1 /* 2 * CDDL HEADER START 3 * 4 * This file and its contents are supplied under the terms of the 5 * Common Development and Distribution License ("CDDL"), version 1.0. 6 * You may only use this file in accordance with the terms of version 7 * 1.0 of the CDDL. 8 * 9 * A full copy of the text of the CDDL should have accompanied this 10 * source. A copy of the CDDL is also available via the Internet at 11 * http://www.illumos.org/license/CDDL. 12 * 13 * CDDL HEADER END 14 */ 15 16 /* 17 * Copyright (c) 2016, 2017 by Delphix. All rights reserved. 18 */ 19 20 /* 21 * ZFS Channel Programs (ZCP) 22 * 23 * The ZCP interface allows various ZFS commands and operations ZFS 24 * administrative operations (e.g. creating and destroying snapshots, typically 25 * performed via an ioctl to /dev/zfs by the zfs(1M) command and 26 * libzfs/libzfs_core) to be run * programmatically as a Lua script. A ZCP 27 * script is run as a dsl_sync_task and fully executed during one transaction 28 * group sync. This ensures that no other changes can be written concurrently 29 * with a running Lua script. Combining multiple calls to the exposed ZFS 30 * functions into one script gives a number of benefits: 31 * 32 * 1. Atomicity. For some compound or iterative operations, it's useful to be 33 * able to guarantee that the state of a pool has not changed between calls to 34 * ZFS. 35 * 36 * 2. Performance. If a large number of changes need to be made (e.g. deleting 37 * many filesystems), there can be a significant performance penalty as a 38 * result of the need to wait for a transaction group sync to pass for every 39 * single operation. When expressed as a single ZCP script, all these changes 40 * can be performed at once in one txg sync. 41 * 42 * A modified version of the Lua 5.2 interpreter is used to run channel program 43 * scripts. The Lua 5.2 manual can be found at: 44 * 45 * http://www.lua.org/manual/5.2/ 46 * 47 * If being run by a user (via an ioctl syscall), executing a ZCP script 48 * requires root privileges in the global zone. 49 * 50 * Scripts are passed to zcp_eval() as a string, then run in a synctask by 51 * zcp_eval_sync(). Arguments can be passed into the Lua script as an nvlist, 52 * which will be converted to a Lua table. Similarly, values returned from 53 * a ZCP script will be converted to an nvlist. See zcp_lua_to_nvlist_impl() 54 * for details on exact allowed types and conversion. 55 * 56 * ZFS functionality is exposed to a ZCP script as a library of function calls. 57 * These calls are sorted into submodules, such as zfs.list and zfs.sync, for 58 * iterators and synctasks, respectively. Each of these submodules resides in 59 * its own source file, with a zcp_*_info structure describing each library 60 * call in the submodule. 61 * 62 * Error handling in ZCP scripts is handled by a number of different methods 63 * based on severity: 64 * 65 * 1. Memory and time limits are in place to prevent a channel program from 66 * consuming excessive system or running forever. If one of these limits is 67 * hit, the channel program will be stopped immediately and return from 68 * zcp_eval() with an error code. No attempt will be made to roll back or undo 69 * any changes made by the channel program before the error occured. 70 * Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time 71 * limit of 0, disabling the time limit. 72 * 73 * 2. Internal Lua errors can occur as a result of a syntax error, calling a 74 * library function with incorrect arguments, invoking the error() function, 75 * failing an assert(), or other runtime errors. In these cases the channel 76 * program will stop executing and return from zcp_eval() with an error code. 77 * In place of a return value, an error message will also be returned in the 78 * 'result' nvlist containing information about the error. No attempt will be 79 * made to roll back or undo any changes made by the channel program before the 80 * error occured. 81 * 82 * 3. If an error occurs inside a ZFS library call which returns an error code, 83 * the error is returned to the Lua script to be handled as desired. 84 * 85 * In the first two cases, Lua's error-throwing mechanism is used, which 86 * longjumps out of the script execution with luaL_error() and returns with the 87 * error. 88 * 89 * See zfs-program(1M) for more information on high level usage. 90 */ 91 92 #include "lua.h" 93 #include "lualib.h" 94 #include "lauxlib.h" 95 96 #include <sys/dsl_prop.h> 97 #include <sys/dsl_synctask.h> 98 #include <sys/dsl_dataset.h> 99 #include <sys/zcp.h> 100 #include <sys/zcp_iter.h> 101 #include <sys/zcp_prop.h> 102 #include <sys/zcp_global.h> 103 #include <util/sscanf.h> 104 105 #define ZCP_NVLIST_MAX_DEPTH 20 106 107 uint64_t zfs_lua_check_instrlimit_interval = 100; 108 uint64_t zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT; 109 uint64_t zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT; 110 111 /* 112 * Forward declarations for mutually recursive functions 113 */ 114 static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int); 115 static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *, 116 int); 117 118 typedef struct zcp_alloc_arg { 119 boolean_t aa_must_succeed; 120 int64_t aa_alloc_remaining; 121 int64_t aa_alloc_limit; 122 } zcp_alloc_arg_t; 123 124 typedef struct zcp_eval_arg { 125 lua_State *ea_state; 126 zcp_alloc_arg_t *ea_allocargs; 127 cred_t *ea_cred; 128 nvlist_t *ea_outnvl; 129 int ea_result; 130 uint64_t ea_instrlimit; 131 } zcp_eval_arg_t; 132 133 /*ARGSUSED*/ 134 static int 135 zcp_eval_check(void *arg, dmu_tx_t *tx) 136 { 137 return (0); 138 } 139 140 /* 141 * The outer-most error callback handler for use with lua_pcall(). On 142 * error Lua will call this callback with a single argument that 143 * represents the error value. In most cases this will be a string 144 * containing an error message, but channel programs can use Lua's 145 * error() function to return arbitrary objects as errors. This callback 146 * returns (on the Lua stack) the original error object along with a traceback. 