xref: /illumos-gate/usr/src/uts/common/fs/zfs/zcp.c (revision 7d0b359ca572cd04474eb1f2ceec5a8ff39e36c9)
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15 
16 /*
17  * Copyright (c) 2016, 2017 by Delphix. All rights reserved.
18  */
19 
20 /*
21  * ZFS Channel Programs (ZCP)
22  *
23  * The ZCP interface allows various ZFS commands and operations ZFS
24  * administrative operations (e.g. creating and destroying snapshots, typically
25  * performed via an ioctl to /dev/zfs by the zfs(1M) command and
26  * libzfs/libzfs_core) to be run * programmatically as a Lua script.  A ZCP
27  * script is run as a dsl_sync_task and fully executed during one transaction
28  * group sync.  This ensures that no other changes can be written concurrently
29  * with a running Lua script.  Combining multiple calls to the exposed ZFS
30  * functions into one script gives a number of benefits:
31  *
32  * 1. Atomicity.  For some compound or iterative operations, it's useful to be
33  * able to guarantee that the state of a pool has not changed between calls to
34  * ZFS.
35  *
36  * 2. Performance.  If a large number of changes need to be made (e.g. deleting
37  * many filesystems), there can be a significant performance penalty as a
38  * result of the need to wait for a transaction group sync to pass for every
39  * single operation.  When expressed as a single ZCP script, all these changes
40  * can be performed at once in one txg sync.
41  *
42  * A modified version of the Lua 5.2 interpreter is used to run channel program
43  * scripts. The Lua 5.2 manual can be found at:
44  *
45  *      http://www.lua.org/manual/5.2/
46  *
47  * If being run by a user (via an ioctl syscall), executing a ZCP script
48  * requires root privileges in the global zone.
49  *
50  * Scripts are passed to zcp_eval() as a string, then run in a synctask by
51  * zcp_eval_sync().  Arguments can be passed into the Lua script as an nvlist,
52  * which will be converted to a Lua table.  Similarly, values returned from
53  * a ZCP script will be converted to an nvlist.  See zcp_lua_to_nvlist_impl()
54  * for details on exact allowed types and conversion.
55  *
56  * ZFS functionality is exposed to a ZCP script as a library of function calls.
57  * These calls are sorted into submodules, such as zfs.list and zfs.sync, for
58  * iterators and synctasks, respectively.  Each of these submodules resides in
59  * its own source file, with a zcp_*_info structure describing each library
60  * call in the submodule.
61  *
62  * Error handling in ZCP scripts is handled by a number of different methods
63  * based on severity:
64  *
65  * 1. Memory and time limits are in place to prevent a channel program from
66  * consuming excessive system or running forever.  If one of these limits is
67  * hit, the channel program will be stopped immediately and return from
68  * zcp_eval() with an error code. No attempt will be made to roll back or undo
69  * any changes made by the channel program before the error occured.
70  * Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time
71  * limit of 0, disabling the time limit.
72  *
73  * 2. Internal Lua errors can occur as a result of a syntax error, calling a
74  * library function with incorrect arguments, invoking the error() function,
75  * failing an assert(), or other runtime errors.  In these cases the channel
76  * program will stop executing and return from zcp_eval() with an error code.
77  * In place of a return value, an error message will also be returned in the
78  * 'result' nvlist containing information about the error. No attempt will be
79  * made to roll back or undo any changes made by the channel program before the
80  * error occured.
81  *
82  * 3. If an error occurs inside a ZFS library call which returns an error code,
83  * the error is returned to the Lua script to be handled as desired.
84  *
85  * In the first two cases, Lua's error-throwing mechanism is used, which
86  * longjumps out of the script execution with luaL_error() and returns with the
87  * error.
88  *
89  * See zfs-program(1M) for more information on high level usage.
90  */
91 
92 #include "lua.h"
93 #include "lualib.h"
94 #include "lauxlib.h"
95 
96 #include <sys/dsl_prop.h>
97 #include <sys/dsl_synctask.h>
98 #include <sys/dsl_dataset.h>
99 #include <sys/zcp.h>
100 #include <sys/zcp_iter.h>
101 #include <sys/zcp_prop.h>
102 #include <sys/zcp_global.h>
103 #include <util/sscanf.h>
104 
105 #define	ZCP_NVLIST_MAX_DEPTH 20
106 
107 uint64_t zfs_lua_check_instrlimit_interval = 100;
108 uint64_t zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT;
109 uint64_t zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT;
110 
111 /*
112  * Forward declarations for mutually recursive functions
113  */
114 static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int);
115 static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *,
116     int);
117 
118 typedef struct zcp_alloc_arg {
119 	boolean_t	aa_must_succeed;
120 	int64_t		aa_alloc_remaining;
121 	int64_t		aa_alloc_limit;
122 } zcp_alloc_arg_t;
123 
124 typedef struct zcp_eval_arg {
125 	lua_State	*ea_state;
126 	zcp_alloc_arg_t	*ea_allocargs;
127 	cred_t		*ea_cred;
128 	nvlist_t	*ea_outnvl;
129 	int		ea_result;
130 	uint64_t	ea_instrlimit;
131 } zcp_eval_arg_t;
132 
133 /*ARGSUSED*/
134 static int
135 zcp_eval_check(void *arg, dmu_tx_t *tx)
136 {
137 	return (0);
138 }
139 
140 /*
141  * The outer-most error callback handler for use with lua_pcall(). On
142  * error Lua will call this callback with a single argument that
143  * represents the error value. In most cases this will be a string
144  * containing an error message, but channel programs can use Lua's
145  * error() function to return arbitrary objects as errors. This callback
146  * returns (on the Lua stack) the original error object along with a traceback.
147  *
148  * Fatal Lua errors can occur while resources are held, so we also call any
149  * registered cleanup function here.
150  */
151 static int
152 zcp_error_handler(lua_State *state)
153 {
154 	const char *msg;
155 
156 	zcp_cleanup(state);
157 
158 	VERIFY3U(1, ==, lua_gettop(state));
159 	msg = lua_tostring(state, 1);
160 	luaL_traceback(state, state, msg, 1);
161 	return (1);
162 }
163 
164 int
165 zcp_argerror(lua_State *state, int narg, const char *msg, ...)
