1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright 2017 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/time.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/resource.h> 33 #include <sys/vfs.h> 34 #include <sys/vnode.h> 35 #include <sys/sid.h> 36 #include <sys/file.h> 37 #include <sys/stat.h> 38 #include <sys/kmem.h> 39 #include <sys/cmn_err.h> 40 #include <sys/errno.h> 41 #include <sys/unistd.h> 42 #include <sys/sdt.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/mode.h> 45 #include <sys/policy.h> 46 #include <sys/zfs_znode.h> 47 #include <sys/zfs_fuid.h> 48 #include <sys/zfs_acl.h> 49 #include <sys/zfs_dir.h> 50 #include <sys/zfs_vfsops.h> 51 #include <sys/dmu.h> 52 #include <sys/dnode.h> 53 #include <sys/zap.h> 54 #include <sys/sa.h> 55 #include "fs/fs_subr.h" 56 #include <acl/acl_common.h> 57 58 #define ALLOW ACE_ACCESS_ALLOWED_ACE_TYPE 59 #define DENY ACE_ACCESS_DENIED_ACE_TYPE 60 #define MAX_ACE_TYPE ACE_SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE 61 #define MIN_ACE_TYPE ALLOW 62 63 #define OWNING_GROUP (ACE_GROUP|ACE_IDENTIFIER_GROUP) 64 #define EVERYONE_ALLOW_MASK (ACE_READ_ACL|ACE_READ_ATTRIBUTES | \ 65 ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE) 66 #define EVERYONE_DENY_MASK (ACE_WRITE_ACL|ACE_WRITE_OWNER | \ 67 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS) 68 #define OWNER_ALLOW_MASK (ACE_WRITE_ACL | ACE_WRITE_OWNER | \ 69 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS) 70 71 #define ZFS_CHECKED_MASKS (ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_DATA| \ 72 ACE_READ_NAMED_ATTRS|ACE_WRITE_DATA|ACE_WRITE_ATTRIBUTES| \ 73 ACE_WRITE_NAMED_ATTRS|ACE_APPEND_DATA|ACE_EXECUTE|ACE_WRITE_OWNER| \ 74 ACE_WRITE_ACL|ACE_DELETE|ACE_DELETE_CHILD|ACE_SYNCHRONIZE) 75 76 #define WRITE_MASK_DATA (ACE_WRITE_DATA|ACE_APPEND_DATA|ACE_WRITE_NAMED_ATTRS) 77 #define WRITE_MASK_ATTRS (ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES| \ 78 ACE_DELETE|ACE_DELETE_CHILD) 79 #define WRITE_MASK (WRITE_MASK_DATA|WRITE_MASK_ATTRS) 80 81 #define OGE_CLEAR (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \ 82 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE) 83 84 #define OKAY_MASK_BITS (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \ 85 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE) 86 87 #define ALL_INHERIT (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE | \ 88 ACE_NO_PROPAGATE_INHERIT_ACE|ACE_INHERIT_ONLY_ACE|ACE_INHERITED_ACE) 89 90 #define RESTRICTED_CLEAR (ACE_WRITE_ACL|ACE_WRITE_OWNER) 91 92 #define V4_ACL_WIDE_FLAGS (ZFS_ACL_AUTO_INHERIT|ZFS_ACL_DEFAULTED|\ 93 ZFS_ACL_PROTECTED) 94 95 #define ZFS_ACL_WIDE_FLAGS (V4_ACL_WIDE_FLAGS|ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|\ 96 ZFS_ACL_OBJ_ACE) 97 98 #define ALL_MODE_EXECS (S_IXUSR | S_IXGRP | S_IXOTH) 99 100 static uint16_t 101 zfs_ace_v0_get_type(void *acep) 102 { 103 return (((zfs_oldace_t *)acep)->z_type); 104 } 105 106 static uint16_t 107 zfs_ace_v0_get_flags(void *acep) 108 { 109 return (((zfs_oldace_t *)acep)->z_flags); 110 } 111 112 static uint32_t 113 zfs_ace_v0_get_mask(void *acep) 114 { 115 return (((zfs_oldace_t *)acep)->z_access_mask); 116 } 117 118 static uint64_t 119 zfs_ace_v0_get_who(void *acep) 120 { 121 return (((zfs_oldace_t *)acep)->z_fuid); 122 } 123 124 static void 125 zfs_ace_v0_set_type(void *acep, uint16_t type) 126 { 127 ((zfs_oldace_t *)acep)->z_type = type; 128 } 129 130 static void 131 zfs_ace_v0_set_flags(void *acep, uint16_t flags) 132 { 133 ((zfs_oldace_t *)acep)->z_flags = flags; 134 } 135 136 static void 137 zfs_ace_v0_set_mask(void *acep, uint32_t mask) 138 { 139 ((zfs_oldace_t *)acep)->z_access_mask = mask; 140 } 141 142 static void 143 zfs_ace_v0_set_who(void *acep, uint64_t who) 144 { 145 ((zfs_oldace_t *)acep)->z_fuid = who; 146 } 147 148 /*ARGSUSED*/ 149 static size_t 150 zfs_ace_v0_size(void *acep) 151 { 152 return (sizeof (zfs_oldace_t)); 153 } 154 155 static size_t 156 zfs_ace_v0_abstract_size(void) 157 { 158 return (sizeof (zfs_oldace_t)); 159 } 160 161 static int 162 zfs_ace_v0_mask_off(void) 163 { 164 return (offsetof(zfs_oldace_t, z_access_mask)); 165 } 166 167 /*ARGSUSED*/ 168 static int 169 zfs_ace_v0_data(void *acep, void **datap) 170 { 171 *datap = NULL; 172 return (0); 173 } 174 175 static acl_ops_t zfs_acl_v0_ops = { 176 zfs_ace_v0_get_mask, 177 zfs_ace_v0_set_mask, 178 zfs_ace_v0_get_flags, 179 zfs_ace_v0_set_flags, 180 zfs_ace_v0_get_type, 181 zfs_ace_v0_set_type, 182 zfs_ace_v0_get_who, 183 zfs_ace_v0_set_who, 184 zfs_ace_v0_size, 185 zfs_ace_v0_abstract_size, 186 zfs_ace_v0_mask_off, 187 zfs_ace_v0_data 188 }; 189 190 static uint16_t 191 zfs_ace_fuid_get_type(void *acep) 192 { 193 return (((zfs_ace_hdr_t *)acep)->z_type); 194 } 195 196 static uint16_t 197 zfs_ace_fuid_get_flags(void *acep) 198 { 199 return (((zfs_ace_hdr_t *)acep)->z_flags); 200 } 201 202 static uint32_t 203 zfs_ace_fuid_get_mask(void *acep) 204 { 205 return (((zfs_ace_hdr_t *)acep)->z_access_mask); 206 } 207 208 static uint64_t 209 zfs_ace_fuid_get_who(void *args) 210 { 211 uint16_t entry_type; 212 zfs_ace_t *acep = args; 213 214 entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS; 215 216 if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP || 217 entry_type == ACE_EVERYONE) 218 return (-1); 219 return (((zfs_ace_t *)acep)->z_fuid); 220 } 221 222 static void 223 zfs_ace_fuid_set_type(void *acep, uint16_t type) 224 { 225 ((zfs_ace_hdr_t *)acep)->z_type = type; 226 } 227 228 static void 229 zfs_ace_fuid_set_flags(void *acep, uint16_t flags) 230 { 231 ((zfs_ace_hdr_t *)acep)->z_flags = flags; 232 } 233 234 static void 235 zfs_ace_fuid_set_mask(void *acep, uint32_t mask) 236 { 237 ((zfs_ace_hdr_t *)acep)->z_access_mask = mask; 238 } 239 240 static void 241 zfs_ace_fuid_set_who(void *arg, uint64_t who) 242 { 243 zfs_ace_t *acep = arg; 244 245 uint16_t entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS; 246 247 if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP || 248 entry_type == ACE_EVERYONE) 249 return; 250 acep->z_fuid = who; 251 } 252 253 static size_t 254 zfs_ace_fuid_size(void *acep) 255 { 256 zfs_ace_hdr_t *zacep = acep; 257 uint16_t entry_type; 258 259 switch (zacep->z_type) { 260 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE: 261 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE: 262 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE: 263 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE: 264 return (sizeof (zfs_object_ace_t)); 265 case ALLOW: 266 case DENY: 267 entry_type = 268 (((zfs_ace_hdr_t *)acep)->z_flags & ACE_TYPE_FLAGS); 269 if (entry_type == ACE_OWNER || 270 entry_type == OWNING_GROUP || 271 entry_type == ACE_EVERYONE) 272 return (sizeof (zfs_ace_hdr_t)); 273 /*FALLTHROUGH*/ 274 default: 275 return (sizeof (zfs_ace_t)); 276 } 277 } 278 279 static size_t 280 zfs_ace_fuid_abstract_size(void) 281 { 282 return (sizeof (zfs_ace_hdr_t)); 283 } 284 285 static int 286 zfs_ace_fuid_mask_off(void) 287 { 288 return (offsetof(zfs_ace_hdr_t, z_access_mask)); 289 } 290 291 static int 292 zfs_ace_fuid_data(void *acep, void **datap) 293 { 294 zfs_ace_t *zacep = acep; 295 zfs_object_ace_t *zobjp; 296 297 switch (zacep->z_hdr.z_type) { 298 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE: 299 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE: 300 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE: 301 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE: 302 zobjp = acep; 303 *datap = (caddr_t)zobjp + sizeof (zfs_ace_t); 304 return (sizeof (zfs_object_ace_t) - sizeof (zfs_ace_t)); 305 default: 306 *datap = NULL; 307 return (0); 308 } 309 } 310 311 static acl_ops_t zfs_acl_fuid_ops = { 312 zfs_ace_fuid_get_mask, 313 zfs_ace_fuid_set_mask, 314 zfs_ace_fuid_get_flags, 315 zfs_ace_fuid_set_flags, 316 zfs_ace_fuid_get_type, 317 zfs_ace_fuid_set_type, 318 zfs_ace_fuid_get_who, 319 zfs_ace_fuid_set_who, 320 zfs_ace_fuid_size, 321 zfs_ace_fuid_abstract_size, 322 zfs_ace_fuid_mask_off, 323 zfs_ace_fuid_data 324 }; 325 326 /* 327 * The following three functions are provided for compatibility with 328 * older ZPL version in order to determine if the file use to have 329 * an external ACL and what version of ACL previously existed on the 330 * file. Would really be nice to not need this, sigh. 331 */ 332 uint64_t 333 zfs_external_acl(znode_t *zp) 334 { 335 zfs_acl_phys_t acl_phys; 336 int error; 337 338 if (zp->z_is_sa) 339 return (0); 340 341 /* 342 * Need to deal with a potential 343 * race where zfs_sa_upgrade could cause 344 * z_isa_sa to change. 345 * 346 * If the lookup fails then the state of z_is_sa should have 347 * changed. 348 */ 349 350 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zp->z_zfsvfs), 351 &acl_phys, sizeof (acl_phys))) == 0) 352 return (acl_phys.z_acl_extern_obj); 353 else { 354 /* 355 * after upgrade the SA_ZPL_ZNODE_ACL should have been 356 * removed 357 */ 358 VERIFY(zp->z_is_sa && error == ENOENT); 359 return (0); 360 } 361 } 362 363 /* 364 * Determine size of ACL in bytes 365 * 366 * This is more complicated than it should be since we have to deal 367 * with old external ACLs. 368 */ 369 static int 370 zfs_acl_znode_info(znode_t *zp, int *aclsize, int *aclcount, 371 zfs_acl_phys_t *aclphys) 372 { 373 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 374 uint64_t acl_count; 375 int size; 376 int error; 377 378 ASSERT(MUTEX_HELD(&zp->z_acl_lock)); 379 if (zp->z_is_sa) { 380 if ((error = sa_size(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zfsvfs), 381 &size)) != 0) 382 return (error); 383 *aclsize = size; 384 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_COUNT(zfsvfs), 385 &acl_count, sizeof (acl_count))) != 0) 386 return (error); 387 *aclcount = acl_count; 388 } else { 389 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs), 390 aclphys, sizeof (*aclphys))) != 0) 391 return (error); 392 393 if (aclphys->z_acl_version == ZFS_ACL_VERSION_INITIAL) { 394 *aclsize = ZFS_ACL_SIZE(aclphys->z_acl_size); 395 *aclcount = aclphys->z_acl_size; 396 } else { 397 *aclsize = aclphys->z_acl_size; 398 *aclcount = aclphys->z_acl_count; 399 } 400 } 401 return (0); 402 } 403 404 int 405 zfs_znode_acl_version(znode_t *zp) 406 { 407 zfs_acl_phys_t acl_phys; 408 409 if (zp->z_is_sa) 410 return (ZFS_ACL_VERSION_FUID); 411 else { 412 int error; 413 414 /* 415 * Need to deal with a potential 416 * race where zfs_sa_upgrade could cause 417 * z_isa_sa to change. 