147 * 148 * Fatal Lua errors can occur while resources are held, so we also call any 149 * registered cleanup function here. 150 */ 151 static int 152 zcp_error_handler(lua_State *state) 153 { 154 const char *msg; 155 156 zcp_cleanup(state); 157 158 VERIFY3U(1, ==, lua_gettop(state)); 159 msg = lua_tostring(state, 1); 160 luaL_traceback(state, state, msg, 1); 161 return (1); 162 } 163 164 int 165 zcp_argerror(lua_State *state, int narg, const char *msg, ...) 166 { 167 va_list alist; 168 169 va_start(alist, msg); 170 const char *buf = lua_pushvfstring(state, msg, alist); 171 va_end(alist); 172 173 return (luaL_argerror(state, narg, buf)); 174 } 175 176 /* 177 * Install a new cleanup function, which will be invoked with the given 178 * opaque argument if a fatal error causes the Lua interpreter to longjump out 179 * of a function call. 180 * 181 * If an error occurs, the cleanup function will be invoked exactly once and 182 * then unreigstered. 183 */ 184 void 185 zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg) 186 { 187 zcp_run_info_t *ri = zcp_run_info(state); 188 /* 189 * A cleanup function should always be explicitly removed before 190 * installing a new one to avoid accidental clobbering. 191 */ 192 ASSERT3P(ri->zri_cleanup, ==, NULL); 193 194 ri->zri_cleanup = cleanfunc; 195 ri->zri_cleanup_arg = cleanarg; 196 } 197 198 void 199 zcp_clear_cleanup(lua_State *state) 200 { 201 zcp_run_info_t *ri = zcp_run_info(state); 202 203 ri->zri_cleanup = NULL; 204 ri->zri_cleanup_arg = NULL; 205 } 206 207 /* 208 * If it exists, execute the currently set cleanup function then unregister it. 209 */ 210 void 211 zcp_cleanup(lua_State *state) 212 { 213 zcp_run_info_t *ri = zcp_run_info(state); 214 215 if (ri->zri_cleanup != NULL) { 216 ri->zri_cleanup(ri->zri_cleanup_arg); 217 zcp_clear_cleanup(state); 218 } 219 } 220 221 /* 222 * Convert the lua table at the given index on the Lua stack to an nvlist 223 * and return it. 224 * 225 * If the table can not be converted for any reason, NULL is returned and 226 * an error message is pushed onto the Lua stack. 227 */ 228 static nvlist_t * 229 zcp_table_to_nvlist(lua_State *state, int index, int depth) 230 { 231 nvlist_t *nvl; 232 /* 233 * Converting a Lua table to an nvlist with key uniqueness checking is 234 * O(n^2) in the number of keys in the nvlist, which can take a long 235 * time when we return a large table from a channel program. 236 * Furthermore, Lua's table interface *almost* guarantees unique keys 237 * on its own (details below). Therefore, we don't use fnvlist_alloc() 238 * here to avoid the built-in uniqueness checking. 239 * 240 * The *almost* is because it's possible to have key collisions between 241 * e.g. the string "1" and the number 1, or the string "true" and the 242 * boolean true, so we explicitly check that when we're looking at a 243 * key which is an integer / boolean or a string that can be parsed as 244 * one of those types. In the worst case this could still devolve into 245 * O(n^2), so we only start doing these checks on boolean/integer keys 246 * once we've seen a string key which fits this weird usage pattern. 247 * 248 * Ultimately, we still want callers to know that the keys in this 249 * nvlist are unique, so before we return this we set the nvlist's 250 * flags to reflect that. 251 */ 252 VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP)); 253 254 /* 255 * Push an empty stack slot where lua_next() will store each 256 * table key. 257 */ 258 lua_pushnil(state); 259 boolean_t saw_str_could_collide = B_FALSE; 260 while (lua_next(state, index) != 0) { 261 /* 262 * The next key-value pair from the table at index is 263 * now on the stack, with the key at stack slot -2 and 264 * the value at slot -1. 265 */ 266 int err = 0; 267 char buf[32]; 268 const char *key = NULL; 269 boolean_t key_could_collide = B_FALSE; 270 271 switch (lua_type(state, -2)) { 272 case LUA_TSTRING: 273 key = lua_tostring(state, -2); 274 275 /* check if this could collide with a number or bool */ 276 long long tmp; 277 int parselen; 278 if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 && 279 parselen == strlen(key)) || 280 strcmp(key, "true") == 0 || 281 strcmp(key, "false") == 0) { 282 key_could_collide = B_TRUE; 283 saw_str_could_collide = B_TRUE; 284 } 285 break; 286 case LUA_TBOOLEAN: 287 key = (lua_toboolean(state, -2) == B_TRUE ? 288 "true" : "false"); 289 if (saw_str_could_collide) { 290 key_could_collide = B_TRUE; 291 } 292 break; 293 case LUA_TNUMBER: 294 VERIFY3U(sizeof (buf), >, 295 snprintf(buf, sizeof (buf), "%lld", 296 (longlong_t)lua_tonumber(state, -2))); 297 key = buf; 298 if (saw_str_could_collide) { 299 key_could_collide = B_TRUE; 300 } 301 break; 302 default: 303 fnvlist_free(nvl); 304 (void) lua_pushfstring(state, "Invalid key " 305 "type '%s' in table", 306 lua_typename(state, lua_type(state, -2))); 307 return (NULL); 308 } 309 /* 310 * Check for type-mismatched key collisions, and throw an error. 