xref: /illumos-gate/usr/src/uts/common/fs/zfs/zap_micro.c (revision fa4a3e77edc40df6d92e8da6fc4961d275e9896d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2017 Nexenta Systems, Inc.
28  */
29 
30 #include <sys/zio.h>
31 #include <sys/spa.h>
32 #include <sys/dmu.h>
33 #include <sys/zfs_context.h>
34 #include <sys/zap.h>
35 #include <sys/refcount.h>
36 #include <sys/zap_impl.h>
37 #include <sys/zap_leaf.h>
38 #include <sys/avl.h>
39 #include <sys/arc.h>
40 #include <sys/dmu_objset.h>
41 
42 #ifdef _KERNEL
43 #include <sys/sunddi.h>
44 #endif
45 
46 extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
47 
48 static int mzap_upgrade(zap_t **zapp,
49     void *tag, dmu_tx_t *tx, zap_flags_t flags);
50 
51 uint64_t
52 zap_getflags(zap_t *zap)
53 {
54 	if (zap->zap_ismicro)
55 		return (0);
56 	return (zap_f_phys(zap)->zap_flags);
57 }
58 
59 int
60 zap_hashbits(zap_t *zap)
61 {
62 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
63 		return (48);
64 	else
65 		return (28);
66 }
67 
68 uint32_t
69 zap_maxcd(zap_t *zap)
70 {
71 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
72 		return ((1<<16)-1);
73 	else
74 		return (-1U);
75 }
76 
77 static uint64_t
78 zap_hash(zap_name_t *zn)
79 {
80 	zap_t *zap = zn->zn_zap;
81 	uint64_t h = 0;
82 
83 	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
84 		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
85 		h = *(uint64_t *)zn->zn_key_orig;
86 	} else {
87 		h = zap->zap_salt;
88 		ASSERT(h != 0);
89 		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
90 
91 		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
92 			const uint64_t *wp = zn->zn_key_norm;
93 
94 			ASSERT(zn->zn_key_intlen == 8);
95 			for (int i = 0; i < zn->zn_key_norm_numints;
96 			    wp++, i++) {
97 				uint64_t word = *wp;
98 
99 				for (int j = 0; j < zn->zn_key_intlen; j++) {
100 					h = (h >> 8) ^
101 					    zfs_crc64_table[(h ^ word) & 0xFF];
102 					word >>= NBBY;
103 				}
104 			}
105 		} else {
106 			const uint8_t *cp = zn->zn_key_norm;
107 
108 			/*
109 			 * We previously stored the terminating null on
110 			 * disk, but didn't hash it, so we need to
111 			 * continue to not hash it.  (The
112 			 * zn_key_*_numints includes the terminating
113 			 * null for non-binary keys.)
114 			 */
115 			int len = zn->zn_key_norm_numints - 1;
116 
117 			ASSERT(zn->zn_key_intlen == 1);
118 			for (int i = 0; i < len; cp++, i++) {
119 				h = (h >> 8) ^
120 				    zfs_crc64_table[(h ^ *cp) & 0xFF];
121 			}
122 		}
123 	}
124 	/*
125 	 * Don't use all 64 bits, since we need some in the cookie for
126 	 * the collision differentiator.  We MUST use the high bits,
127 	 * since those are the ones that we first pay attention to when
128 	 * chosing the bucket.
129 	 */
130 	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
131 
132 	return (h);
133 }
134 
135 static int
136 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags)
137 {
138 	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
139 
140 	size_t inlen = strlen(name) + 1;
141 	size_t outlen = ZAP_MAXNAMELEN;
142 
143 	int err = 0;
144 	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
145 	    normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID,
146 	    U8_UNICODE_LATEST, &err);
147 
148 	return (err);
149 }
150 
151 boolean_t
152 zap_match(zap_name_t *zn, const char *matchname)
153 {
154 	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
155 
156 	if (zn->zn_matchtype & MT_NORMALIZE) {
157 		char norm[ZAP_MAXNAMELEN];
158 
159 		if (zap_normalize(zn->zn_zap, matchname, norm,
160 		    zn->zn_normflags) != 0)
161 			return (B_FALSE);
162 
163 		return (strcmp(zn->zn_key_norm, norm) == 0);
164 	} else {
165 		return (strcmp(zn->zn_key_orig, matchname) == 0);
166 	}
167 }
168 
169 void
170 zap_name_free(zap_name_t *zn)
171 {
172 	kmem_free(zn, sizeof (zap_name_t));
173 }
174 
175 zap_name_t *
176 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
177 {
178 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
179 
180 	zn->zn_zap = zap;
181 	zn->zn_key_intlen = sizeof (*key);
182 	zn->zn_key_orig = key;
183 	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
184 	zn->zn_matchtype = mt;
185 	zn->zn_normflags = zap->zap_normflags;
186 
187 	/*
188 	 * If we're dealing with a case sensitive lookup on a mixed or
189 	 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
190 	 * will fold case to all caps overriding the lookup request.
191 	 */
192 	if (mt & MT_MATCH_CASE)
193 		zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER;
194 
195 	if (zap->zap_normflags) {
196 		/*
197 		 * We *must* use zap_normflags because this normalization is
198 		 * what the hash is computed from.
199 		 */
200 		if (zap_normalize(zap, key, zn->zn_normbuf,
201 		    zap->zap_normflags) != 0) {
202 			zap_name_free(zn);
203 			return (NULL);
204 		}
205 		zn->zn_key_norm = zn->zn_normbuf;
206 		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
207 	} else {
208 		if (mt != 0) {
209 			zap_name_free(zn);
210 			return (NULL);
211 		}
212 		zn->zn_key_norm = zn->zn_key_orig;
213 		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
214 	}
215 
216 	zn->zn_hash = zap_hash(zn);
217 
218 	if (zap->zap_normflags != zn->zn_normflags) {
219 		/*
220 		 * We *must* use zn_normflags because this normalization is
221 		 * what the matching is based on.  (Not the hash!)
