1 /* 2 * CDDL HEADER START 3 * 4 * This file and its contents are supplied under the terms of the 5 * Common Development and Distribution License ("CDDL"), version 1.0. 6 * You may only use this file in accordance with the terms of version 7 * 1.0 of the CDDL. 8 * 9 * A full copy of the text of the CDDL should have accompanied this 10 * source. A copy of the CDDL is also available via the Internet at 11 * http://www.illumos.org/license/CDDL. 12 * 13 * CDDL HEADER END 14 */ 15 16 /* 17 * Copyright (c) 2016, 2017 by Delphix. All rights reserved. 18 */ 19 20 /* 21 * ZFS Channel Programs (ZCP) 22 * 23 * The ZCP interface allows various ZFS commands and operations ZFS 24 * administrative operations (e.g. creating and destroying snapshots, typically 25 * performed via an ioctl to /dev/zfs by the zfs(8) command and 26 * libzfs/libzfs_core) to be run * programmatically as a Lua script. A ZCP 27 * script is run as a dsl_sync_task and fully executed during one transaction 28 * group sync. This ensures that no other changes can be written concurrently 29 * with a running Lua script. Combining multiple calls to the exposed ZFS 30 * functions into one script gives a number of benefits: 31 * 32 * 1. Atomicity. For some compound or iterative operations, it's useful to be 33 * able to guarantee that the state of a pool has not changed between calls to 34 * ZFS. 35 * 36 * 2. Performance. If a large number of changes need to be made (e.g. deleting 37 * many filesystems), there can be a significant performance penalty as a 38 * result of the need to wait for a transaction group sync to pass for every 39 * single operation. When expressed as a single ZCP script, all these changes 40 * can be performed at once in one txg sync. 41 * 42 * A modified version of the Lua 5.2 interpreter is used to run channel program 43 * scripts. The Lua 5.2 manual can be found at: 44 * 45 * http://www.lua.org/manual/5.2/ 46 * 47 * If being run by a user (via an ioctl syscall), executing a ZCP script 48 * requires root privileges in the global zone. 49 * 50 * Scripts are passed to zcp_eval() as a string, then run in a synctask by 51 * zcp_eval_sync(). Arguments can be passed into the Lua script as an nvlist, 52 * which will be converted to a Lua table. Similarly, values returned from 53 * a ZCP script will be converted to an nvlist. See zcp_lua_to_nvlist_impl() 54 * for details on exact allowed types and conversion. 55 * 56 * ZFS functionality is exposed to a ZCP script as a library of function calls. 57 * These calls are sorted into submodules, such as zfs.list and zfs.sync, for 58 * iterators and synctasks, respectively. Each of these submodules resides in 59 * its own source file, with a zcp_*_info structure describing each library 60 * call in the submodule. 61 * 62 * Error handling in ZCP scripts is handled by a number of different methods 63 * based on severity: 64 * 65 * 1. Memory and time limits are in place to prevent a channel program from 66 * consuming excessive system or running forever. If one of these limits is 67 * hit, the channel program will be stopped immediately and return from 68 * zcp_eval() with an error code. No attempt will be made to roll back or undo 69 * any changes made by the channel program before the error occured. 70 * Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time 71 * limit of 0, disabling the time limit. 72 * 73 * 2. Internal Lua errors can occur as a result of a syntax error, calling a 74 * library function with incorrect arguments, invoking the error() function, 75 * failing an assert(), or other runtime errors. In these cases the channel 76 * program will stop executing and return from zcp_eval() with an error code. 77 * In place of a return value, an error message will also be returned in the 78 * 'result' nvlist containing information about the error. No attempt will be 79 * made to roll back or undo any changes made by the channel program before the 80 * error occured. 81 * 82 * 3. If an error occurs inside a ZFS library call which returns an error code, 83 * the error is returned to the Lua script to be handled as desired. 84 * 85 * In the first two cases, Lua's error-throwing mechanism is used, which 86 * longjumps out of the script execution with luaL_error() and returns with the 87 * error. 88 * 89 * See zfs-program(8) for more information on high level usage. 90 */ 91 92 #include "lua.h" 93 #include "lualib.h" 94 #include "lauxlib.h" 95 96 #include <sys/dsl_prop.h> 97 #include <sys/dsl_synctask.h> 98 #include <sys/dsl_dataset.h> 99 #include <sys/zcp.h> 100 #include <sys/zcp_iter.h> 101 #include <sys/zcp_prop.h> 102 #include <sys/zcp_global.h> 103 #include <util/sscanf.h> 104 105 #define ZCP_NVLIST_MAX_DEPTH 20 106 107 uint64_t zfs_lua_check_instrlimit_interval = 100; 108 uint64_t zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT; 109 uint64_t zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT; 110 111 /* 112 * Forward declarations for mutually recursive functions 113 */ 114 static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int); 115 static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *, 116 int); 117 118 /* 119 * The outer-most error callback handler for use with lua_pcall(). On 120 * error Lua will call this callback with a single argument that 121 * represents the error value. In most cases this will be a string 122 * containing an error message, but channel programs can use Lua's 123 * error() function to return arbitrary objects as errors. This callback 124 * returns (on the Lua stack) the original error object along with a traceback. 