418 * 419 * If the lookup fails then the state of z_is_sa should have 420 * changed. 421 */ 422 if ((error = sa_lookup(zp->z_sa_hdl, 423 SA_ZPL_ZNODE_ACL(zp->z_zfsvfs), 424 &acl_phys, sizeof (acl_phys))) == 0) 425 return (acl_phys.z_acl_version); 426 else { 427 /* 428 * After upgrade SA_ZPL_ZNODE_ACL should have 429 * been removed. 430 */ 431 VERIFY(zp->z_is_sa && error == ENOENT); 432 return (ZFS_ACL_VERSION_FUID); 433 } 434 } 435 } 436 437 static int 438 zfs_acl_version(int version) 439 { 440 if (version < ZPL_VERSION_FUID) 441 return (ZFS_ACL_VERSION_INITIAL); 442 else 443 return (ZFS_ACL_VERSION_FUID); 444 } 445 446 static int 447 zfs_acl_version_zp(znode_t *zp) 448 { 449 return (zfs_acl_version(zp->z_zfsvfs->z_version)); 450 } 451 452 zfs_acl_t * 453 zfs_acl_alloc(int vers) 454 { 455 zfs_acl_t *aclp; 456 457 aclp = kmem_zalloc(sizeof (zfs_acl_t), KM_SLEEP); 458 list_create(&aclp->z_acl, sizeof (zfs_acl_node_t), 459 offsetof(zfs_acl_node_t, z_next)); 460 aclp->z_version = vers; 461 if (vers == ZFS_ACL_VERSION_FUID) 462 aclp->z_ops = zfs_acl_fuid_ops; 463 else 464 aclp->z_ops = zfs_acl_v0_ops; 465 return (aclp); 466 } 467 468 zfs_acl_node_t * 469 zfs_acl_node_alloc(size_t bytes) 470 { 471 zfs_acl_node_t *aclnode; 472 473 aclnode = kmem_zalloc(sizeof (zfs_acl_node_t), KM_SLEEP); 474 if (bytes) { 475 aclnode->z_acldata = kmem_alloc(bytes, KM_SLEEP); 476 aclnode->z_allocdata = aclnode->z_acldata; 477 aclnode->z_allocsize = bytes; 478 aclnode->z_size = bytes; 479 } 480 481 return (aclnode); 482 } 483 484 static void 485 zfs_acl_node_free(zfs_acl_node_t *aclnode) 486 { 487 if (aclnode->z_allocsize) 488 kmem_free(aclnode->z_allocdata, aclnode->z_allocsize); 489 kmem_free(aclnode, sizeof (zfs_acl_node_t)); 490 } 491 492 static void 493 zfs_acl_release_nodes(zfs_acl_t *aclp) 494 { 495 zfs_acl_node_t *aclnode; 496 497 while (aclnode = list_head(&aclp->z_acl)) { 498 list_remove(&aclp->z_acl, aclnode); 499 zfs_acl_node_free(aclnode); 500 } 501 aclp->z_acl_count = 0; 502 aclp->z_acl_bytes = 0; 503 } 504 505 void 506 zfs_acl_free(zfs_acl_t *aclp) 507 { 508 zfs_acl_release_nodes(aclp); 509 list_destroy(&aclp->z_acl); 510 kmem_free(aclp, sizeof (zfs_acl_t)); 511 } 512 513 static boolean_t 514 zfs_acl_valid_ace_type(uint_t type, uint_t flags) 515 { 516 uint16_t entry_type; 517 518 switch (type) { 519 case ALLOW: 520 case DENY: 521 case ACE_SYSTEM_AUDIT_ACE_TYPE: 522 case ACE_SYSTEM_ALARM_ACE_TYPE: 523 entry_type = flags & ACE_TYPE_FLAGS; 524 return (entry_type == ACE_OWNER || 525 entry_type == OWNING_GROUP || 526 entry_type == ACE_EVERYONE || entry_type == 0 || 527 entry_type == ACE_IDENTIFIER_GROUP); 528 default: 529 if (type >= MIN_ACE_TYPE && type <= MAX_ACE_TYPE) 530 return (B_TRUE); 531 } 532 return (B_FALSE); 533 } 534 535 static boolean_t 536 zfs_ace_valid(vtype_t obj_type, zfs_acl_t *aclp, uint16_t type, uint16_t iflags) 537 { 538 /* 539 * first check type of entry 540 */ 541 542 if (!zfs_acl_valid_ace_type(type, iflags)) 543 return (B_FALSE); 544 545 switch (type) { 546 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE: 547 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE: 548 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE: 549 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE: 550 if (aclp->z_version < ZFS_ACL_VERSION_FUID) 551 return (B_FALSE); 552 aclp->z_hints |= ZFS_ACL_OBJ_ACE; 553 } 554 555 /* 556 * next check inheritance level flags 557 */ 558 559 if (obj_type == VDIR && 560 (iflags & (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE))) 561 aclp->z_hints |= ZFS_INHERIT_ACE; 562 563 if (iflags & (ACE_INHERIT_ONLY_ACE|ACE_NO_PROPAGATE_INHERIT_ACE)) { 564 if ((iflags & (ACE_FILE_INHERIT_ACE| 565 ACE_DIRECTORY_INHERIT_ACE)) == 0) { 566 return (B_FALSE); 567 } 568 } 569 570 return (B_TRUE); 571 } 572 573 static void * 574 zfs_acl_next_ace(zfs_acl_t *aclp, void *start, uint64_t *who, 575 uint32_t *access_mask, uint16_t *iflags, uint16_t *type) 576 { 577 zfs_acl_node_t *aclnode; 578 579 ASSERT(aclp); 580 581 if (start == NULL) { 582 aclnode = list_head(&aclp->z_acl); 583 if (aclnode == NULL) 584 return (NULL); 585 586 aclp->z_next_ace = aclnode->z_acldata; 587 aclp->z_curr_node = aclnode; 588 aclnode->z_ace_idx = 0; 589 } 590 591 aclnode = aclp->z_curr_node; 592 593 if (aclnode == NULL) 594 return (NULL); 595 596 if (aclnode->z_ace_idx >= aclnode->z_ace_count) { 597 aclnode = list_next(&aclp->z_acl, aclnode); 598 if (aclnode == NULL) 599 return (NULL); 600 else { 601 aclp->z_curr_node = aclnode; 602 aclnode->z_ace_idx = 0; 603 aclp->z_next_ace = aclnode->z_acldata; 604 } 605 } 606 607 if (aclnode->z_ace_idx < aclnode->z_ace_count) { 608 void *acep = aclp->z_next_ace; 609 size_t ace_size; 610 611 /* 612 * Make sure we don't overstep our bounds 613 */ 614 ace_size = aclp->z_ops.ace_size(acep); 615 616 if (((caddr_t)acep + ace_size) > 617 ((caddr_t)aclnode->z_acldata + aclnode->z_size)) { 618 return (NULL); 619 } 620 621 *iflags = aclp->z_ops.ace_flags_get(acep); 622 *type = aclp->z_ops.ace_type_get(acep); 623 *access_mask = aclp->z_ops.ace_mask_get(acep); 624 *who = aclp->z_ops.ace_who_get(acep); 625 aclp->z_next_ace = (caddr_t)aclp->z_next_ace + ace_size; 626 aclnode->z_ace_idx++; 627 628 return ((void *)acep); 629 } 630 return (NULL); 631 } 632 633 /*ARGSUSED*/ 634 static uint64_t 635 zfs_ace_walk(void *datap, uint64_t cookie, int aclcnt, 636 uint16_t *flags, uint16_t *type, uint32_t *mask) 637 { 638 zfs_acl_t *aclp = datap; 639 zfs_ace_hdr_t *acep = (zfs_ace_hdr_t *)(uintptr_t)cookie; 640 uint64_t who; 641 642 acep = zfs_acl_next_ace(aclp, acep, &who, mask, 643 flags, type); 644 return ((uint64_t)(uintptr_t)acep); 645 } 646 647 static zfs_acl_node_t * 648 zfs_acl_curr_node(zfs_acl_t *aclp) 649 { 650 ASSERT(aclp->z_curr_node); 651 return (aclp->z_curr_node); 652 } 653 654 /* 655 * Copy ACE to internal ZFS format. 656 * While processing the ACL each ACE will be validated for correctness. 657 * ACE FUIDs will be created later. 658 */ 659 int 660 zfs_copy_ace_2_fuid(zfsvfs_t *zfsvfs, vtype_t obj_type, zfs_acl_t *aclp, 661 void *datap, zfs_ace_t *z_acl, uint64_t aclcnt, size_t *size, 662 zfs_fuid_info_t **fuidp, cred_t *cr) 663 { 664 int i; 665 uint16_t entry_type; 666 zfs_ace_t *aceptr = z_acl; 667 ace_t *acep = datap; 668 zfs_object_ace_t *zobjacep; 669 ace_object_t *aceobjp; 670 671 for (i = 0; i != aclcnt; i++) { 672 aceptr->z_hdr.z_access_mask = acep->a_access_mask; 673 aceptr->z_hdr.z_flags = acep->a_flags; 674 aceptr->z_hdr.z_type = acep->a_type; 675 entry_type = aceptr->z_hdr.z_flags & ACE_TYPE_FLAGS; 676 if (entry_type != ACE_OWNER && entry_type != OWNING_GROUP && 677 entry_type != ACE_EVERYONE) { 678 aceptr->z_fuid = zfs_fuid_create(zfsvfs, acep->a_who, 679 cr, (entry_type == 0) ? 680 ZFS_ACE_USER : ZFS_ACE_GROUP, fuidp); 681 } 682 683 /* 684 * Make sure ACE is valid 685 */ 686 if (zfs_ace_valid(obj_type, aclp, aceptr->z_hdr.z_type, 687 aceptr->z_hdr.z_flags) != B_TRUE) 688 return (SET_ERROR(EINVAL)); 689 690 switch (acep->a_type) { 691 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE: 692 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE: 693 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE: 694 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE: 695 zobjacep = (zfs_object_ace_t *)aceptr; 696 aceobjp = (ace_object_t *)acep; 697 698 bcopy(aceobjp->a_obj_type, zobjacep->z_object_type, 699 sizeof (aceobjp->a_obj_type)); 700 bcopy(aceobjp->a_inherit_obj_type, 701 zobjacep->z_inherit_type, 702 sizeof (aceobjp->a_inherit_obj_type)); 703 acep = (ace_t *)((caddr_t)acep + sizeof (ace_object_t)); 704 break; 705 default: 706 acep = (ace_t *)((caddr_t)acep + sizeof (ace_t)); 707 } 708 709 aceptr = (zfs_ace_t *)((caddr_t)aceptr + 710 aclp->z_ops.ace_size(aceptr)); 711 } 712 713 *size = (caddr_t)aceptr - (caddr_t)z_acl; 714 715 return (0); 716 } 717 718 /* 719 * Copy ZFS ACEs to fixed size ace_t layout 720 */ 721 static void 722 zfs_copy_fuid_2_ace(zfsvfs_t *zfsvfs, zfs_acl_t *aclp, cred_t *cr, 723 void *datap, int filter) 724 { 725 uint64_t who; 726 uint32_t access_mask; 727 uint16_t iflags, type; 728 zfs_ace_hdr_t *zacep = NULL; 729 ace_t *acep = datap; 730 ace_object_t *objacep; 731 zfs_object_ace_t *zobjacep; 732 size_t ace_size; 733 uint16_t entry_type; 734 735 while (zacep = zfs_acl_next_ace(aclp, zacep, 736 &who, &access_mask, &iflags, &type)) { 737 738 switch (type) { 739 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE: 740 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE: 741 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE: 742 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE: 743 if (filter) { 744 continue; 745 } 746 zobjacep = (zfs_object_ace_t *)zacep; 747 objacep = (ace_object_t *)acep; 748 bcopy(zobjacep->z_object_type, 749 objacep->a_obj_type, 750 sizeof (zobjacep->z_object_type)); 751 bcopy(zobjacep->z_inherit_type, 752 objacep->a_inherit_obj_type, 753 sizeof (zobjacep->z_inherit_type)); 754 ace_size = sizeof (ace_object_t); 755 break; 756 default: 757 ace_size = sizeof (ace_t); 758 break; 759 } 760 761 entry_type = (iflags & ACE_TYPE_FLAGS); 762 if ((entry_type != ACE_OWNER && 763 entry_type != OWNING_GROUP && 764 entry_type != ACE_EVERYONE)) { 765 acep->a_who = zfs_fuid_map_id(zfsvfs, who, 766 cr, (entry_type & ACE_IDENTIFIER_GROUP) ? 