222 		 */
223 		if (zap_normalize(zap, key, zn->zn_normbuf,
224 		    zn->zn_normflags) != 0) {
225 			zap_name_free(zn);
226 			return (NULL);
227 		}
228 		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
229 	}
230 
231 	return (zn);
232 }
233 
234 zap_name_t *
235 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
236 {
237 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
238 
239 	ASSERT(zap->zap_normflags == 0);
240 	zn->zn_zap = zap;
241 	zn->zn_key_intlen = sizeof (*key);
242 	zn->zn_key_orig = zn->zn_key_norm = key;
243 	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
244 	zn->zn_matchtype = 0;
245 
246 	zn->zn_hash = zap_hash(zn);
247 	return (zn);
248 }
249 
250 static void
251 mzap_byteswap(mzap_phys_t *buf, size_t size)
252 {
253 	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
254 	buf->mz_salt = BSWAP_64(buf->mz_salt);
255 	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
256 	int max = (size / MZAP_ENT_LEN) - 1;
257 	for (int i = 0; i < max; i++) {
258 		buf->mz_chunk[i].mze_value =
259 		    BSWAP_64(buf->mz_chunk[i].mze_value);
260 		buf->mz_chunk[i].mze_cd =
261 		    BSWAP_32(buf->mz_chunk[i].mze_cd);
262 	}
263 }
264 
265 void
266 zap_byteswap(void *buf, size_t size)
267 {
268 	uint64_t block_type = *(uint64_t *)buf;
269 
270 	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
271 		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
272 		mzap_byteswap(buf, size);
273 	} else {
274 		fzap_byteswap(buf, size);
275 	}
276 }
277 
278 static int
279 mze_compare(const void *arg1, const void *arg2)
280 {
281 	const mzap_ent_t *mze1 = arg1;
282 	const mzap_ent_t *mze2 = arg2;
283 
284 	int cmp = TREE_CMP(mze1->mze_hash, mze2->mze_hash);
285 	if (likely(cmp))
286 		return (cmp);
287 
288 	return (TREE_CMP(mze1->mze_cd, mze2->mze_cd));
289 }
290 
291 static void
292 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
293 {
294 	ASSERT(zap->zap_ismicro);
295 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
296 
297 	mzap_ent_t *mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
298 	mze->mze_chunkid = chunkid;
299 	mze->mze_hash = hash;
300 	mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
301 	ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
302 	avl_add(&zap->zap_m.zap_avl, mze);
303 }
304 
305 static mzap_ent_t *
306 mze_find(zap_name_t *zn)
307 {
308 	mzap_ent_t mze_tofind;
309 	mzap_ent_t *mze;
310 	avl_index_t idx;
311 	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
312 
313 	ASSERT(zn->zn_zap->zap_ismicro);
314 	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
315 
316 	mze_tofind.mze_hash = zn->zn_hash;
317 	mze_tofind.mze_cd = 0;
318 
319 	mze = avl_find(avl, &mze_tofind, &idx);
320 	if (mze == NULL)
321 		mze = avl_nearest(avl, idx, AVL_AFTER);
322 	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
323 		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
324 		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
325 			return (mze);
326 	}
327 
328 	return (NULL);
329 }
330 
331 static uint32_t
332 mze_find_unused_cd(zap_t *zap, uint64_t hash)
333 {
334 	mzap_ent_t mze_tofind;
335 	avl_index_t idx;
336 	avl_tree_t *avl = &zap->zap_m.zap_avl;
337 
338 	ASSERT(zap->zap_ismicro);
339 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
340 
341 	mze_tofind.mze_hash = hash;
342 	mze_tofind.mze_cd = 0;
343 
344 	uint32_t cd = 0;
345 	for (mzap_ent_t *mze = avl_find(avl, &mze_tofind, &idx);
346 	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
347 		if (mze->mze_cd != cd)
348 			break;
349 		cd++;
350 	}
351 
352 	return (cd);
353 }
354 
355 static void
356 mze_remove(zap_t *zap, mzap_ent_t *mze)
357 {
358 	ASSERT(zap->zap_ismicro);
359 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
360 
361 	avl_remove(&zap->zap_m.zap_avl, mze);
362 	kmem_free(mze, sizeof (mzap_ent_t));
363 }
364 
365 static void
366 mze_destroy(zap_t *zap)
367 {
368 	mzap_ent_t *mze;
369 	void *avlcookie = NULL;
370 
371 	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
372 		kmem_free(mze, sizeof (mzap_ent_t));
373 	avl_destroy(&zap->zap_m.zap_avl);
374 }
375 
376 static zap_t *
377 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
378 {
379 	zap_t *winner;
380 	uint64_t *zap_hdr = (uint64_t *)db->db_data;
381 	uint64_t zap_block_type = zap_hdr[0];
382 	uint64_t zap_magic = zap_hdr[1];
383 
384 	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
385 
386 	zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
387 	rw_init(&zap->zap_rwlock, 0, 0, 0);
388 	rw_enter(&zap->zap_rwlock, RW_WRITER);
389 	zap->zap_objset = os;
390 	zap->zap_object = obj;
391 	zap->zap_dbuf = db;
392 
393 	if (zap_block_type != ZBT_MICRO) {
394 		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
395 		zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
396 		if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
397 			winner = NULL;	/* No actual winner here... */
398 			goto handle_winner;
399 		}
400 	} else {
401 		zap->zap_ismicro = TRUE;
402 	}
403 
404 	/*
405 	 * Make sure that zap_ismicro is set before we let others see
406 	 * it, because zap_lockdir() checks zap_ismicro without the lock
407 	 * held.