125 * 126 * Fatal Lua errors can occur while resources are held, so we also call any 127 * registered cleanup function here. 128 */ 129 static int 130 zcp_error_handler(lua_State *state) 131 { 132 const char *msg; 133 134 zcp_cleanup(state); 135 136 VERIFY3U(1, ==, lua_gettop(state)); 137 msg = lua_tostring(state, 1); 138 luaL_traceback(state, state, msg, 1); 139 return (1); 140 } 141 142 int 143 zcp_argerror(lua_State *state, int narg, const char *msg, ...) 144 { 145 va_list alist; 146 147 va_start(alist, msg); 148 const char *buf = lua_pushvfstring(state, msg, alist); 149 va_end(alist); 150 151 return (luaL_argerror(state, narg, buf)); 152 } 153 154 /* 155 * Install a new cleanup function, which will be invoked with the given 156 * opaque argument if a fatal error causes the Lua interpreter to longjump out 157 * of a function call. 158 * 159 * If an error occurs, the cleanup function will be invoked exactly once and 160 * then unreigstered. 161 * 162 * Returns the registered cleanup handler so the caller can deregister it 163 * if no error occurs. 164 */ 165 zcp_cleanup_handler_t * 166 zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg) 167 { 168 zcp_run_info_t *ri = zcp_run_info(state); 169 170 zcp_cleanup_handler_t *zch = kmem_alloc(sizeof (*zch), KM_SLEEP); 171 zch->zch_cleanup_func = cleanfunc; 172 zch->zch_cleanup_arg = cleanarg; 173 list_insert_head(&ri->zri_cleanup_handlers, zch); 174 175 return (zch); 176 } 177 178 void 179 zcp_deregister_cleanup(lua_State *state, zcp_cleanup_handler_t *zch) 180 { 181 zcp_run_info_t *ri = zcp_run_info(state); 182 list_remove(&ri->zri_cleanup_handlers, zch); 183 kmem_free(zch, sizeof (*zch)); 184 } 185 186 /* 187 * Execute the currently registered cleanup handlers then free them and 188 * destroy the handler list. 189 */ 190 void 191 zcp_cleanup(lua_State *state) 192 { 193 zcp_run_info_t *ri = zcp_run_info(state); 194 195 for (zcp_cleanup_handler_t *zch = 196 list_remove_head(&ri->zri_cleanup_handlers); zch != NULL; 197 zch = list_remove_head(&ri->zri_cleanup_handlers)) { 198 zch->zch_cleanup_func(zch->zch_cleanup_arg); 199 kmem_free(zch, sizeof (*zch)); 200 } 201 } 202 203 /* 204 * Convert the lua table at the given index on the Lua stack to an nvlist 205 * and return it. 206 * 207 * If the table can not be converted for any reason, NULL is returned and 208 * an error message is pushed onto the Lua stack. 209 */ 210 static nvlist_t * 211 zcp_table_to_nvlist(lua_State *state, int index, int depth) 212 { 213 nvlist_t *nvl; 214 /* 215 * Converting a Lua table to an nvlist with key uniqueness checking is 216 * O(n^2) in the number of keys in the nvlist, which can take a long 217 * time when we return a large table from a channel program. 218 * Furthermore, Lua's table interface *almost* guarantees unique keys 219 * on its own (details below). Therefore, we don't use fnvlist_alloc() 220 * here to avoid the built-in uniqueness checking. 221 * 222 * The *almost* is because it's possible to have key collisions between 223 * e.g. the string "1" and the number 1, or the string "true" and the 224 * boolean true, so we explicitly check that when we're looking at a 225 * key which is an integer / boolean or a string that can be parsed as 226 * one of those types. In the worst case this could still devolve into 227 * O(n^2), so we only start doing these checks on boolean/integer keys 228 * once we've seen a string key which fits this weird usage pattern. 229 * 230 * Ultimately, we still want callers to know that the keys in this 231 * nvlist are unique, so before we return this we set the nvlist's 232 * flags to reflect that. 233 */ 234 VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP)); 235 236 /* 237 * Push an empty stack slot where lua_next() will store each 238 * table key. 239 */ 240 lua_pushnil(state); 241 boolean_t saw_str_could_collide = B_FALSE; 242 while (lua_next(state, index) != 0) { 243 /* 244 * The next key-value pair from the table at index is 245 * now on the stack, with the key at stack slot -2 and 246 * the value at slot -1. 247 */ 248 int err = 0; 249 char buf[32]; 250 const char *key = NULL; 251 boolean_t key_could_collide = B_FALSE; 252 253 switch (lua_type(state, -2)) { 254 case LUA_TSTRING: 255 key = lua_tostring(state, -2); 256 257 /* check if this could collide with a number or bool */ 258 long long tmp; 259 int parselen; 260 if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 && 261 parselen == strlen(key)) || 262 strcmp(key, "true") == 0 || 263 strcmp(key, "false") == 0) { 264 key_could_collide = B_TRUE; 265 saw_str_could_collide = B_TRUE; 266 } 267 break; 268 case LUA_TBOOLEAN: 269 key = (lua_toboolean(state, -2) == B_TRUE ? 270 "true" : "false"); 271 if (saw_str_could_collide) { 272 key_could_collide = B_TRUE; 273 } 274 break; 275 case LUA_TNUMBER: 276 VERIFY3U(sizeof (buf), >, 277 snprintf(buf, sizeof (buf), "%lld", 278 (longlong_t)lua_tonumber(state, -2))); 279 key = buf; 280 if (saw_str_could_collide) { 281 key_could_collide = B_TRUE; 282 } 283 break; 284 default: 285 fnvlist_free(nvl); 286 (void) lua_pushfstring(state, "Invalid key " 287 "type '%s' in table", 288 lua_typename(state, lua_type(state, -2))); 289 return (NULL); 290 } 291 /* 292 * Check for type-mismatched key collisions, and throw an error. 293 */ 294 if (key_could_collide && nvlist_exists(nvl, key)) { 295 fnvlist_free(nvl); 296 (void) lua_pushfstring(state, "Collision of " 297 "key '%s' in table", key); 298 return (NULL); 299 } 300 /* 301 * Recursively convert the table value and insert into 302 * the new nvlist with the parsed key. To prevent 303 * stack overflow on circular or heavily nested tables, 304 * we track the current nvlist depth. 