311 */ 312 if (key_could_collide && nvlist_exists(nvl, key)) { 313 fnvlist_free(nvl); 314 (void) lua_pushfstring(state, "Collision of " 315 "key '%s' in table", key); 316 return (NULL); 317 } 318 /* 319 * Recursively convert the table value and insert into 320 * the new nvlist with the parsed key. To prevent 321 * stack overflow on circular or heavily nested tables, 322 * we track the current nvlist depth. 323 */ 324 if (depth >= ZCP_NVLIST_MAX_DEPTH) { 325 fnvlist_free(nvl); 326 (void) lua_pushfstring(state, "Maximum table " 327 "depth (%d) exceeded for table", 328 ZCP_NVLIST_MAX_DEPTH); 329 return (NULL); 330 } 331 err = zcp_lua_to_nvlist_impl(state, -1, nvl, key, 332 depth + 1); 333 if (err != 0) { 334 fnvlist_free(nvl); 335 /* 336 * Error message has been pushed to the lua 337 * stack by the recursive call. 338 */ 339 return (NULL); 340 } 341 /* 342 * Pop the value pushed by lua_next(). 343 */ 344 lua_pop(state, 1); 345 } 346 347 /* 348 * Mark the nvlist as having unique keys. This is a little ugly, but we 349 * ensured above that there are no duplicate keys in the nvlist. 350 */ 351 nvl->nvl_nvflag |= NV_UNIQUE_NAME; 352 353 return (nvl); 354 } 355 356 /* 357 * Convert a value from the given index into the lua stack to an nvpair, adding 358 * it to an nvlist with the given key. 359 * 360 * Values are converted as follows: 361 * 362 * string -> string 363 * number -> int64 364 * boolean -> boolean 365 * nil -> boolean (no value) 366 * 367 * Lua tables are converted to nvlists and then inserted. The table's keys 368 * are converted to strings then used as keys in the nvlist to store each table 369 * element. Keys are converted as follows: 370 * 371 * string -> no change 372 * number -> "%lld" 373 * boolean -> "true" | "false" 374 * nil -> error 375 * 376 * In the case of a key collision, an error is thrown. 377 * 378 * If an error is encountered, a nonzero error code is returned, and an error 379 * string will be pushed onto the Lua stack. 380 */ 381 static int 382 zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl, 383 const char *key, int depth) 384 { 385 /* 386 * Verify that we have enough remaining space in the lua stack to parse 387 * a key-value pair and push an error. 388 */ 389 if (!lua_checkstack(state, 3)) { 390 (void) lua_pushstring(state, "Lua stack overflow"); 391 return (1); 392 } 393 394 index = lua_absindex(state, index); 395 396 switch (lua_type(state, index)) { 397 case LUA_TNIL: 398 fnvlist_add_boolean(nvl, key); 399 break; 400 case LUA_TBOOLEAN: 401 fnvlist_add_boolean_value(nvl, key, 402 lua_toboolean(state, index)); 403 break; 404 case LUA_TNUMBER: 405 fnvlist_add_int64(nvl, key, lua_tonumber(state, index)); 406 break; 407 case LUA_TSTRING: 408 fnvlist_add_string(nvl, key, lua_tostring(state, index)); 409 break; 410 case LUA_TTABLE: { 411 nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth); 412 if (value_nvl == NULL) 413 return (EINVAL); 414 415 fnvlist_add_nvlist(nvl, key, value_nvl); 416 fnvlist_free(value_nvl); 417 break; 418 } 419 default: 420 (void) lua_pushfstring(state, 421 "Invalid value type '%s' for key '%s'", 422 lua_typename(state, lua_type(state, index)), key); 423 return (EINVAL); 424 } 425 426 return (0); 427 } 428 429 /* 430 * Convert a lua value to an nvpair, adding it to an nvlist with the given key. 431 */ 432 void 433 zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key) 434 { 435 /* 436 * On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua 437 * stack before returning with a nonzero error code. If an error is 438 * returned, throw a fatal lua error with the given string. 439 */ 440 if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0) 441 (void) lua_error(state); 442 } 443 444 int 445 zcp_lua_to_nvlist_helper(lua_State *state) 446 { 447 nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2); 448 const char *key = (const char *)lua_touserdata(state, 1); 449 zcp_lua_to_nvlist(state, 3, nv, key); 450 return (0); 451 } 452 453 void 454 zcp_convert_return_values(lua_State *state, nvlist_t *nvl, 455 const char *key, zcp_eval_arg_t *evalargs) 456 { 457 int err; 458 lua_pushcfunction(state, zcp_lua_to_nvlist_helper); 459 lua_pushlightuserdata(state, (char *)key); 460 lua_pushlightuserdata(state, nvl); 461 lua_pushvalue(state, 1); 462 lua_remove(state, 1); 463 err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */ 464 if (err != 0) { 465 zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR); 466 evalargs->ea_result = SET_ERROR(ECHRNG); 467 } 468 } 469 470 /* 471 * Push a Lua table representing nvl onto the stack. If it can't be 472 * converted, return EINVAL, fill in errbuf, and push nothing. errbuf may 473 * be specified as NULL, in which case no error string will be output. 474 * 475 * Most nvlists are converted as simple key->value Lua tables, but we make 476 * an exception for the case where all nvlist entries are BOOLEANs (a string 477 * key without a value). In Lua, a table key pointing to a value of Nil 478 * (no value) is equivalent to the key not existing, so a BOOLEAN nvlist 479 * entry can't be directly converted to a Lua table entry. Nvlists of entirely 480 * BOOLEAN entries are frequently used to pass around lists of datasets, so for 481 * convenience we check for this case, and convert it to a simple Lua array of 482 * strings. 