408 	 */
409 	dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
410 	winner = dmu_buf_set_user(db, &zap->zap_dbu);
411 
412 	if (winner != NULL)
413 		goto handle_winner;
414 
415 	if (zap->zap_ismicro) {
416 		zap->zap_salt = zap_m_phys(zap)->mz_salt;
417 		zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
418 		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
419 		avl_create(&zap->zap_m.zap_avl, mze_compare,
420 		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
421 
422 		for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
423 			mzap_ent_phys_t *mze =
424 			    &zap_m_phys(zap)->mz_chunk[i];
425 			if (mze->mze_name[0]) {
426 				zap_name_t *zn;
427 
428 				zap->zap_m.zap_num_entries++;
429 				zn = zap_name_alloc(zap, mze->mze_name, 0);
430 				mze_insert(zap, i, zn->zn_hash);
431 				zap_name_free(zn);
432 			}
433 		}
434 	} else {
435 		zap->zap_salt = zap_f_phys(zap)->zap_salt;
436 		zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
437 
438 		ASSERT3U(sizeof (struct zap_leaf_header), ==,
439 		    2*ZAP_LEAF_CHUNKSIZE);
440 
441 		/*
442 		 * The embedded pointer table should not overlap the
443 		 * other members.
444 		 */
445 		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
446 		    &zap_f_phys(zap)->zap_salt);
447 
448 		/*
449 		 * The embedded pointer table should end at the end of
450 		 * the block
451 		 */
452 		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
453 		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
454 		    (uintptr_t)zap_f_phys(zap), ==,
455 		    zap->zap_dbuf->db_size);
456 	}
457 	rw_exit(&zap->zap_rwlock);
458 	return (zap);
459 
460 handle_winner:
461 	rw_exit(&zap->zap_rwlock);
462 	rw_destroy(&zap->zap_rwlock);
463 	if (!zap->zap_ismicro)
464 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
465 	kmem_free(zap, sizeof (zap_t));
466 	return (winner);
467 }
468 
469 /*
470  * This routine "consumes" the caller's hold on the dbuf, which must
471  * have the specified tag.
472  */
473 static int
474 zap_lockdir_impl(dmu_buf_t *db, void *tag, dmu_tx_t *tx,
475     krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
476 {
477 	ASSERT0(db->db_offset);
478 	objset_t *os = dmu_buf_get_objset(db);
479 	uint64_t obj = db->db_object;
480 
481 	*zapp = NULL;
482 
483 	zap_t *zap = dmu_buf_get_user(db);
484 	if (zap == NULL) {
485 		zap = mzap_open(os, obj, db);
486 		if (zap == NULL) {
487 			/*
488 			 * mzap_open() didn't like what it saw on-disk.
489 			 * Check for corruption!
490 			 */
491 			return (SET_ERROR(EIO));
492 		}
493 	}
494 
495 	/*
496 	 * We're checking zap_ismicro without the lock held, in order to
497 	 * tell what type of lock we want.  Once we have some sort of
498 	 * lock, see if it really is the right type.  In practice this
499 	 * can only be different if it was upgraded from micro to fat,
500 	 * and micro wanted WRITER but fat only needs READER.
501 	 */
502 	krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
503 	rw_enter(&zap->zap_rwlock, lt);
504 	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
505 		/* it was upgraded, now we only need reader */
506 		ASSERT(lt == RW_WRITER);
507 		ASSERT(RW_READER ==
508 		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
509 		rw_downgrade(&zap->zap_rwlock);
510 		lt = RW_READER;
511 	}
512 
513 	zap->zap_objset = os;
514 
515 	if (lt == RW_WRITER)
516 		dmu_buf_will_dirty(db, tx);
517 
518 	ASSERT3P(zap->zap_dbuf, ==, db);
519 
520 	ASSERT(!zap->zap_ismicro ||
521 	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
522 	if (zap->zap_ismicro && tx && adding &&
523 	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
524 		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
525 		if (newsz > MZAP_MAX_BLKSZ) {
526 			dprintf("upgrading obj %llu: num_entries=%u\n",
527 			    obj, zap->zap_m.zap_num_entries);
528 			*zapp = zap;
529 			int err = mzap_upgrade(zapp, tag, tx, 0);
530 			if (err != 0)
531 				rw_exit(&zap->zap_rwlock);
532 			return (err);
533 		}
534 		VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
535 		zap->zap_m.zap_num_chunks =
536 		    db->db_size / MZAP_ENT_LEN - 1;
537 	}
538 
539 	*zapp = zap;
540 	return (0);
541 }
542 
543 static int
544 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
545     krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
546 {
547 	dmu_buf_t *db;
548 
549 	int err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
550 	if (err != 0) {
551 		return (err);
552 	}
553 #ifdef ZFS_DEBUG
554 	{
555 		dmu_object_info_t doi;
556 		dmu_object_info_from_db(db, &doi);
557 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
558 	}
559 #endif
560 
561 	err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
562 	if (err != 0) {
563 		dmu_buf_rele(db, tag);
564 	}
565 	return (err);
566 }
567 
568 int
569 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
570     krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
571 {
572 	dmu_buf_t *db;
573 
574 	int err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH);
575 	if (err != 0)
576 		return (err);
577 #ifdef ZFS_DEBUG
578 	{
579 		dmu_object_info_t doi;
580 		dmu_object_info_from_db(db, &doi);
581 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
582 	}
583 #endif
584 	err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
585 	if (err != 0)
586 		dmu_buf_rele(db, tag);
587 	return (err);
588 }
589 
590 void
591 zap_unlockdir(zap_t *zap, void *tag)
592 {
593 	rw_exit(&zap->zap_rwlock);
594 	dmu_buf_rele(zap->zap_dbuf, tag);
595 }
596 
597 static int
598 mzap_upgrade(zap_t **zapp, void *tag, dmu_tx_t *tx, zap_flags_t flags)
599 {
600 	int err = 0;
601 	zap_t *zap = *zapp;
602 
603 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
604 
605 	int sz = zap->zap_dbuf->db_size;
606 	mzap_phys_t *mzp = zio_buf_alloc(sz);
607 	bcopy(zap->zap_dbuf->db_data, mzp, sz);
608 	int nchunks = zap->zap_m.zap_num_chunks;
609 
610 	if (!flags) {
611 		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
612 		    1ULL << fzap_default_block_shift, 0, tx);
