = v4_mode;
2238 	*check_privs = B_TRUE;
2239 
2240 	/*
2241 	 * Short circuit empty requests
2242 	 */
2243 	if (v4_mode == 0 || zfsvfs->z_replay) {
2244 		*working_mode = 0;
2245 		return (0);
2246 	}
2247 
2248 	if ((err = zfs_zaccess_dataset_check(zp, v4_mode)) != 0) {
2249 		*check_privs = B_FALSE;
2250 		return (err);
2251 	}
2252 
2253 	/*
2254 	 * The caller requested that the ACL check be skipped.  This
2255 	 * would only happen if the caller checked VOP_ACCESS() with a
2256 	 * 32 bit ACE mask and already had the appropriate permissions.
2257 	 */
2258 	if (skipaclchk) {
2259 		*working_mode = 0;
2260 		return (0);
2261 	}
2262 
2263 	/*
2264 	 * Note: ZFS_READONLY represents the "DOS R/O" attribute.
2265 	 * When that flag is set, we should behave as if write access
2266 	 * were not granted by anything in the ACL.  In particular:
2267 	 * We _must_ allow writes after opening the file r/w, then
2268 	 * setting the DOS R/O attribute, and writing some more.
2269 	 * (Similar to how you can write after fchmod(fd, 0444).)
2270 	 *
2271 	 * Therefore ZFS_READONLY is ignored in the dataset check
2272 	 * above, and checked here as if part of the ACL check.
2273 	 * Also note: DOS R/O is ignored for directories.
2274 	 */
2275 	if ((v4_mode & WRITE_MASK_DATA) &&
2276 	    (ZTOV(zp)->v_type != VDIR) &&
2277 	    (zp->z_pflags & ZFS_READONLY)) {
2278 		return (SET_ERROR(EPERM));
2279 	}
2280 
2281 	return (zfs_zaccess_aces_check(zp, working_mode, B_FALSE, cr));
2282 }
2283 
2284 static int
2285 zfs_zaccess_append(znode_t *zp, uint32_t *working_mode, boolean_t *check_privs,
2286     cred_t *cr)
2287 {
2288 	if (*working_mode != ACE_WRITE_DATA)
2289 		return (SET_ERROR(EACCES));
2290 
2291 	return (zfs_zaccess_common(zp, ACE_APPEND_DATA, working_mode,
2292 	    check_privs, B_FALSE, cr));
2293 }
2294 
2295 int
2296 zfs_fastaccesschk_execute(znode_t *zdp, cred_t *cr)
2297 {
2298 	boolean_t owner = B_FALSE;
2299 	boolean_t groupmbr = B_FALSE;
2300 	boolean_t is_attr;
2301 	uid_t uid = crgetuid(cr);
2302 	int error;
2303 
2304 	if (zdp->z_pflags & ZFS_AV_QUARANTINED)
2305 		return (SET_ERROR(EACCES));
2306 
2307 	is_attr = ((zdp->z_pflags & ZFS_XATTR) &&
2308 	    (ZTOV(zdp)->v_type == VDIR));
2309 	if (is_attr)
2310 		goto slow;
2311 
2312 
2313 	mutex_enter(&zdp->z_acl_lock);
2314 
2315 	if (zdp->z_pflags & ZFS_NO_EXECS_DENIED) {
2316 		mutex_exit(&zdp->z_acl_lock);
2317 		return (0);
2318 	}
2319 
2320 	if (FUID_INDEX(zdp->z_uid) != 0 || FUID_INDEX(zdp->z_gid) != 0) {
2321 		mutex_exit(&zdp->z_acl_lock);
2322 		goto slow;
2323 	}
2324 
2325 	if (uid == zdp->z_uid) {
2326 		owner = B_TRUE;
2327 		if (zdp->z_mode & S_IXUSR) {
2328 			mutex_exit(&zdp->z_acl_lock);
2329 			return (0);
2330 		} else {
2331 			mutex_exit(&zdp->z_acl_lock);
2332 			goto slow;
2333 		}
2334 	}
2335 	if (groupmember(zdp->z_gid, cr)) {
2336 		groupmbr = B_TRUE;
2337 		if (zdp->z_mode & S_IXGRP) {
2338 			mutex_exit(&zdp->z_acl_lock);
2339 			return (0);
2340 		} else {
2341 			mutex_exit(&zdp->z_acl_lock);
2342 			goto slow;
2343 		}
2344 	}
2345 	if (!owner && !groupmbr) {
2346 		if (zdp->z_mode & S_IXOTH) {
2347 			mutex_exit(&zdp->z_acl_lock);
2348 			return (0);
2349 		}
2350 	}
2351 
2352 	mutex_exit(&zdp->z_acl_lock);
2353 
2354 slow:
2355 	DTRACE_PROBE(zfs__fastpath__execute__access__miss);
2356 	ZFS_ENTER(zdp->z_zfsvfs);
2357 	error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr);
2358 	ZFS_EXIT(zdp->z_zfsvfs);
2359 	return (error);
2360 }
2361 
2362 /*
2363  * Determine whether Access should be granted/denied.