483 */ 484 int 485 zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl, 486 char *errbuf, int errbuf_len) 487 { 488 nvpair_t *pair; 489 lua_newtable(state); 490 boolean_t has_values = B_FALSE; 491 /* 492 * If the list doesn't have any values, just convert it to a string 493 * array. 494 */ 495 for (pair = nvlist_next_nvpair(nvl, NULL); 496 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) { 497 if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) { 498 has_values = B_TRUE; 499 break; 500 } 501 } 502 if (!has_values) { 503 int i = 1; 504 for (pair = nvlist_next_nvpair(nvl, NULL); 505 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) { 506 (void) lua_pushinteger(state, i); 507 (void) lua_pushstring(state, nvpair_name(pair)); 508 (void) lua_settable(state, -3); 509 i++; 510 } 511 } else { 512 for (pair = nvlist_next_nvpair(nvl, NULL); 513 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) { 514 int err = zcp_nvpair_value_to_lua(state, pair, 515 errbuf, errbuf_len); 516 if (err != 0) { 517 lua_pop(state, 1); 518 return (err); 519 } 520 (void) lua_setfield(state, -2, nvpair_name(pair)); 521 } 522 } 523 return (0); 524 } 525 526 /* 527 * Push a Lua object representing the value of "pair" onto the stack. 528 * 529 * Only understands boolean_value, string, int64, nvlist, 530 * string_array, and int64_array type values. For other 531 * types, returns EINVAL, fills in errbuf, and pushes nothing. 532 */ 533 static int 534 zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair, 535 char *errbuf, int errbuf_len) 536 { 537 int err = 0; 538 539 if (pair == NULL) { 540 lua_pushnil(state); 541 return (0); 542 } 543 544 switch (nvpair_type(pair)) { 545 case DATA_TYPE_BOOLEAN_VALUE: 546 (void) lua_pushboolean(state, 547 fnvpair_value_boolean_value(pair)); 548 break; 549 case DATA_TYPE_STRING: 550 (void) lua_pushstring(state, fnvpair_value_string(pair)); 551 break; 552 case DATA_TYPE_INT64: 553 (void) lua_pushinteger(state, fnvpair_value_int64(pair)); 554 break; 555 case DATA_TYPE_NVLIST: 556 err = zcp_nvlist_to_lua(state, 557 fnvpair_value_nvlist(pair), errbuf, errbuf_len); 558 break; 559 case DATA_TYPE_STRING_ARRAY: { 560 char **strarr; 561 uint_t nelem; 562 (void) nvpair_value_string_array(pair, &strarr, &nelem); 563 lua_newtable(state); 564 for (int i = 0; i < nelem; i++) { 565 (void) lua_pushinteger(state, i + 1); 566 (void) lua_pushstring(state, strarr[i]); 567 (void) lua_settable(state, -3); 568 } 569 break; 570 } 571 case DATA_TYPE_UINT64_ARRAY: { 572 uint64_t *intarr; 573 uint_t nelem; 574 (void) nvpair_value_uint64_array(pair, &intarr, &nelem); 575 lua_newtable(state); 576 for (int i = 0; i < nelem; i++) { 577 (void) lua_pushinteger(state, i + 1); 578 (void) lua_pushinteger(state, intarr[i]); 579 (void) lua_settable(state, -3); 580 } 581 break; 582 } 583 case DATA_TYPE_INT64_ARRAY: { 584 int64_t *intarr; 585 uint_t nelem; 586 (void) nvpair_value_int64_array(pair, &intarr, &nelem); 587 lua_newtable(state); 588 for (int i = 0; i < nelem; i++) { 589 (void) lua_pushinteger(state, i + 1); 590 (void) lua_pushinteger(state, intarr[i]); 591 (void) lua_settable(state, -3); 592 } 593 break; 594 } 595 default: { 596 if (errbuf != NULL) { 597 (void) snprintf(errbuf, errbuf_len, 598 "Unhandled nvpair type %d for key '%s'", 599 nvpair_type(pair), nvpair_name(pair)); 600 } 601 return (EINVAL); 602 } 603 } 604 return (err); 605 } 606 607 int 608 zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname, 609 int error) 610 { 611 if (error == ENOENT) { 612 (void) zcp_argerror(state, 1, "no such dataset '%s'", dsname); 613 return (NULL); /* not reached; zcp_argerror will longjmp */ 614 } else if (error == EXDEV) { 615 (void) zcp_argerror(state, 1, 616 "dataset '%s' is not in the target pool '%s'", 617 dsname, spa_name(dp->dp_spa)); 618 return (NULL); /* not reached; zcp_argerror will longjmp */ 619 } else if (error == EIO) { 620 (void) luaL_error(state, 621 "I/O error while accessing dataset '%s'", dsname); 622 return (NULL); /* not reached; luaL_error will longjmp */ 623 } else if (error != 0) { 624 (void) luaL_error(state, 625 "unexpected error %d while accessing dataset '%s'", 626 error, dsname); 627 return (NULL); /* not reached; luaL_error will longjmp */ 628 } 629 return (NULL); 630 } 631 632 /* 633 * Note: will longjmp (via lua_error()) on error. 634 * Assumes that the dsname is argument #1 (for error reporting purposes). 635 */ 636 dsl_dataset_t * 637 zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname, 638 void *tag) 639 { 640 dsl_dataset_t *ds; 641 int error = dsl_dataset_hold(dp, dsname, tag, &ds); 642 (void) zcp_dataset_hold_error(state, dp, dsname, error); 643 return (ds); 644 } 645 646 static int zcp_debug(lua_State *); 647 static zcp_lib_info_t zcp_debug_info = { 648 .name = "debug", 649 .func = zcp_debug, 650 .pargs = { 651 { .za_name = "debug string", .za_lua_type = LUA_TSTRING}, 652 {NULL, NULL} 653 }, 654 .kwargs = { 655 {NULL, NULL} 656 } 657 }; 658 659 static int 660 zcp_debug(lua_State *state) 661 { 662 const char *dbgstring; 663 zcp_run_info_t *ri = zcp_run_info(state); 664 zcp_lib_info_t *libinfo = &zcp_debug_info; 665 666 zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs); 667 668 dbgstring = lua_tostring(state, 1); 669 670 zfs_dbgmsg("txg %lld ZCP: %s", ri->zri_tx->tx_txg, dbgstring); 671 672 return (0); 673 } 674 675 static int