305 */ 306 if (depth >= ZCP_NVLIST_MAX_DEPTH) { 307 fnvlist_free(nvl); 308 (void) lua_pushfstring(state, "Maximum table " 309 "depth (%d) exceeded for table", 310 ZCP_NVLIST_MAX_DEPTH); 311 return (NULL); 312 } 313 err = zcp_lua_to_nvlist_impl(state, -1, nvl, key, 314 depth + 1); 315 if (err != 0) { 316 fnvlist_free(nvl); 317 /* 318 * Error message has been pushed to the lua 319 * stack by the recursive call. 320 */ 321 return (NULL); 322 } 323 /* 324 * Pop the value pushed by lua_next(). 325 */ 326 lua_pop(state, 1); 327 } 328 329 /* 330 * Mark the nvlist as having unique keys. This is a little ugly, but we 331 * ensured above that there are no duplicate keys in the nvlist. 332 */ 333 nvl->nvl_nvflag |= NV_UNIQUE_NAME; 334 335 return (nvl); 336 } 337 338 /* 339 * Convert a value from the given index into the lua stack to an nvpair, adding 340 * it to an nvlist with the given key. 341 * 342 * Values are converted as follows: 343 * 344 * string -> string 345 * number -> int64 346 * boolean -> boolean 347 * nil -> boolean (no value) 348 * 349 * Lua tables are converted to nvlists and then inserted. The table's keys 350 * are converted to strings then used as keys in the nvlist to store each table 351 * element. Keys are converted as follows: 352 * 353 * string -> no change 354 * number -> "%lld" 355 * boolean -> "true" | "false" 356 * nil -> error 357 * 358 * In the case of a key collision, an error is thrown. 359 * 360 * If an error is encountered, a nonzero error code is returned, and an error 361 * string will be pushed onto the Lua stack. 362 */ 363 static int 364 zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl, 365 const char *key, int depth) 366 { 367 /* 368 * Verify that we have enough remaining space in the lua stack to parse 369 * a key-value pair and push an error. 370 */ 371 if (!lua_checkstack(state, 3)) { 372 (void) lua_pushstring(state, "Lua stack overflow"); 373 return (1); 374 } 375 376 index = lua_absindex(state, index); 377 378 switch (lua_type(state, index)) { 379 case LUA_TNIL: 380 fnvlist_add_boolean(nvl, key); 381 break; 382 case LUA_TBOOLEAN: 383 fnvlist_add_boolean_value(nvl, key, 384 lua_toboolean(state, index)); 385 break; 386 case LUA_TNUMBER: 387 fnvlist_add_int64(nvl, key, lua_tonumber(state, index)); 388 break; 389 case LUA_TSTRING: 390 fnvlist_add_string(nvl, key, lua_tostring(state, index)); 391 break; 392 case LUA_TTABLE: { 393 nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth); 394 if (value_nvl == NULL) 395 return (EINVAL); 396 397 fnvlist_add_nvlist(nvl, key, value_nvl); 398 fnvlist_free(value_nvl); 399 break; 400 } 401 default: 402 (void) lua_pushfstring(state, 403 "Invalid value type '%s' for key '%s'", 404 lua_typename(state, lua_type(state, index)), key); 405 return (EINVAL); 406 } 407 408 return (0); 409 } 410 411 /* 412 * Convert a lua value to an nvpair, adding it to an nvlist with the given key. 413 */ 414 static void 415 zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key) 416 { 417 /* 418 * On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua 419 * stack before returning with a nonzero error code. If an error is 420 * returned, throw a fatal lua error with the given string. 421 */ 422 if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0) 423 (void) lua_error(state); 424 } 425 426 static int 427 zcp_lua_to_nvlist_helper(lua_State *state) 428 { 429 nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2); 430 const char *key = (const char *)lua_touserdata(state, 1); 431 zcp_lua_to_nvlist(state, 3, nv, key); 432 return (0); 433 } 434 435 static void 436 zcp_convert_return_values(lua_State *state, nvlist_t *nvl, 437 const char *key, int *result) 438 { 439 int err; 440 VERIFY3U(1, ==, lua_gettop(state)); 441 lua_pushcfunction(state, zcp_lua_to_nvlist_helper); 442 lua_pushlightuserdata(state, (char *)key); 443 lua_pushlightuserdata(state, nvl); 444 lua_pushvalue(state, 1); 445 lua_remove(state, 1); 446 err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */ 447 if (err != 0) { 448 zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR); 449 *result = SET_ERROR(ECHRNG); 450 } 451 } 452 453 /* 454 * Push a Lua table representing nvl onto the stack. If it can't be 455 * converted, return EINVAL, fill in errbuf, and push nothing. errbuf may 456 * be specified as NULL, in which case no error string will be output. 457 * 458 * Most nvlists are converted as simple key->value Lua tables, but we make 459 * an exception for the case where all nvlist entries are BOOLEANs (a string 460 * key without a value). In Lua, a table key pointing to a value of Nil 461 * (no value) is equivalent to the key not existing, so a BOOLEAN nvlist 462 * entry can't be directly converted to a Lua table entry. Nvlists of entirely 463 * BOOLEAN entries are frequently used to pass around lists of datasets, so for 464 * convenience we check for this case, and convert it to a simple Lua array of 465 * strings. 466 */ 467 int 468 zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl, 469 char *errbuf, int errbuf_len) 470 { 471 nvpair_t *pair; 472 lua_newtable(state); 473 boolean_t has_values = B_FALSE; 474 /* 475 * If the list doesn't have any values, just convert it to a string 476 * array. 477 */ 478 for (pair = nvlist_next_nvpair(nvl, NULL); 479 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) { 480 if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) { 481 has_values = B_TRUE; 482 break; 483 } 484 } 485 if (!has_values) { 486 int i = 1; 487 for (pair = nvlist_next_nvpair(nvl, NULL); 488 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) { 489 (void) lua_pushinteger(state, i); 490 (void) lua_pushstring(state, nvpair_name(pair)); 491 (void) lua_settable(state, -3); 492 i++; 493 } 494 } else { 495 for (pair = nvlist_next_nvpair(nvl, NULL); 496 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) { 497 int err = zcp_nvpair_value_to_lua(state, pair, 498 errbuf, errbuf_len); 499 if (err != 0) { 500 lua_pop(state, 1); 501 return (err); 502 } 503 (void) lua_setfield(state, -2, nvpair_name(pair)); 504 } 505 } 506 return (0); 507 } 508 509 /* 510 * Push a Lua object representing the value of "pair" onto the stack. 