767 ZFS_ACE_GROUP : ZFS_ACE_USER); 768 } else { 769 acep->a_who = (uid_t)(int64_t)who; 770 } 771 acep->a_access_mask = access_mask; 772 acep->a_flags = iflags; 773 acep->a_type = type; 774 acep = (ace_t *)((caddr_t)acep + ace_size); 775 } 776 } 777 778 static int 779 zfs_copy_ace_2_oldace(vtype_t obj_type, zfs_acl_t *aclp, ace_t *acep, 780 zfs_oldace_t *z_acl, int aclcnt, size_t *size) 781 { 782 int i; 783 zfs_oldace_t *aceptr = z_acl; 784 785 for (i = 0; i != aclcnt; i++, aceptr++) { 786 aceptr->z_access_mask = acep[i].a_access_mask; 787 aceptr->z_type = acep[i].a_type; 788 aceptr->z_flags = acep[i].a_flags; 789 aceptr->z_fuid = acep[i].a_who; 790 /* 791 * Make sure ACE is valid 792 */ 793 if (zfs_ace_valid(obj_type, aclp, aceptr->z_type, 794 aceptr->z_flags) != B_TRUE) 795 return (SET_ERROR(EINVAL)); 796 } 797 *size = (caddr_t)aceptr - (caddr_t)z_acl; 798 return (0); 799 } 800 801 /* 802 * convert old ACL format to new 803 */ 804 void 805 zfs_acl_xform(znode_t *zp, zfs_acl_t *aclp, cred_t *cr) 806 { 807 zfs_oldace_t *oldaclp; 808 int i; 809 uint16_t type, iflags; 810 uint32_t access_mask; 811 uint64_t who; 812 void *cookie = NULL; 813 zfs_acl_node_t *newaclnode; 814 815 ASSERT(aclp->z_version == ZFS_ACL_VERSION_INITIAL); 816 /* 817 * First create the ACE in a contiguous piece of memory 818 * for zfs_copy_ace_2_fuid(). 819 * 820 * We only convert an ACL once, so this won't happen 821 * everytime. 822 */ 823 oldaclp = kmem_alloc(sizeof (zfs_oldace_t) * aclp->z_acl_count, 824 KM_SLEEP); 825 i = 0; 826 while (cookie = zfs_acl_next_ace(aclp, cookie, &who, 827 &access_mask, &iflags, &type)) { 828 oldaclp[i].z_flags = iflags; 829 oldaclp[i].z_type = type; 830 oldaclp[i].z_fuid = who; 831 oldaclp[i++].z_access_mask = access_mask; 832 } 833 834 newaclnode = zfs_acl_node_alloc(aclp->z_acl_count * 835 sizeof (zfs_object_ace_t)); 836 aclp->z_ops = zfs_acl_fuid_ops; 837 VERIFY(zfs_copy_ace_2_fuid(zp->z_zfsvfs, ZTOV(zp)->v_type, aclp, 838 oldaclp, newaclnode->z_acldata, aclp->z_acl_count, 839 &newaclnode->z_size, NULL, cr) == 0); 840 newaclnode->z_ace_count = aclp->z_acl_count; 841 aclp->z_version = ZFS_ACL_VERSION; 842 kmem_free(oldaclp, aclp->z_acl_count * sizeof (zfs_oldace_t)); 843 844 /* 845 * Release all previous ACL nodes 846 */ 847 848 zfs_acl_release_nodes(aclp); 849 850 list_insert_head(&aclp->z_acl, newaclnode); 851 852 aclp->z_acl_bytes = newaclnode->z_size; 853 aclp->z_acl_count = newaclnode->z_ace_count; 854 855 } 856 857 /* 858 * Convert unix access mask to v4 access mask 859 */ 860 static uint32_t 861 zfs_unix_to_v4(uint32_t access_mask) 862 { 863 uint32_t new_mask = 0; 864 865 if (access_mask & S_IXOTH) 866 new_mask |= ACE_EXECUTE; 867 if (access_mask & S_IWOTH) 868 new_mask |= ACE_WRITE_DATA; 869 if (access_mask & S_IROTH) 870 new_mask |= ACE_READ_DATA; 871 return (new_mask); 872 } 873 874 static void 875 zfs_set_ace(zfs_acl_t *aclp, void *acep, uint32_t access_mask, 876 uint16_t access_type, uint64_t fuid, uint16_t entry_type) 877 { 878 uint16_t type = entry_type & ACE_TYPE_FLAGS; 879 880 aclp->z_ops.ace_mask_set(acep, access_mask); 881 aclp->z_ops.ace_type_set(acep, access_type); 882 aclp->z_ops.ace_flags_set(acep, entry_type); 883 if ((type != ACE_OWNER && type != OWNING_GROUP && 884 type != ACE_EVERYONE)) 885 aclp->z_ops.ace_who_set(acep, fuid); 886 } 887 888 /* 889 * Determine mode of file based on ACL. 890 */ 891 uint64_t 892 zfs_mode_compute(uint64_t fmode, zfs_acl_t *aclp, 893 uint64_t *pflags, uint64_t fuid, uint64_t fgid) 894 { 895 int entry_type; 896 mode_t mode; 897 mode_t seen = 0; 898 zfs_ace_hdr_t *acep = NULL; 899 uint64_t who; 900 uint16_t iflags, type; 901 uint32_t access_mask; 902 boolean_t an_exec_denied = B_FALSE; 903 904 mode = (fmode & (S_IFMT | S_ISUID | S_ISGID | S_ISVTX)); 905 906 while (acep = zfs_acl_next_ace(aclp, acep, &who, 907 &access_mask, &iflags, &type)) { 908 909 if (!zfs_acl_valid_ace_type(type, iflags)) 910 continue; 911 912 entry_type = (iflags & ACE_TYPE_FLAGS); 913 914 /* 915 * Skip over any inherit_only ACEs 916 */ 917 if (iflags & ACE_INHERIT_ONLY_ACE) 918 continue; 919 920 if (entry_type == ACE_OWNER || (entry_type == 0 && 921 who == fuid)) { 922 if ((access_mask & ACE_READ_DATA) && 923 (!(seen & S_IRUSR))) { 924 seen |= S_IRUSR; 925 if (type == ALLOW) { 926 mode |= S_IRUSR; 927 } 928 } 929 if ((access_mask & ACE_WRITE_DATA) && 930 (!(seen & S_IWUSR))) { 931 seen |= S_IWUSR; 932 if (type == ALLOW) { 933 mode |= S_IWUSR; 934 } 935 } 936 if ((access_mask & ACE_EXECUTE) && 937 (!(seen & S_IXUSR))) { 938 seen |= S_IXUSR; 939 if (type == ALLOW) { 940 mode |= S_IXUSR; 941 } 942 } 943 } else if (entry_type == OWNING_GROUP || 944 (entry_type == ACE_IDENTIFIER_GROUP && who == fgid)) { 945 if ((access_mask & ACE_READ_DATA) && 946 (!(seen & S_IRGRP))) { 947 seen |= S_IRGRP; 948 if (type == ALLOW) { 949 mode |= S_IRGRP; 950 } 951 } 952 if ((access_mask & ACE_WRITE_DATA) && 953 (!(seen & S_IWGRP))) { 954 seen |= S_IWGRP; 955 if (type == ALLOW) { 956 mode |= S_IWGRP; 957 } 958 } 959 if ((access_mask & ACE_EXECUTE) && 960 (!(seen & S_IXGRP))) { 961 seen |= S_IXGRP; 962 if (type == ALLOW) { 963 mode |= S_IXGRP; 964 } 965 } 966 } else if (entry_type == ACE_EVERYONE) { 967 if ((access_mask & ACE_READ_DATA)) { 968 if (!(seen & S_IRUSR)) { 969 seen |= S_IRUSR; 970 if (type == ALLOW) { 971 mode |= S_IRUSR; 972 } 973 } 974 if (!(seen & S_IRGRP)) { 975 seen |= S_IRGRP; 976 if (type == ALLOW) { 977 mode |= S_IRGRP; 978 } 979 } 980 if (!(seen & S_IROTH)) { 981 seen |= S_IROTH; 982 if (type == ALLOW) { 983 mode |= S_IROTH; 984 } 985 } 986 } 987 if ((access_mask & ACE_WRITE_DATA)) { 988 if (!(seen & S_IWUSR)) { 989 seen |= S_IWUSR; 990 if (type == ALLOW) { 991 mode |= S_IWUSR; 992 } 993 } 994 if (!(seen & S_IWGRP)) { 995 seen |= S_IWGRP; 996 if (type == ALLOW) { 997 mode |= S_IWGRP; 998 } 999 } 1000 if (!(seen & S_IWOTH)) { 1001 seen |= S_IWOTH; 1002 if (type == ALLOW) { 1003 mode |= S_IWOTH; 1004 } 1005 } 1006 } 1007 if ((access_mask & ACE_EXECUTE)) { 1008 if (!(seen & S_IXUSR)) { 1009 seen |= S_IXUSR; 1010 if (type == ALLOW) { 1011 mode |= S_IXUSR; 1012 } 1013 } 1014 if (!(seen & S_IXGRP)) { 1015 seen |= S_IXGRP; 1016 if (type == ALLOW) { 1017 mode |= S_IXGRP; 1018 } 1019 } 1020 if (!(seen & S_IXOTH)) { 1021 seen |= S_IXOTH; 1022 if (type == ALLOW) { 1023 mode |= S_IXOTH; 1024 } 1025 } 1026 } 1027 } else { 1028 /* 1029 * Only care if this IDENTIFIER_GROUP or 1030 * USER ACE denies execute access to someone, 1031 * mode is not affected 1032 */ 1033 if ((access_mask & ACE_EXECUTE) && type == DENY) 1034 an_exec_denied = B_TRUE; 1035 } 1036 } 1037 1038 /* 1039 * Failure to allow is effectively a deny, so execute permission 1040 * is denied if it was never mentioned or if we explicitly 1041 * weren't allowed it. 1042 */ 1043 if (!an_exec_denied && 1044 ((seen & ALL_MODE_EXECS) != ALL_MODE_EXECS || 1045 (mode & ALL_MODE_EXECS) != ALL_MODE_EXECS)) 1046 an_exec_denied = B_TRUE; 1047 1048 if (an_exec_denied) 1049 *pflags &= ~ZFS_NO_EXECS_DENIED; 1050 else 1051 *pflags |= ZFS_NO_EXECS_DENIED; 1052 1053 return (mode); 1054 } 1055 1056 /* 1057 * Read an external acl object. If the intent is to modify, always 1058 * create a new acl and leave any cached acl in place. 1059 */ 1060 static int 1061 zfs_acl_node_read(znode_t *zp, boolean_t have_lock, zfs_acl_t **aclpp, 1062 boolean_t will_modify) 1063 { 1064 zfs_acl_t *aclp; 1065 int aclsize; 1066 int acl_count; 1067 zfs_acl_node_t *aclnode; 1068 zfs_acl_phys_t znode_acl; 1069 int version; 1070 int error; 1071 boolean_t drop_lock = B_FALSE; 1072 1073 ASSERT(MUTEX_HELD(&zp->z_acl_lock)); 1074 1075 if (zp->z_acl_cached && !will_modify) { 1076 *aclpp = zp->z_acl_cached; 1077 return (0); 1078 } 1079 1080 /* 1081 * close race where znode could be upgrade while trying to 1082 * read the znode attributes. 1083 * 1084 * But this could only happen if the file isn't already an SA 1085 * znode 1086 */ 1087 if (!zp->z_is_sa && !have_lock) { 1088 mutex_enter(&zp->z_lock); 1089 drop_lock = B_TRUE; 1090 } 1091 version = zfs_znode_acl_version(zp); 1092 1093 if ((error = zfs_acl_znode_info(zp, &aclsize, 1094 &acl_count, &znode_acl)) != 0) { 1095 goto done; 1096 } 1097 1098 aclp = zfs_acl_alloc(version); 1099 1100 aclp->z_acl_count = acl_count; 1101 aclp->z_acl_bytes = aclsize; 1102 1103 aclnode = zfs_acl_node_alloc(aclsize); 1104 aclnode->z_ace_count = aclp->z_acl_count; 1105 aclnode->z_size = aclsize; 1106 1107 if (!zp->z_is_sa) { 1108 if (znode_acl.z_acl_extern_obj) { 1109 error = dmu_read(zp->z_zfsvfs->z_os, 1110 znode_acl.z_acl_extern_obj, 0, aclnode->z_size, 1111 aclnode->z_acldata, DMU_READ_PREFETCH); 1112 } else { 1113 bcopy(znode_acl.z_ace_data, aclnode->z_acldata, 1114 aclnode->z_size); 1115 } 1116 } else { 1117 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zp->z_zfsvfs), 1118 aclnode->z_acldata, aclnode->z_size); 1119 } 1120 1121 if (error != 0) { 1122 zfs_acl_free(aclp); 1123 zfs_acl_node_free(aclnode); 1124 /* convert checksum errors into IO errors */ 1125 if (error == ECKSUM) 1126 error = SET_ERROR(EIO); 1127 goto done; 1128 } 1129 1130 list_insert_head(&aclp->z_acl, aclnode); 1131 1132 *aclpp = aclp; 1133 if (!will_modify) 1134 zp->z_acl_cached = aclp; 1135 done: 1136 if (drop_lock) 1137 mutex_exit(&zp->z_lock); 1138 return (error); 1139 } 1140 1141 /*ARGSUSED*/ 1142 void 1143 zfs_acl_data_locator(void **dataptr, uint32_t *length, uint32_t buflen, 1144 boolean_t start, void *userdata) 1145 { 1146 zfs_acl_locator_cb_t *cb = (zfs_acl_locator_cb_t *)userdata; 1147 1148 if (start) { 1149 cb->cb_acl_node = list_head(&cb->cb_aclp->z_acl); 1150 } else { 1151 cb->cb_acl_node = list_next(&cb->cb_aclp->z_acl, 1152 cb->cb_acl_node); 1153 } 1154 *dataptr = cb->cb_acl_node->z_acldata; 1155 *length = cb->cb_acl_node->z_size; 1156 } 1157 1158 int 1159 zfs_acl_chown_setattr(znode_t *zp) 1160 { 1161 int error; 1162 zfs_acl_t *aclp; 1163 1164 ASSERT(MUTEX_HELD(&zp->z_lock)); 1165 ASSERT(MUTEX_HELD(&zp->z_acl_lock)); 1166 1167 if ((error = zfs_acl_node_read(zp, B_TRUE, &aclp, B_FALSE)) == 0) 1168 zp->z_mode = zfs_mode_compute(zp->z_mode, aclp, 1169 &zp->z_pflags, zp->z_uid, zp->z_gid); 1170 return (error); 1171 } 1172 1173 /* 1174 * common code for setting ACLs. 1175 * 1176 * This function is called from zfs_mode_update, zfs_perm_init, and zfs_setacl. 