zcp_exists(lua_State *); 676 static zcp_lib_info_t zcp_exists_info = { 677 .name = "exists", 678 .func = zcp_exists, 679 .pargs = { 680 { .za_name = "dataset", .za_lua_type = LUA_TSTRING}, 681 {NULL, NULL} 682 }, 683 .kwargs = { 684 {NULL, NULL} 685 } 686 }; 687 688 static int 689 zcp_exists(lua_State *state) 690 { 691 zcp_run_info_t *ri = zcp_run_info(state); 692 dsl_pool_t *dp = ri->zri_pool; 693 zcp_lib_info_t *libinfo = &zcp_exists_info; 694 695 zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs); 696 697 const char *dsname = lua_tostring(state, 1); 698 699 dsl_dataset_t *ds; 700 int error = dsl_dataset_hold(dp, dsname, FTAG, &ds); 701 if (error == 0) { 702 dsl_dataset_rele(ds, FTAG); 703 lua_pushboolean(state, B_TRUE); 704 } else if (error == ENOENT) { 705 lua_pushboolean(state, B_FALSE); 706 } else if (error == EXDEV) { 707 return (luaL_error(state, "dataset '%s' is not in the " 708 "target pool", dsname)); 709 } else if (error == EIO) { 710 return (luaL_error(state, "I/O error opening dataset '%s'", 711 dsname)); 712 } else if (error != 0) { 713 return (luaL_error(state, "unexpected error %d", error)); 714 } 715 716 return (1); 717 } 718 719 /* 720 * Allocate/realloc/free a buffer for the lua interpreter. 721 * 722 * When nsize is 0, behaves as free() and returns NULL. 723 * 724 * If ptr is NULL, behaves as malloc() and returns an allocated buffer of size 725 * at least nsize. 726 * 727 * Otherwise, behaves as realloc(), changing the allocation from osize to nsize. 728 * Shrinking the buffer size never fails. 729 * 730 * The original allocated buffer size is stored as a uint64 at the beginning of 731 * the buffer to avoid actually reallocating when shrinking a buffer, since lua 732 * requires that this operation never fail. 733 */ 734 static void * 735 zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize) 736 { 737 zcp_alloc_arg_t *allocargs = ud; 738 int flags = (allocargs->aa_must_succeed) ? 739 KM_SLEEP : (KM_NOSLEEP | KM_NORMALPRI); 740 741 if (nsize == 0) { 742 if (ptr != NULL) { 743 int64_t *allocbuf = (int64_t *)ptr - 1; 744 int64_t allocsize = *allocbuf; 745 ASSERT3S(allocsize, >, 0); 746 ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=, 747 allocargs->aa_alloc_limit); 748 allocargs->aa_alloc_remaining += allocsize; 749 kmem_free(allocbuf, allocsize); 750 } 751 return (NULL); 752 } else if (ptr == NULL) { 753 int64_t *allocbuf; 754 int64_t allocsize = nsize + sizeof (int64_t); 755 756 if (!allocargs->aa_must_succeed && 757 (allocsize <= 0 || 758 allocsize > allocargs->aa_alloc_remaining)) { 759 return (NULL); 760 } 761 762 allocbuf = kmem_alloc(allocsize, flags); 763 if (allocbuf == NULL) { 764 return (NULL); 765 } 766 allocargs->aa_alloc_remaining -= allocsize; 767 768 *allocbuf = allocsize; 769 return (allocbuf + 1); 770 } else if (nsize <= osize) { 771 /* 772 * If shrinking the buffer, lua requires that the reallocation 773 * never fail. 774 */ 775 return (ptr); 776 } else { 777 ASSERT3U(nsize, >, osize); 778 779 uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize); 780 if (luabuf == NULL) { 781 return (NULL); 782 } 783 (void) memcpy(luabuf, ptr, osize); 784 VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL); 785 return (luabuf); 786 } 787 } 788 789 /* ARGSUSED */ 790 static void 791 zcp_lua_counthook(lua_State *state, lua_Debug *ar) 792 { 793 /* 794 * If we're called, check how many instructions the channel program has 795 * executed so far, and compare against the limit. 796 */ 797 lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY); 798 zcp_run_info_t *ri = lua_touserdata(state, -1); 799 800 ri->zri_curinstrs += zfs_lua_check_instrlimit_interval; 801 if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) { 802 ri->zri_timed_out = B_TRUE; 803 (void) lua_pushstring(state, 804 "Channel program timed out."); 805 (void) lua_error(state); 806 } 807 } 808 809 static int 810 zcp_panic_cb(lua_State *state) 811 { 812 panic("unprotected error in call to Lua API (%s)\n", 813 lua_tostring(state, -1)); 814 return (0); 815 } 816 817 static void 818 zcp_eval_sync(void *arg, dmu_tx_t *tx) 819 { 820 int err; 821 zcp_run_info_t ri; 822 zcp_eval_arg_t *evalargs = arg; 823 lua_State *state = evalargs->ea_state; 824 825 /* 826 * Open context should have setup the stack to contain: 827 * 1: Error handler callback 828 * 2: Script to run (converted to a Lua function) 829 * 3: nvlist input to function (converted to Lua table or nil) 830 */ 831 VERIFY3U(3, ==, lua_gettop(state)); 832 833 /* 834 * Store the zcp_run_info_t struct for this run in the Lua registry. 835 * Registry entries are not directly accessible by the Lua scripts but 836 * can be accessed by our callbacks. 837 */ 838 ri.zri_space_used = 0; 839 ri.zri_pool = dmu_tx_pool(tx); 840 ri.zri_cred = evalargs->ea_cred; 841 ri.zri_tx = tx; 842 ri.zri_timed_out = B_FALSE; 843 ri.zri_cleanup = NULL; 844 ri.zri_cleanup_arg = NULL; 845 ri.zri_curinstrs = 0; 846 ri.zri_maxinstrs = evalargs->ea_instrlimit; 847 848 lua_pushlightuserdata(state, &ri); 849 lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY); 850 VERIFY3U(3, ==, lua_gettop(state)); 851 852 /* 853 * Tell the Lua interpreter to call our handler every count 854 * instructions. Channel programs that execute too many instructions 855 * should die with ETIME. 