511 * 512 * Only understands boolean_value, string, int64, nvlist, 513 * string_array, and int64_array type values. For other 514 * types, returns EINVAL, fills in errbuf, and pushes nothing. 515 */ 516 static int 517 zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair, 518 char *errbuf, int errbuf_len) 519 { 520 int err = 0; 521 522 if (pair == NULL) { 523 lua_pushnil(state); 524 return (0); 525 } 526 527 switch (nvpair_type(pair)) { 528 case DATA_TYPE_BOOLEAN_VALUE: 529 (void) lua_pushboolean(state, 530 fnvpair_value_boolean_value(pair)); 531 break; 532 case DATA_TYPE_STRING: 533 (void) lua_pushstring(state, fnvpair_value_string(pair)); 534 break; 535 case DATA_TYPE_INT64: 536 (void) lua_pushinteger(state, fnvpair_value_int64(pair)); 537 break; 538 case DATA_TYPE_NVLIST: 539 err = zcp_nvlist_to_lua(state, 540 fnvpair_value_nvlist(pair), errbuf, errbuf_len); 541 break; 542 case DATA_TYPE_STRING_ARRAY: { 543 char **strarr; 544 uint_t nelem; 545 (void) nvpair_value_string_array(pair, &strarr, &nelem); 546 lua_newtable(state); 547 for (int i = 0; i < nelem; i++) { 548 (void) lua_pushinteger(state, i + 1); 549 (void) lua_pushstring(state, strarr[i]); 550 (void) lua_settable(state, -3); 551 } 552 break; 553 } 554 case DATA_TYPE_UINT64_ARRAY: { 555 uint64_t *intarr; 556 uint_t nelem; 557 (void) nvpair_value_uint64_array(pair, &intarr, &nelem); 558 lua_newtable(state); 559 for (int i = 0; i < nelem; i++) { 560 (void) lua_pushinteger(state, i + 1); 561 (void) lua_pushinteger(state, intarr[i]); 562 (void) lua_settable(state, -3); 563 } 564 break; 565 } 566 case DATA_TYPE_INT64_ARRAY: { 567 int64_t *intarr; 568 uint_t nelem; 569 (void) nvpair_value_int64_array(pair, &intarr, &nelem); 570 lua_newtable(state); 571 for (int i = 0; i < nelem; i++) { 572 (void) lua_pushinteger(state, i + 1); 573 (void) lua_pushinteger(state, intarr[i]); 574 (void) lua_settable(state, -3); 575 } 576 break; 577 } 578 default: { 579 if (errbuf != NULL) { 580 (void) snprintf(errbuf, errbuf_len, 581 "Unhandled nvpair type %d for key '%s'", 582 nvpair_type(pair), nvpair_name(pair)); 583 } 584 return (EINVAL); 585 } 586 } 587 return (err); 588 } 589 590 int 591 zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname, 592 int error) 593 { 594 if (error == ENOENT) { 595 (void) zcp_argerror(state, 1, "no such dataset '%s'", dsname); 596 return (0); /* not reached; zcp_argerror will longjmp */ 597 } else if (error == EXDEV) { 598 (void) zcp_argerror(state, 1, 599 "dataset '%s' is not in the target pool '%s'", 600 dsname, spa_name(dp->dp_spa)); 601 return (0); /* not reached; zcp_argerror will longjmp */ 602 } else if (error == EIO) { 603 (void) luaL_error(state, 604 "I/O error while accessing dataset '%s'", dsname); 605 return (0); /* not reached; luaL_error will longjmp */ 606 } else if (error != 0) { 607 (void) luaL_error(state, 608 "unexpected error %d while accessing dataset '%s'", 609 error, dsname); 610 return (0); /* not reached; luaL_error will longjmp */ 611 } 612 return (0); 613 } 614 615 /* 616 * Note: will longjmp (via lua_error()) on error. 617 * Assumes that the dsname is argument #1 (for error reporting purposes). 618 */ 619 dsl_dataset_t * 620 zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname, 621 void *tag) 622 { 623 dsl_dataset_t *ds; 624 int error = dsl_dataset_hold(dp, dsname, tag, &ds); 625 (void) zcp_dataset_hold_error(state, dp, dsname, error); 626 return (ds); 627 } 628 629 static int zcp_debug(lua_State *); 630 static zcp_lib_info_t zcp_debug_info = { 631 .name = "debug", 632 .func = zcp_debug, 633 .pargs = { 634 { .za_name = "debug string", .za_lua_type = LUA_TSTRING}, 635 {NULL, 0} 636 }, 637 .kwargs = { 638 {NULL, 0} 639 } 640 }; 641 642 static int 643 zcp_debug(lua_State *state) 644 { 645 const char *dbgstring; 646 zcp_run_info_t *ri = zcp_run_info(state); 647 zcp_lib_info_t *libinfo = &zcp_debug_info; 648 649 zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs); 650 651 dbgstring = lua_tostring(state, 1); 652 653 zfs_dbgmsg("txg %lld ZCP: %s", ri->zri_tx->tx_txg, dbgstring); 654 655 return (0); 656 } 657 658 static int zcp_exists(lua_State *); 659 static zcp_lib_info_t zcp_exists_info = { 660 .name = "exists", 661 .func = zcp_exists, 662 .pargs = { 663 { .za_name = "dataset", .za_lua_type = LUA_TSTRING}, 664 {NULL, 0} 665 }, 666 .kwargs = { 667 {NULL, 0} 668 } 669 }; 670 671 static int 672 zcp_exists(lua_State *state) 673 { 674 zcp_run_info_t *ri = zcp_run_info(state); 675 dsl_pool_t *dp = ri->zri_pool; 676 zcp_lib_info_t *libinfo = &zcp_exists_info; 677 678 zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs); 679 680 const char *dsname = lua_tostring(state, 1); 681 682 dsl_dataset_t *ds; 683 int error = dsl_dataset_hold(dp, dsname, FTAG, &ds); 684 if (error == 0) { 685 dsl_dataset_rele(ds, FTAG); 686 lua_pushboolean(state, B_TRUE); 687 } else if (error == ENOENT) { 688 lua_pushboolean(state, B_FALSE); 689 } else if (error == EXDEV) { 690 return (luaL_error(state, "dataset '%s' is not in the " 691 "target pool", dsname)); 692 } else if (error == EIO) { 693 return (luaL_error(state, "I/O error opening dataset '%s'", 694 dsname)); 695 } else if (error != 0) { 696 return (luaL_error(state, "unexpected error %d", error)); 697 } 698 699 return (1); 700 } 701 702 /* 703 * Allocate/realloc/free a buffer for the lua interpreter. 704 * 705 * When nsize is 0, behaves as free() and returns NULL. 706 * 707 * If ptr is NULL, behaves as malloc() and returns an allocated buffer of size 708 * at least nsize. 