166 {
167 	va_list alist;
168 
169 	va_start(alist, msg);
170 	const char *buf = lua_pushvfstring(state, msg, alist);
171 	va_end(alist);
172 
173 	return (luaL_argerror(state, narg, buf));
174 }
175 
176 /*
177  * Install a new cleanup function, which will be invoked with the given
178  * opaque argument if a fatal error causes the Lua interpreter to longjump out
179  * of a function call.
180  *
181  * If an error occurs, the cleanup function will be invoked exactly once and
182  * then unreigstered.
183  */
184 void
185 zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg)
186 {
187 	zcp_run_info_t *ri = zcp_run_info(state);
188 	/*
189 	 * A cleanup function should always be explicitly removed before
190 	 * installing a new one to avoid accidental clobbering.
191 	 */
192 	ASSERT3P(ri->zri_cleanup, ==, NULL);
193 
194 	ri->zri_cleanup = cleanfunc;
195 	ri->zri_cleanup_arg = cleanarg;
196 }
197 
198 void
199 zcp_clear_cleanup(lua_State *state)
200 {
201 	zcp_run_info_t *ri = zcp_run_info(state);
202 
203 	ri->zri_cleanup = NULL;
204 	ri->zri_cleanup_arg = NULL;
205 }
206 
207 /*
208  * If it exists, execute the currently set cleanup function then unregister it.
209  */
210 void
211 zcp_cleanup(lua_State *state)
212 {
213 	zcp_run_info_t *ri = zcp_run_info(state);
214 
215 	if (ri->zri_cleanup != NULL) {
216 		ri->zri_cleanup(ri->zri_cleanup_arg);
217 		zcp_clear_cleanup(state);
218 	}
219 }
220 
221 /*
222  * Convert the lua table at the given index on the Lua stack to an nvlist
223  * and return it.
224  *
225  * If the table can not be converted for any reason, NULL is returned and
226  * an error message is pushed onto the Lua stack.
227  */
228 static nvlist_t *
229 zcp_table_to_nvlist(lua_State *state, int index, int depth)
230 {
231 	nvlist_t *nvl;
232 	/*
233 	 * Converting a Lua table to an nvlist with key uniqueness checking is
234 	 * O(n^2) in the number of keys in the nvlist, which can take a long
235 	 * time when we return a large table from a channel program.
236 	 * Furthermore, Lua's table interface *almost* guarantees unique keys
237 	 * on its own (details below). Therefore, we don't use fnvlist_alloc()
238 	 * here to avoid the built-in uniqueness checking.
239 	 *
240 	 * The *almost* is because it's possible to have key collisions between
241 	 * e.g. the string "1" and the number 1, or the string "true" and the
242 	 * boolean true, so we explicitly check that when we're looking at a
243 	 * key which is an integer / boolean or a string that can be parsed as
244 	 * one of those types. In the worst case this could still devolve into
245 	 * O(n^2), so we only start doing these checks on boolean/integer keys
246 	 * once we've seen a string key which fits this weird usage pattern.
247 	 *
248 	 * Ultimately, we still want callers to know that the keys in this
249 	 * nvlist are unique, so before we return this we set the nvlist's
250 	 * flags to reflect that.
251 	 */
252 	VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP));
253 
254 	/*
255 	 * Push an empty stack slot where lua_next() will store each
256 	 * table key.
257 	 */
258 	lua_pushnil(state);
259 	boolean_t saw_str_could_collide = B_FALSE;
260 	while (lua_next(state, index) != 0) {
261 		/*
262 		 * The next key-value pair from the table at index is
263 		 * now on the stack, with the key at stack slot -2 and
264 		 * the value at slot -1.
265 		 */
266 		int err = 0;
267 		char buf[32];
268 		const char *key = NULL;
269 		boolean_t key_could_collide = B_FALSE;
270 
271 		switch (lua_type(state, -2)) {
272 		case LUA_TSTRING:
273 			key = lua_tostring(state, -2);
274 
275 			/* check if this could collide with a number or bool */
276 			long long tmp;
277 			int parselen;
278 			if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 &&
279 			    parselen == strlen(key)) ||
280 			    strcmp(key, "true") == 0 ||
281 			    strcmp(key, "false") == 0) {
282 				key_could_collide = B_TRUE;
283 				saw_str_could_collide = B_TRUE;
284 			}
285 			break;
286 		case LUA_TBOOLEAN:
287 			key = (lua_toboolean(state, -2) == B_TRUE ?
288 			    "true" : "false");
289 			if (saw_str_could_collide) {
290 				key_could_collide = B_TRUE;
291 			}
292 			break;
293 		case LUA_TNUMBER:
294 			VERIFY3U(sizeof (buf), >,
295 			    snprintf(buf, sizeof (buf), "%lld",
296 			    (longlong_t)lua_tonumber(state, -2)));
297 			key = buf;
298 			if (saw_str_could_collide) {
299 				key_could_collide = B_TRUE;
300 			}
301 			break;
302 		default:
303 			fnvlist_free(nvl);
304 			(void) lua_pushfstring(state, "Invalid key "
305 			    "type '%s' in table",
306 			    lua_typename(state, lua_type(state, -2)));
307 			return (NULL);
308 		}
309 		/*
310 		 * Check for type-mismatched key collisions, and throw an error.
311 		 */
312 		if (key_could_collide && nvlist_exists(nvl, key)) {
313 			fnvlist_free(nvl);
314 			(void) lua_pushfstring(state, "Collision of "
315 			    "key '%s' in table", key);
316 			return (NULL);
317 		}
318 		/*
319 		 * Recursively convert the table value and insert into
320 		 * the new nvlist with the parsed key.  To prevent
321 		 * stack overflow on circular or heavily nested tables,
322 		 * we track the current nvlist depth.
323 		 */
324 		if (depth >= ZCP_NVLIST_MAX_DEPTH) {
325 			fnvlist_free(nvl);
326 			(void) lua_pushfstring(state, "Maximum table "
327 			    "depth (%d) exceeded for table",
328 			    ZCP_NVLIST_MAX_DEPTH);
329 			return (NULL);
330 		}
331 		err = zcp_lua_to_nvlist_impl(state, -1, nvl, key,
332 		    depth + 1);
333 		if (err != 0) {
334 			fnvlist_free(nvl);
335 			/*
336 			 * Error message has been pushed to the lua
337 			 * stack by the recursive call.
338 			 */
339 			return (NULL);
340 		}
341 		/*
342 		 * Pop the value pushed by lua_next().