856 */ 857 (void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT, 858 zfs_lua_check_instrlimit_interval); 859 860 /* 861 * Tell the Lua memory allocator to stop using KM_SLEEP before handing 862 * off control to the channel program. Channel programs that use too 863 * much memory should die with ENOSPC. 864 */ 865 evalargs->ea_allocargs->aa_must_succeed = B_FALSE; 866 867 /* 868 * Call the Lua function that open-context passed us. This pops the 869 * function and its input from the stack and pushes any return 870 * or error values. 871 */ 872 err = lua_pcall(state, 1, LUA_MULTRET, 1); 873 874 /* 875 * Let Lua use KM_SLEEP while we interpret the return values. 876 */ 877 evalargs->ea_allocargs->aa_must_succeed = B_TRUE; 878 879 /* 880 * Remove the error handler callback from the stack. At this point, 881 * if there is a cleanup function registered, then it was registered 882 * but never run or removed, which should never occur. 883 */ 884 ASSERT3P(ri.zri_cleanup, ==, NULL); 885 lua_remove(state, 1); 886 887 switch (err) { 888 case LUA_OK: { 889 /* 890 * Lua supports returning multiple values in a single return 891 * statement. Return values will have been pushed onto the 892 * stack: 893 * 1: Return value 1 894 * 2: Return value 2 895 * 3: etc... 896 * To simplify the process of retrieving a return value from a 897 * channel program, we disallow returning more than one value 898 * to ZFS from the Lua script, yielding a singleton return 899 * nvlist of the form { "return": Return value 1 }. 900 */ 901 int return_count = lua_gettop(state); 902 903 if (return_count == 1) { 904 evalargs->ea_result = 0; 905 zcp_convert_return_values(state, evalargs->ea_outnvl, 906 ZCP_RET_RETURN, evalargs); 907 } else if (return_count > 1) { 908 evalargs->ea_result = SET_ERROR(ECHRNG); 909 (void) lua_pushfstring(state, "Multiple return " 910 "values not supported"); 911 zcp_convert_return_values(state, evalargs->ea_outnvl, 912 ZCP_RET_ERROR, evalargs); 913 } 914 break; 915 } 916 case LUA_ERRRUN: 917 case LUA_ERRGCMM: { 918 /* 919 * The channel program encountered a fatal error within the 920 * script, such as failing an assertion, or calling a function 921 * with incompatible arguments. The error value and the 922 * traceback generated by zcp_error_handler() should be on the 923 * stack. 924 */ 925 VERIFY3U(1, ==, lua_gettop(state)); 926 if (ri.zri_timed_out) { 927 evalargs->ea_result = SET_ERROR(ETIME); 928 } else { 929 evalargs->ea_result = SET_ERROR(ECHRNG); 930 } 931 932 zcp_convert_return_values(state, evalargs->ea_outnvl, 933 ZCP_RET_ERROR, evalargs); 934 break; 935 } 936 case LUA_ERRERR: { 937 /* 938 * The channel program encountered a fatal error within the 939 * script, and we encountered another error while trying to 940 * compute the traceback in zcp_error_handler(). We can only 941 * return the error message. 942 */ 943 VERIFY3U(1, ==, lua_gettop(state)); 944 if (ri.zri_timed_out) { 945 evalargs->ea_result = SET_ERROR(ETIME); 946 } else { 947 evalargs->ea_result = SET_ERROR(ECHRNG); 948 } 949 950 zcp_convert_return_values(state, evalargs->ea_outnvl, 951 ZCP_RET_ERROR, evalargs); 952 break; 953 } 954 case LUA_ERRMEM: 955 /* 956 * Lua ran out of memory while running the channel program. 957 * There's not much we can do. 958 */ 959 evalargs->ea_result = SET_ERROR(ENOSPC); 960 break; 961 default: 962 VERIFY0(err); 963 } 964 } 965 966 int 967 zcp_eval(const char *poolname, const char *program, uint64_t instrlimit, 968 uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl) 969 { 970 int err; 971 lua_State *state; 972 zcp_eval_arg_t evalargs; 973 974 if (instrlimit > zfs_lua_max_instrlimit) 975 return (SET_ERROR(EINVAL)); 976 if (memlimit == 0 || memlimit > zfs_lua_max_memlimit) 977 return (SET_ERROR(EINVAL)); 978 979 zcp_alloc_arg_t allocargs = { 980 .aa_must_succeed = B_TRUE, 981 .aa_alloc_remaining = (int64_t)memlimit, 982 .aa_alloc_limit = (int64_t)memlimit, 983 }; 984 985 /* 986 * Creates a Lua state with a memory allocator that uses KM_SLEEP. 987 * This should never fail. 988 */ 989 state = lua_newstate(zcp_lua_alloc, &allocargs); 990 VERIFY(state != NULL); 991 (void) lua_atpanic(state, zcp_panic_cb); 992 993 /* 994 * Load core Lua libraries we want access to. 995 */ 996 VERIFY3U(1, ==, luaopen_base(state)); 997 lua_pop(state, 1); 998 VERIFY3U(1, ==, luaopen_coroutine(state)); 999 lua_setglobal(state, LUA_COLIBNAME); 1000 VERIFY0(lua_gettop(state)); 1001 VERIFY3U(1, ==, luaopen_string(state)); 1002 lua_setglobal(state, LUA_STRLIBNAME); 1003 VERIFY0(lua_gettop(state)); 1004 VERIFY3U(1, ==, luaopen_table(state)); 1005 lua_setglobal(state, LUA_TABLIBNAME); 1006 VERIFY0(lua_gettop(state)); 1007 1008 /* 1009 * Load globally visible variables such as errno aliases. 1010 */ 1011 zcp_load_globals(state); 1012 VERIFY0(lua_gettop(state)); 1013 1014 /* 1015 * Load ZFS-specific modules. 1016 */ 1017 lua_newtable(state); 1018 VERIFY3U(1, ==, zcp_load_list_lib(state)); 1019 lua_setfield(state, -2, "list"); 1020 VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE)); 1021 lua_setfield(state, -2, "check"); 1022 VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE)); 1023 lua_setfield(state, -2, "sync"); 1024 VERIFY3U(1, ==, zcp_load_get_lib(state)); 1025 lua_pushcclosure(state, zcp_debug_info.func, 0); 1026 lua_setfield(state, -2, zcp_debug_info.name); 1027 lua_pushcclosure(state, zcp_exists_info.func, 0); 1028 lua_setfield(state, -2, zcp_exists_info.name); 1029 lua_setglobal(state, "zfs"); 1030 VERIFY0(lua_gettop(state)); 1031 1032 /* 1033 * Push the error-callback that calculates Lua stack traces on 1034 * unexpected failures. 