1177 * zfs_setacl passes a non-NULL inherit pointer (ihp) to indicate that it's 1178 * already checked the acl and knows whether to inherit. 1179 */ 1180 int 1181 zfs_aclset_common(znode_t *zp, zfs_acl_t *aclp, cred_t *cr, dmu_tx_t *tx) 1182 { 1183 int error; 1184 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1185 dmu_object_type_t otype; 1186 zfs_acl_locator_cb_t locate = { 0 }; 1187 uint64_t mode; 1188 sa_bulk_attr_t bulk[5]; 1189 uint64_t ctime[2]; 1190 int count = 0; 1191 1192 mode = zp->z_mode; 1193 1194 mode = zfs_mode_compute(mode, aclp, &zp->z_pflags, 1195 zp->z_uid, zp->z_gid); 1196 1197 zp->z_mode = mode; 1198 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1199 &mode, sizeof (mode)); 1200 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1201 &zp->z_pflags, sizeof (zp->z_pflags)); 1202 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 1203 &ctime, sizeof (ctime)); 1204 1205 if (zp->z_acl_cached) { 1206 zfs_acl_free(zp->z_acl_cached); 1207 zp->z_acl_cached = NULL; 1208 } 1209 1210 /* 1211 * Upgrade needed? 1212 */ 1213 if (!zfsvfs->z_use_fuids) { 1214 otype = DMU_OT_OLDACL; 1215 } else { 1216 if ((aclp->z_version == ZFS_ACL_VERSION_INITIAL) && 1217 (zfsvfs->z_version >= ZPL_VERSION_FUID)) 1218 zfs_acl_xform(zp, aclp, cr); 1219 ASSERT(aclp->z_version >= ZFS_ACL_VERSION_FUID); 1220 otype = DMU_OT_ACL; 1221 } 1222 1223 /* 1224 * Arrgh, we have to handle old on disk format 1225 * as well as newer (preferred) SA format. 1226 */ 1227 1228 if (zp->z_is_sa) { /* the easy case, just update the ACL attribute */ 1229 locate.cb_aclp = aclp; 1230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_ACES(zfsvfs), 1231 zfs_acl_data_locator, &locate, aclp->z_acl_bytes); 1232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_COUNT(zfsvfs), 1233 NULL, &aclp->z_acl_count, sizeof (uint64_t)); 1234 } else { /* Painful legacy way */ 1235 zfs_acl_node_t *aclnode; 1236 uint64_t off = 0; 1237 zfs_acl_phys_t acl_phys; 1238 uint64_t aoid; 1239 1240 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs), 1241 &acl_phys, sizeof (acl_phys))) != 0) 1242 return (error); 1243 1244 aoid = acl_phys.z_acl_extern_obj; 1245 1246 if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1247 /* 1248 * If ACL was previously external and we are now 1249 * converting to new ACL format then release old 1250 * ACL object and create a new one. 1251 */ 1252 if (aoid && 1253 aclp->z_version != acl_phys.z_acl_version) { 1254 error = dmu_object_free(zfsvfs->z_os, aoid, tx); 1255 if (error) 1256 return (error); 1257 aoid = 0; 1258 } 1259 if (aoid == 0) { 1260 aoid = dmu_object_alloc(zfsvfs->z_os, 1261 otype, aclp->z_acl_bytes, 1262 otype == DMU_OT_ACL ? 1263 DMU_OT_SYSACL : DMU_OT_NONE, 1264 otype == DMU_OT_ACL ? 1265 DN_MAX_BONUSLEN : 0, tx); 1266 } else { 1267 (void) dmu_object_set_blocksize(zfsvfs->z_os, 1268 aoid, aclp->z_acl_bytes, 0, tx); 1269 } 1270 acl_phys.z_acl_extern_obj = aoid; 1271 for (aclnode = list_head(&aclp->z_acl); aclnode; 1272 aclnode = list_next(&aclp->z_acl, aclnode)) { 1273 if (aclnode->z_ace_count == 0) 1274 continue; 1275 dmu_write(zfsvfs->z_os, aoid, off, 1276 aclnode->z_size, aclnode->z_acldata, tx); 1277 off += aclnode->z_size; 1278 } 1279 } else { 1280 void *start = acl_phys.z_ace_data; 1281 /* 1282 * Migrating back embedded? 1283 */ 1284 if (acl_phys.z_acl_extern_obj) { 1285 error = dmu_object_free(zfsvfs->z_os, 1286 acl_phys.z_acl_extern_obj, tx); 1287 if (error) 1288 return (error); 1289 acl_phys.z_acl_extern_obj = 0; 1290 } 1291 1292 for (aclnode = list_head(&aclp->z_acl); aclnode; 1293 aclnode = list_next(&aclp->z_acl, aclnode)) { 1294 if (aclnode->z_ace_count == 0) 1295 continue; 1296 bcopy(aclnode->z_acldata, start, 1297 aclnode->z_size); 1298 start = (caddr_t)start + aclnode->z_size; 1299 } 1300 } 1301 /* 1302 * If Old version then swap count/bytes to match old 1303 * layout of znode_acl_phys_t. 1304 */ 1305 if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) { 1306 acl_phys.z_acl_size = aclp->z_acl_count; 1307 acl_phys.z_acl_count = aclp->z_acl_bytes; 1308 } else { 1309 acl_phys.z_acl_size = aclp->z_acl_bytes; 1310 acl_phys.z_acl_count = aclp->z_acl_count; 1311 } 1312 acl_phys.z_acl_version = aclp->z_version; 1313 1314 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 1315 &acl_phys, sizeof (acl_phys)); 1316 } 1317 1318 /* 1319 * Replace ACL wide bits, but first clear them. 1320 */ 1321 zp->z_pflags &= ~ZFS_ACL_WIDE_FLAGS; 1322 1323 zp->z_pflags |= aclp->z_hints; 1324 1325 if (ace_trivial_common(aclp, 0, zfs_ace_walk) == 0) 1326 zp->z_pflags |= ZFS_ACL_TRIVIAL; 1327 1328 zfs_tstamp_update_setup(zp, STATE_CHANGED, NULL, ctime, B_TRUE); 1329 return (sa_bulk_update(zp->z_sa_hdl, bulk, count, tx)); 1330 } 1331 1332 static void 1333 zfs_acl_chmod(vtype_t vtype, uint64_t mode, boolean_t split, boolean_t trim, 1334 zfs_acl_t *aclp) 1335 { 1336 void *acep = NULL; 1337 uint64_t who; 1338 int new_count, new_bytes; 1339 int ace_size; 1340 int entry_type; 1341 uint16_t iflags, type; 1342 uint32_t access_mask; 1343 zfs_acl_node_t *newnode; 1344 size_t abstract_size = aclp->z_ops.ace_abstract_size(); 1345 void *zacep; 1346 boolean_t isdir; 1347 trivial_acl_t masks; 1348 1349 new_count = new_bytes = 0; 1350 1351 isdir = (vtype == VDIR); 1352 1353 acl_trivial_access_masks((mode_t)mode, isdir, &masks); 1354 1355 newnode = zfs_acl_node_alloc((abstract_size * 6) + aclp->z_acl_bytes); 1356 1357 zacep = newnode->z_acldata; 1358 if (masks.allow0) { 1359 zfs_set_ace(aclp, zacep, masks.allow0, ALLOW, -1, ACE_OWNER); 1360 zacep = (void *)((uintptr_t)zacep + abstract_size); 1361 new_count++; 1362 new_bytes += abstract_size; 1363 } 1364 if (masks.deny1) { 1365 zfs_set_ace(aclp, zacep, masks.deny1, DENY, -1, ACE_OWNER); 1366 zacep = (void *)((uintptr_t)zacep + abstract_size); 1367 new_count++; 1368 new_bytes += abstract_size; 1369 } 1370 if (masks.deny2) { 1371 zfs_set_ace(aclp, zacep, masks.deny2, DENY, -1, OWNING_GROUP); 1372 zacep = (void *)((uintptr_t)zacep + abstract_size); 1373 new_count++; 1374 new_bytes += abstract_size; 1375 } 1376 1377 while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask, 1378 &iflags, &type)) { 1379 entry_type = (iflags & ACE_TYPE_FLAGS); 1380 /* 1381 * ACEs used to represent the file mode may be divided 1382 * into an equivalent pair of inherit-only and regular 1383 * ACEs, if they are inheritable. 1384 * Skip regular ACEs, which are replaced by the new mode. 1385 */ 1386 if (split && (entry_type == ACE_OWNER || 1387 entry_type == OWNING_GROUP || 1388 entry_type == ACE_EVERYONE)) { 1389 if (!isdir || !(iflags & 1390 (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE))) 1391 continue; 1392 /* 1393 * We preserve owner@, group@, or @everyone 1394 * permissions, if they are inheritable, by 1395 * copying them to inherit_only ACEs. This 1396 * prevents inheritable permissions from being 1397 * altered along with the file mode. 1398 */ 1399 iflags |= ACE_INHERIT_ONLY_ACE; 1400 } 1401 1402 /* 1403 * If this ACL has any inheritable ACEs, mark that in 1404 * the hints (which are later masked into the pflags) 1405 * so create knows to do inheritance. 1406 */ 1407 if (isdir && (iflags & 1408 (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE))) 1409 aclp->z_hints |= ZFS_INHERIT_ACE; 1410 1411 if ((type != ALLOW && type != DENY) || 1412 (iflags & ACE_INHERIT_ONLY_ACE)) { 1413 switch (type) { 1414 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE: 1415 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE: 1416 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE: 1417 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE: 1418 aclp->z_hints |= ZFS_ACL_OBJ_ACE; 1419 break; 1420 } 1421 } else { 1422 /* 1423 * Limit permissions granted by ACEs to be no greater 1424 * than permissions of the requested group mode. 1425 * Applies when the "aclmode" property is set to 1426 * "groupmask". 1427 */ 1428 if ((type == ALLOW) && trim) 1429 access_mask &= masks.group; 1430 } 1431 zfs_set_ace(aclp, zacep, access_mask, type, who, iflags); 1432 ace_size = aclp->z_ops.ace_size(acep); 1433 zacep = (void *)((uintptr_t)zacep + ace_size); 1434 new_count++; 1435 new_bytes += ace_size; 1436 } 1437 zfs_set_ace(aclp, zacep, masks.owner, ALLOW, -1, ACE_OWNER); 1438 zacep = (void *)((uintptr_t)zacep + abstract_size); 1439 zfs_set_ace(aclp, zacep, masks.group, ALLOW, -1, OWNING_GROUP); 1440 zacep = (void *)((uintptr_t)zacep + abstract_size); 1441 zfs_set_ace(aclp, zacep, masks.everyone, ALLOW, -1, ACE_EVERYONE); 1442 1443 new_count += 3; 1444 new_bytes += abstract_size * 3; 1445 zfs_acl_release_nodes(aclp); 1446 aclp->z_acl_count = new_count; 1447 aclp->z_acl_bytes = new_bytes; 1448 newnode->z_ace_count = new_count; 1449 newnode->z_size = new_bytes; 1450 list_insert_tail(&aclp->z_acl, newnode); 1451 } 1452 1453 int 1454 zfs_acl_chmod_setattr(znode_t *zp, zfs_acl_t **aclp, uint64_t mode) 1455 { 1456 int error = 0; 1457 1458 mutex_enter(&zp->z_acl_lock); 1459 mutex_enter(&zp->z_lock); 1460 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_DISCARD) 1461 *aclp = zfs_acl_alloc(zfs_acl_version_zp(zp)); 1462 else 1463 error = zfs_acl_node_read(zp, B_TRUE, aclp, B_TRUE); 1464 1465 if (error == 0) { 1466 (*aclp)->z_hints = zp->z_pflags & V4_ACL_WIDE_FLAGS; 1467 zfs_acl_chmod(ZTOV(zp)->v_type, mode, B_TRUE, 1468 (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK), *aclp); 1469 } 1470 mutex_exit(&zp->z_lock); 1471 mutex_exit(&zp->z_acl_lock); 1472 1473 return (error); 1474 } 1475 1476 /* 1477 * Should ACE be inherited? 