709 * 710 * Otherwise, behaves as realloc(), changing the allocation from osize to nsize. 711 * Shrinking the buffer size never fails. 712 * 713 * The original allocated buffer size is stored as a uint64 at the beginning of 714 * the buffer to avoid actually reallocating when shrinking a buffer, since lua 715 * requires that this operation never fail. 716 */ 717 static void * 718 zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize) 719 { 720 zcp_alloc_arg_t *allocargs = ud; 721 int flags = (allocargs->aa_must_succeed) ? KM_SLEEP : KM_NOSLEEP_LAZY; 722 723 if (nsize == 0) { 724 if (ptr != NULL) { 725 int64_t *allocbuf = (int64_t *)ptr - 1; 726 int64_t allocsize = *allocbuf; 727 ASSERT3S(allocsize, >, 0); 728 ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=, 729 allocargs->aa_alloc_limit); 730 allocargs->aa_alloc_remaining += allocsize; 731 kmem_free(allocbuf, allocsize); 732 } 733 return (NULL); 734 } else if (ptr == NULL) { 735 int64_t *allocbuf; 736 int64_t allocsize = nsize + sizeof (int64_t); 737 738 if (!allocargs->aa_must_succeed && 739 (allocsize <= 0 || 740 allocsize > allocargs->aa_alloc_remaining)) { 741 return (NULL); 742 } 743 744 allocbuf = kmem_alloc(allocsize, flags); 745 if (allocbuf == NULL) { 746 return (NULL); 747 } 748 allocargs->aa_alloc_remaining -= allocsize; 749 750 *allocbuf = allocsize; 751 return (allocbuf + 1); 752 } else if (nsize <= osize) { 753 /* 754 * If shrinking the buffer, lua requires that the reallocation 755 * never fail. 756 */ 757 return (ptr); 758 } else { 759 ASSERT3U(nsize, >, osize); 760 761 uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize); 762 if (luabuf == NULL) { 763 return (NULL); 764 } 765 (void) memcpy(luabuf, ptr, osize); 766 VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL); 767 return (luabuf); 768 } 769 } 770 771 /* ARGSUSED */ 772 static void 773 zcp_lua_counthook(lua_State *state, lua_Debug *ar) 774 { 775 lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY); 776 zcp_run_info_t *ri = lua_touserdata(state, -1); 777 778 /* 779 * Check if we were canceled while waiting for the 780 * txg to sync or from our open context thread 781 */ 782 if (ri->zri_canceled || 783 (!ri->zri_sync && issig(JUSTLOOKING) && issig(FORREAL))) { 784 ri->zri_canceled = B_TRUE; 785 (void) lua_pushstring(state, "Channel program was canceled."); 786 (void) lua_error(state); 787 } 788 789 /* 790 * Check how many instructions the channel program has 791 * executed so far, and compare against the limit. 792 */ 793 ri->zri_curinstrs += zfs_lua_check_instrlimit_interval; 794 if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) { 795 ri->zri_timed_out = B_TRUE; 796 (void) lua_pushstring(state, 797 "Channel program timed out."); 798 (void) lua_error(state); 799 } 800 } 801 802 static int 803 zcp_panic_cb(lua_State *state) 804 { 805 panic("unprotected error in call to Lua API (%s)\n", 806 lua_tostring(state, -1)); 807 return (0); 808 } 809 810 static void 811 zcp_eval_impl(dmu_tx_t *tx, zcp_run_info_t *ri) 812 { 813 int err; 814 lua_State *state = ri->zri_state; 815 816 VERIFY3U(3, ==, lua_gettop(state)); 817 818 /* finish initializing our runtime state */ 819 ri->zri_pool = dmu_tx_pool(tx); 820 ri->zri_tx = tx; 821 list_create(&ri->zri_cleanup_handlers, sizeof (zcp_cleanup_handler_t), 822 offsetof(zcp_cleanup_handler_t, zch_node)); 823 824 /* 825 * Store the zcp_run_info_t struct for this run in the Lua registry. 826 * Registry entries are not directly accessible by the Lua scripts but 827 * can be accessed by our callbacks. 828 */ 829 lua_pushlightuserdata(state, ri); 830 lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY); 831 VERIFY3U(3, ==, lua_gettop(state)); 832 833 /* 834 * Tell the Lua interpreter to call our handler every count 835 * instructions. Channel programs that execute too many instructions 836 * should die with ETIME. 837 */ 838 (void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT, 839 zfs_lua_check_instrlimit_interval); 840 841 /* 842 * Tell the Lua memory allocator to stop using KM_SLEEP before handing 843 * off control to the channel program. Channel programs that use too 844 * much memory should die with ENOSPC. 845 */ 846 ri->zri_allocargs->aa_must_succeed = B_FALSE; 847 848 /* 849 * Call the Lua function that open-context passed us. This pops the 850 * function and its input from the stack and pushes any return 851 * or error values. 852 */ 853 err = lua_pcall(state, 1, LUA_MULTRET, 1); 854 855 /* 856 * Let Lua use KM_SLEEP while we interpret the return values. 857 */ 858 ri->zri_allocargs->aa_must_succeed = B_TRUE; 859 860 /* 861 * Remove the error handler callback from the stack. At this point, 862 * there shouldn't be any cleanup handler registered in the handler 863 * list (zri_cleanup_handlers), regardless of whether it ran or not. 864 */ 865 list_destroy(&ri->zri_cleanup_handlers); 866 lua_remove(state, 1); 867 868 switch (err) { 869 case LUA_OK: { 870 /* 871 * Lua supports returning multiple values in a single return 872 * statement. Return values will have been pushed onto the 873 * stack: 874 * 1: Return value 1 875 * 2: Return value 2 876 * 3: etc... 877 * To simplify the process of retrieving a return value from a 878 * channel program, we disallow returning more than one value 879 * to ZFS from the Lua script, yielding a singleton return 880 * nvlist of the form { "return": Return value 1 }. 