343 		 */
344 		lua_pop(state, 1);
345 	}
346 
347 	/*
348 	 * Mark the nvlist as having unique keys. This is a little ugly, but we
349 	 * ensured above that there are no duplicate keys in the nvlist.
350 	 */
351 	nvl->nvl_nvflag |= NV_UNIQUE_NAME;
352 
353 	return (nvl);
354 }
355 
356 /*
357  * Convert a value from the given index into the lua stack to an nvpair, adding
358  * it to an nvlist with the given key.
359  *
360  * Values are converted as follows:
361  *
362  *   string -> string
363  *   number -> int64
364  *   boolean -> boolean
365  *   nil -> boolean (no value)
366  *
367  * Lua tables are converted to nvlists and then inserted. The table's keys
368  * are converted to strings then used as keys in the nvlist to store each table
369  * element.  Keys are converted as follows:
370  *
371  *   string -> no change
372  *   number -> "%lld"
373  *   boolean -> "true" | "false"
374  *   nil -> error
375  *
376  * In the case of a key collision, an error is thrown.
377  *
378  * If an error is encountered, a nonzero error code is returned, and an error
379  * string will be pushed onto the Lua stack.
380  */
381 static int
382 zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl,
383     const char *key, int depth)
384 {
385 	/*
386 	 * Verify that we have enough remaining space in the lua stack to parse
387 	 * a key-value pair and push an error.
388 	 */
389 	if (!lua_checkstack(state, 3)) {
390 		(void) lua_pushstring(state, "Lua stack overflow");
391 		return (1);
392 	}
393 
394 	index = lua_absindex(state, index);
395 
396 	switch (lua_type(state, index)) {
397 	case LUA_TNIL:
398 		fnvlist_add_boolean(nvl, key);
399 		break;
400 	case LUA_TBOOLEAN:
401 		fnvlist_add_boolean_value(nvl, key,
402 		    lua_toboolean(state, index));
403 		break;
404 	case LUA_TNUMBER:
405 		fnvlist_add_int64(nvl, key, lua_tonumber(state, index));
406 		break;
407 	case LUA_TSTRING:
408 		fnvlist_add_string(nvl, key, lua_tostring(state, index));
409 		break;
410 	case LUA_TTABLE: {
411 		nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth);
412 		if (value_nvl == NULL)
413 			return (EINVAL);
414 
415 		fnvlist_add_nvlist(nvl, key, value_nvl);
416 		fnvlist_free(value_nvl);
417 		break;
418 	}
419 	default:
420 		(void) lua_pushfstring(state,
421 		    "Invalid value type '%s' for key '%s'",
422 		    lua_typename(state, lua_type(state, index)), key);
423 		return (EINVAL);
424 	}
425 
426 	return (0);
427 }
428 
429 /*
430  * Convert a lua value to an nvpair, adding it to an nvlist with the given key.
431  */
432 void
433 zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key)
434 {
435 	/*
436 	 * On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua
437 	 * stack before returning with a nonzero error code. If an error is
438 	 * returned, throw a fatal lua error with the given string.
439 	 */
440 	if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0)
441 		(void) lua_error(state);
442 }
443 
444 int
445 zcp_lua_to_nvlist_helper(lua_State *state)
446 {
447 	nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2);
448 	const char *key = (const char *)lua_touserdata(state, 1);
449 	zcp_lua_to_nvlist(state, 3, nv, key);
450 	return (0);
451 }
452 
453 void
454 zcp_convert_return_values(lua_State *state, nvlist_t *nvl,
455     const char *key, zcp_eval_arg_t *evalargs)
456 {
457 	int err;
458 	lua_pushcfunction(state, zcp_lua_to_nvlist_helper);
459 	lua_pushlightuserdata(state, (char *)key);
460 	lua_pushlightuserdata(state, nvl);
461 	lua_pushvalue(state, 1);
462 	lua_remove(state, 1);
463 	err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */
464 	if (err != 0) {
465 		zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR);
466 		evalargs->ea_result = SET_ERROR(ECHRNG);
467 	}
468 }
469 
470 /*
471  * Push a Lua table representing nvl onto the stack.  If it can't be
472  * converted, return EINVAL, fill in errbuf, and push nothing. errbuf may
473  * be specified as NULL, in which case no error string will be output.
474  *
475  * Most nvlists are converted as simple key->value Lua tables, but we make
476  * an exception for the case where all nvlist entries are BOOLEANs (a string
477  * key without a value). In Lua, a table key pointing to a value of Nil
478  * (no value) is equivalent to the key not existing, so a BOOLEAN nvlist
479  * entry can't be directly converted to a Lua table entry. Nvlists of entirely
480  * BOOLEAN entries are frequently used to pass around lists of datasets, so for
481  * convenience we check for this case, and convert it to a simple Lua array of
482  * strings.
483  */
484 int
485 zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl,
486     char *errbuf, int errbuf_len)
487 {
488 	nvpair_t *pair;
489 	lua_newtable(state);
490 	boolean_t has_values = B_FALSE;
491 	/*
492 	 * If the list doesn't have any values, just convert it to a string
493 	 * array.
494 	 */
495 	for (pair = nvlist_next_nvpair(nvl, NULL);
496 	    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
497 		if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) {
498 			has_values = B_TRUE;
499 			break;
500 		}
501 	}
502 	if (!has_values) {
503 		int i = 1;
504 		for (pair = nvlist_next_nvpair(nvl, NULL);
505 		    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
506 			(void) lua_pushinteger(state, i);
507 			(void) lua_pushstring(state, nvpair_name(pair));
508 			(void) lua_settable(state, -3);
509 			i++;
510 		}
511 	} else {
512 		for (pair = nvlist_next_nvpair(nvl, NULL);
513 		    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
514 			int err = zcp_nvpair_value_to_lua(state, pair,
515 			    errbuf, errbuf_len);
516 			if (err != 0) {
517 				lua_pop(state, 1);
518 				return (err);
519 			}
520 			(void) lua_setfield(state, -2, nvpair_name(pair));
521 		}
522 	}
523 	return (0);
524 }
525 
526 /*
527  * Push a Lua object representing the value of "pair" onto the stack.
528  *
529  * Only understands boolean_value, string, int64, nvlist,
530  * string_array, and int64_array type values.  For other
531  * types, returns EINVAL, fills in errbuf, and pushes nothing.