613 		if (err != 0) {
614 			zio_buf_free(mzp, sz);
615 			return (err);
616 		}
617 	}
618 
619 	dprintf("upgrading obj=%llu with %u chunks\n",
620 	    zap->zap_object, nchunks);
621 	/* XXX destroy the avl later, so we can use the stored hash value */
622 	mze_destroy(zap);
623 
624 	fzap_upgrade(zap, tx, flags);
625 
626 	for (int i = 0; i < nchunks; i++) {
627 		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
628 		if (mze->mze_name[0] == 0)
629 			continue;
630 		dprintf("adding %s=%llu\n",
631 		    mze->mze_name, mze->mze_value);
632 		zap_name_t *zn = zap_name_alloc(zap, mze->mze_name, 0);
633 		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
634 		    tag, tx);
635 		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
636 		zap_name_free(zn);
637 		if (err != 0)
638 			break;
639 	}
640 	zio_buf_free(mzp, sz);
641 	*zapp = zap;
642 	return (err);
643 }
644 
645 /*
646  * The "normflags" determine the behavior of the matchtype_t which is
647  * passed to zap_lookup_norm().  Names which have the same normalized
648  * version will be stored with the same hash value, and therefore we can
649  * perform normalization-insensitive lookups.  We can be Unicode form-
650  * insensitive and/or case-insensitive.  The following flags are valid for
651  * "normflags":
652  *
653  * U8_TEXTPREP_NFC
654  * U8_TEXTPREP_NFD
655  * U8_TEXTPREP_NFKC
656  * U8_TEXTPREP_NFKD
657  * U8_TEXTPREP_TOUPPER
658  *
659  * The *_NF* (Normalization Form) flags are mutually exclusive; at most one
660  * of them may be supplied.
661  */
662 void
663 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
664     dmu_tx_t *tx)
665 {
666 	dmu_buf_t *db;
667 
668 	VERIFY0(dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
669 
670 	dmu_buf_will_dirty(db, tx);
671 	mzap_phys_t *zp = db->db_data;
672 	zp->mz_block_type = ZBT_MICRO;
673 	(void) random_get_pseudo_bytes((void *)&zp->mz_salt, sizeof (uint64_t));
674 	zp->mz_normflags = normflags;
675 
676 	if (flags != 0) {
677 		zap_t *zap;
678 		/* Only fat zap supports flags; upgrade immediately. */
679 		VERIFY0(zap_lockdir_impl(db, FTAG, tx, RW_WRITER,
680 		    B_FALSE, B_FALSE, &zap));
681 		VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags));
682 		zap_unlockdir(zap, FTAG);
683 	} else {
684 		dmu_buf_rele(db, FTAG);
685 	}
686 }
687 
688 int
689 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
690     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
691 {
692 	return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen,
693 	    0, tx));
694 }
695 
696 int
697 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot,
698     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
699 {
700 	return (zap_create_claim_norm_dnsize(os, obj,
701 	    0, ot, bonustype, bonuslen, dnodesize, tx));
702 }
703 
704 int
705 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
706     dmu_object_type_t ot,
707     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
708 {
709 	return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype,
710 	    bonuslen, 0, tx));
711 }
712 
713 int
714 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags,
715     dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
716     int dnodesize, dmu_tx_t *tx)
717 {
718 	int err;
719 
720 	err = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen,
721 	    dnodesize, tx);
722 	if (err != 0)
723 		return (err);
724 	mzap_create_impl(os, obj, normflags, 0, tx);
725 	return (0);
726 }
727 
728 uint64_t
729 zap_create(objset_t *os, dmu_object_type_t ot,
730     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
731 {
732 	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
733 }
734 
735 uint64_t
736 zap_create_dnsize(objset_t *os, dmu_object_type_t ot,
737     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
738 {
739 	return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen,
740 	    dnodesize, tx));
741 }
742 
743 uint64_t
744 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
745     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
746 {
747 	ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
748 	return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen,
749 	    0, tx));
750 }
751 
752 uint64_t
753 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot,
754     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
755 {
756 	uint64_t obj = dmu_object_alloc_dnsize(os, ot, 0, bonustype, bonuslen,
757 	    dnodesize, tx);
758 
759 	mzap_create_impl(os, obj, normflags, 0, tx);
760 	return (obj);
761 }
762 
763 uint64_t
764 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
765     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
766     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
767 {
768 	ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
769 	return (zap_create_flags_dnsize(os, normflags, flags, ot,
770 	    leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx));
771 }
772 
773 uint64_t
774 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags,
775     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
776     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
777 {
778 	uint64_t obj = dmu_object_alloc_dnsize(os, ot, 0, bonustype, bonuslen,
779 	    dnodesize, tx);
780 
781 	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
782 	    leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT &&
783 	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
784 	    indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT);
785 
786 	VERIFY(dmu_object_set_blocksize(os, obj,
787 	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
788 
789 	mzap_create_impl(os, obj, normflags, flags, tx);
790 	return (obj);
791 }
792 
793 int
794 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
795 {
796 	/*
797 	 * dmu_object_free will free the object number and free the
798 	 * data.  Freeing the data will cause our pageout function to be
799 	 * called, which will destroy our data (zap_leaf_t's and zap_t).