881 */ 882 int return_count = lua_gettop(state); 883 884 if (return_count == 1) { 885 ri->zri_result = 0; 886 zcp_convert_return_values(state, ri->zri_outnvl, 887 ZCP_RET_RETURN, &ri->zri_result); 888 } else if (return_count > 1) { 889 ri->zri_result = SET_ERROR(ECHRNG); 890 lua_settop(state, 0); 891 (void) lua_pushfstring(state, "Multiple return " 892 "values not supported"); 893 zcp_convert_return_values(state, ri->zri_outnvl, 894 ZCP_RET_ERROR, &ri->zri_result); 895 } 896 break; 897 } 898 case LUA_ERRRUN: 899 case LUA_ERRGCMM: { 900 /* 901 * The channel program encountered a fatal error within the 902 * script, such as failing an assertion, or calling a function 903 * with incompatible arguments. The error value and the 904 * traceback generated by zcp_error_handler() should be on the 905 * stack. 906 */ 907 VERIFY3U(1, ==, lua_gettop(state)); 908 if (ri->zri_timed_out) { 909 ri->zri_result = SET_ERROR(ETIME); 910 } else if (ri->zri_canceled) { 911 ri->zri_result = SET_ERROR(EINTR); 912 } else { 913 ri->zri_result = SET_ERROR(ECHRNG); 914 } 915 916 zcp_convert_return_values(state, ri->zri_outnvl, 917 ZCP_RET_ERROR, &ri->zri_result); 918 break; 919 } 920 case LUA_ERRERR: { 921 /* 922 * The channel program encountered a fatal error within the 923 * script, and we encountered another error while trying to 924 * compute the traceback in zcp_error_handler(). We can only 925 * return the error message. 926 */ 927 VERIFY3U(1, ==, lua_gettop(state)); 928 if (ri->zri_timed_out) { 929 ri->zri_result = SET_ERROR(ETIME); 930 } else if (ri->zri_canceled) { 931 ri->zri_result = SET_ERROR(EINTR); 932 } else { 933 ri->zri_result = SET_ERROR(ECHRNG); 934 } 935 936 zcp_convert_return_values(state, ri->zri_outnvl, 937 ZCP_RET_ERROR, &ri->zri_result); 938 break; 939 } 940 case LUA_ERRMEM: 941 /* 942 * Lua ran out of memory while running the channel program. 943 * There's not much we can do. 944 */ 945 ri->zri_result = SET_ERROR(ENOSPC); 946 break; 947 default: 948 VERIFY0(err); 949 } 950 } 951 952 static void 953 zcp_pool_error(zcp_run_info_t *ri, const char *poolname) 954 { 955 ri->zri_result = SET_ERROR(ECHRNG); 956 lua_settop(ri->zri_state, 0); 957 (void) lua_pushfstring(ri->zri_state, "Could not open pool: %s", 958 poolname); 959 zcp_convert_return_values(ri->zri_state, ri->zri_outnvl, 960 ZCP_RET_ERROR, &ri->zri_result); 961 962 } 963 964 /* 965 * This callback is called when txg_wait_synced_sig encountered a signal. 966 * The txg_wait_synced_sig will continue to wait for the txg to complete 967 * after calling this callback. 968 */ 969 /* ARGSUSED */ 970 static void 971 zcp_eval_sig(void *arg, dmu_tx_t *tx) 972 { 973 zcp_run_info_t *ri = arg; 974 975 ri->zri_canceled = B_TRUE; 976 } 977 978 static void 979 zcp_eval_sync(void *arg, dmu_tx_t *tx) 980 { 981 zcp_run_info_t *ri = arg; 982 983 /* 984 * Open context should have setup the stack to contain: 985 * 1: Error handler callback 986 * 2: Script to run (converted to a Lua function) 987 * 3: nvlist input to function (converted to Lua table or nil) 988 */ 989 VERIFY3U(3, ==, lua_gettop(ri->zri_state)); 990 991 zcp_eval_impl(tx, ri); 992 } 993 994 static void 995 zcp_eval_open(zcp_run_info_t *ri, const char *poolname) 996 { 997 int error; 998 dsl_pool_t *dp; 999 dmu_tx_t *tx; 1000 1001 /* 1002 * See comment from the same assertion in zcp_eval_sync(). 1003 */ 1004 VERIFY3U(3, ==, lua_gettop(ri->zri_state)); 1005 1006 error = dsl_pool_hold(poolname, FTAG, &dp); 1007 if (error != 0) { 1008 zcp_pool_error(ri, poolname); 1009 return; 1010 } 1011 1012 /* 1013 * As we are running in open-context, we have no transaction associated 1014 * with the channel program. At the same time, functions from the 1015 * zfs.check submodule need to be associated with a transaction as 1016 * they are basically dry-runs of their counterparts in the zfs.sync 1017 * submodule. These functions should be able to run in open-context. 1018 * Therefore we create a new transaction that we later abort once 1019 * the channel program has been evaluated. 1020 */ 1021 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1022 1023 zcp_eval_impl(tx, ri); 1024 1025 dmu_tx_abort(tx); 1026 1027 dsl_pool_rele(dp, FTAG); 1028 } 1029 1030 int 1031 zcp_eval(const char *poolname, const char *program, boolean_t sync, 1032 uint64_t instrlimit, uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl) 1033 { 1034 int err; 1035 lua_State *state; 1036 zcp_run_info_t runinfo; 1037 1038 if (instrlimit > zfs_lua_max_instrlimit) 1039 return (SET_ERROR(EINVAL)); 1040 if (memlimit == 0 || memlimit > zfs_lua_max_memlimit) 1041 return (SET_ERROR(EINVAL)); 1042 1043 zcp_alloc_arg_t allocargs = { 1044 .aa_must_succeed = B_TRUE, 1045 .aa_alloc_remaining = (int64_t)memlimit, 1046 .aa_alloc_limit = (int64_t)memlimit, 1047 }; 1048 1049 /* 1050 * Creates a Lua state with a memory allocator that uses KM_SLEEP. 1051 * This should never fail. 1052 */ 1053 state = lua_newstate(zcp_lua_alloc, &allocargs); 1054 VERIFY(state != NULL); 1055 (void) lua_atpanic(state, zcp_panic_cb); 1056 1057 /* 1058 * Load core Lua libraries we want access to. 1059 */ 1060 VERIFY3U(1, ==, luaopen_base(state)); 1061 lua_pop(state, 1); 1062 VERIFY3U(1, ==, luaopen_coroutine(state)); 1063 lua_setglobal(state, LUA_COLIBNAME); 1064 VERIFY0(lua_gettop(state)); 1065 VERIFY3U(1, ==, luaopen_string(state)); 1066 lua_setglobal(state, LUA_STRLIBNAME); 1067 VERIFY0(lua_gettop(state)); 1068 VERIFY3U(1, ==, luaopen_table(state)); 1069 lua_setglobal(state, LUA_TABLIBNAME); 1070 VERIFY0(lua_gettop(state)); 1071 1072 /* 1073 * Load globally visible variables such as errno aliases. 1074 */ 1075 zcp_load_globals(state); 1076 VERIFY0(lua_gettop(state)); 1077 1078 /* 1079 * Load ZFS-specific modules. 