1478 */ 1479 static int 1480 zfs_ace_can_use(vtype_t vtype, uint16_t acep_flags) 1481 { 1482 int iflags = (acep_flags & 0xf); 1483 1484 if ((vtype == VDIR) && (iflags & ACE_DIRECTORY_INHERIT_ACE)) 1485 return (1); 1486 else if (iflags & ACE_FILE_INHERIT_ACE) 1487 return (!((vtype == VDIR) && 1488 (iflags & ACE_NO_PROPAGATE_INHERIT_ACE))); 1489 return (0); 1490 } 1491 1492 /* 1493 * inherit inheritable ACEs from parent 1494 */ 1495 static zfs_acl_t * 1496 zfs_acl_inherit(zfsvfs_t *zfsvfs, vtype_t vtype, zfs_acl_t *paclp, 1497 uint64_t mode) 1498 { 1499 void *pacep = NULL; 1500 void *acep; 1501 zfs_acl_node_t *aclnode; 1502 zfs_acl_t *aclp = NULL; 1503 uint64_t who; 1504 uint32_t access_mask; 1505 uint16_t iflags, newflags, type; 1506 size_t ace_size; 1507 void *data1, *data2; 1508 size_t data1sz, data2sz; 1509 uint_t aclinherit; 1510 boolean_t isdir = (vtype == VDIR); 1511 1512 aclp = zfs_acl_alloc(paclp->z_version); 1513 aclinherit = zfsvfs->z_acl_inherit; 1514 if (aclinherit == ZFS_ACL_DISCARD || vtype == VLNK) 1515 return (aclp); 1516 1517 while (pacep = zfs_acl_next_ace(paclp, pacep, &who, 1518 &access_mask, &iflags, &type)) { 1519 1520 /* 1521 * don't inherit bogus ACEs 1522 */ 1523 if (!zfs_acl_valid_ace_type(type, iflags)) 1524 continue; 1525 1526 /* 1527 * Check if ACE is inheritable by this vnode 1528 */ 1529 if ((aclinherit == ZFS_ACL_NOALLOW && type == ALLOW) || 1530 !zfs_ace_can_use(vtype, iflags)) 1531 continue; 1532 1533 /* 1534 * Strip inherited execute permission from file if 1535 * not in mode 1536 */ 1537 if (aclinherit == ZFS_ACL_PASSTHROUGH_X && type == ALLOW && 1538 !isdir && ((mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)) { 1539 access_mask &= ~ACE_EXECUTE; 1540 } 1541 1542 /* 1543 * Strip write_acl and write_owner from permissions 1544 * when inheriting an ACE 1545 */ 1546 if (aclinherit == ZFS_ACL_RESTRICTED && type == ALLOW) { 1547 access_mask &= ~RESTRICTED_CLEAR; 1548 } 1549 1550 ace_size = aclp->z_ops.ace_size(pacep); 1551 aclnode = zfs_acl_node_alloc(ace_size); 1552 list_insert_tail(&aclp->z_acl, aclnode); 1553 acep = aclnode->z_acldata; 1554 1555 zfs_set_ace(aclp, acep, access_mask, type, 1556 who, iflags|ACE_INHERITED_ACE); 1557 1558 /* 1559 * Copy special opaque data if any 1560 */ 1561 if ((data1sz = paclp->z_ops.ace_data(pacep, &data1)) != 0) { 1562 VERIFY((data2sz = aclp->z_ops.ace_data(acep, 1563 &data2)) == data1sz); 1564 bcopy(data1, data2, data2sz); 1565 } 1566 1567 aclp->z_acl_count++; 1568 aclnode->z_ace_count++; 1569 aclp->z_acl_bytes += aclnode->z_size; 1570 newflags = aclp->z_ops.ace_flags_get(acep); 1571 1572 /* 1573 * If ACE is not to be inherited further, or if the vnode is 1574 * not a directory, remove all inheritance flags 1575 */ 1576 if (!isdir || (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)) { 1577 newflags &= ~ALL_INHERIT; 1578 aclp->z_ops.ace_flags_set(acep, 1579 newflags|ACE_INHERITED_ACE); 1580 continue; 1581 } 1582 1583 /* 1584 * This directory has an inheritable ACE 1585 */ 1586 aclp->z_hints |= ZFS_INHERIT_ACE; 1587 1588 /* 1589 * If only FILE_INHERIT is set then turn on 1590 * inherit_only 1591 */ 1592 if ((iflags & (ACE_FILE_INHERIT_ACE | 1593 ACE_DIRECTORY_INHERIT_ACE)) == ACE_FILE_INHERIT_ACE) { 1594 newflags |= ACE_INHERIT_ONLY_ACE; 1595 aclp->z_ops.ace_flags_set(acep, 1596 newflags|ACE_INHERITED_ACE); 1597 } else { 1598 newflags &= ~ACE_INHERIT_ONLY_ACE; 1599 aclp->z_ops.ace_flags_set(acep, 1600 newflags|ACE_INHERITED_ACE); 1601 } 1602 } 1603 1604 return (aclp); 1605 } 1606 1607 /* 1608 * Create file system object initial permissions 1609 * including inheritable ACEs. 1610 * Also, create FUIDs for owner and group. 1611 */ 1612 int 1613 zfs_acl_ids_create(znode_t *dzp, int flag, vattr_t *vap, cred_t *cr, 1614 vsecattr_t *vsecp, zfs_acl_ids_t *acl_ids) 1615 { 1616 int error; 1617 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1618 zfs_acl_t *paclp; 1619 gid_t gid; 1620 boolean_t trim = B_FALSE; 1621 boolean_t inherited = B_FALSE; 1622 1623 bzero(acl_ids, sizeof (zfs_acl_ids_t)); 1624 acl_ids->z_mode = MAKEIMODE(vap->va_type, vap->va_mode); 1625 1626 if (vsecp) 1627 if ((error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, cr, 1628 &acl_ids->z_fuidp, &acl_ids->z_aclp)) != 0) 1629 return (error); 1630 /* 1631 * Determine uid and gid. 1632 */ 1633 if ((flag & IS_ROOT_NODE) || zfsvfs->z_replay || 1634 ((flag & IS_XATTR) && (vap->va_type == VDIR))) { 1635 acl_ids->z_fuid = zfs_fuid_create(zfsvfs, 1636 (uint64_t)vap->va_uid, cr, 1637 ZFS_OWNER, &acl_ids->z_fuidp); 1638 acl_ids->z_fgid = zfs_fuid_create(zfsvfs, 1639 (uint64_t)vap->va_gid, cr, 1640 ZFS_GROUP, &acl_ids->z_fuidp); 1641 gid = vap->va_gid; 1642 } else { 1643 acl_ids->z_fuid = zfs_fuid_create_cred(zfsvfs, ZFS_OWNER, 1644 cr, &acl_ids->z_fuidp); 1645 acl_ids->z_fgid = 0; 1646 if (vap->va_mask & AT_GID) { 1647 acl_ids->z_fgid = zfs_fuid_create(zfsvfs, 1648 (uint64_t)vap->va_gid, 1649 cr, ZFS_GROUP, &acl_ids->z_fuidp); 1650 gid = vap->va_gid; 1651 if (acl_ids->z_fgid != dzp->z_gid && 1652 !groupmember(vap->va_gid, cr) && 1653 secpolicy_vnode_create_gid(cr) != 0) 1654 acl_ids->z_fgid = 0; 1655 } 1656 if (acl_ids->z_fgid == 0) { 1657 if (dzp->z_mode & S_ISGID) { 1658 char *domain; 1659 uint32_t rid; 1660 1661 acl_ids->z_fgid = dzp->z_gid; 1662 gid = zfs_fuid_map_id(zfsvfs, acl_ids->z_fgid, 1663 cr, ZFS_GROUP); 1664 1665 if (zfsvfs->z_use_fuids && 1666 IS_EPHEMERAL(acl_ids->z_fgid)) { 1667 domain = zfs_fuid_idx_domain( 1668 &zfsvfs->z_fuid_idx, 1669 FUID_INDEX(acl_ids->z_fgid)); 1670 rid = FUID_RID(acl_ids->z_fgid); 1671 zfs_fuid_node_add(&acl_ids->z_fuidp, 1672 domain, rid, 1673 FUID_INDEX(acl_ids->z_fgid), 1674 acl_ids->z_fgid, ZFS_GROUP); 1675 } 1676 } else { 1677 acl_ids->z_fgid = zfs_fuid_create_cred(zfsvfs, 1678 ZFS_GROUP, cr, &acl_ids->z_fuidp); 1679 gid = crgetgid(cr); 1680 } 1681 } 1682 } 1683 1684 /* 1685 * If we're creating a directory, and the parent directory has the 1686 * set-GID bit set, set in on the new directory. 1687 * Otherwise, if the user is neither privileged nor a member of the 1688 * file's new group, clear the file's set-GID bit. 1689 */ 1690 1691 if (!(flag & IS_ROOT_NODE) && (dzp->z_mode & S_ISGID) && 1692 (vap->va_type == VDIR)) { 1693 acl_ids->z_mode |= S_ISGID; 1694 } else { 1695 if ((acl_ids->z_mode & S_ISGID) && 1696 secpolicy_vnode_setids_setgids(cr, gid) != 0) 1697 acl_ids->z_mode &= ~S_ISGID; 1698 } 1699 1700 if (acl_ids->z_aclp == NULL) { 1701 mutex_enter(&dzp->z_acl_lock); 1702 mutex_enter(&dzp->z_lock); 1703 if (!(flag & IS_ROOT_NODE) && 1704 (dzp->z_pflags & ZFS_INHERIT_ACE) && 1705 !(dzp->z_pflags & ZFS_XATTR)) { 1706 VERIFY(0 == zfs_acl_node_read(dzp, B_TRUE, 1707 &paclp, B_FALSE)); 1708 acl_ids->z_aclp = zfs_acl_inherit(zfsvfs, 1709 vap->va_type, paclp, acl_ids->z_mode); 1710 inherited = B_TRUE; 1711 } else { 1712 acl_ids->z_aclp = 1713 zfs_acl_alloc(zfs_acl_version_zp(dzp)); 1714 acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL; 1715 } 1716 mutex_exit(&dzp->z_lock); 1717 mutex_exit(&dzp->z_acl_lock); 1718 1719 if (vap->va_type == VDIR) 1720 acl_ids->z_aclp->z_hints |= ZFS_ACL_AUTO_INHERIT; 1721 1722 if (zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK && 1723 zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH && 1724 zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH_X) 1725 trim = B_TRUE; 1726 zfs_acl_chmod(vap->va_type, acl_ids->z_mode, B_FALSE, trim, 1727 acl_ids->z_aclp); 1728 } 1729 1730 if (inherited || vsecp) { 1731 acl_ids->z_mode = zfs_mode_compute(acl_ids->z_mode, 1732 acl_ids->z_aclp, &acl_ids->z_aclp->z_hints, 1733 acl_ids->z_fuid, acl_ids->z_fgid); 1734 if (ace_trivial_common(acl_ids->z_aclp, 0, zfs_ace_walk) == 0) 1735 acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL; 1736 } 1737 1738 return (0); 1739 } 1740 1741 /* 1742 * Free ACL and fuid_infop, but not the acl_ids structure 1743 */ 1744 void 1745 zfs_acl_ids_free(zfs_acl_ids_t *acl_ids) 1746 { 1747 if (acl_ids->z_aclp) 1748 zfs_acl_free(acl_ids->z_aclp); 1749 if (acl_ids->z_fuidp) 1750 zfs_fuid_info_free(acl_ids->z_fuidp); 1751 acl_ids->z_aclp = NULL; 1752 acl_ids->z_fuidp = NULL; 1753 } 1754 1755 boolean_t 1756 zfs_acl_ids_overquota(zfsvfs_t *zfsvfs, zfs_acl_ids_t *acl_ids) 1757 { 1758 return (zfs_fuid_overquota(zfsvfs, B_FALSE, acl_ids->z_fuid) || 1759 zfs_fuid_overquota(zfsvfs, B_TRUE, acl_ids->z_fgid)); 1760 } 1761 1762 /* 1763 * Retrieve a file's ACL 1764 */ 1765 int 1766 zfs_getacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr) 1767 { 1768 zfs_acl_t *aclp; 1769 ulong_t mask; 1770 int error; 1771 int count = 0; 1772 int largeace = 0; 1773 1774 mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT | 1775 VSA_ACE_ACLFLAGS | VSA_ACE_ALLTYPES); 1776 1777 if (mask == 0) 1778 return (SET_ERROR(ENOSYS)); 1779 1780 if (error = zfs_zaccess(zp, ACE_READ_ACL, 0, skipaclchk, cr)) 1781 return (error); 1782 1783 mutex_enter(&zp->z_acl_lock); 1784 1785 error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE); 1786 if (error != 0) { 1787 mutex_exit(&zp->z_acl_lock); 1788 return (error); 1789 } 1790 1791 /* 1792 * Scan ACL to determine number of ACEs 1793 */ 1794 if ((zp->z_pflags & ZFS_ACL_OBJ_ACE) && !