800 	 */
801 
802 	return (dmu_object_free(os, zapobj, tx));
803 }
804 
805 void
806 zap_evict_sync(void *dbu)
807 {
808 	zap_t *zap = dbu;
809 
810 	rw_destroy(&zap->zap_rwlock);
811 
812 	if (zap->zap_ismicro)
813 		mze_destroy(zap);
814 	else
815 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
816 
817 	kmem_free(zap, sizeof (zap_t));
818 }
819 
820 int
821 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
822 {
823 	zap_t *zap;
824 
825 	int err =
826 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
827 	if (err != 0)
828 		return (err);
829 	if (!zap->zap_ismicro) {
830 		err = fzap_count(zap, count);
831 	} else {
832 		*count = zap->zap_m.zap_num_entries;
833 	}
834 	zap_unlockdir(zap, FTAG);
835 	return (err);
836 }
837 
838 /*
839  * zn may be NULL; if not specified, it will be computed if needed.
840  * See also the comment above zap_entry_normalization_conflict().
841  */
842 static boolean_t
843 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
844 {
845 	int direction = AVL_BEFORE;
846 	boolean_t allocdzn = B_FALSE;
847 
848 	if (zap->zap_normflags == 0)
849 		return (B_FALSE);
850 
851 again:
852 	for (mzap_ent_t *other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
853 	    other && other->mze_hash == mze->mze_hash;
854 	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
855 
856 		if (zn == NULL) {
857 			zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
858 			    MT_NORMALIZE);
859 			allocdzn = B_TRUE;
860 		}
861 		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
862 			if (allocdzn)
863 				zap_name_free(zn);
864 			return (B_TRUE);
865 		}
866 	}
867 
868 	if (direction == AVL_BEFORE) {
869 		direction = AVL_AFTER;
870 		goto again;
871 	}
872 
873 	if (allocdzn)
874 		zap_name_free(zn);
875 	return (B_FALSE);
876 }
877 
878 /*
879  * Routines for manipulating attributes.
880  */
881 
882 int
883 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
884     uint64_t integer_size, uint64_t num_integers, void *buf)
885 {
886 	return (zap_lookup_norm(os, zapobj, name, integer_size,
887 	    num_integers, buf, 0, NULL, 0, NULL));
888 }
889 
890 static int
891 zap_lookup_impl(zap_t *zap, const char *name,
892     uint64_t integer_size, uint64_t num_integers, void *buf,
893     matchtype_t mt, char *realname, int rn_len,
894     boolean_t *ncp)
895 {
896 	int err = 0;
897 
898 	zap_name_t *zn = zap_name_alloc(zap, name, mt);
899 	if (zn == NULL)
900 		return (SET_ERROR(ENOTSUP));
901 
902 	if (!zap->zap_ismicro) {
903 		err = fzap_lookup(zn, integer_size, num_integers, buf,
904 		    realname, rn_len, ncp);
905 	} else {
906 		mzap_ent_t *mze = mze_find(zn);
907 		if (mze == NULL) {
908 			err = SET_ERROR(ENOENT);
909 		} else {
910 			if (num_integers < 1) {
911 				err = SET_ERROR(EOVERFLOW);
912 			} else if (integer_size != 8) {
913 				err = SET_ERROR(EINVAL);
914 			} else {
915 				*(uint64_t *)buf =
916 				    MZE_PHYS(zap, mze)->mze_value;
917 				(void) strlcpy(realname,
918 				    MZE_PHYS(zap, mze)->mze_name, rn_len);
919 				if (ncp) {
920 					*ncp = mzap_normalization_conflict(zap,
921 					    zn, mze);
922 				}
923 			}
924 		}
925 	}
926 	zap_name_free(zn);
927 	return (err);
928 }
929 
930 int
931 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
932     uint64_t integer_size, uint64_t num_integers, void *buf,
933     matchtype_t mt, char *realname, int rn_len,
934     boolean_t *ncp)
935 {
936 	zap_t *zap;
937 
938 	int err =
939 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
940 	if (err != 0)
941 		return (err);
942 	err = zap_lookup_impl(zap, name, integer_size,
943 	    num_integers, buf, mt, realname, rn_len, ncp);
944 	zap_unlockdir(zap, FTAG);
945 	return (err);
946 }
947 
948 int
949 zap_lookup_by_dnode(dnode_t *dn, const char *name,
950     uint64_t integer_size, uint64_t num_integers, void *buf)
951 {
952 	return (zap_lookup_norm_by_dnode(dn, name, integer_size,
953 	    num_integers, buf, 0, NULL, 0, NULL));
954 }
955 
956 int
957 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
958     uint64_t integer_size, uint64_t num_integers, void *buf,
959     matchtype_t mt, char *realname, int rn_len,
960     boolean_t *ncp)
961 {
962 	zap_t *zap;
963 
964 	int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
965 	    FTAG, &zap);
966 	if (err != 0)
967 		return (err);
968 	err = zap_lookup_impl(zap, name, integer_size,
969 	    num_integers, buf, mt, realname, rn_len, ncp);
970 	zap_unlockdir(zap, FTAG);
971 	return (err);
972 }
973 
974 int
975 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
976     int key_numints)
977 {
978 	zap_t *zap;
979 
980 	int err =
981 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
982 	if (err != 0)
983 		return (err);
984 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
985 	if (zn == NULL) {
986 		zap_unlockdir(zap, FTAG);
987 		return (SET_ERROR(ENOTSUP));
988 	}
989 
990 	fzap_prefetch(zn);
991 	zap_name_free(zn);
992 	zap_unlockdir(zap, FTAG);
993 	return (err);
994 }
995 
996 int
997 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
998     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
999 {
1000 	zap_t *zap;
1001 
1002 	int err =
1003 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1004 	if (err != 0)
1005 		return (err);
1006 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1007 	if (zn == NULL) {
1008 		zap_unlockdir(zap, FTAG);