2364  *
2365  * The least priv subsystem is always consulted as a basic privilege
2366  * can define any form of access.
2367  */
2368 int
2369 zfs_zaccess(znode_t *zp, int mode, int flags, boolean_t skipaclchk, cred_t *cr)
2370 {
2371 	uint32_t	working_mode;
2372 	int		error;
2373 	int		is_attr;
2374 	boolean_t	check_privs;
2375 	znode_t		*xzp;
2376 	znode_t		*check_zp = zp;
2377 	mode_t		needed_bits;
2378 	uid_t		owner;
2379 
2380 	is_attr = ((zp->z_pflags & ZFS_XATTR) && (ZTOV(zp)->v_type == VDIR));
2381 
2382 	/*
2383 	 * If attribute then validate against base file
2384 	 */
2385 	if (is_attr) {
2386 		uint64_t	parent;
2387 
2388 		if ((error = sa_lookup(zp->z_sa_hdl,
2389 		    SA_ZPL_PARENT(zp->z_zfsvfs), &parent,
2390 		    sizeof (parent))) != 0)
2391 			return (error);
2392 
2393 		if ((error = zfs_zget(zp->z_zfsvfs,
2394 		    parent, &xzp)) != 0)	{
2395 			return (error);
2396 		}
2397 
2398 		check_zp = xzp;
2399 
2400 		/*
2401 		 * fixup mode to map to xattr perms
2402 		 */
2403 
2404 		if (mode & (ACE_WRITE_DATA|ACE_APPEND_DATA)) {
2405 			mode &= ~(ACE_WRITE_DATA|ACE_APPEND_DATA);
2406 			mode |= ACE_WRITE_NAMED_ATTRS;
2407 		}
2408 
2409 		if (mode & (ACE_READ_DATA|ACE_EXECUTE)) {
2410 			mode &= ~(ACE_READ_DATA|ACE_EXECUTE);
2411 			mode |= ACE_READ_NAMED_ATTRS;
2412 		}
2413 	}
2414 
2415 	owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
2416 	/*
2417 	 * Map the bits required to the standard vnode flags VREAD|VWRITE|VEXEC
2418 	 * in needed_bits.  Map the bits mapped by working_mode (currently
2419 	 * missing) in missing_bits.
2420 	 * Call secpolicy_vnode_access2() with (needed_bits & ~checkmode),
2421 	 * needed_bits.
2422 	 */
2423 	needed_bits = 0;
2424 
2425 	working_mode = mode;
2426 	if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES)) &&
2427 	    owner == crgetuid(cr))
2428 		working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
2429 
2430 	if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2431 	    ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2432 		needed_bits |= VREAD;
2433 	if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2434 	    ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2435 		needed_bits |= VWRITE;
2436 	if (working_mode & ACE_EXECUTE)
2437 		needed_bits |= VEXEC;
2438 
2439 	if ((error = zfs_zaccess_common(check_zp, mode, &working_mode,
2440 	    &check_privs, skipaclchk, cr)) == 0) {
2441 		if (is_attr)
2442 			VN_RELE(ZTOV(xzp));
2443 		return (secpolicy_vnode_access2(cr, ZTOV(zp), owner,
2444 		    needed_bits, needed_bits));
2445 	}
2446 
2447 	if (error && !check_privs) {
2448 		if (is_attr)
2449 			VN_RELE(ZTOV(xzp));
2450 		return (error);
2451 	}
2452 
2453 	if (error && (flags & V_APPEND)) {
2454 		error = zfs_zaccess_append(zp, &working_mode, &check_privs, cr);
2455 	}
2456 
2457 	if (error && check_privs) {
2458 		mode_t		checkmode = 0;
2459 
2460 		/*
2461 		 * First check for implicit owner permission on
2462 		 * read_acl/read_attributes
2463 		 */
2464 
2465 		error = 0;
2466 		ASSERT(working_mode != 0);
2467 
2468 		if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES) &&
2469 		    owner == crgetuid(cr)))
2470 			working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
2471 
2472 		if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2473 		    ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2474 			checkmode |= VREAD;
2475 		if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2476 		    ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2477 			checkmode |= VWRITE;
2478 		if (working_mode & ACE_EXECUTE)
2479 			checkmode |= VEXEC;
2480 
2481 		error = secpolicy_vnode_access2(cr, ZTOV(check_zp), owner,
2482 		    needed_bits & ~checkmode, needed_bits);
2483 
2484 		if (error == 0 && (working_mode & ACE_WRITE_OWNER))