1035 */ 1036 lua_pushcfunction(state, zcp_error_handler); 1037 VERIFY3U(1, ==, lua_gettop(state)); 1038 1039 /* 1040 * Load the actual script as a function onto the stack as text ("t"). 1041 * The only valid error condition is a syntax error in the script. 1042 * ERRMEM should not be possible because our allocator is using 1043 * KM_SLEEP. ERRGCMM should not be possible because we have not added 1044 * any objects with __gc metamethods to the interpreter that could 1045 * fail. 1046 */ 1047 err = luaL_loadbufferx(state, program, strlen(program), 1048 "channel program", "t"); 1049 if (err == LUA_ERRSYNTAX) { 1050 fnvlist_add_string(outnvl, ZCP_RET_ERROR, 1051 lua_tostring(state, -1)); 1052 lua_close(state); 1053 return (SET_ERROR(EINVAL)); 1054 } 1055 VERIFY0(err); 1056 VERIFY3U(2, ==, lua_gettop(state)); 1057 1058 /* 1059 * Convert the input nvlist to a Lua object and put it on top of the 1060 * stack. 1061 */ 1062 char errmsg[128]; 1063 err = zcp_nvpair_value_to_lua(state, nvarg, 1064 errmsg, sizeof (errmsg)); 1065 if (err != 0) { 1066 fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg); 1067 lua_close(state); 1068 return (SET_ERROR(EINVAL)); 1069 } 1070 VERIFY3U(3, ==, lua_gettop(state)); 1071 1072 evalargs.ea_state = state; 1073 evalargs.ea_allocargs = &allocargs; 1074 evalargs.ea_instrlimit = instrlimit; 1075 evalargs.ea_cred = CRED(); 1076 evalargs.ea_outnvl = outnvl; 1077 evalargs.ea_result = 0; 1078 1079 VERIFY0(dsl_sync_task(poolname, zcp_eval_check, 1080 zcp_eval_sync, &evalargs, 0, ZFS_SPACE_CHECK_NONE)); 1081 1082 lua_close(state); 1083 1084 return (evalargs.ea_result); 1085 } 1086 1087 /* 1088 * Retrieve metadata about the currently running channel program. 1089 */ 1090 zcp_run_info_t * 1091 zcp_run_info(lua_State *state) 1092 { 1093 zcp_run_info_t *ri; 1094 1095 lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY); 1096 ri = lua_touserdata(state, -1); 1097 lua_pop(state, 1); 1098 return (ri); 1099 } 1100 1101 /* 1102 * Argument Parsing 1103 * ================ 1104 * 1105 * The Lua language allows methods to be called with any number 1106 * of arguments of any type. When calling back into ZFS we need to sanitize 1107 * arguments from channel programs to make sure unexpected arguments or 1108 * arguments of the wrong type result in clear error messages. To do this 1109 * in a uniform way all callbacks from channel programs should use the 1110 * zcp_parse_args() function to interpret inputs. 1111 * 1112 * Positional vs Keyword Arguments 1113 * =============================== 1114 * 1115 * Every callback function takes a fixed set of required positional arguments 1116 * and optional keyword arguments. For example, the destroy function takes 1117 * a single positional string argument (the name of the dataset to destroy) 1118 * and an optional "defer" keyword boolean argument. When calling lua functions 1119 * with parentheses, only positional arguments can be used: 1120 * 1121 * zfs.sync.snapshot("rpool@snap") 1122 * 1123 * To use keyword arguments functions should be called with a single argument 1124 * that is a lua table containing mappings of integer -> positional arguments 1125 * and string -> keyword arguments: 1126 * 1127 * zfs.sync.snapshot({1="rpool@snap", defer=true}) 1128 * 1129 * The lua language allows curly braces to be used in place of parenthesis as 1130 * syntactic sugar for this calling convention: 1131 * 1132 * zfs.sync.snapshot{"rpool@snap", defer=true} 1133 */ 1134 1135 /* 1136 * Throw an error and print the given arguments. If there are too many 1137 * arguments to fit in the output buffer, only the error format string is 1138 * output. 1139 */ 1140 static void 1141 zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs, 1142 const zcp_arg_t *kwargs, const char *fmt, ...) 1143 { 1144 int i; 1145 char errmsg[512]; 1146 size_t len = sizeof (errmsg); 1147 size_t msglen = 0; 1148 va_list argp; 1149 1150 va_start(argp, fmt); 1151 VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp)); 1152 va_end(argp); 1153 1154 /* 1155 * Calculate the total length of the final string, including extra 1156 * formatting characters. If the argument dump would be too large, 1157 * only print the error string. 1158 */ 1159 msglen = strlen(errmsg); 1160 msglen += strlen(fname) + 4; /* : + {} + null terminator */ 1161 for (i = 0; pargs[i].za_name != NULL; i++) { 1162 msglen += strlen(pargs[i].za_name); 1163 msglen += strlen(lua_typename(state, pargs[i].za_lua_type)); 1164 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) 1165 msglen += 5; /* < + ( + )> + , */ 1166 else 1167 msglen += 4; /* < + ( + )> */ 1168 } 1169 for (i = 0; kwargs[i].za_name != NULL; i++) { 1170 msglen += strlen(kwargs[i].za_name); 1171 msglen += strlen(lua_typename(state, kwargs[i].za_lua_type)); 1172 if (kwargs[i + 1].za_name != NULL) 1173 msglen += 4; /* =( + ) + , */ 1174 else 1175 msglen += 3; /* =( + ) */ 1176 } 1177 1178 if (msglen >= len) 1179 (void) luaL_error(state, errmsg); 1180 1181 VERIFY3U(len, >, strlcat(errmsg, ": ", len)); 1182 VERIFY3U(len, >, strlcat(errmsg, fname, len)); 1183 VERIFY3U(len, >, strlcat(errmsg, "{", len)); 1184 for (i = 0; pargs[i].za_name != NULL; i++) { 1185 VERIFY3U(len, >, strlcat(errmsg, "<", len)); 1186 VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len)); 1187 VERIFY3U(len, >, strlcat(errmsg, "(", len)); 1188 VERIFY3U(len, >, strlcat(errmsg, 