1009 		return (SET_ERROR(ENOTSUP));
1010 	}
1011 
1012 	err = fzap_lookup(zn, integer_size, num_integers, buf,
1013 	    NULL, 0, NULL);
1014 	zap_name_free(zn);
1015 	zap_unlockdir(zap, FTAG);
1016 	return (err);
1017 }
1018 
1019 int
1020 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
1021 {
1022 	int err = zap_lookup_norm(os, zapobj, name, 0,
1023 	    0, NULL, 0, NULL, 0, NULL);
1024 	if (err == EOVERFLOW || err == EINVAL)
1025 		err = 0; /* found, but skipped reading the value */
1026 	return (err);
1027 }
1028 
1029 int
1030 zap_length(objset_t *os, uint64_t zapobj, const char *name,
1031     uint64_t *integer_size, uint64_t *num_integers)
1032 {
1033 	zap_t *zap;
1034 
1035 	int err =
1036 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1037 	if (err != 0)
1038 		return (err);
1039 	zap_name_t *zn = zap_name_alloc(zap, name, 0);
1040 	if (zn == NULL) {
1041 		zap_unlockdir(zap, FTAG);
1042 		return (SET_ERROR(ENOTSUP));
1043 	}
1044 	if (!zap->zap_ismicro) {
1045 		err = fzap_length(zn, integer_size, num_integers);
1046 	} else {
1047 		mzap_ent_t *mze = mze_find(zn);
1048 		if (mze == NULL) {
1049 			err = SET_ERROR(ENOENT);
1050 		} else {
1051 			if (integer_size)
1052 				*integer_size = 8;
1053 			if (num_integers)
1054 				*num_integers = 1;
1055 		}
1056 	}
1057 	zap_name_free(zn);
1058 	zap_unlockdir(zap, FTAG);
1059 	return (err);
1060 }
1061 
1062 int
1063 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1064     int key_numints, uint64_t *integer_size, uint64_t *num_integers)
1065 {
1066 	zap_t *zap;
1067 
1068 	int err =
1069 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1070 	if (err != 0)
1071 		return (err);
1072 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1073 	if (zn == NULL) {
1074 		zap_unlockdir(zap, FTAG);
1075 		return (SET_ERROR(ENOTSUP));
1076 	}
1077 	err = fzap_length(zn, integer_size, num_integers);
1078 	zap_name_free(zn);
1079 	zap_unlockdir(zap, FTAG);
1080 	return (err);
1081 }
1082 
1083 static void
1084 mzap_addent(zap_name_t *zn, uint64_t value)
1085 {
1086 	zap_t *zap = zn->zn_zap;
1087 	int start = zap->zap_m.zap_alloc_next;
1088 
1089 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1090 
1091 #ifdef ZFS_DEBUG
1092 	for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
1093 		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1094 		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
1095 	}
1096 #endif
1097 
1098 	uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash);
1099 	/* given the limited size of the microzap, this can't happen */
1100 	ASSERT(cd < zap_maxcd(zap));
1101 
1102 again:
1103 	for (int i = start; i < zap->zap_m.zap_num_chunks; i++) {
1104 		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1105 		if (mze->mze_name[0] == 0) {
1106 			mze->mze_value = value;
1107 			mze->mze_cd = cd;
1108 			(void) strcpy(mze->mze_name, zn->zn_key_orig);
1109 			zap->zap_m.zap_num_entries++;
1110 			zap->zap_m.zap_alloc_next = i+1;
1111 			if (zap->zap_m.zap_alloc_next ==
1112 			    zap->zap_m.zap_num_chunks)
1113 				zap->zap_m.zap_alloc_next = 0;
1114 			mze_insert(zap, i, zn->zn_hash);
1115 			return;
1116 		}
1117 	}
1118 	if (start != 0) {
1119 		start = 0;
1120 		goto again;
1121 	}
1122 	ASSERT(!"out of entries!");
1123 }
1124 
1125 static int
1126 zap_add_impl(zap_t *zap, const char *key,
1127     int integer_size, uint64_t num_integers,
1128     const void *val, dmu_tx_t *tx, void *tag)
1129 {
1130 	const uint64_t *intval = val;
1131 	int err = 0;
1132 
1133 	zap_name_t *zn = zap_name_alloc(zap, key, 0);
1134 	if (zn == NULL) {
1135 		zap_unlockdir(zap, tag);
1136 		return (SET_ERROR(ENOTSUP));
1137 	}
1138 	if (!zap->zap_ismicro) {
1139 		err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1140 		zap = zn->zn_zap;	/* fzap_add() may change zap */
1141 	} else if (integer_size != 8 || num_integers != 1 ||
1142 	    strlen(key) >= MZAP_NAME_LEN) {
1143 		err = mzap_upgrade(&zn->zn_zap, tag, tx, 0);
1144 		if (err == 0) {
1145 			err = fzap_add(zn, integer_size, num_integers, val,
1146 			    tag, tx);
1147 		}
1148 		zap = zn->zn_zap;	/* fzap_add() may change zap */
1149 	} else {
1150 		if (mze_find(zn) != NULL) {
1151 			err = SET_ERROR(EEXIST);
1152 		} else {
1153 			mzap_addent(zn, *intval);
1154 		}
1155 	}
1156 	ASSERT(zap == zn->zn_zap);
1157 	zap_name_free(zn);
1158 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1159 		zap_unlockdir(zap, tag);
1160 	return (err);
1161 }
1162 
1163 int
1164 zap_add(objset_t *os, uint64_t zapobj, const char *key,
1165     int integer_size, uint64_t num_integers,
1166     const void *val, dmu_tx_t *tx)
1167 {
1168 	zap_t *zap;
1169 	int err;
1170 
1171 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1172 	if (err != 0)
1173 		return (err);
1174 	err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1175 	/* zap_add_impl() calls zap_unlockdir() */
1176 	return (err);
1177 }
1178 
1179 int
1180 zap_add_by_dnode(dnode_t *dn, const char *key,
1181     int integer_size, uint64_t num_integers,
1182     const void *val, dmu_tx_t *tx)
1183 {
1184 	zap_t *zap;
1185 	int err;
1186 
1187 	err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1188 	if (err != 0)
1189 		return (err);
1190 	err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1191 	/* zap_add_impl() calls zap_unlockdir() */
1192 	return (err);
1193 }
1194 
1195 int