2485 			error = secpolicy_vnode_chown(cr, owner);
2486 		if (error == 0 && (working_mode & ACE_WRITE_ACL))
2487 			error = secpolicy_vnode_setdac(cr, owner);
2488 
2489 		if (error == 0 && (working_mode &
2490 		    (ACE_DELETE|ACE_DELETE_CHILD)))
2491 			error = secpolicy_vnode_remove(cr);
2492 
2493 		if (error == 0 && (working_mode & ACE_SYNCHRONIZE)) {
2494 			error = secpolicy_vnode_chown(cr, owner);
2495 		}
2496 		if (error == 0) {
2497 			/*
2498 			 * See if any bits other than those already checked
2499 			 * for are still present.  If so then return EACCES
2500 			 */
2501 			if (working_mode & ~(ZFS_CHECKED_MASKS)) {
2502 				error = SET_ERROR(EACCES);
2503 			}
2504 		}
2505 	} else if (error == 0) {
2506 		error = secpolicy_vnode_access2(cr, ZTOV(zp), owner,
2507 		    needed_bits, needed_bits);
2508 	}
2509 
2510 
2511 	if (is_attr)
2512 		VN_RELE(ZTOV(xzp));
2513 
2514 	return (error);
2515 }
2516 
2517 /*
2518  * Translate traditional unix VREAD/VWRITE/VEXEC mode into
2519  * native ACL format and call zfs_zaccess()
2520  */
2521 int
2522 zfs_zaccess_rwx(znode_t *zp, mode_t mode, int flags, cred_t *cr)
2523 {
2524 	return (zfs_zaccess(zp, zfs_unix_to_v4(mode >> 6), flags, B_FALSE, cr));
2525 }
2526 
2527 /*
2528  * Access function for secpolicy_vnode_setattr
2529  */
2530 int
2531 zfs_zaccess_unix(znode_t *zp, mode_t mode, cred_t *cr)
2532 {
2533 	int v4_mode = zfs_unix_to_v4(mode >> 6);
2534 
2535 	return (zfs_zaccess(zp, v4_mode, 0, B_FALSE, cr));
2536 }
2537 
2538 /* See zfs_zaccess_delete() */
2539 int zfs_write_implies_delete_child = 1;
2540 
2541 /*
2542  * Determine whether delete access should be granted.
2543  *
2544  * The following chart outlines how we handle delete permissions which is
2545  * how recent versions of windows (Windows 2008) handles it.  The efficiency
2546  * comes from not having to check the parent ACL where the object itself grants
2547  * delete:
2548  *
2549  *      -------------------------------------------------------
2550  *      |   Parent Dir  |      Target Object Permissions      |
2551  *      |  permissions  |                                     |
2552  *      -------------------------------------------------------
2553  *      |               | ACL Allows | ACL Denies| Delete     |
2554  *      |               |  Delete    |  Delete   | unspecified|
2555  *      -------------------------------------------------------
2556  *      | ACL Allows    | Permit     | Deny *    | Permit     |
2557  *      | DELETE_CHILD  |            |           |            |
2558  *      -------------------------------------------------------
2559  *      | ACL Denies    | Permit     | Deny      | Deny       |
2560  *      | DELETE_CHILD  |            |           |            |
2561  *      -------------------------------------------------------
2562  *      | ACL specifies |            |           |            |
2563  *      | only allow    | Permit     | Deny *    | Permit     |
2564  *      | write and     |            |           |            |
2565  *      | execute       |            |           |            |
2566  *      -------------------------------------------------------
2567  *      | ACL denies    |            |           |            |
2568  *      | write and     | Permit     | Deny      | Deny       |
2569  *      | execute       |            |           |            |
2570  *      -------------------------------------------------------
2571  *         ^
2572  *         |
2573  *         Re. execute permission on the directory:  if that's missing,
2574  *	   the vnode lookup of the target will fail before we get here.
2575  *
2576  * Re [*] in the table above:  NFSv4 would normally Permit delete for
2577  * these two cells of the matrix.