532  */
533 static int
534 zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair,
535     char *errbuf, int errbuf_len)
536 {
537 	int err = 0;
538 
539 	if (pair == NULL) {
540 		lua_pushnil(state);
541 		return (0);
542 	}
543 
544 	switch (nvpair_type(pair)) {
545 	case DATA_TYPE_BOOLEAN_VALUE:
546 		(void) lua_pushboolean(state,
547 		    fnvpair_value_boolean_value(pair));
548 		break;
549 	case DATA_TYPE_STRING:
550 		(void) lua_pushstring(state, fnvpair_value_string(pair));
551 		break;
552 	case DATA_TYPE_INT64:
553 		(void) lua_pushinteger(state, fnvpair_value_int64(pair));
554 		break;
555 	case DATA_TYPE_NVLIST:
556 		err = zcp_nvlist_to_lua(state,
557 		    fnvpair_value_nvlist(pair), errbuf, errbuf_len);
558 		break;
559 	case DATA_TYPE_STRING_ARRAY: {
560 		char **strarr;
561 		uint_t nelem;
562 		(void) nvpair_value_string_array(pair, &strarr, &nelem);
563 		lua_newtable(state);
564 		for (int i = 0; i < nelem; i++) {
565 			(void) lua_pushinteger(state, i + 1);
566 			(void) lua_pushstring(state, strarr[i]);
567 			(void) lua_settable(state, -3);
568 		}
569 		break;
570 	}
571 	case DATA_TYPE_UINT64_ARRAY: {
572 		uint64_t *intarr;
573 		uint_t nelem;
574 		(void) nvpair_value_uint64_array(pair, &intarr, &nelem);
575 		lua_newtable(state);
576 		for (int i = 0; i < nelem; i++) {
577 			(void) lua_pushinteger(state, i + 1);
578 			(void) lua_pushinteger(state, intarr[i]);
579 			(void) lua_settable(state, -3);
580 		}
581 		break;
582 	}
583 	case DATA_TYPE_INT64_ARRAY: {
584 		int64_t *intarr;
585 		uint_t nelem;
586 		(void) nvpair_value_int64_array(pair, &intarr, &nelem);
587 		lua_newtable(state);
588 		for (int i = 0; i < nelem; i++) {
589 			(void) lua_pushinteger(state, i + 1);
590 			(void) lua_pushinteger(state, intarr[i]);
591 			(void) lua_settable(state, -3);
592 		}
593 		break;
594 	}
595 	default: {
596 		if (errbuf != NULL) {
597 			(void) snprintf(errbuf, errbuf_len,
598 			    "Unhandled nvpair type %d for key '%s'",
599 			    nvpair_type(pair), nvpair_name(pair));
600 		}
601 		return (EINVAL);
602 	}
603 	}
604 	return (err);
605 }
606 
607 int
608 zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname,
609     int error)
610 {
611 	if (error == ENOENT) {
612 		(void) zcp_argerror(state, 1, "no such dataset '%s'", dsname);
613 		return (NULL); /* not reached; zcp_argerror will longjmp */
614 	} else if (error == EXDEV) {
615 		(void) zcp_argerror(state, 1,
616 		    "dataset '%s' is not in the target pool '%s'",
617 		    dsname, spa_name(dp->dp_spa));
618 		return (NULL); /* not reached; zcp_argerror will longjmp */
619 	} else if (error == EIO) {
620 		(void) luaL_error(state,
621 		    "I/O error while accessing dataset '%s'", dsname);
622 		return (NULL); /* not reached; luaL_error will longjmp */
623 	} else if (error != 0) {
624 		(void) luaL_error(state,
625 		    "unexpected error %d while accessing dataset '%s'",
626 		    error, dsname);
627 		return (NULL); /* not reached; luaL_error will longjmp */
628 	}
629 	return (NULL);
630 }
631 
632 /*
633  * Note: will longjmp (via lua_error()) on error.
634  * Assumes that the dsname is argument #1 (for error reporting purposes).
635  */
636 dsl_dataset_t *
637 zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname,
638     void *tag)
639 {
640 	dsl_dataset_t *ds;
641 	int error = dsl_dataset_hold(dp, dsname, tag, &ds);
642 	(void) zcp_dataset_hold_error(state, dp, dsname, error);
643 	return (ds);
644 }
645 
646 static int zcp_debug(lua_State *);
647 static zcp_lib_info_t zcp_debug_info = {
648 	.name = "debug",
649 	.func = zcp_debug,
650 	.pargs = {
651 	    { .za_name = "debug string", .za_lua_type = LUA_TSTRING},
652 	    {NULL, NULL}
653 	},
654 	.kwargs = {
655 	    {NULL, NULL}
656 	}
657 };
658 
659 static int
660 zcp_debug(lua_State *state)
661 {
662 	const char *dbgstring;
663 	zcp_run_info_t *ri = zcp_run_info(state);
664 	zcp_lib_info_t *libinfo = &zcp_debug_info;
665 
666 	zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
667 
668 	dbgstring = lua_tostring(state, 1);
669 
670 	zfs_dbgmsg("txg %lld ZCP: %s", ri->zri_tx->tx_txg, dbgstring);
671 
672 	return (0);
673 }
674 
675 static int zcp_exists(lua_State *);
676 static zcp_lib_info_t zcp_exists_info = {
677 	.name = "exists",
678 	.func = zcp_exists,
679 	.pargs = {
680 	    { .za_name = "dataset", .za_lua_type = LUA_TSTRING},
681 	    {NULL, NULL}
682 	},
683 	.kwargs = {
684 	    {NULL, NULL}
685 	}
686 };
687 
688 static int
689 zcp_exists(lua_State *state)
690 {
691 	zcp_run_info_t *ri = zcp_run_info(state);
692 	dsl_pool_t *dp = ri->zri_pool;
693 	zcp_lib_info_t *libinfo = &zcp_exists_info;
694 
695 	zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
696 
697 	const char *dsname = lua_tostring(state, 1);
698 
699 	dsl_dataset_t *ds;
700 	int error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
701 	if (error == 0) {
702 		dsl_dataset_rele(ds, FTAG);
703 		lua_pushboolean(state, B_TRUE);
704 	} else if (error == ENOENT) {
705 		lua_pushboolean(state, B_FALSE);
706 	} else if (error == EXDEV) {
707 		return (luaL_error(state, "dataset '%s' is not in the "
708 		    "target pool", dsname));
709 	} else if (error == EIO) {
710 		return (luaL_error(state, "I/O error opening dataset '%s'",
711 		    dsname));
712 	} else if (error != 0) {
713 		return (luaL_error(state, "unexpected error %d", error));
714 	}
715 
716 	return (1);
717 }
718 
719 /*
720  * Allocate/realloc/free a buffer for the lua interpreter.