1196 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1197     int key_numints, int integer_size, uint64_t num_integers,
1198     const void *val, dmu_tx_t *tx)
1199 {
1200 	zap_t *zap;
1201 
1202 	int err =
1203 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1204 	if (err != 0)
1205 		return (err);
1206 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1207 	if (zn == NULL) {
1208 		zap_unlockdir(zap, FTAG);
1209 		return (SET_ERROR(ENOTSUP));
1210 	}
1211 	err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx);
1212 	zap = zn->zn_zap;	/* fzap_add() may change zap */
1213 	zap_name_free(zn);
1214 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1215 		zap_unlockdir(zap, FTAG);
1216 	return (err);
1217 }
1218 
1219 int
1220 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1221     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1222 {
1223 	zap_t *zap;
1224 	uint64_t oldval;
1225 	const uint64_t *intval = val;
1226 
1227 #ifdef ZFS_DEBUG
1228 	/*
1229 	 * If there is an old value, it shouldn't change across the
1230 	 * lockdir (eg, due to bprewrite's xlation).
1231 	 */
1232 	if (integer_size == 8 && num_integers == 1)
1233 		(void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1234 #endif
1235 
1236 	int err =
1237 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1238 	if (err != 0)
1239 		return (err);
1240 	zap_name_t *zn = zap_name_alloc(zap, name, 0);
1241 	if (zn == NULL) {
1242 		zap_unlockdir(zap, FTAG);
1243 		return (SET_ERROR(ENOTSUP));
1244 	}
1245 	if (!zap->zap_ismicro) {
1246 		err = fzap_update(zn, integer_size, num_integers, val,
1247 		    FTAG, tx);
1248 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1249 	} else if (integer_size != 8 || num_integers != 1 ||
1250 	    strlen(name) >= MZAP_NAME_LEN) {
1251 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1252 		    zapobj, integer_size, num_integers, name);
1253 		err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
1254 		if (err == 0) {
1255 			err = fzap_update(zn, integer_size, num_integers,
1256 			    val, FTAG, tx);
1257 		}
1258 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1259 	} else {
1260 		mzap_ent_t *mze = mze_find(zn);
1261 		if (mze != NULL) {
1262 			ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1263 			MZE_PHYS(zap, mze)->mze_value = *intval;
1264 		} else {
1265 			mzap_addent(zn, *intval);
1266 		}
1267 	}
1268 	ASSERT(zap == zn->zn_zap);
1269 	zap_name_free(zn);
1270 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1271 		zap_unlockdir(zap, FTAG);
1272 	return (err);
1273 }
1274 
1275 int
1276 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1277     int key_numints,
1278     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1279 {
1280 	zap_t *zap;
1281 
1282 	int err =
1283 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1284 	if (err != 0)
1285 		return (err);
1286 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1287 	if (zn == NULL) {
1288 		zap_unlockdir(zap, FTAG);
1289 		return (SET_ERROR(ENOTSUP));
1290 	}
1291 	err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx);
1292 	zap = zn->zn_zap;	/* fzap_update() may change zap */
1293 	zap_name_free(zn);
1294 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1295 		zap_unlockdir(zap, FTAG);
1296 	return (err);
1297 }
1298 
1299 int
1300 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1301 {
1302 	return (zap_remove_norm(os, zapobj, name, 0, tx));
1303 }
1304 
1305 static int
1306 zap_remove_impl(zap_t *zap, const char *name,
1307     matchtype_t mt, dmu_tx_t *tx)
1308 {
1309 	int err = 0;
1310 
1311 	zap_name_t *zn = zap_name_alloc(zap, name, mt);
1312 	if (zn == NULL)
1313 		return (SET_ERROR(ENOTSUP));
1314 	if (!zap->zap_ismicro) {
1315 		err = fzap_remove(zn, tx);
1316 	} else {
1317 		mzap_ent_t *mze = mze_find(zn);
1318 		if (mze == NULL) {
1319 			err = SET_ERROR(ENOENT);
1320 		} else {
1321 			zap->zap_m.zap_num_entries--;
1322 			bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1323 			    sizeof (mzap_ent_phys_t));
1324 			mze_remove(zap, mze);
1325 		}
1326 	}
1327 	zap_name_free(zn);
1328 	return (err);
1329 }
1330 
1331 int
1332 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1333     matchtype_t mt, dmu_tx_t *tx)
1334 {
1335 	zap_t *zap;
1336 	int err;
1337 
1338 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1339 	if (err)
1340 		return (err);
1341 	err = zap_remove_impl(zap, name, mt, tx);
1342 	zap_unlockdir(zap, FTAG);
1343 	return (err);
1344 }
1345 
1346 int
1347 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx)
1348 {
1349 	zap_t *zap;
1350 	int err;
1351 
1352 	err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1353 	if (err)
1354 		return (err);
1355 	err = zap_remove_impl(zap, name, 0, tx);
1356 	zap_unlockdir(zap, FTAG);
1357 	return (err);
1358 }
1359 
1360 int
1361 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1362     int key_numints, dmu_tx_t *tx)
1363 {
1364 	zap_t *zap;
1365 
1366 	int err =
1367 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1368 	if (err != 0)
1369 		return (err);
1370 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1371 	if (zn == NULL) {
1372 		zap_unlockdir(zap, FTAG);
1373 		return (SET_ERROR(ENOTSUP));
1374 	}
1375 	err = fzap_remove(zn, tx);
1376 	zap_name_free(zn);
1377 	zap_unlockdir(zap, FTAG);
1378 	return (err);
1379 }
1380 
1381 /*
1382  * Routines for iterating over the attributes.