1080 */ 1081 lua_newtable(state); 1082 VERIFY3U(1, ==, zcp_load_list_lib(state)); 1083 lua_setfield(state, -2, "list"); 1084 VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE)); 1085 lua_setfield(state, -2, "check"); 1086 VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE)); 1087 lua_setfield(state, -2, "sync"); 1088 VERIFY3U(1, ==, zcp_load_get_lib(state)); 1089 lua_pushcclosure(state, zcp_debug_info.func, 0); 1090 lua_setfield(state, -2, zcp_debug_info.name); 1091 lua_pushcclosure(state, zcp_exists_info.func, 0); 1092 lua_setfield(state, -2, zcp_exists_info.name); 1093 lua_setglobal(state, "zfs"); 1094 VERIFY0(lua_gettop(state)); 1095 1096 /* 1097 * Push the error-callback that calculates Lua stack traces on 1098 * unexpected failures. 1099 */ 1100 lua_pushcfunction(state, zcp_error_handler); 1101 VERIFY3U(1, ==, lua_gettop(state)); 1102 1103 /* 1104 * Load the actual script as a function onto the stack as text ("t"). 1105 * The only valid error condition is a syntax error in the script. 1106 * ERRMEM should not be possible because our allocator is using 1107 * KM_SLEEP. ERRGCMM should not be possible because we have not added 1108 * any objects with __gc metamethods to the interpreter that could 1109 * fail. 1110 */ 1111 err = luaL_loadbufferx(state, program, strlen(program), 1112 "channel program", "t"); 1113 if (err == LUA_ERRSYNTAX) { 1114 fnvlist_add_string(outnvl, ZCP_RET_ERROR, 1115 lua_tostring(state, -1)); 1116 lua_close(state); 1117 return (SET_ERROR(EINVAL)); 1118 } 1119 VERIFY0(err); 1120 VERIFY3U(2, ==, lua_gettop(state)); 1121 1122 /* 1123 * Convert the input nvlist to a Lua object and put it on top of the 1124 * stack. 1125 */ 1126 char errmsg[128]; 1127 err = zcp_nvpair_value_to_lua(state, nvarg, 1128 errmsg, sizeof (errmsg)); 1129 if (err != 0) { 1130 fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg); 1131 lua_close(state); 1132 return (SET_ERROR(EINVAL)); 1133 } 1134 VERIFY3U(3, ==, lua_gettop(state)); 1135 1136 runinfo.zri_state = state; 1137 runinfo.zri_allocargs = &allocargs; 1138 runinfo.zri_outnvl = outnvl; 1139 runinfo.zri_result = 0; 1140 runinfo.zri_cred = CRED(); 1141 runinfo.zri_timed_out = B_FALSE; 1142 runinfo.zri_canceled = B_FALSE; 1143 runinfo.zri_sync = sync; 1144 runinfo.zri_space_used = 0; 1145 runinfo.zri_curinstrs = 0; 1146 runinfo.zri_maxinstrs = instrlimit; 1147 1148 if (sync) { 1149 err = dsl_sync_task_sig(poolname, NULL, zcp_eval_sync, 1150 zcp_eval_sig, &runinfo, 0, ZFS_SPACE_CHECK_ZCP_EVAL); 1151 if (err != 0) 1152 zcp_pool_error(&runinfo, poolname); 1153 } else { 1154 zcp_eval_open(&runinfo, poolname); 1155 } 1156 lua_close(state); 1157 1158 return (runinfo.zri_result); 1159 } 1160 1161 /* 1162 * Retrieve metadata about the currently running channel program. 1163 */ 1164 zcp_run_info_t * 1165 zcp_run_info(lua_State *state) 1166 { 1167 zcp_run_info_t *ri; 1168 1169 lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY); 1170 ri = lua_touserdata(state, -1); 1171 lua_pop(state, 1); 1172 return (ri); 1173 } 1174 1175 /* 1176 * Argument Parsing 1177 * ================ 1178 * 1179 * The Lua language allows methods to be called with any number 1180 * of arguments of any type. When calling back into ZFS we need to sanitize 1181 * arguments from channel programs to make sure unexpected arguments or 1182 * arguments of the wrong type result in clear error messages. To do this 1183 * in a uniform way all callbacks from channel programs should use the 1184 * zcp_parse_args() function to interpret inputs. 1185 * 1186 * Positional vs Keyword Arguments 1187 * =============================== 1188 * 1189 * Every callback function takes a fixed set of required positional arguments 1190 * and optional keyword arguments. For example, the destroy function takes 1191 * a single positional string argument (the name of the dataset to destroy) 1192 * and an optional "defer" keyword boolean argument. When calling lua functions 1193 * with parentheses, only positional arguments can be used: 1194 * 1195 * zfs.sync.snapshot("rpool@snap") 1196 * 1197 * To use keyword arguments functions should be called with a single argument 1198 * that is a lua table containing mappings of integer -> positional arguments 1199 * and string -> keyword arguments: 1200 * 1201 * zfs.sync.snapshot({1="rpool@snap", defer=true}) 1202 * 1203 * The lua language allows curly braces to be used in place of parenthesis as 1204 * syntactic sugar for this calling convention: 1205 * 1206 * zfs.sync.snapshot{"rpool@snap", defer=true} 1207 */ 1208 1209 /* 1210 * Throw an error and print the given arguments. If there are too many 1211 * arguments to fit in the output buffer, only the error format string is 1212 * output. 1213 */ 1214 static void 1215 zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs, 1216 const zcp_arg_t *kwargs, const char *fmt, ...) 1217 { 1218 int i; 1219 char errmsg[512]; 1220 size_t len = sizeof (errmsg); 1221 size_t msglen = 0; 1222 va_list argp; 1223 1224 va_start(argp, fmt); 1225 VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp)); 1226 va_end(argp); 1227 1228 /* 1229 * Calculate the total length of the final string, including extra 1230 * formatting characters. If the argument dump would be too large, 1231 * only print the error string. 