721  *
722  * When nsize is 0, behaves as free() and returns NULL.
723  *
724  * If ptr is NULL, behaves as malloc() and returns an allocated buffer of size
725  * at least nsize.
726  *
727  * Otherwise, behaves as realloc(), changing the allocation from osize to nsize.
728  * Shrinking the buffer size never fails.
729  *
730  * The original allocated buffer size is stored as a uint64 at the beginning of
731  * the buffer to avoid actually reallocating when shrinking a buffer, since lua
732  * requires that this operation never fail.
733  */
734 static void *
735 zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize)
736 {
737 	zcp_alloc_arg_t *allocargs = ud;
738 	int flags = (allocargs->aa_must_succeed) ?
739 	    KM_SLEEP : (KM_NOSLEEP | KM_NORMALPRI);
740 
741 	if (nsize == 0) {
742 		if (ptr != NULL) {
743 			int64_t *allocbuf = (int64_t *)ptr - 1;
744 			int64_t allocsize = *allocbuf;
745 			ASSERT3S(allocsize, >, 0);
746 			ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=,
747 			    allocargs->aa_alloc_limit);
748 			allocargs->aa_alloc_remaining += allocsize;
749 			kmem_free(allocbuf, allocsize);
750 		}
751 		return (NULL);
752 	} else if (ptr == NULL) {
753 		int64_t *allocbuf;
754 		int64_t allocsize = nsize + sizeof (int64_t);
755 
756 		if (!allocargs->aa_must_succeed &&
757 		    (allocsize <= 0 ||
758 		    allocsize > allocargs->aa_alloc_remaining)) {
759 			return (NULL);
760 		}
761 
762 		allocbuf = kmem_alloc(allocsize, flags);
763 		if (allocbuf == NULL) {
764 			return (NULL);
765 		}
766 		allocargs->aa_alloc_remaining -= allocsize;
767 
768 		*allocbuf = allocsize;
769 		return (allocbuf + 1);
770 	} else if (nsize <= osize) {
771 		/*
772 		 * If shrinking the buffer, lua requires that the reallocation
773 		 * never fail.
774 		 */
775 		return (ptr);
776 	} else {
777 		ASSERT3U(nsize, >, osize);
778 
779 		uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize);
780 		if (luabuf == NULL) {
781 			return (NULL);
782 		}
783 		(void) memcpy(luabuf, ptr, osize);
784 		VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL);
785 		return (luabuf);
786 	}
787 }
788 
789 /* ARGSUSED */
790 static void
791 zcp_lua_counthook(lua_State *state, lua_Debug *ar)
792 {
793 	/*
794 	 * If we're called, check how many instructions the channel program has
795 	 * executed so far, and compare against the limit.
796 	 */
797 	lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
798 	zcp_run_info_t *ri = lua_touserdata(state, -1);
799 
800 	ri->zri_curinstrs += zfs_lua_check_instrlimit_interval;
801 	if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) {
802 		ri->zri_timed_out = B_TRUE;
803 		(void) lua_pushstring(state,
804 		    "Channel program timed out.");
805 		(void) lua_error(state);
806 	}
807 }
808 
809 static int
810 zcp_panic_cb(lua_State *state)
811 {
812 	panic("unprotected error in call to Lua API (%s)\n",
813 	    lua_tostring(state, -1));
814 	return (0);
815 }
816 
817 static void
818 zcp_eval_sync(void *arg, dmu_tx_t *tx)
819 {
820 	int err;
821 	zcp_run_info_t ri;
822 	zcp_eval_arg_t *evalargs = arg;
823 	lua_State *state = evalargs->ea_state;
824 
825 	/*
826 	 * Open context should have setup the stack to contain:
827 	 * 1: Error handler callback
828 	 * 2: Script to run (converted to a Lua function)
829 	 * 3: nvlist input to function (converted to Lua table or nil)
830 	 */
831 	VERIFY3U(3, ==, lua_gettop(state));
832 
833 	/*
834 	 * Store the zcp_run_info_t struct for this run in the Lua registry.
835 	 * Registry entries are not directly accessible by the Lua scripts but
836 	 * can be accessed by our callbacks.
837 	 */
838 	ri.zri_space_used = 0;
839 	ri.zri_pool = dmu_tx_pool(tx);
840 	ri.zri_cred = evalargs->ea_cred;
841 	ri.zri_tx = tx;
842 	ri.zri_timed_out = B_FALSE;
843 	ri.zri_cleanup = NULL;
844 	ri.zri_cleanup_arg = NULL;
845 	ri.zri_curinstrs = 0;
846 	ri.zri_maxinstrs = evalargs->ea_instrlimit;
847 
848 	lua_pushlightuserdata(state, &ri);
849 	lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
850 	VERIFY3U(3, ==, lua_gettop(state));
851 
852 	/*
853 	 * Tell the Lua interpreter to call our handler every count
854 	 * instructions. Channel programs that execute too many instructions
855 	 * should die with ETIME.
856 	 */
857 	(void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT,
858 	    zfs_lua_check_instrlimit_interval);
859 
860 	/*
861 	 * Tell the Lua memory allocator to stop using KM_SLEEP before handing
862 	 * off control to the channel program. Channel programs that use too
863 	 * much memory should die with ENOSPC.
864 	 */
865 	evalargs->ea_allocargs->aa_must_succeed = B_FALSE;
866 
867 	/*
868 	 * Call the Lua function that open-context passed us. This pops the
869 	 * function and its input from the stack and pushes any return
870 	 * or error values.
871 	 */
872 	err = lua_pcall(state, 1, LUA_MULTRET, 1);
873 
874 	/*
875 	 * Let Lua use KM_SLEEP while we interpret the return values.
876 	 */
877 	evalargs->ea_allocargs->aa_must_succeed = B_TRUE;
878 
879 	/*
880 	 * Remove the error handler callback from the stack. At this point,
881 	 * if there is a cleanup function registered, then it was registered
882 	 * but never run or removed, which should never occur.