1189 lua_typename(state, pargs[i].za_lua_type), len)); 1190 VERIFY3U(len, >, strlcat(errmsg, ")>", len)); 1191 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) { 1192 VERIFY3U(len, >, strlcat(errmsg, ", ", len)); 1193 } 1194 } 1195 for (i = 0; kwargs[i].za_name != NULL; i++) { 1196 VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len)); 1197 VERIFY3U(len, >, strlcat(errmsg, "=(", len)); 1198 VERIFY3U(len, >, strlcat(errmsg, 1199 lua_typename(state, kwargs[i].za_lua_type), len)); 1200 VERIFY3U(len, >, strlcat(errmsg, ")", len)); 1201 if (kwargs[i + 1].za_name != NULL) { 1202 VERIFY3U(len, >, strlcat(errmsg, ", ", len)); 1203 } 1204 } 1205 VERIFY3U(len, >, strlcat(errmsg, "}", len)); 1206 1207 (void) luaL_error(state, errmsg); 1208 panic("unreachable code"); 1209 } 1210 1211 static void 1212 zcp_parse_table_args(lua_State *state, const char *fname, 1213 const zcp_arg_t *pargs, const zcp_arg_t *kwargs) 1214 { 1215 int i; 1216 int type; 1217 1218 for (i = 0; pargs[i].za_name != NULL; i++) { 1219 /* 1220 * Check the table for this positional argument, leaving it 1221 * on the top of the stack once we finish validating it. 1222 */ 1223 lua_pushinteger(state, i + 1); 1224 lua_gettable(state, 1); 1225 1226 type = lua_type(state, -1); 1227 if (type == LUA_TNIL) { 1228 zcp_args_error(state, fname, pargs, kwargs, 1229 "too few arguments"); 1230 panic("unreachable code"); 1231 } else if (type != pargs[i].za_lua_type) { 1232 zcp_args_error(state, fname, pargs, kwargs, 1233 "arg %d wrong type (is '%s', expected '%s')", 1234 i + 1, lua_typename(state, type), 1235 lua_typename(state, pargs[i].za_lua_type)); 1236 panic("unreachable code"); 1237 } 1238 1239 /* 1240 * Remove the positional argument from the table. 1241 */ 1242 lua_pushinteger(state, i + 1); 1243 lua_pushnil(state); 1244 lua_settable(state, 1); 1245 } 1246 1247 for (i = 0; kwargs[i].za_name != NULL; i++) { 1248 /* 1249 * Check the table for this keyword argument, which may be 1250 * nil if it was omitted. Leave the value on the top of 1251 * the stack after validating it. 1252 */ 1253 lua_getfield(state, 1, kwargs[i].za_name); 1254 1255 type = lua_type(state, -1); 1256 if (type != LUA_TNIL && type != kwargs[i].za_lua_type) { 1257 zcp_args_error(state, fname, pargs, kwargs, 1258 "kwarg '%s' wrong type (is '%s', expected '%s')", 1259 kwargs[i].za_name, lua_typename(state, type), 1260 lua_typename(state, kwargs[i].za_lua_type)); 1261 panic("unreachable code"); 1262 } 1263 1264 /* 1265 * Remove the keyword argument from the table. 1266 */ 1267 lua_pushnil(state); 1268 lua_setfield(state, 1, kwargs[i].za_name); 1269 } 1270 1271 /* 1272 * Any entries remaining in the table are invalid inputs, print 1273 * an error message based on what the entry is. 1274 */ 1275 lua_pushnil(state); 1276 if (lua_next(state, 1)) { 1277 if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) { 1278 zcp_args_error(state, fname, pargs, kwargs, 1279 "too many positional arguments"); 1280 } else if (lua_isstring(state, -2)) { 1281 zcp_args_error(state, fname, pargs, kwargs, 1282 "invalid kwarg '%s'", lua_tostring(state, -2)); 1283 } else { 1284 zcp_args_error(state, fname, pargs, kwargs, 1285 "kwarg keys must be strings"); 1286 } 1287 panic("unreachable code"); 1288 } 1289 1290 lua_remove(state, 1); 1291 } 1292 1293 static void 1294 zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs, 1295 const zcp_arg_t *kwargs) 1296 { 1297 int i; 1298 int type; 1299 1300 for (i = 0; pargs[i].za_name != NULL; i++) { 1301 type = lua_type(state, i + 1); 1302 if (type == LUA_TNONE) { 1303 zcp_args_error(state, fname, pargs, kwargs, 1304 "too few arguments"); 1305 panic("unreachable code"); 1306 } else if (type != pargs[i].za_lua_type) { 1307 zcp_args_error(state, fname, pargs, kwargs, 1308 "arg %d wrong type (is '%s', expected '%s')", 1309 i + 1, lua_typename(state, type), 1310 lua_typename(state, pargs[i].za_lua_type)); 1311 panic("unreachable code"); 1312 } 1313 } 1314 if (lua_gettop(state) != i) { 1315 zcp_args_error(state, fname, pargs, kwargs, 1316 "too many positional arguments"); 1317 panic("unreachable code"); 1318 } 1319 1320 for (i = 0; kwargs[i].za_name != NULL; i++) { 1321 lua_pushnil(state); 1322 } 1323 } 1324 1325 /* 1326 * Checks the current Lua stack against an expected set of positional and 1327 * keyword arguments. If the stack does not match the expected arguments 1328 * aborts the current channel program with a useful error message, otherwise 1329 * it re-arranges the stack so that it contains the positional arguments 1330 * followed by the keyword argument values in declaration order. Any missing 1331 * keyword argument will be represented by a nil value on the stack. 1332 * 1333 * If the stack contains exactly one argument of type LUA_TTABLE the curly 1334 * braces calling convention is assumed, otherwise the stack is parsed for 1335 * positional arguments only. 1336 * 1337 * This function should be used by every function callback. It should be called 1338 * before the callback manipulates the Lua stack as it assumes the stack 1339 * represents the function arguments. 1340 */ 1341 void 1342 zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs, 1343 const zcp_arg_t *kwargs) 1344 { 1345 if (lua_gettop(state) == 1 && lua_istable(state, 1)) { 1346 zcp_parse_table_args(state, fname, pargs, kwargs); 1347 } else { 1348 zcp_parse_pos_args(state, fname, pargs, kwargs); 1349 } 1350 } 1351