(mask & VSA_ACE_ALLTYPES)) { 1795 void *zacep = NULL; 1796 uint64_t who; 1797 uint32_t access_mask; 1798 uint16_t type, iflags; 1799 1800 while (zacep = zfs_acl_next_ace(aclp, zacep, 1801 &who, &access_mask, &iflags, &type)) { 1802 switch (type) { 1803 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE: 1804 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE: 1805 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE: 1806 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE: 1807 largeace++; 1808 continue; 1809 default: 1810 count++; 1811 } 1812 } 1813 vsecp->vsa_aclcnt = count; 1814 } else 1815 count = (int)aclp->z_acl_count; 1816 1817 if (mask & VSA_ACECNT) { 1818 vsecp->vsa_aclcnt = count; 1819 } 1820 1821 if (mask & VSA_ACE) { 1822 size_t aclsz; 1823 1824 aclsz = count * sizeof (ace_t) + 1825 sizeof (ace_object_t) * largeace; 1826 1827 vsecp->vsa_aclentp = kmem_alloc(aclsz, KM_SLEEP); 1828 vsecp->vsa_aclentsz = aclsz; 1829 1830 if (aclp->z_version == ZFS_ACL_VERSION_FUID) 1831 zfs_copy_fuid_2_ace(zp->z_zfsvfs, aclp, cr, 1832 vsecp->vsa_aclentp, !(mask & VSA_ACE_ALLTYPES)); 1833 else { 1834 zfs_acl_node_t *aclnode; 1835 void *start = vsecp->vsa_aclentp; 1836 1837 for (aclnode = list_head(&aclp->z_acl); aclnode; 1838 aclnode = list_next(&aclp->z_acl, aclnode)) { 1839 bcopy(aclnode->z_acldata, start, 1840 aclnode->z_size); 1841 start = (caddr_t)start + aclnode->z_size; 1842 } 1843 ASSERT((caddr_t)start - (caddr_t)vsecp->vsa_aclentp == 1844 aclp->z_acl_bytes); 1845 } 1846 } 1847 if (mask & VSA_ACE_ACLFLAGS) { 1848 vsecp->vsa_aclflags = 0; 1849 if (zp->z_pflags & ZFS_ACL_DEFAULTED) 1850 vsecp->vsa_aclflags |= ACL_DEFAULTED; 1851 if (zp->z_pflags & ZFS_ACL_PROTECTED) 1852 vsecp->vsa_aclflags |= ACL_PROTECTED; 1853 if (zp->z_pflags & ZFS_ACL_AUTO_INHERIT) 1854 vsecp->vsa_aclflags |= ACL_AUTO_INHERIT; 1855 } 1856 1857 mutex_exit(&zp->z_acl_lock); 1858 1859 return (0); 1860 } 1861 1862 int 1863 zfs_vsec_2_aclp(zfsvfs_t *zfsvfs, vtype_t obj_type, 1864 vsecattr_t *vsecp, cred_t *cr, zfs_fuid_info_t **fuidp, zfs_acl_t **zaclp) 1865 { 1866 zfs_acl_t *aclp; 1867 zfs_acl_node_t *aclnode; 1868 int aclcnt = vsecp->vsa_aclcnt; 1869 int error; 1870 1871 if (vsecp->vsa_aclcnt > MAX_ACL_ENTRIES || vsecp->vsa_aclcnt <= 0) 1872 return (SET_ERROR(EINVAL)); 1873 1874 aclp = zfs_acl_alloc(zfs_acl_version(zfsvfs->z_version)); 1875 1876 aclp->z_hints = 0; 1877 aclnode = zfs_acl_node_alloc(aclcnt * sizeof (zfs_object_ace_t)); 1878 if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) { 1879 if ((error = zfs_copy_ace_2_oldace(obj_type, aclp, 1880 (ace_t *)vsecp->vsa_aclentp, aclnode->z_acldata, 1881 aclcnt, &aclnode->z_size)) != 0) { 1882 zfs_acl_free(aclp); 1883 zfs_acl_node_free(aclnode); 1884 return (error); 1885 } 1886 } else { 1887 if ((error = zfs_copy_ace_2_fuid(zfsvfs, obj_type, aclp, 1888 vsecp->vsa_aclentp, aclnode->z_acldata, aclcnt, 1889 &aclnode->z_size, fuidp, cr)) != 0) { 1890 zfs_acl_free(aclp); 1891 zfs_acl_node_free(aclnode); 1892 return (error); 1893 } 1894 } 1895 aclp->z_acl_bytes = aclnode->z_size; 1896 aclnode->z_ace_count = aclcnt; 1897 aclp->z_acl_count = aclcnt; 1898 list_insert_head(&aclp->z_acl, aclnode); 1899 1900 /* 1901 * If flags are being set then add them to z_hints 1902 */ 1903 if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) { 1904 if (vsecp->vsa_aclflags & ACL_PROTECTED) 1905 aclp->z_hints |= ZFS_ACL_PROTECTED; 1906 if (vsecp->vsa_aclflags & ACL_DEFAULTED) 1907 aclp->z_hints |= ZFS_ACL_DEFAULTED; 1908 if (vsecp->vsa_aclflags & ACL_AUTO_INHERIT) 1909 aclp->z_hints |= ZFS_ACL_AUTO_INHERIT; 1910 } 1911 1912 *zaclp = aclp; 1913 1914 return (0); 1915 } 1916 1917 /* 1918 * Set a file's ACL 1919 */ 1920 int 1921 zfs_setacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr) 1922 { 1923 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1924 zilog_t *zilog = zfsvfs->z_log; 1925 ulong_t mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT); 1926 dmu_tx_t *tx; 1927 int error; 1928 zfs_acl_t *aclp; 1929 zfs_fuid_info_t *fuidp = NULL; 1930 boolean_t fuid_dirtied; 1931 uint64_t acl_obj; 1932 1933 if (mask == 0) 1934 return (SET_ERROR(ENOSYS)); 1935 1936 if (zp->z_pflags & ZFS_IMMUTABLE) 1937 return (SET_ERROR(EPERM)); 1938 1939 if (error = zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr)) 1940 return (error); 1941 1942 error = zfs_vsec_2_aclp(zfsvfs, ZTOV(zp)->v_type, vsecp, cr, &fuidp, 1943 &aclp); 1944 if (error) 1945 return (error); 1946 1947 /* 1948 * If ACL wide flags aren't being set then preserve any 1949 * existing flags. 1950 */ 1951 if (!(vsecp->vsa_mask & VSA_ACE_ACLFLAGS)) { 1952 aclp->z_hints |= 1953 (zp->z_pflags & V4_ACL_WIDE_FLAGS); 1954 } 1955 top: 1956 mutex_enter(&zp->z_acl_lock); 1957 mutex_enter(&zp->z_lock); 1958 1959 tx = dmu_tx_create(zfsvfs->z_os); 1960 1961 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1962 1963 fuid_dirtied = zfsvfs->z_fuid_dirty; 1964 if (fuid_dirtied) 1965 zfs_fuid_txhold(zfsvfs, tx); 1966 1967 /* 1968 * If old version and ACL won't fit in bonus and we aren't 1969 * upgrading then take out necessary DMU holds 1970 */ 1971 1972 if ((acl_obj = zfs_external_acl(zp)) != 0) { 1973 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 1974 zfs_znode_acl_version(zp) <= ZFS_ACL_VERSION_INITIAL) { 1975 dmu_tx_hold_free(tx, acl_obj, 0, 1976 DMU_OBJECT_END); 1977 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1978 aclp->z_acl_bytes); 1979 } else { 1980 dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes); 1981 } 1982 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1983 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes); 1984 } 1985 1986 zfs_sa_upgrade_txholds(tx, zp); 1987 error = dmu_tx_assign(tx, TXG_NOWAIT); 1988 if (error) { 1989 mutex_exit(&zp->z_acl_lock); 1990 mutex_exit(&zp->z_lock); 1991 1992 if (error == ERESTART) { 1993 dmu_tx_wait(tx); 1994 dmu_tx_abort(tx); 1995 goto top; 1996 } 1997 dmu_tx_abort(tx); 1998 zfs_acl_free(aclp); 1999 return (error); 2000 } 2001 2002 error = zfs_aclset_common(zp, aclp, cr, tx); 2003 ASSERT(error == 0); 2004 ASSERT(zp->z_acl_cached == NULL); 2005 zp->z_acl_cached = aclp; 2006 2007 if (fuid_dirtied) 2008 zfs_fuid_sync(zfsvfs, tx); 2009 2010 zfs_log_acl(zilog, tx, zp, vsecp, fuidp); 2011 2012 if (fuidp) 2013 zfs_fuid_info_free(fuidp); 2014 dmu_tx_commit(tx); 2015 done: 2016 mutex_exit(&zp->z_lock); 2017 mutex_exit(&zp->z_acl_lock); 2018 2019 return (error); 2020 } 2021 2022 /* 2023 * Check accesses of interest (AoI) against attributes of the dataset 2024 * such as read-only. Returns zero if no AoI conflict with dataset 2025 * attributes, otherwise an appropriate errno is returned. 2026 */ 2027 static int 2028 zfs_zaccess_dataset_check(znode_t *zp, uint32_t v4_mode) 2029 { 2030 if ((v4_mode & WRITE_MASK) && 2031 (zp->z_zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) && 2032 (!IS_DEVVP(ZTOV(zp)) || 2033 (IS_DEVVP(ZTOV(zp)) && (v4_mode & WRITE_MASK_ATTRS)))) { 2034 return (SET_ERROR(EROFS)); 2035 } 2036 2037 /* 2038 * Intentionally allow ZFS_READONLY through here. 2039 * See zfs_zaccess_common(). 2040 */ 2041 if ((v4_mode & WRITE_MASK_DATA) && 2042 (zp->z_pflags & ZFS_IMMUTABLE)) { 2043 return (SET_ERROR(EPERM)); 2044 } 2045 2046 if ((v4_mode & (ACE_DELETE | ACE_DELETE_CHILD)) && 2047 (zp->z_pflags & ZFS_NOUNLINK)) { 2048 return (SET_ERROR(EPERM)); 2049 } 2050 2051 if (((v4_mode & (ACE_READ_DATA|ACE_EXECUTE)) && 2052 (zp->z_pflags & ZFS_AV_QUARANTINED))) { 2053 return (SET_ERROR(EACCES)); 2054 } 2055 2056 return (0); 2057 } 2058 2059 /* 2060 * The primary usage of this function is to loop through all of the 2061 * ACEs in the znode, determining what accesses of interest (AoI) to 2062 * the caller are allowed or denied. The AoI are expressed as bits in 2063 * the working_mode parameter. As each ACE is processed, bits covered 2064 * by that ACE are removed from the working_mode. This removal 2065 * facilitates two things. The first is that when the working mode is 2066 * empty (= 0), we know we've looked at all the AoI. The second is 2067 * that the ACE interpretation rules don't allow a later ACE to undo 2068 * something granted or denied by an earlier ACE. Removing the 2069 * discovered access or denial enforces this rule. At the end of 2070 * processing the ACEs, all AoI that were found to be denied are 2071 * placed into the working_mode, giving the caller a mask of denied 2072 * accesses. Returns: 2073 * 0 if all AoI granted 2074 * EACCES if the denied mask is non-zero 2075 * other error if abnormal failure (e.g., IO error) 2076 * 2077 * A secondary usage of the function is to determine if any of the 2078 * AoI are granted. If an ACE grants any access in 2079 * the working_mode, we immediately short circuit out of the function. 2080 * This mode is chosen by setting anyaccess to B_TRUE. The 2081 * working_mode is not a denied access mask upon exit if the function 2082 * is used in this manner. 