883 	 */
884 	ASSERT3P(ri.zri_cleanup, ==, NULL);
885 	lua_remove(state, 1);
886 
887 	switch (err) {
888 	case LUA_OK: {
889 		/*
890 		 * Lua supports returning multiple values in a single return
891 		 * statement.  Return values will have been pushed onto the
892 		 * stack:
893 		 * 1: Return value 1
894 		 * 2: Return value 2
895 		 * 3: etc...
896 		 * To simplify the process of retrieving a return value from a
897 		 * channel program, we disallow returning more than one value
898 		 * to ZFS from the Lua script, yielding a singleton return
899 		 * nvlist of the form { "return": Return value 1 }.
900 		 */
901 		int return_count = lua_gettop(state);
902 
903 		if (return_count == 1) {
904 			evalargs->ea_result = 0;
905 			zcp_convert_return_values(state, evalargs->ea_outnvl,
906 			    ZCP_RET_RETURN, evalargs);
907 		} else if (return_count > 1) {
908 			evalargs->ea_result = SET_ERROR(ECHRNG);
909 			(void) lua_pushfstring(state, "Multiple return "
910 			    "values not supported");
911 			zcp_convert_return_values(state, evalargs->ea_outnvl,
912 			    ZCP_RET_ERROR, evalargs);
913 		}
914 		break;
915 	}
916 	case LUA_ERRRUN:
917 	case LUA_ERRGCMM: {
918 		/*
919 		 * The channel program encountered a fatal error within the
920 		 * script, such as failing an assertion, or calling a function
921 		 * with incompatible arguments. The error value and the
922 		 * traceback generated by zcp_error_handler() should be on the
923 		 * stack.
924 		 */
925 		VERIFY3U(1, ==, lua_gettop(state));
926 		if (ri.zri_timed_out) {
927 			evalargs->ea_result = SET_ERROR(ETIME);
928 		} else {
929 			evalargs->ea_result = SET_ERROR(ECHRNG);
930 		}
931 
932 		zcp_convert_return_values(state, evalargs->ea_outnvl,
933 		    ZCP_RET_ERROR, evalargs);
934 		break;
935 	}
936 	case LUA_ERRERR: {
937 		/*
938 		 * The channel program encountered a fatal error within the
939 		 * script, and we encountered another error while trying to
940 		 * compute the traceback in zcp_error_handler(). We can only
941 		 * return the error message.
942 		 */
943 		VERIFY3U(1, ==, lua_gettop(state));
944 		if (ri.zri_timed_out) {
945 			evalargs->ea_result = SET_ERROR(ETIME);
946 		} else {
947 			evalargs->ea_result = SET_ERROR(ECHRNG);
948 		}
949 
950 		zcp_convert_return_values(state, evalargs->ea_outnvl,
951 		    ZCP_RET_ERROR, evalargs);
952 		break;
953 	}
954 	case LUA_ERRMEM:
955 		/*
956 		 * Lua ran out of memory while running the channel program.
957 		 * There's not much we can do.
958 		 */
959 		evalargs->ea_result = SET_ERROR(ENOSPC);
960 		break;
961 	default:
962 		VERIFY0(err);
963 	}
964 }
965 
966 int
967 zcp_eval(const char *poolname, const char *program, uint64_t instrlimit,
968     uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl)
969 {
970 	int err;
971 	lua_State *state;
972 	zcp_eval_arg_t evalargs;
973 
974 	if (instrlimit > zfs_lua_max_instrlimit)
975 		return (SET_ERROR(EINVAL));
976 	if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
977 		return (SET_ERROR(EINVAL));
978 
979 	zcp_alloc_arg_t allocargs = {
980 		.aa_must_succeed = B_TRUE,
981 		.aa_alloc_remaining = (int64_t)memlimit,
982 		.aa_alloc_limit = (int64_t)memlimit,
983 	};
984 
985 	/*
986 	 * Creates a Lua state with a memory allocator that uses KM_SLEEP.
987 	 * This should never fail.
988 	 */
989 	state = lua_newstate(zcp_lua_alloc, &allocargs);
990 	VERIFY(state != NULL);
991 	(void) lua_atpanic(state, zcp_panic_cb);
992 
993 	/*
994 	 * Load core Lua libraries we want access to.
995 	 */
996 	VERIFY3U(1, ==, luaopen_base(state));
997 	lua_pop(state, 1);
998 	VERIFY3U(1, ==, luaopen_coroutine(state));
999 	lua_setglobal(state, LUA_COLIBNAME);
1000 	VERIFY0(lua_gettop(state));
1001 	VERIFY3U(1, ==, luaopen_string(state));
1002 	lua_setglobal(state, LUA_STRLIBNAME);
1003 	VERIFY0(lua_gettop(state));
1004 	VERIFY3U(1, ==, luaopen_table(state));
1005 	lua_setglobal(state, LUA_TABLIBNAME);
1006 	VERIFY0(lua_gettop(state));
1007 
1008 	/*
1009 	 * Load globally visible variables such as errno aliases.
1010 	 */
1011 	zcp_load_globals(state);
1012 	VERIFY0(lua_gettop(state));
1013 
1014 	/*
1015 	 * Load ZFS-specific modules.
1016 	 */
1017 	lua_newtable(state);
1018 	VERIFY3U(1, ==, zcp_load_list_lib(state));
1019 	lua_setfield(state, -2, "list");
1020 	VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE));
1021 	lua_setfield(state, -2, "check");
1022 	VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE));
1023 	lua_setfield(state, -2, "sync");
1024 	VERIFY3U(1, ==, zcp_load_get_lib(state));
1025 	lua_pushcclosure(state, zcp_debug_info.func, 0);
1026 	lua_setfield(state, -2, zcp_debug_info.name);
1027 	lua_pushcclosure(state, zcp_exists_info.func, 0);
1028 	lua_setfield(state, -2, zcp_exists_info.name);
1029 	lua_setglobal(state, "zfs");
1030 	VERIFY0(lua_gettop(state));
1031 
1032 	/*
1033 	 * Push the error-callback that calculates Lua stack traces on
1034 	 * unexpected failures.
1035 	 */
1036 	lua_pushcfunction(state, zcp_error_handler);
1037 	VERIFY3U(1, ==, lua_gettop(state));
1038 
1039 	/*
1040 	 * Load the actual script as a function onto the stack as text ("t").