1383  */
1384 
1385 static void
1386 zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1387     uint64_t serialized, boolean_t prefetch)
1388 {
1389 	zc->zc_objset = os;
1390 	zc->zc_zap = NULL;
1391 	zc->zc_leaf = NULL;
1392 	zc->zc_zapobj = zapobj;
1393 	zc->zc_serialized = serialized;
1394 	zc->zc_hash = 0;
1395 	zc->zc_cd = 0;
1396 	zc->zc_prefetch = prefetch;
1397 }
1398 void
1399 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1400     uint64_t serialized)
1401 {
1402 	zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE);
1403 }
1404 
1405 /*
1406  * Initialize a cursor at the beginning of the ZAP object.  The entire
1407  * ZAP object will be prefetched.
1408  */
1409 void
1410 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1411 {
1412 	zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE);
1413 }
1414 
1415 /*
1416  * Initialize a cursor at the beginning, but request that we not prefetch
1417  * the entire ZAP object.
1418  */
1419 void
1420 zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1421 {
1422 	zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE);
1423 }
1424 
1425 void
1426 zap_cursor_fini(zap_cursor_t *zc)
1427 {
1428 	if (zc->zc_zap) {
1429 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1430 		zap_unlockdir(zc->zc_zap, NULL);
1431 		zc->zc_zap = NULL;
1432 	}
1433 	if (zc->zc_leaf) {
1434 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1435 		zap_put_leaf(zc->zc_leaf);
1436 		zc->zc_leaf = NULL;
1437 	}
1438 	zc->zc_objset = NULL;
1439 }
1440 
1441 uint64_t
1442 zap_cursor_serialize(zap_cursor_t *zc)
1443 {
1444 	if (zc->zc_hash == -1ULL)
1445 		return (-1ULL);
1446 	if (zc->zc_zap == NULL)
1447 		return (zc->zc_serialized);
1448 	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1449 	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1450 
1451 	/*
1452 	 * We want to keep the high 32 bits of the cursor zero if we can, so
1453 	 * that 32-bit programs can access this.  So usually use a small
1454 	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1455 	 * of the cursor.
1456 	 *
1457 	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1458 	 */
1459 	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1460 	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1461 }
1462 
1463 int
1464 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1465 {
1466 	int err;
1467 
1468 	if (zc->zc_hash == -1ULL)
1469 		return (SET_ERROR(ENOENT));
1470 
1471 	if (zc->zc_zap == NULL) {
1472 		int hb;
1473 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1474 		    RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
1475 		if (err != 0)
1476 			return (err);
1477 
1478 		/*
1479 		 * To support zap_cursor_init_serialized, advance, retrieve,
1480 		 * we must add to the existing zc_cd, which may already
1481 		 * be 1 due to the zap_cursor_advance.
1482 		 */
1483 		ASSERT(zc->zc_hash == 0);
1484 		hb = zap_hashbits(zc->zc_zap);
1485 		zc->zc_hash = zc->zc_serialized << (64 - hb);
1486 		zc->zc_cd += zc->zc_serialized >> hb;
1487 		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1488 			zc->zc_cd = 0;
1489 	} else {
1490 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1491 	}
1492 	if (!zc->zc_zap->zap_ismicro) {
1493 		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1494 	} else {
1495 		avl_index_t idx;
1496 		mzap_ent_t mze_tofind;
1497 
1498 		mze_tofind.mze_hash = zc->zc_hash;
1499 		mze_tofind.mze_cd = zc->zc_cd;
1500 
1501 		mzap_ent_t *mze =
1502 		    avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1503 		if (mze == NULL) {
1504 			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1505 			    idx, AVL_AFTER);
1506 		}
1507 		if (mze) {
1508 			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1509 			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1510 			za->za_normalization_conflict =
1511 			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1512 			za->za_integer_length = 8;
1513 			za->za_num_integers = 1;
1514 			za->za_first_integer = mzep->mze_value;
1515 			(void) strcpy(za->za_name, mzep->mze_name);
1516 			zc->zc_hash = mze->mze_hash;
1517 			zc->zc_cd = mze->mze_cd;
1518 			err = 0;
1519 		} else {
1520 			zc->zc_hash = -1ULL;
1521 			err = SET_ERROR(ENOENT);
1522 		}
1523 	}
1524 	rw_exit(&zc->zc_zap->zap_rwlock);
1525 	return (err);
1526 }
1527 
1528 void
1529 zap_cursor_advance(zap_cursor_t *zc)
1530 {
1531 	if (zc->zc_hash == -1ULL)
1532 		return;
1533 	zc->zc_cd++;
1534 }
1535 
1536 int
1537 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1538 {
1539 	zap_t *zap;
1540 
1541 	int err =
1542 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1543 	if (err != 0)
1544 		return (err);
1545 
1546 	bzero(zs, sizeof (zap_stats_t));
1547 
1548 	if (zap->zap_ismicro) {
1549 		zs->zs_blocksize = zap->zap_dbuf->db_size;
1550 		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1551 		zs->zs_num_blocks = 1;
1552 	} else {
1553 		fzap_get_stats(zap, zs);
1554 	}
1555 	zap_unlockdir(zap, FTAG);
1556 	return (0);
1557 }
1558