2578  * See acl.h for notes on which ACE_... flags should be checked for which
2579  * operations.  Specifically, the NFSv4 committee recommendation is in
2580  * conflict with the Windows interpretation of DENY ACEs, where DENY ACEs
2581  * should take precedence ahead of ALLOW ACEs.
2582  *
2583  * This implementation always consults the target object's ACL first.
2584  * If a DENY ACE is present on the target object that specifies ACE_DELETE,
2585  * delete access is denied.  If an ALLOW ACE with ACE_DELETE is present on
2586  * the target object, access is allowed.  If and only if no entries with
2587  * ACE_DELETE are present in the object's ACL, check the container's ACL
2588  * for entries with ACE_DELETE_CHILD.
2589  *
2590  * A summary of the logic implemented from the table above is as follows:
2591  *
2592  * First check for DENY ACEs that apply.
2593  * If either target or container has a deny, EACCES.
2594  *
2595  * Delete access can then be summarized as follows:
2596  * 1: The object to be deleted grants ACE_DELETE, or
2597  * 2: The containing directory grants ACE_DELETE_CHILD.
2598  * In a Windows system, that would be the end of the story.
2599  * In this system, (2) has some complications...
2600  * 2a: "sticky" bit on a directory adds restrictions, and
2601  * 2b: existing ACEs from previous versions of ZFS may
2602  * not carry ACE_DELETE_CHILD where they should, so we
2603  * also allow delete when ACE_WRITE_DATA is granted.
2604  *
2605  * Note: 2b is technically a work-around for a prior bug,
2606  * which hopefully can go away some day.  For those who
2607  * no longer need the work around, and for testing, this
2608  * work-around is made conditional via the tunable:
2609  * zfs_write_implies_delete_child
2610  */
2611 int
2612 zfs_zaccess_delete(znode_t *dzp, znode_t *zp, cred_t *cr)
2613 {
2614 	uint32_t wanted_dirperms;
2615 	uint32_t dzp_working_mode = 0;
2616 	uint32_t zp_working_mode = 0;
2617 	int dzp_error, zp_error;
2618 	boolean_t dzpcheck_privs;
2619 	boolean_t zpcheck_privs;
2620 
2621 	if (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_NOUNLINK))
2622 		return (SET_ERROR(EPERM));
2623 
2624 	/*
2625 	 * Case 1:
2626 	 * If target object grants ACE_DELETE then we are done.  This is
2627 	 * indicated by a return value of 0.  For this case we don't worry
2628 	 * about the sticky bit because sticky only applies to the parent
2629 	 * directory and this is the child access result.
2630 	 *
2631 	 * If we encounter a DENY ACE here, we're also done (EACCES).
2632 	 * Note that if we hit a DENY ACE here (on the target) it should
2633 	 * take precedence over a DENY ACE on the container, so that when
2634 	 * we have more complete auditing support we will be able to
2635 	 * report an access failure against the specific target.
2636 	 * (This is part of why we're checking the target first.)
2637 	 */
2638 	zp_error = zfs_zaccess_common(zp, ACE_DELETE, &zp_working_mode,
2639 	    &zpcheck_privs, B_FALSE, cr);
2640 	if (zp_error == EACCES) {
2641 		/* We hit a DENY ACE. */
2642 		if (!zpcheck_privs)
2643 			return (SET_ERROR(zp_error));
2644 		return (secpolicy_vnode_remove(cr));
2645 
2646 	}
2647 	if (zp_error == 0)
2648 		return (0);
2649 
2650 	/*
2651 	 * Case 2:
2652 	 * If the containing directory grants ACE_DELETE_CHILD,
2653 	 * or we're in backward compatibility mode and the
2654 	 * containing directory has ACE_WRITE_DATA, allow.
2655 	 * Case 2b is handled with wanted_dirperms.
2656 	 */
2657 	wanted_dirperms = ACE_DELETE_CHILD;
2658 	if (zfs_write_implies_delete_child)
2659 		wanted_dirperms |= ACE_WRITE_DATA;
2660 	dzp_error = zfs_zaccess_common(dzp, wanted_dirperms,
2661 	    &dzp_working_mode, &dzpcheck_privs, B_FALSE, cr);
2662 	if (dzp_error == EACCES) {
2663 		/* We hit a DENY ACE. */
2664 		if (!dzpcheck_privs)
2665 			return (SET_ERROR(dzp_error));
2666 		return (secpolicy_vnode_remove(cr));
2667 	}
2668 
2669 	/*
2670 	 * Cases 2a, 2b (continued)
2671 	 *
2672 	 * Note: dzp_working_mode now contains any permissions
2673 	 * that were NOT granted.  Therefore, if any of the
2674 	 * wanted_dirperms WERE granted, we will have:
2675 	 *   dzp_working_mode != wanted_dirperms
2676 	 * We're really asking if ANY of those permissions
2677 	 * were granted, and if so, grant delete access.