1041 	 * The only valid error condition is a syntax error in the script.
1042 	 * ERRMEM should not be possible because our allocator is using
1043 	 * KM_SLEEP.  ERRGCMM should not be possible because we have not added
1044 	 * any objects with __gc metamethods to the interpreter that could
1045 	 * fail.
1046 	 */
1047 	err = luaL_loadbufferx(state, program, strlen(program),
1048 	    "channel program", "t");
1049 	if (err == LUA_ERRSYNTAX) {
1050 		fnvlist_add_string(outnvl, ZCP_RET_ERROR,
1051 		    lua_tostring(state, -1));
1052 		lua_close(state);
1053 		return (SET_ERROR(EINVAL));
1054 	}
1055 	VERIFY0(err);
1056 	VERIFY3U(2, ==, lua_gettop(state));
1057 
1058 	/*
1059 	 * Convert the input nvlist to a Lua object and put it on top of the
1060 	 * stack.
1061 	 */
1062 	char errmsg[128];
1063 	err = zcp_nvpair_value_to_lua(state, nvarg,
1064 	    errmsg, sizeof (errmsg));
1065 	if (err != 0) {
1066 		fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg);
1067 		lua_close(state);
1068 		return (SET_ERROR(EINVAL));
1069 	}
1070 	VERIFY3U(3, ==, lua_gettop(state));
1071 
1072 	evalargs.ea_state = state;
1073 	evalargs.ea_allocargs = &allocargs;
1074 	evalargs.ea_instrlimit = instrlimit;
1075 	evalargs.ea_cred = CRED();
1076 	evalargs.ea_outnvl = outnvl;
1077 	evalargs.ea_result = 0;
1078 
1079 	VERIFY0(dsl_sync_task(poolname, zcp_eval_check,
1080 	    zcp_eval_sync, &evalargs, 0, ZFS_SPACE_CHECK_NONE));
1081 
1082 	lua_close(state);
1083 
1084 	return (evalargs.ea_result);
1085 }
1086 
1087 /*
1088  * Retrieve metadata about the currently running channel program.
1089  */
1090 zcp_run_info_t *
1091 zcp_run_info(lua_State *state)
1092 {
1093 	zcp_run_info_t *ri;
1094 
1095 	lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
1096 	ri = lua_touserdata(state, -1);
1097 	lua_pop(state, 1);
1098 	return (ri);
1099 }
1100 
1101 /*
1102  * Argument Parsing
1103  * ================
1104  *
1105  * The Lua language allows methods to be called with any number
1106  * of arguments of any type. When calling back into ZFS we need to sanitize
1107  * arguments from channel programs to make sure unexpected arguments or
1108  * arguments of the wrong type result in clear error messages. To do this
1109  * in a uniform way all callbacks from channel programs should use the
1110  * zcp_parse_args() function to interpret inputs.
1111  *
1112  * Positional vs Keyword Arguments
1113  * ===============================
1114  *
1115  * Every callback function takes a fixed set of required positional arguments
1116  * and optional keyword arguments. For example, the destroy function takes
1117  * a single positional string argument (the name of the dataset to destroy)
1118  * and an optional "defer" keyword boolean argument. When calling lua functions
1119  * with parentheses, only positional arguments can be used:
1120  *
1121  *     zfs.sync.snapshot("rpool@snap")
1122  *
1123  * To use keyword arguments functions should be called with a single argument
1124  * that is a lua table containing mappings of integer -> positional arguments
1125  * and string -> keyword arguments:
1126  *
1127  *     zfs.sync.snapshot({1="rpool@snap", defer=true})
1128  *
1129  * The lua language allows curly braces to be used in place of parenthesis as
1130  * syntactic sugar for this calling convention:
1131  *
1132  *     zfs.sync.snapshot{"rpool@snap", defer=true}
1133  */
1134 
1135 /*
1136  * Throw an error and print the given arguments.  If there are too many
1137  * arguments to fit in the output buffer, only the error format string is
1138  * output.
1139  */
1140 static void
1141 zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1142     const zcp_arg_t *kwargs, const char *fmt, ...)
1143 {
1144 	int i;
1145 	char errmsg[512];
1146 	size_t len = sizeof (errmsg);
1147 	size_t msglen = 0;
1148 	va_list argp;
1149 
1150 	va_start(argp, fmt);
1151 	VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp));
1152 	va_end(argp);
1153 
1154 	/*
1155 	 * Calculate the total length of the final string, including extra
1156 	 * formatting characters. If the argument dump would be too large,
1157 	 * only print the error string.
1158 	 */
1159 	msglen = strlen(errmsg);
1160 	msglen += strlen(fname) + 4; /* : + {} + null terminator */
1161 	for (i = 0; pargs[i].za_name != NULL; i++) {
1162 		msglen += strlen(pargs[i].za_name);
1163 		msglen += strlen(lua_typename(state, pargs[i].za_lua_type));
1164 		if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL)
1165 			msglen += 5; /* < + ( + )> + , */
1166 		else
1167 			msglen += 4; /* < + ( + )> */
1168 	}
1169 	for (i = 0; kwargs[i].za_name != NULL; i++) {
1170 		msglen += strlen(kwargs[i].za_name);
1171 		msglen += strlen(lua_typename(state, kwargs[i].za_lua_type));
1172 		if (kwargs[i + 1].za_name != NULL)
1173 			msglen += 4; /* =( + ) + , */
1174 		else
1175 			msglen += 3; /* =( + ) */
1176 	}
1177 
1178 	if (msglen >= len)
1179 		(void) luaL_error(state, errmsg);
1180 
1181 	VERIFY3U(len, >, strlcat(errmsg, ": ", len));
1182 	VERIFY3U(len, >, strlcat(errmsg, fname, len));
1183 	VERIFY3U(len, >, strlcat(errmsg, "{", len));
1184 	for (i = 0; pargs[i].za_name != NULL; i++) {
1185 		VERIFY3U(len, >, strlcat(errmsg, "<", len));
1186 		VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len));
1187 		VERIFY3U(len, >, strlcat(errmsg, "(", len));
1188 		VERIFY3U(len, >, strlcat(errmsg,
1189 		    lua_typename(state, pargs[i].za_lua_type), len));
1190 		VERIFY3U(len, >, strlcat(errmsg, ")>", len));
1191 		if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) {
1192 			VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1193 		}
1194 	}
1195 	for (i = 0; kwargs[i].za_name != NULL; i++) {
1196 		VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len));
1197 		VERIFY3U(len, >, strlcat(errmsg, "=(", len));
1198 		VERIFY3U(len, >, strlcat(errmsg,
1199 		    lua_typename(state, kwargs[i].za_lua_type), len));
1200 		VERIFY3U(len, >, strlcat(errmsg, ")", len));
1201 		if (kwargs[i + 1].za_name != NULL) {
1202 			VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1203 		}
1204 	}
1205 	VERIFY3U(len, >, strlcat(errmsg, "}", len));
1206 
1207 	(void) luaL_error(state, errmsg);
1208 	panic("unreachable code");
1209 }
1210 
1211 static void
1212 zcp_parse_table_args(lua_State *state, const char *fname,
1213     const zcp_arg_t *pargs, const zcp_arg_t *kwargs)
1214 {
1215 	int i;
1216 	int type;
1217 
1218 	for (i = 0; pargs[i].za_name != NULL; i++) {
1219 		/*
1220 		 * Check the table for this positional argument, leaving it
1221 		 * on the top of the stack once we finish validating it.