2083 */ 2084 static int 2085 zfs_zaccess_aces_check(znode_t *zp, uint32_t *working_mode, 2086 boolean_t anyaccess, cred_t *cr) 2087 { 2088 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2089 zfs_acl_t *aclp; 2090 int error; 2091 uid_t uid = crgetuid(cr); 2092 uint64_t who; 2093 uint16_t type, iflags; 2094 uint16_t entry_type; 2095 uint32_t access_mask; 2096 uint32_t deny_mask = 0; 2097 zfs_ace_hdr_t *acep = NULL; 2098 boolean_t checkit; 2099 uid_t gowner; 2100 uid_t fowner; 2101 2102 zfs_fuid_map_ids(zp, cr, &fowner, &gowner); 2103 2104 mutex_enter(&zp->z_acl_lock); 2105 2106 error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE); 2107 if (error != 0) { 2108 mutex_exit(&zp->z_acl_lock); 2109 return (error); 2110 } 2111 2112 ASSERT(zp->z_acl_cached); 2113 2114 while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask, 2115 &iflags, &type)) { 2116 uint32_t mask_matched; 2117 2118 if (!zfs_acl_valid_ace_type(type, iflags)) 2119 continue; 2120 2121 if (ZTOV(zp)->v_type == VDIR && (iflags & ACE_INHERIT_ONLY_ACE)) 2122 continue; 2123 2124 /* Skip ACE if it does not affect any AoI */ 2125 mask_matched = (access_mask & *working_mode); 2126 if (!mask_matched) 2127 continue; 2128 2129 entry_type = (iflags & ACE_TYPE_FLAGS); 2130 2131 checkit = B_FALSE; 2132 2133 switch (entry_type) { 2134 case ACE_OWNER: 2135 if (uid == fowner) 2136 checkit = B_TRUE; 2137 break; 2138 case OWNING_GROUP: 2139 who = gowner; 2140 /*FALLTHROUGH*/ 2141 case ACE_IDENTIFIER_GROUP: 2142 checkit = zfs_groupmember(zfsvfs, who, cr); 2143 break; 2144 case ACE_EVERYONE: 2145 checkit = B_TRUE; 2146 break; 2147 2148 /* USER Entry */ 2149 default: 2150 if (entry_type == 0) { 2151 uid_t newid; 2152 2153 newid = zfs_fuid_map_id(zfsvfs, who, cr, 2154 ZFS_ACE_USER); 2155 if (newid != IDMAP_WK_CREATOR_OWNER_UID && 2156 uid == newid) 2157 checkit = B_TRUE; 2158 break; 2159 } else { 2160 mutex_exit(&zp->z_acl_lock); 2161 return (SET_ERROR(EIO)); 2162 } 2163 } 2164 2165 if (checkit) { 2166 if (type == DENY) { 2167 DTRACE_PROBE3(zfs__ace__denies, 2168 znode_t *, zp, 2169 zfs_ace_hdr_t *, acep, 2170 uint32_t, mask_matched); 2171 deny_mask |= mask_matched; 2172 } else { 2173 DTRACE_PROBE3(zfs__ace__allows, 2174 znode_t *, zp, 2175 zfs_ace_hdr_t *, acep, 2176 uint32_t, mask_matched); 2177 if (anyaccess) { 2178 mutex_exit(&zp->z_acl_lock); 2179 return (0); 2180 } 2181 } 2182 *working_mode &= ~mask_matched; 2183 } 2184 2185 /* Are we done? */ 2186 if (*working_mode == 0) 2187 break; 2188 } 2189 2190 mutex_exit(&zp->z_acl_lock); 2191 2192 /* Put the found 'denies' back on the working mode */ 2193 if (deny_mask) { 2194 *working_mode |= deny_mask; 2195 return (SET_ERROR(EACCES)); 2196 } else if (*working_mode) { 2197 return (-1); 2198 } 2199 2200 return (0); 2201 } 2202 2203 /* 2204 * Return true if any access whatsoever granted, we don't actually 2205 * care what access is granted. 2206 */ 2207 boolean_t 2208 zfs_has_access(znode_t *zp, cred_t *cr) 2209 { 2210 uint32_t have = ACE_ALL_PERMS; 2211 2212 if (zfs_zaccess_aces_check(zp, &have, B_TRUE, cr) != 0) { 2213 uid_t owner; 2214 2215 owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER); 2216 return (secpolicy_vnode_any_access(cr, ZTOV(zp), owner) == 0); 2217 } 2218 return (B_TRUE); 2219 } 2220 2221 static int 2222 zfs_zaccess_common(znode_t *zp, uint32_t v4_mode, uint32_t *working_mode, 2223 boolean_t *check_privs, boolean_t skipaclchk, cred_t *cr) 2224 { 2225 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2226 int err; 2227 2228 *working_mode = v4_mode; 2229 *check_privs = B_TRUE; 2230 2231 /* 2232 * Short circuit empty requests 2233 */ 2234 if (v4_mode == 0 || zfsvfs->z_replay) { 2235 *working_mode = 0; 2236 return (0); 2237 } 2238 2239 if ((err = zfs_zaccess_dataset_check(zp, v4_mode)) != 0) { 2240 *check_privs = B_FALSE; 2241 return (err); 2242 } 2243 2244 /* 2245 * The caller requested that the ACL check be skipped. This 2246 * would only happen if the caller checked VOP_ACCESS() with a 2247 * 32 bit ACE mask and already had the appropriate permissions. 2248 */ 2249 if (skipaclchk) { 2250 *working_mode = 0; 2251 return (0); 2252 } 2253 2254 /* 2255 * Note: ZFS_READONLY represents the "DOS R/O" attribute. 2256 * When that flag is set, we should behave as if write access 2257 * were not granted by anything in the ACL. In particular: 2258 * We _must_ allow writes after opening the file r/w, then 2259 * setting the DOS R/O attribute, and writing some more. 2260 * (Similar to how you can write after fchmod(fd, 0444).) 2261 * 2262 * Therefore ZFS_READONLY is ignored in the dataset check 2263 * above, and checked here as if part of the ACL check. 2264 * Also note: DOS R/O is ignored for directories. 2265 */ 2266 if ((v4_mode & WRITE_MASK_DATA) && 2267 (ZTOV(zp)->v_type != VDIR) && 2268 (zp->z_pflags & ZFS_READONLY)) { 2269 return (SET_ERROR(EPERM)); 2270 } 2271 2272 return (zfs_zaccess_aces_check(zp, working_mode, B_FALSE, cr)); 2273 } 2274 2275 static int 2276 zfs_zaccess_append(znode_t *zp, uint32_t *working_mode, boolean_t *check_privs, 2277 cred_t *cr) 2278 { 2279 if (*working_mode != ACE_WRITE_DATA) 2280 return (SET_ERROR(EACCES)); 2281 2282 return (zfs_zaccess_common(zp, ACE_APPEND_DATA, working_mode, 2283 check_privs, B_FALSE, cr)); 2284 } 2285 2286 int 2287 zfs_fastaccesschk_execute(znode_t *zdp, cred_t *cr) 2288 { 2289 boolean_t owner = B_FALSE; 2290 boolean_t groupmbr = B_FALSE; 2291 boolean_t is_attr; 2292 uid_t uid = crgetuid(cr); 2293 int error; 2294 2295 if (zdp->z_pflags & ZFS_AV_QUARANTINED) 2296 return (SET_ERROR(EACCES)); 2297 2298 is_attr = ((zdp->z_pflags & ZFS_XATTR) && 2299 (ZTOV(zdp)->v_type == VDIR)); 2300 if (is_attr) 2301 goto slow; 2302 2303 2304 mutex_enter(&zdp->z_acl_lock); 2305 2306 if (zdp->z_pflags & ZFS_NO_EXECS_DENIED) { 2307 mutex_exit(&zdp->z_acl_lock); 2308 return (0); 2309 } 2310 2311 if (FUID_INDEX(zdp->z_uid) != 0 || FUID_INDEX(zdp->z_gid) != 0) { 2312 mutex_exit(&zdp->z_acl_lock); 2313 goto slow; 2314 } 2315 2316 if (uid == zdp->z_uid) { 2317 owner = B_TRUE; 2318 if (zdp->z_mode & S_IXUSR) { 2319 mutex_exit(&zdp->z_acl_lock); 2320 return (0); 2321 } else { 2322 mutex_exit(&zdp->z_acl_lock); 2323 goto slow; 2324 } 2325 } 2326 if (groupmember(zdp->z_gid, cr)) { 2327 groupmbr = B_TRUE; 2328 if (zdp->z_mode & S_IXGRP) { 2329 mutex_exit(&zdp->z_acl_lock); 2330 return (0); 2331 } else { 2332 mutex_exit(&zdp->z_acl_lock); 2333 goto slow; 2334 } 2335 } 2336 if (!owner && !groupmbr) { 2337 if (zdp->z_mode & S_IXOTH) { 2338 mutex_exit(&zdp->z_acl_lock); 2339 return (0); 2340 } 2341 } 2342 2343 mutex_exit(&zdp->z_acl_lock); 2344 2345 slow: 2346 DTRACE_PROBE(zfs__fastpath__execute__access__miss); 2347 ZFS_ENTER(zdp->z_zfsvfs); 2348 error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr); 2349 ZFS_EXIT(zdp->z_zfsvfs); 2350 return (error); 2351 } 2352 2353 /* 2354 * Determine whether Access should be granted/denied. 2355 * 2356 * The least priv subsytem is always consulted as a basic privilege 2357 * can define any form of access. 2358 */ 2359 int 2360 zfs_zaccess(znode_t *zp, int mode, int flags, boolean_t skipaclchk, cred_t *cr) 2361 { 2362 uint32_t working_mode; 2363 int error; 2364 int is_attr; 2365 boolean_t check_privs; 2366 znode_t *xzp; 2367 znode_t *check_zp = zp; 2368 mode_t needed_bits; 2369 uid_t owner; 2370 2371 is_attr = ((zp->z_pflags & ZFS_XATTR) && (ZTOV(zp)->v_type == VDIR)); 2372 2373 /* 2374 * If attribute then validate against base file 2375 */ 2376 if (is_attr) { 2377 uint64_t parent; 2378 2379 if ((error = sa_lookup(zp->z_sa_hdl, 2380 SA_ZPL_PARENT(zp->z_zfsvfs), &parent, 2381 sizeof (parent))) != 0) 2382 return (error); 2383 2384 if ((error = zfs_zget(zp->z_zfsvfs, 2385 parent, &xzp)) != 0) { 2386 return (error); 2387 } 2388 2389 check_zp = xzp; 2390 2391 /* 2392 * fixup mode to map to xattr perms 2393 */ 2394 2395 if (mode & (ACE_WRITE_DATA|ACE_APPEND_DATA)) { 2396 mode &= ~(ACE_WRITE_DATA|ACE_APPEND_DATA); 2397 mode |= ACE_WRITE_NAMED_ATTRS; 2398 } 2399 2400 if (mode & (ACE_READ_DATA|ACE_EXECUTE)) { 2401 mode &= ~(ACE_READ_DATA|ACE_EXECUTE); 2402 mode |= ACE_READ_NAMED_ATTRS; 2403 } 2404 } 2405 2406 owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER); 2407 /* 2408 * Map the bits required to the standard vnode flags VREAD|VWRITE|VEXEC 2409 * in needed_bits. Map the bits mapped by working_mode (currently 2410 * missing) in missing_bits. 2411 * Call secpolicy_vnode_access2() with (needed_bits & ~checkmode), 2412 * needed_bits. 2413 */ 2414 needed_bits = 0; 2415 2416 working_mode = mode; 2417 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES)) && 2418 owner == crgetuid(cr)) 2419 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES); 2420 2421 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS| 2422 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE)) 2423 needed_bits |= VREAD; 2424 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS| 2425 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE)) 2426 needed_bits |= VWRITE; 2427 if (working_mode & ACE_EXECUTE) 2428 needed_bits |= VEXEC; 2429 2430 if ((error = zfs_zaccess_common(check_zp, mode, &working_mode, 2431 &check_privs, skipaclchk, cr)) == 0) { 2432 if (is_attr) 2433 VN_RELE(ZTOV(xzp)); 2434 return (secpolicy_vnode_access2(cr, ZTOV(zp), owner, 2435 needed_bits, needed_bits)); 2436 } 2437 2438 if (error && !check_privs) { 2439 if (is_attr) 2440 VN_RELE(ZTOV(xzp)); 2441 return (error); 2442 } 2443 2444 if (error && (flags & V_APPEND)) { 2445 error = zfs_zaccess_append(zp, &working_mode, &check_privs, cr); 2446 } 2447 2448 if (error && check_privs) { 2449 mode_t checkmode = 0; 2450 2451 /* 2452 * First check for implicit owner permission on 2453 * read_acl/read_attributes 2454 */ 2455 2456 error = 0; 2457 ASSERT(working_mode != 0); 2458 2459 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES) && 2460 owner == crgetuid(cr))) 2461 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES); 2462 2463 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS| 2464 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE)) 2465 checkmode |= VREAD; 2466 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS| 2467 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE)) 2468 checkmode |= VWRITE; 2469 if (working_mode & ACE_EXECUTE) 2470 checkmode |= VEXEC; 2471 2472 error = secpolicy_vnode_access2(cr, ZTOV(check_zp), owner, 2473 needed_bits & ~checkmode, needed_bits); 2474 2475 if (error == 0 && (working_mode & ACE_WRITE_OWNER)) 2476 error = secpolicy_vnode_chown(cr, owner); 2477 if (error == 0 && (working_mode & ACE_WRITE_ACL)) 2478 error = secpolicy_vnode_setdac(cr, owner); 2479 2480 if (error == 0 && (working_mode & 2481 (ACE_DELETE|ACE_DELETE_CHILD))) 2482 error = secpolicy_vnode_remove(cr); 2483 2484 if (error == 0 && (working_mode & ACE_SYNCHRONIZE)) { 2485 error = secpolicy_vnode_chown(cr, owner); 2486 } 2487 if (error == 0) { 2488 /* 2489 * See if any bits other than those already checked 2490 * for are still present. If so then return EACCES 2491 */ 2492 if (working_mode & ~(ZFS_CHECKED_MASKS)) { 2493 error = SET_ERROR(EACCES); 2494 } 2495 } 2496 } else if (error == 0) { 2497 error = secpolicy_vnode_access2(cr, ZTOV(zp), owner, 2498 needed_bits, needed_bits); 2499 } 2500 2501 2502 if (is_attr) 2503 VN_RELE(ZTOV(xzp)); 2504 2505 return (error); 2506 } 2507 2508 /* 2509 * Translate traditional unix VREAD/VWRITE/VEXEC mode into 2510 * native ACL format and call zfs_zaccess() 2511 */ 2512 int 2513 zfs_zaccess_rwx(znode_t *zp, mode_t mode, int flags, cred_t *cr) 2514 { 2515 return (zfs_zaccess(zp, zfs_unix_to_v4(mode >> 6), flags, B_FALSE, cr)); 2516 } 2517 2518 /* 2519 * Access function for secpolicy_vnode_setattr 2520 */ 2521 int 2522 zfs_zaccess_unix(znode_t *zp, mode_t mode, cred_t *cr) 2523 { 2524 int v4_mode = zfs_unix_to_v4(mode >> 6); 2525 2526 return (zfs_zaccess(zp, v4_mode, 0, B_FALSE, cr)); 2527 } 2528 2529 /* See zfs_zaccess_delete() */ 2530 int zfs_write_implies_delete_child = 1; 2531 2532 /* 2533 * Determine whether delete access should be granted. 