1232 */ 1233 msglen = strlen(errmsg); 1234 msglen += strlen(fname) + 4; /* : + {} + null terminator */ 1235 for (i = 0; pargs[i].za_name != NULL; i++) { 1236 msglen += strlen(pargs[i].za_name); 1237 msglen += strlen(lua_typename(state, pargs[i].za_lua_type)); 1238 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) 1239 msglen += 5; /* < + ( + )> + , */ 1240 else 1241 msglen += 4; /* < + ( + )> */ 1242 } 1243 for (i = 0; kwargs[i].za_name != NULL; i++) { 1244 msglen += strlen(kwargs[i].za_name); 1245 msglen += strlen(lua_typename(state, kwargs[i].za_lua_type)); 1246 if (kwargs[i + 1].za_name != NULL) 1247 msglen += 4; /* =( + ) + , */ 1248 else 1249 msglen += 3; /* =( + ) */ 1250 } 1251 1252 if (msglen >= len) 1253 (void) luaL_error(state, errmsg); 1254 1255 VERIFY3U(len, >, strlcat(errmsg, ": ", len)); 1256 VERIFY3U(len, >, strlcat(errmsg, fname, len)); 1257 VERIFY3U(len, >, strlcat(errmsg, "{", len)); 1258 for (i = 0; pargs[i].za_name != NULL; i++) { 1259 VERIFY3U(len, >, strlcat(errmsg, "<", len)); 1260 VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len)); 1261 VERIFY3U(len, >, strlcat(errmsg, "(", len)); 1262 VERIFY3U(len, >, strlcat(errmsg, 1263 lua_typename(state, pargs[i].za_lua_type), len)); 1264 VERIFY3U(len, >, strlcat(errmsg, ")>", len)); 1265 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) { 1266 VERIFY3U(len, >, strlcat(errmsg, ", ", len)); 1267 } 1268 } 1269 for (i = 0; kwargs[i].za_name != NULL; i++) { 1270 VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len)); 1271 VERIFY3U(len, >, strlcat(errmsg, "=(", len)); 1272 VERIFY3U(len, >, strlcat(errmsg, 1273 lua_typename(state, kwargs[i].za_lua_type), len)); 1274 VERIFY3U(len, >, strlcat(errmsg, ")", len)); 1275 if (kwargs[i + 1].za_name != NULL) { 1276 VERIFY3U(len, >, strlcat(errmsg, ", ", len)); 1277 } 1278 } 1279 VERIFY3U(len, >, strlcat(errmsg, "}", len)); 1280 1281 (void) luaL_error(state, errmsg); 1282 panic("unreachable code"); 1283 } 1284 1285 static void 1286 zcp_parse_table_args(lua_State *state, const char *fname, 1287 const zcp_arg_t *pargs, const zcp_arg_t *kwargs) 1288 { 1289 int i; 1290 int type; 1291 1292 for (i = 0; pargs[i].za_name != NULL; i++) { 1293 /* 1294 * Check the table for this positional argument, leaving it 1295 * on the top of the stack once we finish validating it. 1296 */ 1297 lua_pushinteger(state, i + 1); 1298 lua_gettable(state, 1); 1299 1300 type = lua_type(state, -1); 1301 if (type == LUA_TNIL) { 1302 zcp_args_error(state, fname, pargs, kwargs, 1303 "too few arguments"); 1304 panic("unreachable code"); 1305 } else if (type != pargs[i].za_lua_type) { 1306 zcp_args_error(state, fname, pargs, kwargs, 1307 "arg %d wrong type (is '%s', expected '%s')", 1308 i + 1, lua_typename(state, type), 1309 lua_typename(state, pargs[i].za_lua_type)); 1310 panic("unreachable code"); 1311 } 1312 1313 /* 1314 * Remove the positional argument from the table. 1315 */ 1316 lua_pushinteger(state, i + 1); 1317 lua_pushnil(state); 1318 lua_settable(state, 1); 1319 } 1320 1321 for (i = 0; kwargs[i].za_name != NULL; i++) { 1322 /* 1323 * Check the table for this keyword argument, which may be 1324 * nil if it was omitted. Leave the value on the top of 1325 * the stack after validating it. 1326 */ 1327 lua_getfield(state, 1, kwargs[i].za_name); 1328 1329 type = lua_type(state, -1); 1330 if (type != LUA_TNIL && type != kwargs[i].za_lua_type) { 1331 zcp_args_error(state, fname, pargs, kwargs, 1332 "kwarg '%s' wrong type (is '%s', expected '%s')", 1333 kwargs[i].za_name, lua_typename(state, type), 1334 lua_typename(state, kwargs[i].za_lua_type)); 1335 panic("unreachable code"); 1336 } 1337 1338 /* 1339 * Remove the keyword argument from the table. 1340 */ 1341 lua_pushnil(state); 1342 lua_setfield(state, 1, kwargs[i].za_name); 1343 } 1344 1345 /* 1346 * Any entries remaining in the table are invalid inputs, print 1347 * an error message based on what the entry is. 1348 */ 1349 lua_pushnil(state); 1350 if (lua_next(state, 1)) { 1351 if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) { 1352 zcp_args_error(state, fname, pargs, kwargs, 1353 "too many positional arguments"); 1354 } else if (lua_isstring(state, -2)) { 1355 zcp_args_error(state, fname, pargs, kwargs, 1356 "invalid kwarg '%s'", lua_tostring(state, -2)); 1357 } else { 1358 zcp_args_error(state, fname, pargs, kwargs, 1359 "kwarg keys must be strings"); 1360 } 1361 panic("unreachable code"); 1362 } 1363 1364 lua_remove(state, 1); 1365 } 1366 1367 static void 1368 zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs, 1369 const zcp_arg_t *kwargs) 1370 { 1371 int i; 1372 int type; 1373 1374 for (i = 0; pargs[i].za_name != NULL; i++) { 1375 type = lua_type(state, i + 1); 1376 if (type == LUA_TNONE) { 1377 zcp_args_error(state, fname, pargs, kwargs, 1378 "too few arguments"); 1379 panic("unreachable code"); 1380 } else if (type != pargs[i].za_lua_type) { 1381 zcp_args_error(state, fname, pargs, kwargs, 1382 "arg %d wrong type (is '%s', expected '%s')", 1383 i + 1, lua_typename(state, type), 1384 lua_typename(state, pargs[i].za_lua_type)); 1385 panic("unreachable code"); 1386 } 1387 } 1388 if (lua_gettop(state) != i) { 1389 zcp_args_error(state, fname, pargs, kwargs, 1390 "too many positional arguments"); 1391 panic("unreachable code"); 1392 } 1393 1394 for (i = 0; kwargs[i].za_name != NULL; i++) { 1395 lua_pushnil(state); 1396 } 1397 } 1398 1399 /* 1400 * Checks the current Lua stack against an expected set of positional and 1401 * keyword arguments. If the stack does not match the expected arguments 1402 * aborts the current channel program with a useful error message, otherwise 1403 * it re-arranges the stack so that it contains the positional arguments 1404 * followed by the keyword argument values in declaration order. Any missing 1405 * keyword argument will be represented by a nil value on the stack. 1406 * 1407 * If the stack contains exactly one argument of type LUA_TTABLE the curly 1408 * braces calling convention is assumed, otherwise the stack is parsed for 1409 * positional arguments only. 1410 * 1411 * This function should be used by every function callback. It should be called 1412 * before the callback manipulates the Lua stack as it assumes the stack 1413 * represents the function arguments. 1414 */ 1415 void 1416 zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs, 1417 const zcp_arg_t *kwargs) 1418 { 1419 if (lua_gettop(state) == 1 && lua_istable(state, 1)) { 1420 zcp_parse_table_args(state, fname, pargs, kwargs); 1421 } else { 1422 zcp_parse_pos_args(state, fname, pargs, kwargs); 1423 } 1424 } 1425