1222 		 */
1223 		lua_pushinteger(state, i + 1);
1224 		lua_gettable(state, 1);
1225 
1226 		type = lua_type(state, -1);
1227 		if (type == LUA_TNIL) {
1228 			zcp_args_error(state, fname, pargs, kwargs,
1229 			    "too few arguments");
1230 			panic("unreachable code");
1231 		} else if (type != pargs[i].za_lua_type) {
1232 			zcp_args_error(state, fname, pargs, kwargs,
1233 			    "arg %d wrong type (is '%s', expected '%s')",
1234 			    i + 1, lua_typename(state, type),
1235 			    lua_typename(state, pargs[i].za_lua_type));
1236 			panic("unreachable code");
1237 		}
1238 
1239 		/*
1240 		 * Remove the positional argument from the table.
1241 		 */
1242 		lua_pushinteger(state, i + 1);
1243 		lua_pushnil(state);
1244 		lua_settable(state, 1);
1245 	}
1246 
1247 	for (i = 0; kwargs[i].za_name != NULL; i++) {
1248 		/*
1249 		 * Check the table for this keyword argument, which may be
1250 		 * nil if it was omitted. Leave the value on the top of
1251 		 * the stack after validating it.
1252 		 */
1253 		lua_getfield(state, 1, kwargs[i].za_name);
1254 
1255 		type = lua_type(state, -1);
1256 		if (type != LUA_TNIL && type != kwargs[i].za_lua_type) {
1257 			zcp_args_error(state, fname, pargs, kwargs,
1258 			    "kwarg '%s' wrong type (is '%s', expected '%s')",
1259 			    kwargs[i].za_name, lua_typename(state, type),
1260 			    lua_typename(state, kwargs[i].za_lua_type));
1261 			panic("unreachable code");
1262 		}
1263 
1264 		/*
1265 		 * Remove the keyword argument from the table.
1266 		 */
1267 		lua_pushnil(state);
1268 		lua_setfield(state, 1, kwargs[i].za_name);
1269 	}
1270 
1271 	/*
1272 	 * Any entries remaining in the table are invalid inputs, print
1273 	 * an error message based on what the entry is.
1274 	 */
1275 	lua_pushnil(state);
1276 	if (lua_next(state, 1)) {
1277 		if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) {
1278 			zcp_args_error(state, fname, pargs, kwargs,
1279 			    "too many positional arguments");
1280 		} else if (lua_isstring(state, -2)) {
1281 			zcp_args_error(state, fname, pargs, kwargs,
1282 			    "invalid kwarg '%s'", lua_tostring(state, -2));
1283 		} else {
1284 			zcp_args_error(state, fname, pargs, kwargs,
1285 			    "kwarg keys must be strings");
1286 		}
1287 		panic("unreachable code");
1288 	}
1289 
1290 	lua_remove(state, 1);
1291 }
1292 
1293 static void
1294 zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1295     const zcp_arg_t *kwargs)
1296 {
1297 	int i;
1298 	int type;
1299 
1300 	for (i = 0; pargs[i].za_name != NULL; i++) {
1301 		type = lua_type(state, i + 1);
1302 		if (type == LUA_TNONE) {
1303 			zcp_args_error(state, fname, pargs, kwargs,
1304 			    "too few arguments");
1305 			panic("unreachable code");
1306 		} else if (type != pargs[i].za_lua_type) {
1307 			zcp_args_error(state, fname, pargs, kwargs,
1308 			    "arg %d wrong type (is '%s', expected '%s')",
1309 			    i + 1, lua_typename(state, type),
1310 			    lua_typename(state, pargs[i].za_lua_type));
1311 			panic("unreachable code");
1312 		}
1313 	}
1314 	if (lua_gettop(state) != i) {
1315 		zcp_args_error(state, fname, pargs, kwargs,
1316 		    "too many positional arguments");
1317 		panic("unreachable code");
1318 	}
1319 
1320 	for (i = 0; kwargs[i].za_name != NULL; i++) {
1321 		lua_pushnil(state);
1322 	}
1323 }
1324 
1325 /*
1326  * Checks the current Lua stack against an expected set of positional and
1327  * keyword arguments. If the stack does not match the expected arguments
1328  * aborts the current channel program with a useful error message, otherwise
1329  * it re-arranges the stack so that it contains the positional arguments
1330  * followed by the keyword argument values in declaration order. Any missing
1331  * keyword argument will be represented by a nil value on the stack.
1332  *
1333  * If the stack contains exactly one argument of type LUA_TTABLE the curly
1334  * braces calling convention is assumed, otherwise the stack is parsed for
1335  * positional arguments only.
1336  *
1337  * This function should be used by every function callback. It should be called
1338  * before the callback manipulates the Lua stack as it assumes the stack
1339  * represents the function arguments.
1340  */
1341 void
1342 zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1343     const zcp_arg_t *kwargs)
1344 {
1345 	if (lua_gettop(state) == 1 && lua_istable(state, 1)) {
1346 		zcp_parse_table_args(state, fname, pargs, kwargs);
1347 	} else {
1348 		zcp_parse_pos_args(state, fname, pargs, kwargs);
1349 	}
1350 }
1351