2534 * 2535 * The following chart outlines how we handle delete permissions which is 2536 * how recent versions of windows (Windows 2008) handles it. The efficiency 2537 * comes from not having to check the parent ACL where the object itself grants 2538 * delete: 2539 * 2540 * ------------------------------------------------------- 2541 * | Parent Dir | Target Object Permissions | 2542 * | permissions | | 2543 * ------------------------------------------------------- 2544 * | | ACL Allows | ACL Denies| Delete | 2545 * | | Delete | Delete | unspecified| 2546 * ------------------------------------------------------- 2547 * | ACL Allows | Permit | Deny * | Permit | 2548 * | DELETE_CHILD | | | | 2549 * ------------------------------------------------------- 2550 * | ACL Denies | Permit | Deny | Deny | 2551 * | DELETE_CHILD | | | | 2552 * ------------------------------------------------------- 2553 * | ACL specifies | | | | 2554 * | only allow | Permit | Deny * | Permit | 2555 * | write and | | | | 2556 * | execute | | | | 2557 * ------------------------------------------------------- 2558 * | ACL denies | | | | 2559 * | write and | Permit | Deny | Deny | 2560 * | execute | | | | 2561 * ------------------------------------------------------- 2562 * ^ 2563 * | 2564 * Re. execute permission on the directory: if that's missing, 2565 * the vnode lookup of the target will fail before we get here. 2566 * 2567 * Re [*] in the table above: NFSv4 would normally Permit delete for 2568 * these two cells of the matrix. 2569 * See acl.h for notes on which ACE_... flags should be checked for which 2570 * operations. Specifically, the NFSv4 committee recommendation is in 2571 * conflict with the Windows interpretation of DENY ACEs, where DENY ACEs 2572 * should take precedence ahead of ALLOW ACEs. 2573 * 2574 * This implementation always consults the target object's ACL first. 2575 * If a DENY ACE is present on the target object that specifies ACE_DELETE, 2576 * delete access is denied. If an ALLOW ACE with ACE_DELETE is present on 2577 * the target object, access is allowed. If and only if no entries with 2578 * ACE_DELETE are present in the object's ACL, check the container's ACL 2579 * for entries with ACE_DELETE_CHILD. 2580 * 2581 * A summary of the logic implemented from the table above is as follows: 2582 * 2583 * First check for DENY ACEs that apply. 2584 * If either target or container has a deny, EACCES. 2585 * 2586 * Delete access can then be summarized as follows: 2587 * 1: The object to be deleted grants ACE_DELETE, or 2588 * 2: The containing directory grants ACE_DELETE_CHILD. 2589 * In a Windows system, that would be the end of the story. 2590 * In this system, (2) has some complications... 2591 * 2a: "sticky" bit on a directory adds restrictions, and 2592 * 2b: existing ACEs from previous versions of ZFS may 2593 * not carry ACE_DELETE_CHILD where they should, so we 2594 * also allow delete when ACE_WRITE_DATA is granted. 2595 * 2596 * Note: 2b is technically a work-around for a prior bug, 2597 * which hopefully can go away some day. For those who 2598 * no longer need the work around, and for testing, this 2599 * work-around is made conditional via the tunable: 2600 * zfs_write_implies_delete_child 2601 */ 2602 int 2603 zfs_zaccess_delete(znode_t *dzp, znode_t *zp, cred_t *cr) 2604 { 2605 uint32_t wanted_dirperms; 2606 uint32_t dzp_working_mode = 0; 2607 uint32_t zp_working_mode = 0; 2608 int dzp_error, zp_error; 2609 boolean_t dzpcheck_privs; 2610 boolean_t zpcheck_privs; 2611 2612 if (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_NOUNLINK)) 2613 return (SET_ERROR(EPERM)); 2614 2615 /* 2616 * Case 1: 2617 * If target object grants ACE_DELETE then we are done. This is 2618 * indicated by a return value of 0. For this case we don't worry 2619 * about the sticky bit because sticky only applies to the parent 2620 * directory and this is the child access result. 2621 * 2622 * If we encounter a DENY ACE here, we're also done (EACCES). 2623 * Note that if we hit a DENY ACE here (on the target) it should 2624 * take precedence over a DENY ACE on the container, so that when 2625 * we have more complete auditing support we will be able to 2626 * report an access failure against the specific target. 2627 * (This is part of why we're checking the target first.) 2628 */ 2629 zp_error = zfs_zaccess_common(zp, ACE_DELETE, &zp_working_mode, 2630 &zpcheck_privs, B_FALSE, cr); 2631 if (zp_error == EACCES) { 2632 /* We hit a DENY ACE. */ 2633 if (!zpcheck_privs) 2634 return (SET_ERROR(zp_error)); 2635 return (secpolicy_vnode_remove(cr)); 2636 2637 } 2638 if (zp_error == 0) 2639 return (0); 2640 2641 /* 2642 * Case 2: 2643 * If the containing directory grants ACE_DELETE_CHILD, 2644 * or we're in backward compatibility mode and the 2645 * containing directory has ACE_WRITE_DATA, allow. 2646 * Case 2b is handled with wanted_dirperms. 2647 */ 2648 wanted_dirperms = ACE_DELETE_CHILD; 2649 if (zfs_write_implies_delete_child) 2650 wanted_dirperms |= ACE_WRITE_DATA; 2651 dzp_error = zfs_zaccess_common(dzp, wanted_dirperms, 2652 &dzp_working_mode, &dzpcheck_privs, B_FALSE, cr); 2653 if (dzp_error == EACCES) { 2654 /* We hit a DENY ACE. */ 2655 if (!dzpcheck_privs) 2656 return (SET_ERROR(dzp_error)); 2657 return (secpolicy_vnode_remove(cr)); 2658 } 2659 2660 /* 2661 * Cases 2a, 2b (continued) 2662 * 2663 * Note: dzp_working_mode now contains any permissions 2664 * that were NOT granted. Therefore, if any of the 2665 * wanted_dirperms WERE granted, we will have: 2666 * dzp_working_mode != wanted_dirperms 2667 * We're really asking if ANY of those permissions 2668 * were granted, and if so, grant delete access. 2669 */ 2670 if (dzp_working_mode != wanted_dirperms) 2671 dzp_error = 0; 2672 2673 /* 2674 * dzp_error is 0 if the container granted us permissions to "modify". 2675 * If we do not have permission via one or more ACEs, our current 2676 * privileges may still permit us to modify the container. 2677 * 2678 * dzpcheck_privs is false when i.e. the FS is read-only. 2679 * Otherwise, do privilege checks for the container. 2680 */ 2681 if (dzp_error != 0 && dzpcheck_privs) { 2682 uid_t owner; 2683 2684 /* 2685 * The secpolicy call needs the requested access and 2686 * the current access mode of the container, but it 2687 * only knows about Unix-style modes (VEXEC, VWRITE), 2688 * so this must condense the fine-grained ACE bits into 2689 * Unix modes. 2690 * 2691 * The VEXEC flag is easy, because we know that has 2692 * always been checked before we get here (during the 2693 * lookup of the target vnode). The container has not 2694 * granted us permissions to "modify", so we do not set 2695 * the VWRITE flag in the current access mode. 2696 */ 2697 owner = zfs_fuid_map_id(dzp->z_zfsvfs, dzp->z_uid, cr, 2698 ZFS_OWNER); 2699 dzp_error = secpolicy_vnode_access2(cr, ZTOV(dzp), 2700 owner, VEXEC, VWRITE|VEXEC); 2701 } 2702 if (dzp_error != 0) { 2703 /* 2704 * Note: We may have dzp_error = -1 here (from 2705 * zfs_zacess_common). Don't return that. 2706 */ 2707 return (SET_ERROR(EACCES)); 2708 } 2709 2710 /* 2711 * At this point, we know that the directory permissions allow 2712 * us to modify, but we still need to check for the additional 2713 * restrictions that apply when the "sticky bit" is set. 2714 * 2715 * Yes, zfs_sticky_remove_access() also checks this bit, but 2716 * checking it here and skipping the call below is nice when 2717 * you're watching all of this with dtrace. 2718 */ 2719 if ((dzp->z_mode & S_ISVTX) == 0) 2720 return (0); 2721 2722 /* 2723 * zfs_sticky_remove_access will succeed if: 2724 * 1. The sticky bit is absent. 2725 * 2. We pass the sticky bit restrictions. 2726 * 3. We have privileges that always allow file removal. 2727 */ 2728 return (zfs_sticky_remove_access(dzp, zp, cr)); 2729 } 2730 2731 int 2732 zfs_zaccess_rename(znode_t *sdzp, znode_t *szp, znode_t *tdzp, 2733 znode_t *tzp, cred_t *cr) 2734 { 2735 int add_perm; 2736 int error; 2737 2738 if (szp->z_pflags & ZFS_AV_QUARANTINED) 2739 return (SET_ERROR(EACCES)); 2740 2741 add_perm = (ZTOV(szp)->v_type == VDIR) ? 2742 ACE_ADD_SUBDIRECTORY : ACE_ADD_FILE; 2743 2744 /* 2745 * Rename permissions are combination of delete permission + 2746 * add file/subdir permission. 2747 */ 2748 2749 /* 2750 * first make sure we do the delete portion. 2751 * 2752 * If that succeeds then check for add_file/add_subdir permissions 2753 */ 2754 2755 if (error = zfs_zaccess_delete(sdzp, szp, cr)) 2756 return (error); 2757 2758 /* 2759 * If we have a tzp, see if we can delete it? 2760 */ 2761 if (tzp) { 2762 if (error = zfs_zaccess_delete(tdzp, tzp, cr)) 2763 return (error); 2764 } 2765 2766 /* 2767 * Now check for add permissions 2768 */ 2769 error = zfs_zaccess(tdzp, add_perm, 0, B_FALSE, cr); 2770 2771 return (error); 2772 } 2773