2678 	 */
2679 	if (dzp_working_mode != wanted_dirperms)
2680 		dzp_error = 0;
2681 
2682 	/*
2683 	 * dzp_error is 0 if the container granted us permissions to "modify".
2684 	 * If we do not have permission via one or more ACEs, our current
2685 	 * privileges may still permit us to modify the container.
2686 	 *
2687 	 * dzpcheck_privs is false when i.e. the FS is read-only.
2688 	 * Otherwise, do privilege checks for the container.
2689 	 */
2690 	if (dzp_error != 0 && dzpcheck_privs) {
2691 		uid_t owner;
2692 
2693 		/*
2694 		 * The secpolicy call needs the requested access and
2695 		 * the current access mode of the container, but it
2696 		 * only knows about Unix-style modes (VEXEC, VWRITE),
2697 		 * so this must condense the fine-grained ACE bits into
2698 		 * Unix modes.
2699 		 *
2700 		 * The VEXEC flag is easy, because we know that has
2701 		 * always been checked before we get here (during the
2702 		 * lookup of the target vnode).  The container has not
2703 		 * granted us permissions to "modify", so we do not set
2704 		 * the VWRITE flag in the current access mode.
2705 		 */
2706 		owner = zfs_fuid_map_id(dzp->z_zfsvfs, dzp->z_uid, cr,
2707 		    ZFS_OWNER);
2708 		dzp_error = secpolicy_vnode_access2(cr, ZTOV(dzp),
2709 		    owner, VEXEC, VWRITE|VEXEC);
2710 	}
2711 	if (dzp_error != 0) {
2712 		/*
2713 		 * Note: We may have dzp_error = -1 here (from
2714 		 * zfs_zacess_common).  Don't return that.
2715 		 */
2716 		return (SET_ERROR(EACCES));
2717 	}
2718 
2719 	/*
2720 	 * At this point, we know that the directory permissions allow
2721 	 * us to modify, but we still need to check for the additional
2722 	 * restrictions that apply when the "sticky bit" is set.
2723 	 *
2724 	 * Yes, zfs_sticky_remove_access() also checks this bit, but
2725 	 * checking it here and skipping the call below is nice when
2726 	 * you're watching all of this with dtrace.
2727 	 */
2728 	if ((dzp->z_mode & S_ISVTX) == 0)
2729 		return (0);
2730 
2731 	/*
2732 	 * zfs_sticky_remove_access will succeed if:
2733 	 * 1. The sticky bit is absent.
2734 	 * 2. We pass the sticky bit restrictions.
2735 	 * 3. We have privileges that always allow file removal.
2736 	 */
2737 	return (zfs_sticky_remove_access(dzp, zp, cr));
2738 }
2739 
2740 int
2741 zfs_zaccess_rename(znode_t *sdzp, znode_t *szp, znode_t *tdzp,
2742     znode_t *tzp, cred_t *cr)
2743 {
2744 	int add_perm;
2745 	int error;
2746 
2747 	if (szp->z_pflags & ZFS_AV_QUARANTINED)
2748 		return (SET_ERROR(EACCES));
2749 
2750 	add_perm = (ZTOV(szp)->v_type == VDIR) ?
2751 	    ACE_ADD_SUBDIRECTORY : ACE_ADD_FILE;
2752 
2753 	/*
2754 	 * Rename permissions are combination of delete permission +
2755 	 * add file/subdir permission.
2756 	 */
2757 
2758 	/*
2759 	 * first make sure we do the delete portion.
2760 	 *
2761 	 * If that succeeds then check for add_file/add_subdir permissions
2762 	 */
2763 
2764 	if (error = zfs_zaccess_delete(sdzp, szp, cr))
2765 		return (error);
2766 
2767 	/*
2768 	 * If we have a tzp, see if we can delete it?
2769 	 */
2770 	if (tzp) {
2771 		if (error = zfs_zaccess_delete(tdzp, tzp, cr))
2772 			return (error);
2773 	}
2774 
2775 	/*
2776 	 * Now check for add permissions
2777 	 */
2778 	error = zfs_zaccess(tdzp, add_perm, 0, B_FALSE, cr);
2779 
2780 	return (error);
2781 }
2782